blob: 2724d738e75f3ad8a75a2be4155105c50cbf86fb [file] [log] [blame]
/*
* Copyright (C) 2016-2017 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "ImageSource.h"
#include "BitmapImage.h"
#include "ImageDecoder.h"
#include "ImageObserver.h"
#include "Logging.h"
#include <wtf/CheckedArithmetic.h>
#include <wtf/SystemTracing.h>
#include <wtf/URL.h>
#if USE(DIRECT2D)
#include "GraphicsContext.h"
#include "PlatformContextDirect2D.h"
#endif
namespace WebCore {
ImageSource::ImageSource(BitmapImage* image, AlphaOption alphaOption, GammaAndColorProfileOption gammaAndColorProfileOption)
: m_image(image)
, m_alphaOption(alphaOption)
, m_gammaAndColorProfileOption(gammaAndColorProfileOption)
, m_runLoop(RunLoop::current())
{
}
ImageSource::ImageSource(NativeImagePtr&& nativeImage)
: m_runLoop(RunLoop::current())
{
m_frameCount = 1;
m_encodedDataStatus = EncodedDataStatus::Complete;
growFrames();
setNativeImage(WTFMove(nativeImage));
m_decodedSize = m_frames[0].frameBytes();
m_size = m_frames[0].size();
m_orientation = ImageOrientation(ImageOrientation::None);
}
ImageSource::~ImageSource()
{
ASSERT(!hasAsyncDecodingQueue());
ASSERT(&m_runLoop == &RunLoop::current());
}
bool ImageSource::ensureDecoderAvailable(SharedBuffer* data)
{
if (!data || isDecoderAvailable())
return true;
m_decoder = ImageDecoder::create(*data, mimeType(), m_alphaOption, m_gammaAndColorProfileOption);
if (!isDecoderAvailable())
return false;
m_decoder->setEncodedDataStatusChangeCallback([weakThis = makeWeakPtr(this)] (auto status) {
if (weakThis)
weakThis->encodedDataStatusChanged(status);
});
if (auto expectedContentSize = expectedContentLength())
m_decoder->setExpectedContentSize(expectedContentSize);
// Changing the decoder has to stop the decoding thread. The current frame will
// continue decoding safely because the decoding thread has its own
// reference of the old decoder.
stopAsyncDecodingQueue();
return true;
}
void ImageSource::setData(SharedBuffer* data, bool allDataReceived)
{
if (!data || !ensureDecoderAvailable(data))
return;
m_decoder->setData(*data, allDataReceived);
}
void ImageSource::resetData(SharedBuffer* data)
{
m_decoder = nullptr;
setData(data, isAllDataReceived());
}
EncodedDataStatus ImageSource::dataChanged(SharedBuffer* data, bool allDataReceived)
{
setData(data, allDataReceived);
clearMetadata();
EncodedDataStatus status = encodedDataStatus();
if (status >= EncodedDataStatus::SizeAvailable)
growFrames();
return status;
}
bool ImageSource::isAllDataReceived()
{
return isDecoderAvailable() ? m_decoder->isAllDataReceived() : frameCount();
}
void ImageSource::destroyDecodedData(size_t frameCount, size_t excludeFrame)
{
unsigned decodedSize = 0;
ASSERT(frameCount <= m_frames.size());
for (size_t index = 0; index < frameCount; ++index) {
if (index == excludeFrame)
continue;
decodedSize += m_frames[index].clearImage();
}
decodedSizeReset(decodedSize);
}
void ImageSource::destroyIncompleteDecodedData()
{
unsigned decodedSize = 0;
for (auto& frame : m_frames) {
if (!frame.hasMetadata() || frame.isComplete())
continue;
decodedSize += frame.clear();
}
decodedSizeDecreased(decodedSize);
}
void ImageSource::clearFrameBufferCache(size_t beforeFrame)
{
if (!isDecoderAvailable())
return;
m_decoder->clearFrameBufferCache(beforeFrame);
}
void ImageSource::encodedDataStatusChanged(EncodedDataStatus status)
{
if (status == m_encodedDataStatus)
return;
m_encodedDataStatus = status;
if (status >= EncodedDataStatus::SizeAvailable)
growFrames();
if (m_image && m_image->imageObserver())
m_image->imageObserver()->encodedDataStatusChanged(*m_image, status);
}
void ImageSource::decodedSizeChanged(long long decodedSize)
{
if (!decodedSize || !m_image || !m_image->imageObserver())
return;
m_image->imageObserver()->decodedSizeChanged(*m_image, decodedSize);
}
void ImageSource::decodedSizeIncreased(unsigned decodedSize)
{
if (!decodedSize)
return;
m_decodedSize += decodedSize;
// The fully-decoded frame will subsume the partially decoded data used
// to determine image properties.
long long changeSize = static_cast<long long>(decodedSize) - m_decodedPropertiesSize;
m_decodedPropertiesSize = 0;
decodedSizeChanged(changeSize);
}
void ImageSource::decodedSizeDecreased(unsigned decodedSize)
{
if (!decodedSize)
return;
ASSERT(m_decodedSize >= decodedSize);
m_decodedSize -= decodedSize;
decodedSizeChanged(-static_cast<long long>(decodedSize));
}
void ImageSource::decodedSizeReset(unsigned decodedSize)
{
ASSERT(m_decodedSize >= decodedSize);
m_decodedSize -= decodedSize;
// Clearing the ImageSource destroys the extra decoded data used for
// determining image properties.
decodedSize += m_decodedPropertiesSize;
m_decodedPropertiesSize = 0;
decodedSizeChanged(-static_cast<long long>(decodedSize));
}
void ImageSource::didDecodeProperties(unsigned decodedPropertiesSize)
{
if (m_decodedSize)
return;
long long decodedSize = static_cast<long long>(decodedPropertiesSize) - m_decodedPropertiesSize;
m_decodedPropertiesSize = decodedPropertiesSize;
decodedSizeChanged(decodedSize);
}
void ImageSource::growFrames()
{
ASSERT(isSizeAvailable());
auto newSize = frameCount();
if (newSize > m_frames.size())
m_frames.grow(newSize);
}
void ImageSource::setNativeImage(NativeImagePtr&& nativeImage)
{
ASSERT(m_frames.size() == 1);
ImageFrame& frame = m_frames[0];
ASSERT(!isDecoderAvailable());
frame.m_nativeImage = WTFMove(nativeImage);
frame.m_decodingStatus = DecodingStatus::Complete;
frame.m_size = nativeImageSize(frame.m_nativeImage);
frame.m_hasAlpha = nativeImageHasAlpha(frame.m_nativeImage);
}
void ImageSource::cacheMetadataAtIndex(size_t index, SubsamplingLevel subsamplingLevel, DecodingStatus decodingStatus)
{
ASSERT(index < m_frames.size());
ImageFrame& frame = m_frames[index];
ASSERT(isDecoderAvailable());
if (decodingStatus == DecodingStatus::Invalid)
frame.m_decodingStatus = m_decoder->frameIsCompleteAtIndex(index) ? DecodingStatus::Complete : DecodingStatus::Partial;
else
frame.m_decodingStatus = decodingStatus;
if (frame.hasMetadata())
return;
frame.m_subsamplingLevel = subsamplingLevel;
if (frame.m_decodingOptions.hasSizeForDrawing()) {
ASSERT(frame.hasNativeImage());
frame.m_size = nativeImageSize(frame.nativeImage());
} else
frame.m_size = m_decoder->frameSizeAtIndex(index, subsamplingLevel);
frame.m_orientation = m_decoder->frameOrientationAtIndex(index);
frame.m_hasAlpha = m_decoder->frameHasAlphaAtIndex(index);
if (repetitionCount())
frame.m_duration = m_decoder->frameDurationAtIndex(index);
}
void ImageSource::cacheNativeImageAtIndex(NativeImagePtr&& nativeImage, size_t index, SubsamplingLevel subsamplingLevel, const DecodingOptions& decodingOptions, DecodingStatus decodingStatus)
{
ASSERT(index < m_frames.size());
ImageFrame& frame = m_frames[index];
// Clear the current image frame and update the observer with this clearance.
decodedSizeDecreased(frame.clear());
// Do not cache the NativeImage if adding its frameByes to the MemoryCache will cause numerical overflow.
size_t frameBytes = size().unclampedArea() * sizeof(uint32_t);
if (!WTF::isInBounds<unsigned>(frameBytes + decodedSize()))
return;
// Move the new image to the cache.
frame.m_nativeImage = WTFMove(nativeImage);
frame.m_decodingOptions = decodingOptions;
cacheMetadataAtIndex(index, subsamplingLevel, decodingStatus);
// Update the observer with the new image frame bytes.
decodedSizeIncreased(frame.frameBytes());
}
void ImageSource::cacheNativeImageAtIndexAsync(NativeImagePtr&& nativeImage, size_t index, SubsamplingLevel subsamplingLevel, const DecodingOptions& decodingOptions, DecodingStatus decodingStatus)
{
if (!isDecoderAvailable())
return;
ASSERT(index < m_frames.size());
// Clean the old native image and set a new one
cacheNativeImageAtIndex(WTFMove(nativeImage), index, subsamplingLevel, decodingOptions, decodingStatus);
LOG(Images, "ImageSource::%s - %p - url: %s [frame %ld has been cached]", __FUNCTION__, this, sourceURL().string().utf8().data(), index);
// Notify the image with the readiness of the new frame NativeImage.
if (m_image)
m_image->imageFrameAvailableAtIndex(index);
}
WorkQueue& ImageSource::decodingQueue()
{
if (!m_decodingQueue)
m_decodingQueue = WorkQueue::create("org.webkit.ImageDecoder", WorkQueue::Type::Serial, WorkQueue::QOS::Default);
return *m_decodingQueue;
}
ImageSource::FrameRequestQueue& ImageSource::frameRequestQueue()
{
if (!m_frameRequestQueue)
m_frameRequestQueue = FrameRequestQueue::create();
return *m_frameRequestQueue;
}
bool ImageSource::canUseAsyncDecoding()
{
if (!isDecoderAvailable())
return false;
// FIXME: figure out the best heuristic for enabling async image decoding.
return size().area() * sizeof(uint32_t) >= (frameCount() > 1 ? 100 * KB : 500 * KB);
}
void ImageSource::startAsyncDecodingQueue()
{
if (hasAsyncDecodingQueue() || !isDecoderAvailable())
return;
// Async decoding is only enabled for HTMLImageElement and CSS background images.
ASSERT(isMainThread());
// We need to protect this, m_decodingQueue and m_decoder from being deleted while we are in the decoding loop.
decodingQueue().dispatch([protectedThis = makeRef(*this), protectedDecodingQueue = makeRef(decodingQueue()), protectedFrameRequestQueue = makeRef(frameRequestQueue()), protectedDecoder = makeRef(*m_decoder), sourceURL = sourceURL().string().isolatedCopy()] () mutable {
ImageFrameRequest frameRequest;
Seconds minDecodingDuration = protectedThis->frameDecodingDurationForTesting();
while (protectedFrameRequestQueue->dequeue(frameRequest)) {
TraceScope tracingScope(AsyncImageDecodeStart, AsyncImageDecodeEnd);
MonotonicTime startingTime;
if (minDecodingDuration > 0_s)
startingTime = MonotonicTime::now();
// Get the frame NativeImage on the decoding thread.
NativeImagePtr nativeImage = protectedDecoder->createFrameImageAtIndex(frameRequest.index, frameRequest.subsamplingLevel, frameRequest.decodingOptions);
if (nativeImage)
LOG(Images, "ImageSource::%s - %p - url: %s [frame %ld has been decoded]", __FUNCTION__, protectedThis.ptr(), sourceURL.utf8().data(), frameRequest.index);
else {
LOG(Images, "ImageSource::%s - %p - url: %s [decoding for frame %ld has failed]", __FUNCTION__, protectedThis.ptr(), sourceURL.utf8().data(), frameRequest.index);
continue;
}
// Pretend as if the decoding takes minDecodingDuration.
if (minDecodingDuration > 0_s)
sleep(minDecodingDuration - (MonotonicTime::now() - startingTime));
// Update the cached frames on the creation thread to avoid updating the MemoryCache from a different thread.
callOnMainThread([protectedThis = protectedThis.copyRef(), protectedQueue = protectedDecodingQueue.copyRef(), protectedDecoder = protectedDecoder.copyRef(), sourceURL = sourceURL.isolatedCopy(), nativeImage = WTFMove(nativeImage), frameRequest] () mutable {
// The queue may have been closed if after we got the frame NativeImage, stopAsyncDecodingQueue() was called.
if (protectedQueue.ptr() == protectedThis->m_decodingQueue && protectedDecoder.ptr() == protectedThis->m_decoder) {
ASSERT(protectedThis->m_frameCommitQueue.first() == frameRequest);
protectedThis->m_frameCommitQueue.removeFirst();
protectedThis->cacheNativeImageAtIndexAsync(WTFMove(nativeImage), frameRequest.index, frameRequest.subsamplingLevel, frameRequest.decodingOptions, frameRequest.decodingStatus);
} else
LOG(Images, "ImageSource::%s - %p - url: %s [frame %ld will not cached]", __FUNCTION__, protectedThis.ptr(), sourceURL.utf8().data(), frameRequest.index);
});
}
// Ensure destruction happens on creation thread.
callOnMainThread([protectedThis = WTFMove(protectedThis), protectedQueue = WTFMove(protectedDecodingQueue), protectedDecoder = WTFMove(protectedDecoder)] () mutable { });
});
}
void ImageSource::requestFrameAsyncDecodingAtIndex(size_t index, SubsamplingLevel subsamplingLevel, const Optional<IntSize>& sizeForDrawing)
{
ASSERT(isDecoderAvailable());
if (!hasAsyncDecodingQueue())
startAsyncDecodingQueue();
ASSERT(index < m_frames.size());
DecodingStatus decodingStatus = m_decoder->frameIsCompleteAtIndex(index) ? DecodingStatus::Complete : DecodingStatus::Partial;
LOG(Images, "ImageSource::%s - %p - url: %s [enqueuing frame %ld for decoding]", __FUNCTION__, this, sourceURL().string().utf8().data(), index);
m_frameRequestQueue->enqueue({ index, subsamplingLevel, sizeForDrawing, decodingStatus });
m_frameCommitQueue.append({ index, subsamplingLevel, sizeForDrawing, decodingStatus });
}
bool ImageSource::isAsyncDecodingQueueIdle() const
{
return m_frameCommitQueue.isEmpty();
}
void ImageSource::stopAsyncDecodingQueue()
{
if (!hasAsyncDecodingQueue())
return;
std::for_each(m_frameCommitQueue.begin(), m_frameCommitQueue.end(), [this](const ImageFrameRequest& frameRequest) {
ImageFrame& frame = m_frames[frameRequest.index];
if (!frame.isInvalid()) {
LOG(Images, "ImageSource::%s - %p - url: %s [decoding has been cancelled for frame %ld]", __FUNCTION__, this, sourceURL().string().utf8().data(), frameRequest.index);
frame.clear();
}
});
// Close m_frameRequestQueue then set it to nullptr. A new decoding thread might start and a
// new m_frameRequestQueue will be created. So the terminating thread will not have access to it.
m_frameRequestQueue->close();
m_frameRequestQueue = nullptr;
m_frameCommitQueue.clear();
m_decodingQueue = nullptr;
LOG(Images, "ImageSource::%s - %p - url: %s [decoding has been stopped]", __FUNCTION__, this, sourceURL().string().utf8().data());
}
const ImageFrame& ImageSource::frameAtIndexCacheIfNeeded(size_t index, ImageFrame::Caching caching, const Optional<SubsamplingLevel>& subsamplingLevel)
{
ASSERT(index < m_frames.size());
ImageFrame& frame = m_frames[index];
if (!isDecoderAvailable() || frameIsBeingDecodedAndIsCompatibleWithOptionsAtIndex(index, DecodingOptions(DecodingMode::Asynchronous)))
return frame;
SubsamplingLevel subsamplingLevelValue = subsamplingLevel ? subsamplingLevel.value() : frame.subsamplingLevel();
switch (caching) {
case ImageFrame::Caching::Metadata:
// Retrieve the metadata from ImageDecoder if the ImageFrame isn't complete.
if (frame.isComplete())
break;
cacheMetadataAtIndex(index, subsamplingLevelValue);
break;
case ImageFrame::Caching::MetadataAndImage:
// Cache the image and retrieve the metadata from ImageDecoder only if there was not valid image stored.
if (frame.hasFullSizeNativeImage(subsamplingLevel))
break;
// We have to perform synchronous image decoding in this code.
NativeImagePtr nativeImage = m_decoder->createFrameImageAtIndex(index, subsamplingLevelValue);
// Clean the old native image and set a new one.
cacheNativeImageAtIndex(WTFMove(nativeImage), index, subsamplingLevelValue, DecodingOptions(DecodingMode::Synchronous));
break;
}
return frame;
}
void ImageSource::clearMetadata()
{
m_frameCount = WTF::nullopt;
m_repetitionCount = WTF::nullopt;
m_singlePixelSolidColor = WTF::nullopt;
m_encodedDataStatus = WTF::nullopt;
m_uti = WTF::nullopt;
}
URL ImageSource::sourceURL() const
{
return m_image ? m_image->sourceURL() : URL();
}
String ImageSource::mimeType() const
{
return m_image ? m_image->mimeType() : emptyString();
}
long long ImageSource::expectedContentLength() const
{
return m_image ? m_image->expectedContentLength() : 0;
}
template<typename T, T (ImageDecoder::*functor)() const>
T ImageSource::metadata(const T& defaultValue, Optional<T>* cachedValue)
{
if (cachedValue && *cachedValue)
return cachedValue->value();
if (!isDecoderAvailable() || !m_decoder->isSizeAvailable())
return defaultValue;
if (!cachedValue)
return (*m_decoder.*functor)();
*cachedValue = (*m_decoder.*functor)();
didDecodeProperties(m_decoder->bytesDecodedToDetermineProperties());
return cachedValue->value();
}
template<typename T, typename... Args>
T ImageSource::frameMetadataAtIndex(size_t index, T (ImageFrame::*functor)(Args...) const, Args&&... args)
{
const ImageFrame& frame = index < m_frames.size() ? m_frames[index] : ImageFrame::defaultFrame();
return (frame.*functor)(std::forward<Args>(args)...);
}
template<typename T, typename... Args>
T ImageSource::frameMetadataAtIndexCacheIfNeeded(size_t index, T (ImageFrame::*functor)() const, Optional<T>* cachedValue, Args&&... args)
{
if (cachedValue && *cachedValue)
return cachedValue->value();
const ImageFrame& frame = index < m_frames.size() ? frameAtIndexCacheIfNeeded(index, std::forward<Args>(args)...) : ImageFrame::defaultFrame();
// Don't cache any unavailable frame metadata.
if (!frame.hasMetadata() || !cachedValue)
return (frame.*functor)();
*cachedValue = (frame.*functor)();
return cachedValue->value();
}
EncodedDataStatus ImageSource::encodedDataStatus()
{
return metadata<EncodedDataStatus, (&ImageDecoder::encodedDataStatus)>(EncodedDataStatus::Unknown, &m_encodedDataStatus);
}
size_t ImageSource::frameCount()
{
return metadata<size_t, (&ImageDecoder::frameCount)>(m_frames.size(), &m_frameCount);
}
RepetitionCount ImageSource::repetitionCount()
{
return metadata<RepetitionCount, (&ImageDecoder::repetitionCount)>(RepetitionCountNone, &m_repetitionCount);
}
String ImageSource::uti()
{
#if USE(CG)
return metadata<String, (&ImageDecoder::uti)>(String(), &m_uti);
#else
return String();
#endif
}
String ImageSource::filenameExtension()
{
return metadata<String, (&ImageDecoder::filenameExtension)>(String(), &m_filenameExtension);
}
Optional<IntPoint> ImageSource::hotSpot()
{
return metadata<Optional<IntPoint>, (&ImageDecoder::hotSpot)>(WTF::nullopt, &m_hotSpot);
}
ImageOrientation ImageSource::orientation()
{
return frameMetadataAtIndexCacheIfNeeded<ImageOrientation>(0, (&ImageFrame::orientation), &m_orientation, ImageFrame::Caching::Metadata);
}
IntSize ImageSource::size(ImageOrientation orientation)
{
IntSize size;
#if !USE(CG)
// It's possible that we have decoded the metadata, but not frame contents yet. In that case ImageDecoder claims to
// have the size available, but the frame cache is empty. Return the decoder size without caching in such case.
if (m_frames.isEmpty() && isDecoderAvailable())
size = m_decoder->size();
else
#endif
size = frameMetadataAtIndexCacheIfNeeded<IntSize>(0, (&ImageFrame::size), &m_size, ImageFrame::Caching::Metadata, SubsamplingLevel::Default);
if (orientation == ImageOrientation::FromImage)
orientation = this->orientation();
return orientation.usesWidthAsHeight() ? size.transposedSize() : size;
}
Color ImageSource::singlePixelSolidColor()
{
if (!m_singlePixelSolidColor && (size() != IntSize(1, 1) || frameCount() != 1))
m_singlePixelSolidColor = Color();
if (m_singlePixelSolidColor)
return m_singlePixelSolidColor.value();
return frameMetadataAtIndexCacheIfNeeded<Color>(0, (&ImageFrame::singlePixelSolidColor), &m_singlePixelSolidColor, ImageFrame::Caching::MetadataAndImage);
}
SubsamplingLevel ImageSource::maximumSubsamplingLevel()
{
if (m_maximumSubsamplingLevel)
return m_maximumSubsamplingLevel.value();
if (!isDecoderAvailable() || !m_decoder->frameAllowSubsamplingAtIndex(0))
return SubsamplingLevel::Default;
// FIXME: this value was chosen to be appropriate for iOS since the image
// subsampling is only enabled by default on iOS. Choose a different value
// if image subsampling is enabled on other platform.
const int maximumImageAreaBeforeSubsampling = 5 * 1024 * 1024;
SubsamplingLevel level = SubsamplingLevel::First;
for (; level < SubsamplingLevel::Last; ++level) {
if (frameSizeAtIndex(0, level).area().unsafeGet() < maximumImageAreaBeforeSubsampling)
break;
}
m_maximumSubsamplingLevel = level;
return m_maximumSubsamplingLevel.value();
}
bool ImageSource::frameIsBeingDecodedAndIsCompatibleWithOptionsAtIndex(size_t index, const DecodingOptions& decodingOptions)
{
auto it = std::find_if(m_frameCommitQueue.begin(), m_frameCommitQueue.end(), [index, &decodingOptions](const ImageFrameRequest& frameRequest) {
return frameRequest.index == index && frameRequest.decodingOptions.isAsynchronousCompatibleWith(decodingOptions);
});
return it != m_frameCommitQueue.end();
}
DecodingStatus ImageSource::frameDecodingStatusAtIndex(size_t index)
{
return frameMetadataAtIndexCacheIfNeeded<DecodingStatus>(index, (&ImageFrame::decodingStatus), nullptr, ImageFrame::Caching::Metadata);
}
bool ImageSource::frameHasAlphaAtIndex(size_t index)
{
return frameMetadataAtIndex<bool>(index, (&ImageFrame::hasAlpha));
}
bool ImageSource::frameHasFullSizeNativeImageAtIndex(size_t index, const Optional<SubsamplingLevel>& subsamplingLevel)
{
return frameMetadataAtIndex<bool>(index, (&ImageFrame::hasFullSizeNativeImage), subsamplingLevel);
}
bool ImageSource::frameHasDecodedNativeImageCompatibleWithOptionsAtIndex(size_t index, const Optional<SubsamplingLevel>& subsamplingLevel, const DecodingOptions& decodingOptions)
{
return frameMetadataAtIndex<bool>(index, (&ImageFrame::hasDecodedNativeImageCompatibleWithOptions), subsamplingLevel, decodingOptions);
}
SubsamplingLevel ImageSource::frameSubsamplingLevelAtIndex(size_t index)
{
return frameMetadataAtIndex<SubsamplingLevel>(index, (&ImageFrame::subsamplingLevel));
}
IntSize ImageSource::frameSizeAtIndex(size_t index, SubsamplingLevel subsamplingLevel)
{
return frameMetadataAtIndexCacheIfNeeded<IntSize>(index, (&ImageFrame::size), nullptr, ImageFrame::Caching::Metadata, subsamplingLevel);
}
unsigned ImageSource::frameBytesAtIndex(size_t index, SubsamplingLevel subsamplingLevel)
{
return frameMetadataAtIndexCacheIfNeeded<unsigned>(index, (&ImageFrame::frameBytes), nullptr, ImageFrame::Caching::Metadata, subsamplingLevel);
}
Seconds ImageSource::frameDurationAtIndex(size_t index)
{
return frameMetadataAtIndexCacheIfNeeded<Seconds>(index, (&ImageFrame::duration), nullptr, ImageFrame::Caching::Metadata);
}
ImageOrientation ImageSource::frameOrientationAtIndex(size_t index)
{
return frameMetadataAtIndexCacheIfNeeded<ImageOrientation>(index, (&ImageFrame::orientation), nullptr, ImageFrame::Caching::Metadata);
}
#if USE(DIRECT2D)
void ImageSource::setTargetContext(const GraphicsContext* targetContext)
{
if (isDecoderAvailable() && targetContext)
m_decoder->setTargetContext(targetContext->platformContext()->renderTarget());
}
#endif
NativeImagePtr ImageSource::createFrameImageAtIndex(size_t index, SubsamplingLevel subsamplingLevel)
{
return isDecoderAvailable() ? m_decoder->createFrameImageAtIndex(index, subsamplingLevel) : nullptr;
}
NativeImagePtr ImageSource::frameImageAtIndex(size_t index)
{
return frameMetadataAtIndex<NativeImagePtr>(index, (&ImageFrame::nativeImage));
}
NativeImagePtr ImageSource::frameImageAtIndexCacheIfNeeded(size_t index, SubsamplingLevel subsamplingLevel)
{
return frameMetadataAtIndexCacheIfNeeded<NativeImagePtr>(index, (&ImageFrame::nativeImage), nullptr, ImageFrame::Caching::MetadataAndImage, subsamplingLevel);
}
void ImageSource::dump(TextStream& ts)
{
ts.dumpProperty("type", filenameExtension());
ts.dumpProperty("frame-count", frameCount());
ts.dumpProperty("repetitions", repetitionCount());
ts.dumpProperty("solid-color", singlePixelSolidColor());
ImageOrientation orientation = frameOrientationAtIndex(0);
if (orientation != ImageOrientation::None)
ts.dumpProperty("orientation", orientation);
}
}