| // Copyright 2010 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #ifndef DOUBLE_CONVERSION_UTILS_H_ |
| #define DOUBLE_CONVERSION_UTILS_H_ |
| |
| #include <wtf/Assertions.h> |
| #include <cstdlib> |
| #include <cstring> |
| |
| #ifndef UNIMPLEMENTED |
| #define UNIMPLEMENTED() ASSERT_NOT_REACHED() |
| #endif |
| #ifndef DOUBLE_CONVERSION_NO_RETURN |
| #ifdef _MSC_VER |
| #define DOUBLE_CONVERSION_NO_RETURN __declspec(noreturn) |
| #else |
| #define DOUBLE_CONVERSION_NO_RETURN __attribute__((noreturn)) |
| #endif |
| #endif |
| #ifndef UNREACHABLE |
| #ifdef _MSC_VER |
| void DOUBLE_CONVERSION_NO_RETURN abort_noreturn(); |
| inline void abort_noreturn() { abort(); } |
| #define UNREACHABLE() (abort_noreturn()) |
| #else |
| #define UNREACHABLE() (abort()) |
| #endif |
| #endif |
| |
| |
| // Double operations detection based on target architecture. |
| // Linux uses a 80bit wide floating point stack on x86. This induces double |
| // rounding, which in turn leads to wrong results. |
| // An easy way to test if the floating-point operations are correct is to |
| // evaluate: 89255.0/1e22. If the floating-point stack is 64 bits wide then |
| // the result is equal to 89255e-22. |
| // The best way to test this, is to create a division-function and to compare |
| // the output of the division with the expected result. (Inlining must be |
| // disabled.) |
| // On Linux,x86 89255e-22 != Div_double(89255.0/1e22) |
| // |
| // For example: |
| /* |
| // -- in div.c |
| double Div_double(double x, double y) { return x / y; } |
| |
| // -- in main.c |
| double Div_double(double x, double y); // Forward declaration. |
| |
| int main(int argc, char** argv) { |
| return Div_double(89255.0, 1e22) == 89255e-22; |
| } |
| */ |
| // Run as follows ./main || echo "correct" |
| // |
| // If it prints "correct" then the architecture should be here, in the "correct" section. |
| #if defined(_M_X64) || defined(__x86_64__) || \ |
| defined(__ARMEL__) || defined(__avr32__) || defined(_M_ARM) || defined(_M_ARM64) || \ |
| defined(__hppa__) || defined(__ia64__) || \ |
| defined(__mips__) || \ |
| defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__) || \ |
| defined(_POWER) || defined(_ARCH_PPC) || defined(_ARCH_PPC64) || \ |
| defined(__sparc__) || defined(__sparc) || defined(__s390__) || \ |
| defined(__SH4__) || defined(__alpha__) || \ |
| defined(_MIPS_ARCH_MIPS32R2) || \ |
| defined(__AARCH64EL__) || defined(__aarch64__) || defined(__AARCH64EB__) || \ |
| defined(__riscv) || \ |
| defined(__or1k__) || defined(__arc__) || \ |
| defined(__EMSCRIPTEN__) |
| #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1 |
| #elif defined(__mc68000__) || \ |
| defined(__pnacl__) || defined(__native_client__) |
| #undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS |
| #elif defined(_M_IX86) || defined(__i386__) || defined(__i386) |
| #if defined(_WIN32) |
| // Windows uses a 64bit wide floating point stack. |
| #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1 |
| #else |
| #undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS |
| #endif // _WIN32 |
| #else |
| #error Target architecture was not detected as supported by Double-Conversion. |
| #endif |
| |
| #if defined(_WIN32) && !defined(__MINGW32__) |
| |
| typedef signed char int8_t; |
| typedef unsigned char uint8_t; |
| typedef short int16_t; // NOLINT |
| typedef unsigned short uint16_t; // NOLINT |
| typedef int int32_t; |
| typedef unsigned int uint32_t; |
| typedef __int64 int64_t; |
| typedef unsigned __int64 uint64_t; |
| // intptr_t and friends are defined in crtdefs.h through stdio.h. |
| |
| #else |
| |
| #include <stdint.h> |
| |
| #endif |
| |
| typedef uint16_t uc16; |
| |
| // The following macro works on both 32 and 64-bit platforms. |
| // Usage: instead of writing 0x1234567890123456 |
| // write UINT64_2PART_C(0x12345678,90123456); |
| #define UINT64_2PART_C(a, b) (((static_cast<uint64_t>(a) << 32) + 0x##b##u)) |
| |
| |
| // The expression ARRAY_SIZE(a) is a compile-time constant of type |
| // size_t which represents the number of elements of the given |
| // array. You should only use ARRAY_SIZE on statically allocated |
| // arrays. |
| #ifndef ARRAY_SIZE |
| #define ARRAY_SIZE(a) \ |
| ((sizeof(a) / sizeof(*(a))) / \ |
| static_cast<size_t>(!(sizeof(a) % sizeof(*(a))))) |
| #endif |
| |
| // A macro to disallow the evil copy constructor and operator= functions |
| // This should be used in the private: declarations for a class |
| #ifndef DC_DISALLOW_COPY_AND_ASSIGN |
| #define DC_DISALLOW_COPY_AND_ASSIGN(TypeName) \ |
| TypeName(const TypeName&); \ |
| void operator=(const TypeName&) |
| #endif |
| |
| // A macro to disallow all the implicit constructors, namely the |
| // default constructor, copy constructor and operator= functions. |
| // |
| // This should be used in the private: declarations for a class |
| // that wants to prevent anyone from instantiating it. This is |
| // especially useful for classes containing only static methods. |
| #ifndef DC_DISALLOW_IMPLICIT_CONSTRUCTORS |
| #define DC_DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \ |
| TypeName(); \ |
| DC_DISALLOW_COPY_AND_ASSIGN(TypeName) |
| #endif |
| |
| namespace WTF { |
| namespace double_conversion { |
| |
| static const int kCharSize = sizeof(char); |
| |
| // Returns the maximum of the two parameters. |
| template <typename T> |
| static T Max(T a, T b) { |
| return a < b ? b : a; |
| } |
| |
| |
| // Returns the minimum of the two parameters. |
| template <typename T> |
| static T Min(T a, T b) { |
| return a < b ? a : b; |
| } |
| |
| |
| inline int StrLength(const char* string) { |
| size_t length = strlen(string); |
| ASSERT(length == static_cast<size_t>(static_cast<int>(length))); |
| return static_cast<int>(length); |
| } |
| |
| // This is a simplified version of V8's Vector class. |
| template <typename T> |
| class BufferReference { |
| public: |
| BufferReference() : start_(NULL), length_(0) {} |
| BufferReference(T* data, int len) : start_(data), length_(len) { |
| ASSERT(len == 0 || (len > 0 && data != NULL)); |
| } |
| |
| // Returns a BufferReference using the same backing storage as this one, |
| // spanning from and including 'from', to but not including 'to'. |
| BufferReference<T> SubBufferReference(int from, int to) { |
| ASSERT(to <= length_); |
| ASSERT(from < to); |
| ASSERT(0 <= from); |
| return BufferReference<T>(start() + from, to - from); |
| } |
| |
| // Returns the length of the BufferReference. |
| int length() const { return length_; } |
| |
| // Returns whether or not the BufferReference is empty. |
| bool is_empty() const { return length_ == 0; } |
| |
| // Returns the pointer to the start of the data in the BufferReference. |
| T* start() const { return start_; } |
| |
| // Access individual BufferReference elements - checks bounds in debug mode. |
| T& operator[](int index) const { |
| ASSERT(0 <= index && index < length_); |
| return start_[index]; |
| } |
| |
| T& first() { return start_[0]; } |
| |
| T& last() { return start_[length_ - 1]; } |
| |
| private: |
| T* start_; |
| int length_; |
| }; |
| |
| |
| // Helper class for building result strings in a character buffer. The |
| // purpose of the class is to use safe operations that checks the |
| // buffer bounds on all operations in debug mode. |
| class StringBuilder { |
| public: |
| StringBuilder(char* buffer, int buffer_size) |
| : buffer_(buffer, buffer_size), position_(0) { } |
| |
| ~StringBuilder() { if (!is_finalized()) Finalize(); } |
| |
| int size() const { return buffer_.length(); } |
| |
| // Get the current position in the builder. |
| int position() const { |
| ASSERT(!is_finalized()); |
| return position_; |
| } |
| |
| // Reset the position. |
| void Reset() { position_ = 0; } |
| |
| // Add a single character to the builder. It is not allowed to add |
| // 0-characters; use the Finalize() method to terminate the string |
| // instead. |
| void AddCharacter(char c) { |
| ASSERT(c != '\0'); |
| ASSERT(!is_finalized() && position_ < buffer_.length()); |
| buffer_[position_++] = c; |
| } |
| |
| // Add an entire string to the builder. Uses strlen() internally to |
| // compute the length of the input string. |
| void AddString(const char* s) { |
| AddSubstring(s, StrLength(s)); |
| } |
| |
| // Add the first 'n' characters of the given string 's' to the |
| // builder. The input string must have enough characters. |
| void AddSubstring(const char* s, int n) { |
| ASSERT(!is_finalized() && position_ + n < buffer_.length()); |
| ASSERT_WITH_SECURITY_IMPLICATION(static_cast<size_t>(n) <= strlen(s)); |
| memmove(&buffer_[position_], s, n * kCharSize); |
| position_ += n; |
| } |
| |
| |
| // Add character padding to the builder. If count is non-positive, |
| // nothing is added to the builder. |
| void AddPadding(char c, int count) { |
| for (int i = 0; i < count; i++) { |
| AddCharacter(c); |
| } |
| } |
| |
| void RemoveCharacters(int start, int end) { |
| ASSERT(start >= 0); |
| ASSERT(end >= 0); |
| ASSERT(start <= end); |
| ASSERT(end <= position_); |
| std::memmove(&buffer_[start], &buffer_[end], position_ - end); |
| position_ -= end - start; |
| } |
| |
| // Finalize the string by 0-terminating it and returning the buffer. |
| char* Finalize() { |
| ASSERT(!is_finalized() && position_ < buffer_.length()); |
| buffer_[position_] = '\0'; |
| // Make sure nobody managed to add a 0-character to the |
| // buffer while building the string. |
| ASSERT(strlen(buffer_.start()) == static_cast<size_t>(position_)); |
| position_ = -1; |
| ASSERT(is_finalized()); |
| return buffer_.start(); |
| } |
| |
| private: |
| BufferReference<char> buffer_; |
| int position_; |
| |
| bool is_finalized() const { return position_ < 0; } |
| |
| DC_DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder); |
| }; |
| |
| // The type-based aliasing rule allows the compiler to assume that pointers of |
| // different types (for some definition of different) never alias each other. |
| // Thus the following code does not work: |
| // |
| // float f = foo(); |
| // int fbits = *(int*)(&f); |
| // |
| // The compiler 'knows' that the int pointer can't refer to f since the types |
| // don't match, so the compiler may cache f in a register, leaving random data |
| // in fbits. Using C++ style casts makes no difference, however a pointer to |
| // char data is assumed to alias any other pointer. This is the 'memcpy |
| // exception'. |
| // |
| // Bit_cast uses the memcpy exception to move the bits from a variable of one |
| // type of a variable of another type. Of course the end result is likely to |
| // be implementation dependent. Most compilers (gcc-4.2 and MSVC 2005) |
| // will completely optimize BitCast away. |
| // |
| // There is an additional use for BitCast. |
| // Recent gccs will warn when they see casts that may result in breakage due to |
| // the type-based aliasing rule. If you have checked that there is no breakage |
| // you can use BitCast to cast one pointer type to another. This confuses gcc |
| // enough that it can no longer see that you have cast one pointer type to |
| // another thus avoiding the warning. |
| template <class Dest, class Source> |
| inline Dest BitCast(const Source& source) { |
| // Compile time assertion: sizeof(Dest) == sizeof(Source) |
| // A compile error here means your Dest and Source have different sizes. |
| #if __cplusplus >= 201103L |
| static_assert(sizeof(Dest) == sizeof(Source), |
| "source and destination size mismatch"); |
| #else |
| typedef char VerifySizesAreEqual[sizeof(Dest) == sizeof(Source) ? 1 : -1]; |
| #endif |
| |
| Dest dest; |
| memmove(&dest, &source, sizeof(dest)); |
| return dest; |
| } |
| |
| template <class Dest, class Source> |
| inline Dest BitCast(Source* source) { |
| return BitCast<Dest>(reinterpret_cast<uintptr_t>(source)); |
| } |
| |
| } // namespace double_conversion |
| } // namespace WTF |
| |
| #endif // DOUBLE_CONVERSION_UTILS_H_ |