| /* |
| * Copyright (C) 2007-2017 Apple Inc. All rights reserved. |
| * Copyright (C) 2007 Justin Haygood (jhaygood@reaktix.com) |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| * DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON |
| * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #pragma once |
| |
| #include <atomic> |
| #include <wtf/StdLibExtras.h> |
| |
| #if OS(WINDOWS) |
| #if !COMPILER(GCC_COMPATIBLE) |
| extern "C" void _ReadWriteBarrier(void); |
| #pragma intrinsic(_ReadWriteBarrier) |
| #endif |
| #include <windows.h> |
| #include <intrin.h> |
| #endif |
| |
| namespace WTF { |
| |
| ALWAYS_INLINE bool hasFence(std::memory_order order) |
| { |
| return order != std::memory_order_relaxed; |
| } |
| |
| // Atomic wraps around std::atomic with the sole purpose of making the compare_exchange |
| // operations not alter the expected value. This is more in line with how we typically |
| // use CAS in our code. |
| // |
| // Atomic is a struct without explicitly defined constructors so that it can be |
| // initialized at compile time. |
| |
| template<typename T> |
| struct Atomic { |
| // Don't pass a non-default value for the order parameter unless you really know |
| // what you are doing and have thought about it very hard. The cost of seq_cst |
| // is usually not high enough to justify the risk. |
| |
| ALWAYS_INLINE T load(std::memory_order order = std::memory_order_seq_cst) const { return value.load(order); } |
| |
| ALWAYS_INLINE T loadRelaxed() const { return load(std::memory_order_relaxed); } |
| |
| // This is a load that simultaneously does a full fence - neither loads nor stores will move |
| // above or below it. |
| ALWAYS_INLINE T loadFullyFenced() const |
| { |
| Atomic<T>* ptr = const_cast<Atomic<T>*>(this); |
| return ptr->exchangeAdd(T()); |
| } |
| |
| ALWAYS_INLINE void store(T desired, std::memory_order order = std::memory_order_seq_cst) { value.store(desired, order); } |
| |
| ALWAYS_INLINE void storeRelaxed(T desired) { store(desired, std::memory_order_relaxed); } |
| |
| // This is a store that simultaneously does a full fence - neither loads nor stores will move |
| // above or below it. |
| ALWAYS_INLINE void storeFullyFenced(T desired) |
| { |
| exchange(desired); |
| } |
| |
| ALWAYS_INLINE bool compareExchangeWeak(T expected, T desired, std::memory_order order = std::memory_order_seq_cst) |
| { |
| T expectedOrActual = expected; |
| return value.compare_exchange_weak(expectedOrActual, desired, order); |
| } |
| |
| ALWAYS_INLINE bool compareExchangeWeakRelaxed(T expected, T desired) |
| { |
| return compareExchangeWeak(expected, desired, std::memory_order_relaxed); |
| } |
| |
| ALWAYS_INLINE bool compareExchangeWeak(T expected, T desired, std::memory_order order_success, std::memory_order order_failure) |
| { |
| T expectedOrActual = expected; |
| return value.compare_exchange_weak(expectedOrActual, desired, order_success, order_failure); |
| } |
| |
| // WARNING: This does not have strong fencing guarantees when it fails. For example, stores could |
| // sink below it in that case. |
| ALWAYS_INLINE T compareExchangeStrong(T expected, T desired, std::memory_order order = std::memory_order_seq_cst) |
| { |
| T expectedOrActual = expected; |
| value.compare_exchange_strong(expectedOrActual, desired, order); |
| return expectedOrActual; |
| } |
| |
| ALWAYS_INLINE T compareExchangeStrong(T expected, T desired, std::memory_order order_success, std::memory_order order_failure) |
| { |
| T expectedOrActual = expected; |
| value.compare_exchange_strong(expectedOrActual, desired, order_success, order_failure); |
| return expectedOrActual; |
| } |
| |
| template<typename U> |
| ALWAYS_INLINE T exchangeAdd(U operand, std::memory_order order = std::memory_order_seq_cst) { return value.fetch_add(operand, order); } |
| |
| template<typename U> |
| ALWAYS_INLINE T exchangeAnd(U operand, std::memory_order order = std::memory_order_seq_cst) { return value.fetch_and(operand, order); } |
| |
| template<typename U> |
| ALWAYS_INLINE T exchangeOr(U operand, std::memory_order order = std::memory_order_seq_cst) { return value.fetch_or(operand, order); } |
| |
| template<typename U> |
| ALWAYS_INLINE T exchangeSub(U operand, std::memory_order order = std::memory_order_seq_cst) { return value.fetch_sub(operand, order); } |
| |
| template<typename U> |
| ALWAYS_INLINE T exchangeXor(U operand, std::memory_order order = std::memory_order_seq_cst) { return value.fetch_xor(operand, order); } |
| |
| ALWAYS_INLINE T exchange(T newValue, std::memory_order order = std::memory_order_seq_cst) { return value.exchange(newValue, order); } |
| |
| template<typename Func> |
| ALWAYS_INLINE bool transaction(const Func& func, std::memory_order order = std::memory_order_seq_cst) |
| { |
| for (;;) { |
| T oldValue = load(std::memory_order_relaxed); |
| T newValue = oldValue; |
| if (!func(newValue)) |
| return false; |
| if (compareExchangeWeak(oldValue, newValue, order)) |
| return true; |
| } |
| } |
| |
| template<typename Func> |
| ALWAYS_INLINE bool transactionRelaxed(const Func& func) |
| { |
| return transaction(func, std::memory_order_relaxed); |
| } |
| |
| Atomic() = default; |
| constexpr Atomic(T initial) |
| : value(std::forward<T>(initial)) |
| { |
| } |
| |
| std::atomic<T> value; |
| }; |
| |
| template<typename T> |
| inline T atomicLoad(T* location, std::memory_order order = std::memory_order_seq_cst) |
| { |
| return bitwise_cast<Atomic<T>*>(location)->load(order); |
| } |
| |
| template<typename T> |
| inline T atomicLoadFullyFenced(T* location) |
| { |
| return bitwise_cast<Atomic<T>*>(location)->loadFullyFenced(); |
| } |
| |
| template<typename T> |
| inline void atomicStore(T* location, T newValue, std::memory_order order = std::memory_order_seq_cst) |
| { |
| bitwise_cast<Atomic<T>*>(location)->store(newValue, order); |
| } |
| |
| template<typename T> |
| inline void atomicStoreFullyFenced(T* location, T newValue) |
| { |
| bitwise_cast<Atomic<T>*>(location)->storeFullyFenced(newValue); |
| } |
| |
| template<typename T> |
| inline bool atomicCompareExchangeWeak(T* location, T expected, T newValue, std::memory_order order = std::memory_order_seq_cst) |
| { |
| return bitwise_cast<Atomic<T>*>(location)->compareExchangeWeak(expected, newValue, order); |
| } |
| |
| template<typename T> |
| inline bool atomicCompareExchangeWeakRelaxed(T* location, T expected, T newValue) |
| { |
| return bitwise_cast<Atomic<T>*>(location)->compareExchangeWeakRelaxed(expected, newValue); |
| } |
| |
| template<typename T> |
| inline T atomicCompareExchangeStrong(T* location, T expected, T newValue, std::memory_order order = std::memory_order_seq_cst) |
| { |
| return bitwise_cast<Atomic<T>*>(location)->compareExchangeStrong(expected, newValue, order); |
| } |
| |
| template<typename T, typename U> |
| inline T atomicExchangeAdd(T* location, U operand, std::memory_order order = std::memory_order_seq_cst) |
| { |
| return bitwise_cast<Atomic<T>*>(location)->exchangeAdd(operand, order); |
| } |
| |
| template<typename T, typename U> |
| inline T atomicExchangeAnd(T* location, U operand, std::memory_order order = std::memory_order_seq_cst) |
| { |
| return bitwise_cast<Atomic<T>*>(location)->exchangeAnd(operand, order); |
| } |
| |
| template<typename T, typename U> |
| inline T atomicExchangeOr(T* location, U operand, std::memory_order order = std::memory_order_seq_cst) |
| { |
| return bitwise_cast<Atomic<T>*>(location)->exchangeOr(operand, order); |
| } |
| |
| template<typename T, typename U> |
| inline T atomicExchangeSub(T* location, U operand, std::memory_order order = std::memory_order_seq_cst) |
| { |
| return bitwise_cast<Atomic<T>*>(location)->exchangeSub(operand, order); |
| } |
| |
| template<typename T, typename U> |
| inline T atomicExchangeXor(T* location, U operand, std::memory_order order = std::memory_order_seq_cst) |
| { |
| return bitwise_cast<Atomic<T>*>(location)->exchangeXor(operand, order); |
| } |
| |
| template<typename T> |
| inline T atomicExchange(T* location, T newValue, std::memory_order order = std::memory_order_seq_cst) |
| { |
| return bitwise_cast<Atomic<T>*>(location)->exchange(newValue, order); |
| } |
| |
| // Just a compiler fence. Has no effect on the hardware, but tells the compiler |
| // not to move things around this call. Should not affect the compiler's ability |
| // to do things like register allocation and code motion over pure operations. |
| inline void compilerFence() |
| { |
| #if OS(WINDOWS) && !COMPILER(GCC_COMPATIBLE) |
| _ReadWriteBarrier(); |
| #else |
| asm volatile("" ::: "memory"); |
| #endif |
| } |
| |
| #if CPU(ARM_THUMB2) || CPU(ARM64) |
| |
| // Full memory fence. No accesses will float above this, and no accesses will sink |
| // below it. |
| inline void arm_dmb() |
| { |
| asm volatile("dmb ish" ::: "memory"); |
| } |
| |
| // Like the above, but only affects stores. |
| inline void arm_dmb_st() |
| { |
| asm volatile("dmb ishst" ::: "memory"); |
| } |
| |
| inline void arm_isb() |
| { |
| asm volatile("isb" ::: "memory"); |
| } |
| |
| inline void loadLoadFence() { arm_dmb(); } |
| inline void loadStoreFence() { arm_dmb(); } |
| inline void storeLoadFence() { arm_dmb(); } |
| inline void storeStoreFence() { arm_dmb_st(); } |
| inline void memoryBarrierAfterLock() { arm_dmb(); } |
| inline void memoryBarrierBeforeUnlock() { arm_dmb(); } |
| inline void crossModifyingCodeFence() { arm_isb(); } |
| |
| #elif CPU(X86) || CPU(X86_64) |
| |
| inline void x86_ortop() |
| { |
| #if OS(WINDOWS) |
| MemoryBarrier(); |
| #elif CPU(X86_64) |
| // This has acqrel semantics and is much cheaper than mfence. For exampe, in the JSC GC, using |
| // mfence as a store-load fence was a 9% slow-down on Octane/splay while using this was neutral. |
| asm volatile("lock; orl $0, (%%rsp)" ::: "memory"); |
| #else |
| asm volatile("lock; orl $0, (%%esp)" ::: "memory"); |
| #endif |
| } |
| |
| inline void x86_cpuid() |
| { |
| #if OS(WINDOWS) |
| int info[4]; |
| __cpuid(info, 0); |
| #else |
| intptr_t a = 0, b, c, d; |
| asm volatile( |
| "cpuid" |
| : "+a"(a), "=b"(b), "=c"(c), "=d"(d) |
| : |
| : "memory"); |
| #endif |
| } |
| |
| inline void loadLoadFence() { compilerFence(); } |
| inline void loadStoreFence() { compilerFence(); } |
| inline void storeLoadFence() { x86_ortop(); } |
| inline void storeStoreFence() { compilerFence(); } |
| inline void memoryBarrierAfterLock() { compilerFence(); } |
| inline void memoryBarrierBeforeUnlock() { compilerFence(); } |
| inline void crossModifyingCodeFence() { x86_cpuid(); } |
| |
| #else |
| |
| inline void loadLoadFence() { std::atomic_thread_fence(std::memory_order_seq_cst); } |
| inline void loadStoreFence() { std::atomic_thread_fence(std::memory_order_seq_cst); } |
| inline void storeLoadFence() { std::atomic_thread_fence(std::memory_order_seq_cst); } |
| inline void storeStoreFence() { std::atomic_thread_fence(std::memory_order_seq_cst); } |
| inline void memoryBarrierAfterLock() { std::atomic_thread_fence(std::memory_order_seq_cst); } |
| inline void memoryBarrierBeforeUnlock() { std::atomic_thread_fence(std::memory_order_seq_cst); } |
| inline void crossModifyingCodeFence() { std::atomic_thread_fence(std::memory_order_seq_cst); } // Probably not strong enough. |
| |
| #endif |
| |
| typedef unsigned InternalDependencyType; |
| |
| inline InternalDependencyType opaqueMixture() |
| { |
| return 0; |
| } |
| |
| template<typename... Arguments, typename T> |
| inline InternalDependencyType opaqueMixture(T value, Arguments... arguments) |
| { |
| union { |
| InternalDependencyType copy; |
| T value; |
| } u; |
| u.copy = 0; |
| u.value = value; |
| return opaqueMixture(arguments...) + u.copy; |
| } |
| |
| class Dependency { |
| public: |
| Dependency() |
| : m_value(0) |
| { |
| } |
| |
| // On TSO architectures, this is a load-load fence and the value it returns is not meaningful (it's |
| // zero). The load-load fence is usually just a compiler fence. On ARM, this is a self-xor that |
| // produces zero, but it's concealed from the compiler. The CPU understands this dummy op to be a |
| // phantom dependency. |
| template<typename... Arguments> |
| static Dependency fence(Arguments... arguments) |
| { |
| InternalDependencyType input = opaqueMixture(arguments...); |
| InternalDependencyType output; |
| #if CPU(ARM64) |
| // Create a magical zero value through inline assembly, whose computation |
| // isn't visible to the optimizer. This zero is then usable as an offset in |
| // further address computations: adding zero does nothing, but the compiler |
| // doesn't know it. It's magical because it creates an address dependency |
| // from the load of `location` to the uses of the dependency, which triggers |
| // the ARM ISA's address dependency rule, a.k.a. the mythical C++ consume |
| // ordering. This forces weak memory order CPUs to observe `location` and |
| // dependent loads in their store order without the reader using a barrier |
| // or an acquire load. |
| asm("eor %w[out], %w[in], %w[in]" |
| : [out] "=r"(output) |
| : [in] "r"(input)); |
| #elif CPU(ARM) |
| asm("eor %[out], %[in], %[in]" |
| : [out] "=r"(output) |
| : [in] "r"(input)); |
| #else |
| // No dependency is needed for this architecture. |
| loadLoadFence(); |
| output = 0; |
| UNUSED_PARAM(input); |
| #endif |
| Dependency result; |
| result.m_value = output; |
| return result; |
| } |
| |
| // On TSO architectures, this just returns the pointer you pass it. On ARM, this produces a new |
| // pointer that is dependent on this dependency and the input pointer. |
| template<typename T> |
| T* consume(T* pointer) |
| { |
| #if CPU(ARM64) || CPU(ARM) |
| return bitwise_cast<T*>(bitwise_cast<char*>(pointer) + m_value); |
| #else |
| UNUSED_PARAM(m_value); |
| return pointer; |
| #endif |
| } |
| |
| private: |
| InternalDependencyType m_value; |
| }; |
| |
| template<typename InputType, typename ValueType> |
| struct InputAndValue { |
| InputAndValue() { } |
| |
| InputAndValue(InputType input, ValueType value) |
| : input(input) |
| , value(value) |
| { |
| } |
| |
| InputType input; |
| ValueType value; |
| }; |
| |
| template<typename InputType, typename ValueType> |
| InputAndValue<InputType, ValueType> inputAndValue(InputType input, ValueType value) |
| { |
| return InputAndValue<InputType, ValueType>(input, value); |
| } |
| |
| template<typename T, typename Func> |
| ALWAYS_INLINE T& ensurePointer(Atomic<T*>& pointer, const Func& func) |
| { |
| for (;;) { |
| T* oldValue = pointer.load(std::memory_order_relaxed); |
| if (oldValue) { |
| // On all sensible CPUs, we get an implicit dependency-based load-load barrier when |
| // loading this. |
| return *oldValue; |
| } |
| T* newValue = func(); |
| if (pointer.compareExchangeWeak(oldValue, newValue)) |
| return *newValue; |
| delete newValue; |
| } |
| } |
| |
| } // namespace WTF |
| |
| using WTF::Atomic; |
| using WTF::Dependency; |
| using WTF::InputAndValue; |
| using WTF::inputAndValue; |
| using WTF::ensurePointer; |
| using WTF::opaqueMixture; |