blob: 04fd3b8d078466f1a3230fa3a0222353865b4a4d [file] [log] [blame]
/*
* Copyright (C) 1999-2001 Harri Porten (porten@kde.org)
* Copyright (C) 2001 Peter Kelly (pmk@post.com)
* Copyright (C) 2003, 2006, 2007, 2008, 2009, 2010, 2013 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include "config.h"
#include "Parser.h"
#include "ASTBuilder.h"
#include "CodeBlock.h"
#include "Debugger.h"
#include "JSCJSValueInlines.h"
#include "Lexer.h"
#include "JSCInlines.h"
#include "SourceProvider.h"
#include "VM.h"
#include <utility>
#include <wtf/HashFunctions.h>
#include <wtf/StringPrintStream.h>
#include <wtf/WTFThreadData.h>
#define updateErrorMessage(shouldPrintToken, ...) do {\
propagateError(); \
logError(shouldPrintToken, __VA_ARGS__); \
} while (0)
#define propagateError() do { if (hasError()) return 0; } while (0)
#define internalFailWithMessage(shouldPrintToken, ...) do { updateErrorMessage(shouldPrintToken, __VA_ARGS__); return 0; } while (0)
#define handleErrorToken() do { if (m_token.m_type == EOFTOK || m_token.m_type & ErrorTokenFlag) { failDueToUnexpectedToken(); } } while (0)
#define failWithMessage(...) do { { handleErrorToken(); updateErrorMessage(true, __VA_ARGS__); } return 0; } while (0)
#define failWithStackOverflow() do { updateErrorMessage(false, "Stack exhausted"); m_hasStackOverflow = true; return 0; } while (0)
#define failIfFalse(cond, ...) do { if (!(cond)) { handleErrorToken(); internalFailWithMessage(true, __VA_ARGS__); } } while (0)
#define failIfTrue(cond, ...) do { if (cond) { handleErrorToken(); internalFailWithMessage(true, __VA_ARGS__); } } while (0)
#define failIfTrueIfStrict(cond, ...) do { if ((cond) && strictMode()) internalFailWithMessage(false, __VA_ARGS__); } while (0)
#define failIfFalseIfStrict(cond, ...) do { if ((!(cond)) && strictMode()) internalFailWithMessage(false, __VA_ARGS__); } while (0)
#define consumeOrFail(tokenType, ...) do { if (!consume(tokenType)) { handleErrorToken(); internalFailWithMessage(true, __VA_ARGS__); } } while (0)
#define consumeOrFailWithFlags(tokenType, flags, ...) do { if (!consume(tokenType, flags)) { handleErrorToken(); internalFailWithMessage(true, __VA_ARGS__); } } while (0)
#define matchOrFail(tokenType, ...) do { if (!match(tokenType)) { handleErrorToken(); internalFailWithMessage(true, __VA_ARGS__); } } while (0)
#define failIfStackOverflow() do { if (!canRecurse()) failWithStackOverflow(); } while (0)
#define semanticFail(...) do { internalFailWithMessage(false, __VA_ARGS__); } while (0)
#define semanticFailIfTrue(cond, ...) do { if (cond) internalFailWithMessage(false, __VA_ARGS__); } while (0)
#define semanticFailIfFalse(cond, ...) do { if (!(cond)) internalFailWithMessage(false, __VA_ARGS__); } while (0)
#define regexFail(failure) do { setErrorMessage(failure); return 0; } while (0)
#define failDueToUnexpectedToken() do {\
logError(true);\
return 0;\
} while (0)
#define handleProductionOrFail(token, tokenString, operation, production) do {\
consumeOrFail(token, "Expected '", tokenString, "' to ", operation, " a ", production);\
} while (0)
#define semanticFailureDueToKeyword(...) do { \
if (strictMode() && m_token.m_type == RESERVED_IF_STRICT) \
semanticFail("Cannot use the reserved word '", getToken(), "' as a ", __VA_ARGS__, " in strict mode"); \
if (m_token.m_type == RESERVED || m_token.m_type == RESERVED_IF_STRICT) \
semanticFail("Cannot use the reserved word '", getToken(), "' as a ", __VA_ARGS__); \
if (m_token.m_type & KeywordTokenFlag) \
semanticFail("Cannot use the keyword '", getToken(), "' as a ", __VA_ARGS__); \
} while (0)
using namespace std;
namespace JSC {
template <typename LexerType>
void Parser<LexerType>::logError(bool)
{
if (hasError())
return;
StringPrintStream stream;
printUnexpectedTokenText(stream);
setErrorMessage(stream.toString());
}
template <typename LexerType> template <typename A>
void Parser<LexerType>::logError(bool shouldPrintToken, const A& value1)
{
if (hasError())
return;
StringPrintStream stream;
if (shouldPrintToken) {
printUnexpectedTokenText(stream);
stream.print(". ");
}
stream.print(value1, ".");
setErrorMessage(stream.toString());
}
template <typename LexerType> template <typename A, typename B>
void Parser<LexerType>::logError(bool shouldPrintToken, const A& value1, const B& value2)
{
if (hasError())
return;
StringPrintStream stream;
if (shouldPrintToken) {
printUnexpectedTokenText(stream);
stream.print(". ");
}
stream.print(value1, value2, ".");
setErrorMessage(stream.toString());
}
template <typename LexerType> template <typename A, typename B, typename C>
void Parser<LexerType>::logError(bool shouldPrintToken, const A& value1, const B& value2, const C& value3)
{
if (hasError())
return;
StringPrintStream stream;
if (shouldPrintToken) {
printUnexpectedTokenText(stream);
stream.print(". ");
}
stream.print(value1, value2, value3, ".");
setErrorMessage(stream.toString());
}
template <typename LexerType> template <typename A, typename B, typename C, typename D>
void Parser<LexerType>::logError(bool shouldPrintToken, const A& value1, const B& value2, const C& value3, const D& value4)
{
if (hasError())
return;
StringPrintStream stream;
if (shouldPrintToken) {
printUnexpectedTokenText(stream);
stream.print(". ");
}
stream.print(value1, value2, value3, value4, ".");
setErrorMessage(stream.toString());
}
template <typename LexerType> template <typename A, typename B, typename C, typename D, typename E>
void Parser<LexerType>::logError(bool shouldPrintToken, const A& value1, const B& value2, const C& value3, const D& value4, const E& value5)
{
if (hasError())
return;
StringPrintStream stream;
if (shouldPrintToken) {
printUnexpectedTokenText(stream);
stream.print(". ");
}
stream.print(value1, value2, value3, value4, value5, ".");
setErrorMessage(stream.toString());
}
template <typename LexerType> template <typename A, typename B, typename C, typename D, typename E, typename F>
void Parser<LexerType>::logError(bool shouldPrintToken, const A& value1, const B& value2, const C& value3, const D& value4, const E& value5, const F& value6)
{
if (hasError())
return;
StringPrintStream stream;
if (shouldPrintToken) {
printUnexpectedTokenText(stream);
stream.print(". ");
}
stream.print(value1, value2, value3, value4, value5, value6, ".");
setErrorMessage(stream.toString());
}
template <typename LexerType> template <typename A, typename B, typename C, typename D, typename E, typename F, typename G>
void Parser<LexerType>::logError(bool shouldPrintToken, const A& value1, const B& value2, const C& value3, const D& value4, const E& value5, const F& value6, const G& value7)
{
if (hasError())
return;
StringPrintStream stream;
if (shouldPrintToken) {
printUnexpectedTokenText(stream);
stream.print(". ");
}
stream.print(value1, value2, value3, value4, value5, value6, value7, ".");
setErrorMessage(stream.toString());
}
template <typename LexerType>
Parser<LexerType>::Parser(
VM* vm, const SourceCode& source, JSParserBuiltinMode builtinMode,
JSParserStrictMode strictMode, SourceParseMode parseMode,
ConstructorKind defaultConstructorKind, ThisTDZMode thisTDZMode)
: m_vm(vm)
, m_source(&source)
, m_hasStackOverflow(false)
, m_allowsIn(true)
, m_assignmentCount(0)
, m_nonLHSCount(0)
, m_syntaxAlreadyValidated(source.provider()->isValid())
, m_statementDepth(0)
, m_nonTrivialExpressionCount(0)
, m_lastIdentifier(0)
, m_lastFunctionName(nullptr)
, m_sourceElements(0)
, m_parsingBuiltin(builtinMode == JSParserBuiltinMode::Builtin)
, m_defaultConstructorKind(defaultConstructorKind)
, m_thisTDZMode(thisTDZMode)
{
m_lexer = std::make_unique<LexerType>(vm, builtinMode);
m_lexer->setCode(source, &m_parserArena);
m_token.m_location.line = source.firstLine();
m_token.m_location.startOffset = source.startOffset();
m_token.m_location.endOffset = source.startOffset();
m_token.m_location.lineStartOffset = source.startOffset();
m_functionCache = vm->addSourceProviderCache(source.provider());
ScopeRef scope = pushScope();
if (isFunctionParseMode(parseMode))
scope->setIsFunction();
if (isModuleParseMode(parseMode))
scope->setIsModule();
if (strictMode == JSParserStrictMode::Strict)
scope->setStrictMode();
next();
}
template <typename LexerType>
Parser<LexerType>::~Parser()
{
}
template <typename LexerType>
String Parser<LexerType>::parseInner(const Identifier& calleeName, SourceParseMode parseMode)
{
String parseError = String();
ASTBuilder context(const_cast<VM*>(m_vm), m_parserArena, const_cast<SourceCode*>(m_source));
ScopeRef scope = currentScope();
scope->setIsLexicalScope();
bool isArrowFunctionBodyExpression = false;
if (m_lexer->isReparsingFunction()) {
ParserFunctionInfo<ASTBuilder> functionInfo;
parseFunctionParameters(context, parseMode, functionInfo);
m_parameters = functionInfo.parameters;
#if ENABLE(ES6_ARROWFUNCTION_SYNTAX)
if (parseMode == SourceParseMode::ArrowFunctionMode && !hasError()) {
// The only way we could have an error wile reparsing is if we run out of stack space.
RELEASE_ASSERT(match(ARROWFUNCTION));
next();
isArrowFunctionBodyExpression = !match(OPENBRACE);
}
#endif
}
if (!calleeName.isNull())
scope->declareCallee(&calleeName);
if (m_lexer->isReparsingFunction())
m_statementDepth--;
SourceElements* sourceElements = nullptr;
// The only way we can error this early is if we reparse a function and we run out of stack space.
if (!hasError()) {
if (isArrowFunctionBodyExpression)
sourceElements = parseArrowFunctionSingleExpressionBodySourceElements(context);
else if (isModuleParseMode(parseMode))
sourceElements = parseModuleSourceElements(context, parseMode);
else
sourceElements = parseSourceElements(context, CheckForStrictMode);
}
bool validEnding;
if (isArrowFunctionBodyExpression) {
ASSERT(m_lexer->isReparsingFunction());
// When we reparse and stack overflow, we're not guaranteed a valid ending. If we don't run out of stack space,
// then of course this will always be valid because we already parsed for syntax errors. But we must
// be cautious in case we run out of stack space.
validEnding = isEndOfArrowFunction();
} else
validEnding = consume(EOFTOK);
if (!sourceElements || !validEnding) {
if (hasError())
parseError = m_errorMessage;
else
parseError = ASCIILiteral("Parser error");
}
IdentifierSet capturedVariables;
bool modifiedParameter = false;
bool modifiedArguments = false;
scope->getCapturedVars(capturedVariables, modifiedParameter, modifiedArguments);
VariableEnvironment& varDeclarations = scope->declaredVariables();
for (auto& entry : capturedVariables)
varDeclarations.markVariableAsCaptured(entry);
CodeFeatures features = context.features();
if (scope->strictMode())
features |= StrictModeFeature;
if (scope->shadowsArguments())
features |= ShadowsArgumentsFeature;
if (modifiedParameter)
features |= ModifiedParameterFeature;
if (modifiedArguments)
features |= ModifiedArgumentsFeature;
Vector<RefPtr<UniquedStringImpl>> closedVariables;
if (m_parsingBuiltin) {
IdentifierSet usedVariables;
scope->getUsedVariables(usedVariables);
// FIXME: This needs to be changed if we want to allow builtins to use lexical declarations.
for (const auto& variable : usedVariables) {
Identifier identifier = Identifier::fromUid(m_vm, variable.get());
if (scope->hasDeclaredVariable(identifier))
continue;
if (scope->hasDeclaredParameter(identifier))
continue;
if (variable == m_vm->propertyNames->arguments.impl())
continue;
closedVariables.append(variable);
}
if (!capturedVariables.isEmpty()) {
for (const auto& capturedVariable : capturedVariables) {
if (scope->hasDeclaredVariable(capturedVariable))
continue;
if (scope->hasDeclaredParameter(capturedVariable))
continue;
RELEASE_ASSERT_NOT_REACHED();
}
}
}
didFinishParsing(sourceElements, context.funcDeclarations(), varDeclarations, features, context.numConstants(), WTF::move(closedVariables));
return parseError;
}
template <typename LexerType>
void Parser<LexerType>::didFinishParsing(SourceElements* sourceElements, DeclarationStacks::FunctionStack& funcStack,
VariableEnvironment& varDeclarations, CodeFeatures features, int numConstants, const Vector<RefPtr<UniquedStringImpl>>&& closedVariables)
{
m_sourceElements = sourceElements;
m_funcDeclarations.swap(funcStack);
m_varDeclarations.swap(varDeclarations);
m_closedVariables = closedVariables;
m_features = features;
m_numConstants = numConstants;
}
template <typename LexerType>
bool Parser<LexerType>::allowAutomaticSemicolon()
{
return match(CLOSEBRACE) || match(EOFTOK) || m_lexer->prevTerminator();
}
template <typename LexerType>
template <class TreeBuilder> TreeSourceElements Parser<LexerType>::parseSourceElements(TreeBuilder& context, SourceElementsMode mode)
{
const unsigned lengthOfUseStrictLiteral = 12; // "use strict".length
TreeSourceElements sourceElements = context.createSourceElements();
bool seenNonDirective = false;
const Identifier* directive = 0;
unsigned directiveLiteralLength = 0;
auto savePoint = createSavePoint();
bool hasSetStrict = false;
while (TreeStatement statement = parseStatementListItem(context, directive, &directiveLiteralLength)) {
if (mode == CheckForStrictMode && !seenNonDirective) {
if (directive) {
// "use strict" must be the exact literal without escape sequences or line continuation.
if (!hasSetStrict && directiveLiteralLength == lengthOfUseStrictLiteral && m_vm->propertyNames->useStrictIdentifier == *directive) {
setStrictMode();
hasSetStrict = true;
if (!isValidStrictMode()) {
if (m_lastFunctionName) {
if (m_vm->propertyNames->arguments == *m_lastFunctionName)
semanticFail("Cannot name a function 'arguments' in strict mode");
if (m_vm->propertyNames->eval == *m_lastFunctionName)
semanticFail("Cannot name a function 'eval' in strict mode");
}
if (hasDeclaredVariable(m_vm->propertyNames->arguments))
semanticFail("Cannot declare a variable named 'arguments' in strict mode");
if (hasDeclaredVariable(m_vm->propertyNames->eval))
semanticFail("Cannot declare a variable named 'eval' in strict mode");
semanticFailIfFalse(isValidStrictMode(), "Invalid parameters or function name in strict mode");
}
restoreSavePoint(savePoint);
propagateError();
continue;
}
} else
seenNonDirective = true;
}
context.appendStatement(sourceElements, statement);
}
propagateError();
return sourceElements;
}
template <typename LexerType>
template <class TreeBuilder> TreeSourceElements Parser<LexerType>::parseModuleSourceElements(TreeBuilder& context, SourceParseMode parseMode)
{
TreeSourceElements sourceElements = context.createSourceElements();
SyntaxChecker syntaxChecker(const_cast<VM*>(m_vm), m_lexer.get());
while (true) {
TreeStatement statement = 0;
if (match(IMPORT))
statement = parseImportDeclaration(context);
else if (match(EXPORT))
statement = parseExportDeclaration(context);
else {
const Identifier* directive = 0;
unsigned directiveLiteralLength = 0;
if (parseMode == SourceParseMode::ModuleAnalyzeMode) {
if (!parseStatementListItem(syntaxChecker, directive, &directiveLiteralLength))
break;
continue;
}
statement = parseStatementListItem(context, directive, &directiveLiteralLength);
}
if (!statement)
break;
context.appendStatement(sourceElements, statement);
}
propagateError();
for (const auto& uid : currentScope()->moduleScopeData().exportedBindings()) {
if (currentScope()->hasDeclaredVariable(uid)) {
currentScope()->declaredVariables().markVariableAsExported(uid);
continue;
}
if (currentScope()->hasLexicallyDeclaredVariable(uid)) {
currentScope()->lexicalVariables().markVariableAsExported(uid);
continue;
}
semanticFail("Exported binding '", uid.get(), "' needs to refer to a top-level declared variable");
}
return sourceElements;
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseStatementListItem(TreeBuilder& context, const Identifier*& directive, unsigned* directiveLiteralLength)
{
// The grammar is documented here:
// http://www.ecma-international.org/ecma-262/6.0/index.html#sec-statements
DepthManager statementDepth(&m_statementDepth);
m_statementDepth++;
TreeStatement result = 0;
bool shouldSetEndOffset = true;
switch (m_token.m_type) {
case CONSTTOKEN:
result = parseVariableDeclaration(context, DeclarationType::ConstDeclaration);
break;
case LET: {
bool shouldParseVariableDeclaration = true;
if (!strictMode()) {
SavePoint savePoint = createSavePoint();
next();
if (!match(IDENT) && !match(OPENBRACE) && !match(OPENBRACKET))
shouldParseVariableDeclaration = false;
restoreSavePoint(savePoint);
}
if (shouldParseVariableDeclaration)
result = parseVariableDeclaration(context, DeclarationType::LetDeclaration);
else
result = parseExpressionOrLabelStatement(context); // Treat this as an IDENT. This is how ::parseStatement() handles IDENT.
break;
}
#if ENABLE(ES6_CLASS_SYNTAX)
case CLASSTOKEN:
result = parseClassDeclaration(context);
break;
#endif
default:
m_statementDepth--; // parseStatement() increments the depth.
result = parseStatement(context, directive, directiveLiteralLength);
shouldSetEndOffset = false;
break;
}
if (result && shouldSetEndOffset)
context.setEndOffset(result, m_lastTokenEndPosition.offset);
return result;
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseVariableDeclaration(TreeBuilder& context, DeclarationType declarationType, ExportType exportType)
{
ASSERT(match(VAR) || match(LET) || match(CONSTTOKEN));
JSTokenLocation location(tokenLocation());
int start = tokenLine();
int end = 0;
int scratch;
TreeDestructuringPattern scratch1 = 0;
TreeExpression scratch2 = 0;
JSTextPosition scratch3;
bool scratchBool;
TreeExpression variableDecls = parseVariableDeclarationList(context, scratch, scratch1, scratch2, scratch3, scratch3, scratch3, VarDeclarationContext, declarationType, exportType, scratchBool);
propagateError();
failIfFalse(autoSemiColon(), "Expected ';' after variable declaration");
return context.createDeclarationStatement(location, variableDecls, start, end);
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseDoWhileStatement(TreeBuilder& context)
{
ASSERT(match(DO));
int startLine = tokenLine();
next();
const Identifier* unused = 0;
startLoop();
TreeStatement statement = parseStatement(context, unused);
endLoop();
failIfFalse(statement, "Expected a statement following 'do'");
int endLine = tokenLine();
JSTokenLocation location(tokenLocation());
handleProductionOrFail(WHILE, "while", "end", "do-while loop");
handleProductionOrFail(OPENPAREN, "(", "start", "do-while loop condition");
semanticFailIfTrue(match(CLOSEPAREN), "Must provide an expression as a do-while loop condition");
TreeExpression expr = parseExpression(context);
failIfFalse(expr, "Unable to parse do-while loop condition");
handleProductionOrFail(CLOSEPAREN, ")", "end", "do-while loop condition");
if (match(SEMICOLON))
next(); // Always performs automatic semicolon insertion.
return context.createDoWhileStatement(location, statement, expr, startLine, endLine);
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseWhileStatement(TreeBuilder& context)
{
ASSERT(match(WHILE));
JSTokenLocation location(tokenLocation());
int startLine = tokenLine();
next();
handleProductionOrFail(OPENPAREN, "(", "start", "while loop condition");
semanticFailIfTrue(match(CLOSEPAREN), "Must provide an expression as a while loop condition");
TreeExpression expr = parseExpression(context);
failIfFalse(expr, "Unable to parse while loop condition");
int endLine = tokenLine();
handleProductionOrFail(CLOSEPAREN, ")", "end", "while loop condition");
const Identifier* unused = 0;
startLoop();
TreeStatement statement = parseStatement(context, unused);
endLoop();
failIfFalse(statement, "Expected a statement as the body of a while loop");
return context.createWhileStatement(location, expr, statement, startLine, endLine);
}
template <typename LexerType>
template <class TreeBuilder> TreeExpression Parser<LexerType>::parseVariableDeclarationList(TreeBuilder& context, int& declarations, TreeDestructuringPattern& lastPattern, TreeExpression& lastInitializer, JSTextPosition& identStart, JSTextPosition& initStart, JSTextPosition& initEnd, VarDeclarationListContext declarationListContext, DeclarationType declarationType, ExportType exportType, bool& forLoopConstDoesNotHaveInitializer)
{
ASSERT(declarationType == DeclarationType::LetDeclaration || declarationType == DeclarationType::VarDeclaration || declarationType == DeclarationType::ConstDeclaration);
TreeExpression head = 0;
TreeExpression tail = 0;
const Identifier* lastIdent;
JSToken lastIdentToken;
AssignmentContext assignmentContext = assignmentContextFromDeclarationType(declarationType);
do {
lastIdent = 0;
lastPattern = TreeDestructuringPattern(0);
JSTokenLocation location(tokenLocation());
next();
TreeExpression node = 0;
declarations++;
bool hasInitializer = false;
if (match(IDENT) || isLETMaskedAsIDENT()) {
failIfTrue(match(LET) && (declarationType == DeclarationType::LetDeclaration || declarationType == DeclarationType::ConstDeclaration),
"Can't use 'let' as an identifier name for a LexicalDeclaration");
JSTextPosition varStart = tokenStartPosition();
JSTokenLocation varStartLocation(tokenLocation());
identStart = varStart;
const Identifier* name = m_token.m_data.ident;
lastIdent = name;
lastIdentToken = m_token;
next();
hasInitializer = match(EQUAL);
DeclarationResultMask declarationResult = declareVariable(name, declarationType);
if (declarationResult != DeclarationResult::Valid) {
failIfTrueIfStrict(declarationResult & DeclarationResult::InvalidStrictMode, "Cannot declare a variable named ", name->impl(), " in strict mode");
if (declarationResult & DeclarationResult::InvalidDuplicateDeclaration) {
if (declarationType == DeclarationType::LetDeclaration)
internalFailWithMessage(false, "Cannot declare a let variable twice: '", name->impl(), "'");
if (declarationType == DeclarationType::ConstDeclaration)
internalFailWithMessage(false, "Cannot declare a const variable twice: '", name->impl(), "'");
RELEASE_ASSERT_NOT_REACHED();
}
}
if (exportType == ExportType::Exported) {
semanticFailIfFalse(exportName(*name), "Cannot export a duplicate name '", name->impl(), "'");
currentScope()->moduleScopeData().exportBinding(*name);
}
if (hasInitializer) {
JSTextPosition varDivot = tokenStartPosition() + 1;
initStart = tokenStartPosition();
next(TreeBuilder::DontBuildStrings); // consume '='
TreeExpression initializer = parseAssignmentExpression(context);
initEnd = lastTokenEndPosition();
lastInitializer = initializer;
failIfFalse(initializer, "Expected expression as the intializer for the variable '", name->impl(), "'");
node = context.createAssignResolve(location, *name, initializer, varStart, varDivot, lastTokenEndPosition(), assignmentContext);
} else {
if (declarationListContext == ForLoopContext && declarationType == DeclarationType::ConstDeclaration)
forLoopConstDoesNotHaveInitializer = true;
failIfTrue(declarationListContext != ForLoopContext && declarationType == DeclarationType::ConstDeclaration, "const declared variable '", name->impl(), "'", " must have an initializer");
if (declarationType == DeclarationType::VarDeclaration)
node = context.createEmptyVarExpression(varStartLocation, *name);
else
node = context.createEmptyLetExpression(varStartLocation, *name);
}
} else {
lastIdent = 0;
auto pattern = parseDestructuringPattern(context, destructuringKindFromDeclarationType(declarationType), exportType, nullptr, nullptr, assignmentContext);
failIfFalse(pattern, "Cannot parse this destructuring pattern");
hasInitializer = match(EQUAL);
failIfTrue(declarationListContext == VarDeclarationContext && !hasInitializer, "Expected an initializer in destructuring variable declaration");
lastPattern = pattern;
if (hasInitializer) {
next(TreeBuilder::DontBuildStrings); // consume '='
TreeExpression rhs = parseAssignmentExpression(context);
node = context.createDestructuringAssignment(location, pattern, rhs);
lastInitializer = rhs;
}
}
if (!head)
head = node;
else if (!tail) {
head = context.createCommaExpr(location, head);
tail = context.appendToCommaExpr(location, head, head, node);
} else
tail = context.appendToCommaExpr(location, head, tail, node);
} while (match(COMMA));
if (lastIdent)
lastPattern = context.createBindingLocation(lastIdentToken.m_location, *lastIdent, lastIdentToken.m_startPosition, lastIdentToken.m_endPosition, assignmentContext);
return head;
}
template <typename LexerType>
template <class TreeBuilder> TreeDestructuringPattern Parser<LexerType>::createBindingPattern(TreeBuilder& context, DestructuringKind kind, ExportType exportType, const Identifier& name, int depth, JSToken token, AssignmentContext bindingContext, const Identifier** duplicateIdentifier)
{
ASSERT(!name.isNull());
ASSERT(name.impl()->isAtomic() || name.impl()->isSymbol());
if (kind == DestructureToVariables)
failIfTrueIfStrict(declareVariable(&name) & DeclarationResult::InvalidStrictMode, "Cannot declare a variable named '", name.impl(), "' in strict mode");
else if (kind == DestructureToLet || kind == DestructureToConst) {
DeclarationResultMask declarationResult = declareVariable(&name, kind == DestructureToLet ? DeclarationType::LetDeclaration : DeclarationType::ConstDeclaration);
if (declarationResult != DeclarationResult::Valid) {
failIfTrueIfStrict(declarationResult & DeclarationResult::InvalidStrictMode, "Cannot destructure to a variable named '", name.impl(), "' in strict mode");
failIfTrue(declarationResult & DeclarationResult::InvalidDuplicateDeclaration, "Cannot declare a lexical variable twice: '", name.impl(), "'");
}
} else if (kind == DestructureToParameters) {
if (depth) {
auto bindingResult = declareBoundParameter(&name);
if (bindingResult == Scope::StrictBindingFailed && strictMode()) {
semanticFailIfTrue(isEvalOrArguments(&name), "Cannot destructure to a parameter name '", name.impl(), "' in strict mode");
if (m_lastFunctionName && name == *m_lastFunctionName)
semanticFail("Cannot destructure to '", name.impl(), "' as it shadows the name of a strict mode function");
semanticFailureDueToKeyword("bound parameter name");
if (hasDeclaredParameter(name))
semanticFail("Cannot destructure to '", name.impl(), "' as it has already been declared");
semanticFail("Cannot bind to a parameter named '", name.impl(), "' in strict mode");
}
if (bindingResult == Scope::BindingFailed) {
semanticFailureDueToKeyword("bound parameter name");
if (hasDeclaredParameter(name))
semanticFail("Cannot destructure to '", name.impl(), "' as it has already been declared");
semanticFail("Cannot destructure to a parameter named '", name.impl(), "'");
}
} else {
DeclarationResultMask declarationResult = declareParameter(&name);
if ((declarationResult & DeclarationResult::InvalidStrictMode) && strictMode()) {
semanticFailIfTrue(isEvalOrArguments(&name), "Cannot destructure to a parameter name '", name.impl(), "' in strict mode");
if (m_lastFunctionName && name == *m_lastFunctionName)
semanticFail("Cannot declare a parameter named '", name.impl(), "' as it shadows the name of a strict mode function");
semanticFailureDueToKeyword("parameter name");
if (hasDeclaredParameter(name))
semanticFail("Cannot declare a parameter named '", name.impl(), "' in strict mode as it has already been declared");
semanticFail("Cannot declare a parameter named '", name.impl(), "' in strict mode");
}
if (declarationResult & DeclarationResult::InvalidDuplicateDeclaration) {
// It's not always an error to define a duplicate parameter.
// It's only an error when there are default parameter values or destructuring parameters.
// We note this value now so we can check it later.
if (duplicateIdentifier)
*duplicateIdentifier = &name;
}
}
}
if (exportType == ExportType::Exported) {
semanticFailIfFalse(exportName(name), "Cannot export a duplicate name '", name.impl(), "'");
currentScope()->moduleScopeData().exportBinding(name);
}
return context.createBindingLocation(token.m_location, name, token.m_startPosition, token.m_endPosition, bindingContext);
}
template <typename LexerType>
template <class TreeBuilder> TreeSourceElements Parser<LexerType>::parseArrowFunctionSingleExpressionBodySourceElements(TreeBuilder& context)
{
ASSERT(!match(OPENBRACE));
JSTokenLocation location(tokenLocation());
JSTextPosition start = tokenStartPosition();
failIfStackOverflow();
TreeExpression expr = parseAssignmentExpression(context);
failIfFalse(expr, "Cannot parse the arrow function expression");
context.setEndOffset(expr, m_lastTokenEndPosition.offset);
failIfFalse(isEndOfArrowFunction(), "Expected a ';', ']', '}', ')', ',', line terminator or EOF following a arrow function statement");
JSTextPosition end = tokenEndPosition();
if (!m_lexer->prevTerminator())
setEndOfStatement();
TreeSourceElements sourceElements = context.createSourceElements();
TreeStatement body = context.createReturnStatement(location, expr, start, end);
context.setEndOffset(body, m_lastTokenEndPosition.offset);
context.appendStatement(sourceElements, body);
return sourceElements;
}
template <typename LexerType>
template <class TreeBuilder> TreeDestructuringPattern Parser<LexerType>::tryParseDestructuringPatternExpression(TreeBuilder& context, AssignmentContext bindingContext)
{
return parseDestructuringPattern(context, DestructureToExpressions, ExportType::NotExported, nullptr, nullptr, bindingContext);
}
template <typename LexerType>
template <class TreeBuilder> TreeDestructuringPattern Parser<LexerType>::parseDestructuringPattern(TreeBuilder& context, DestructuringKind kind, ExportType exportType, const Identifier** duplicateIdentifier, bool* hasDestructuringPattern, AssignmentContext bindingContext, int depth)
{
failIfStackOverflow();
int nonLHSCount = m_nonLHSCount;
TreeDestructuringPattern pattern;
switch (m_token.m_type) {
case OPENBRACKET: {
JSTextPosition divotStart = tokenStartPosition();
auto arrayPattern = context.createArrayPattern(m_token.m_location);
next();
if (hasDestructuringPattern)
*hasDestructuringPattern = true;
bool restElementWasFound = false;
do {
while (match(COMMA)) {
context.appendArrayPatternSkipEntry(arrayPattern, m_token.m_location);
next();
}
propagateError();
if (match(CLOSEBRACKET))
break;
if (UNLIKELY(match(DOTDOTDOT))) {
JSTokenLocation location = m_token.m_location;
next();
auto innerPattern = parseDestructuringPattern(context, kind, exportType, duplicateIdentifier, hasDestructuringPattern, bindingContext, depth + 1);
if (kind == DestructureToExpressions && !innerPattern)
return 0;
failIfFalse(innerPattern, "Cannot parse this destructuring pattern");
failIfTrue(kind != DestructureToExpressions && !context.isBindingNode(innerPattern), "Expected identifier for a rest element destructuring pattern");
context.appendArrayPatternRestEntry(arrayPattern, location, innerPattern);
restElementWasFound = true;
break;
}
JSTokenLocation location = m_token.m_location;
auto innerPattern = parseDestructuringPattern(context, kind, exportType, duplicateIdentifier, hasDestructuringPattern, bindingContext, depth + 1);
if (kind == DestructureToExpressions && !innerPattern)
return 0;
failIfFalse(innerPattern, "Cannot parse this destructuring pattern");
TreeExpression defaultValue = parseDefaultValueForDestructuringPattern(context);
context.appendArrayPatternEntry(arrayPattern, location, innerPattern, defaultValue);
} while (consume(COMMA));
if (kind == DestructureToExpressions && !match(CLOSEBRACKET))
return 0;
consumeOrFail(CLOSEBRACKET, restElementWasFound ? "Expected a closing ']' following a rest element destructuring pattern" : "Expected either a closing ']' or a ',' following an element destructuring pattern");
context.finishArrayPattern(arrayPattern, divotStart, divotStart, lastTokenEndPosition());
pattern = arrayPattern;
break;
}
case OPENBRACE: {
auto objectPattern = context.createObjectPattern(m_token.m_location);
next();
if (hasDestructuringPattern)
*hasDestructuringPattern = true;
do {
bool wasString = false;
if (match(CLOSEBRACE))
break;
const Identifier* propertyName = nullptr;
TreeDestructuringPattern innerPattern = 0;
JSTokenLocation location = m_token.m_location;
if (match(IDENT) || isLETMaskedAsIDENT()) {
failIfTrue(match(LET) && (kind == DestructureToLet || kind == DestructureToConst), "Can't use 'let' as an identifier name for a LexicalDeclaration");
propertyName = m_token.m_data.ident;
JSToken identifierToken = m_token;
next();
if (consume(COLON))
innerPattern = parseDestructuringPattern(context, kind, exportType, duplicateIdentifier, hasDestructuringPattern, bindingContext, depth + 1);
else
innerPattern = createBindingPattern(context, kind, exportType, *propertyName, depth + 1, identifierToken, bindingContext, duplicateIdentifier);
} else {
JSTokenType tokenType = m_token.m_type;
switch (m_token.m_type) {
case DOUBLE:
case INTEGER:
propertyName = &m_parserArena.identifierArena().makeNumericIdentifier(const_cast<VM*>(m_vm), m_token.m_data.doubleValue);
break;
case STRING:
propertyName = m_token.m_data.ident;
wasString = true;
break;
default:
if (m_token.m_type != RESERVED && m_token.m_type != RESERVED_IF_STRICT && !(m_token.m_type & KeywordTokenFlag)) {
if (kind == DestructureToExpressions)
return 0;
failWithMessage("Expected a property name");
}
propertyName = m_token.m_data.ident;
break;
}
next();
if (!consume(COLON)) {
if (kind == DestructureToExpressions)
return 0;
semanticFailIfTrue(tokenType == RESERVED, "Cannot use abbreviated destructuring syntax for reserved name '", propertyName->impl(), "'");
semanticFailIfTrue(tokenType == RESERVED_IF_STRICT, "Cannot use abbreviated destructuring syntax for reserved name '", propertyName->impl(), "' in strict mode");
semanticFailIfTrue(tokenType & KeywordTokenFlag, "Cannot use abbreviated destructuring syntax for keyword '", propertyName->impl(), "'");
failWithMessage("Expected a ':' prior to a named destructuring property");
}
innerPattern = parseDestructuringPattern(context, kind, exportType, duplicateIdentifier, hasDestructuringPattern, bindingContext, depth + 1);
}
if (kind == DestructureToExpressions && !innerPattern)
return 0;
failIfFalse(innerPattern, "Cannot parse this destructuring pattern");
TreeExpression defaultValue = parseDefaultValueForDestructuringPattern(context);
ASSERT(propertyName);
context.appendObjectPatternEntry(objectPattern, location, wasString, *propertyName, innerPattern, defaultValue);
} while (consume(COMMA));
if (kind == DestructureToExpressions && !match(CLOSEBRACE))
return 0;
consumeOrFail(CLOSEBRACE, "Expected either a closing '}' or an ',' after a property destructuring pattern");
pattern = objectPattern;
break;
}
default: {
if (!match(IDENT) && !isLETMaskedAsIDENT()) {
if (kind == DestructureToExpressions)
return 0;
semanticFailureDueToKeyword("variable name");
failWithMessage("Expected a parameter pattern or a ')' in parameter list");
}
failIfTrue(match(LET) && (kind == DestructureToLet || kind == DestructureToConst), "Can't use 'let' as an identifier name for a LexicalDeclaration");
pattern = createBindingPattern(context, kind, exportType, *m_token.m_data.ident, depth, m_token, bindingContext, duplicateIdentifier);
next();
break;
}
}
m_nonLHSCount = nonLHSCount;
return pattern;
}
template <typename LexerType>
template <class TreeBuilder> TreeExpression Parser<LexerType>::parseDefaultValueForDestructuringPattern(TreeBuilder& context)
{
if (!match(EQUAL))
return 0;
next(TreeBuilder::DontBuildStrings); // consume '='
return parseAssignmentExpression(context);
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseForStatement(TreeBuilder& context)
{
ASSERT(match(FOR));
JSTokenLocation location(tokenLocation());
int startLine = tokenLine();
next();
handleProductionOrFail(OPENPAREN, "(", "start", "for-loop header");
int nonLHSCount = m_nonLHSCount;
int declarations = 0;
JSTextPosition declsStart;
JSTextPosition declsEnd;
TreeExpression decls = 0;
TreeDestructuringPattern pattern = 0;
bool isVarDeclaraton = match(VAR);
bool isLetDeclaration = match(LET);
bool isConstDeclaration = match(CONSTTOKEN);
bool forLoopConstDoesNotHaveInitializer = false;
VariableEnvironment dummySet;
VariableEnvironment* lexicalVariables = nullptr;
AutoCleanupLexicalScope lexicalScope;
auto gatherLexicalVariablesIfNecessary = [&] {
if (isLetDeclaration || isConstDeclaration) {
ScopeRef scope = lexicalScope.scope();
lexicalVariables = &scope->finalizeLexicalEnvironment();
} else
lexicalVariables = &dummySet;
};
auto popLexicalScopeIfNecessary = [&] {
if (isLetDeclaration || isConstDeclaration)
popScope(lexicalScope, TreeBuilder::NeedsFreeVariableInfo);
};
if (isVarDeclaraton || isLetDeclaration || isConstDeclaration) {
/*
for (var/let/const IDENT in/of expression) statement
for (var/let/const varDeclarationList; expressionOpt; expressionOpt)
*/
if (isLetDeclaration || isConstDeclaration) {
ScopeRef newScope = pushScope();
newScope->setIsLexicalScope();
newScope->preventVarDeclarations();
lexicalScope.setIsValid(newScope, this);
}
TreeDestructuringPattern forInTarget = 0;
TreeExpression forInInitializer = 0;
m_allowsIn = false;
JSTextPosition initStart;
JSTextPosition initEnd;
DeclarationType declarationType;
if (isVarDeclaraton)
declarationType = DeclarationType::VarDeclaration;
else if (isLetDeclaration)
declarationType = DeclarationType::LetDeclaration;
else if (isConstDeclaration)
declarationType = DeclarationType::ConstDeclaration;
else
RELEASE_ASSERT_NOT_REACHED();
decls = parseVariableDeclarationList(context, declarations, forInTarget, forInInitializer, declsStart, initStart, initEnd, ForLoopContext, declarationType, ExportType::NotExported, forLoopConstDoesNotHaveInitializer);
m_allowsIn = true;
propagateError();
// Remainder of a standard for loop is handled identically
if (match(SEMICOLON))
goto standardForLoop;
failIfFalse(declarations == 1, "can only declare a single variable in an enumeration");
failIfTrueIfStrict(forInInitializer, "Cannot use initialiser syntax in a strict mode enumeration");
if (forInInitializer)
failIfFalse(context.isBindingNode(forInTarget), "Cannot use initialiser syntax when binding to a pattern during enumeration");
// Handle for-in with var declaration
JSTextPosition inLocation = tokenStartPosition();
bool isOfEnumeration = false;
if (!consume(INTOKEN)) {
failIfFalse(match(IDENT) && *m_token.m_data.ident == m_vm->propertyNames->of, "Expected either 'in' or 'of' in enumeration syntax");
isOfEnumeration = true;
failIfTrue(forInInitializer, "Cannot use initialiser syntax in a for-of enumeration");
next();
}
TreeExpression expr = parseExpression(context);
failIfFalse(expr, "Expected expression to enumerate");
JSTextPosition exprEnd = lastTokenEndPosition();
int endLine = tokenLine();
handleProductionOrFail(CLOSEPAREN, ")", "end", (isOfEnumeration ? "for-of header" : "for-in header"));
const Identifier* unused = 0;
startLoop();
TreeStatement statement = parseStatement(context, unused);
endLoop();
failIfFalse(statement, "Expected statement as body of for-", isOfEnumeration ? "of" : "in", " statement");
gatherLexicalVariablesIfNecessary();
TreeStatement result;
if (isOfEnumeration)
result = context.createForOfLoop(location, forInTarget, expr, statement, declsStart, inLocation, exprEnd, startLine, endLine, *lexicalVariables);
else
result = context.createForInLoop(location, forInTarget, expr, statement, declsStart, inLocation, exprEnd, startLine, endLine, *lexicalVariables);
popLexicalScopeIfNecessary();
return result;
}
if (!match(SEMICOLON)) {
if (match(OPENBRACE) || match(OPENBRACKET)) {
SavePoint savePoint = createSavePoint();
declsStart = tokenStartPosition();
pattern = tryParseDestructuringPatternExpression(context, AssignmentContext::DeclarationStatement);
declsEnd = lastTokenEndPosition();
if (pattern && (match(INTOKEN) || (match(IDENT) && *m_token.m_data.ident == m_vm->propertyNames->of)))
goto enumerationLoop;
pattern = TreeDestructuringPattern(0);
restoreSavePoint(savePoint);
}
m_allowsIn = false;
declsStart = tokenStartPosition();
decls = parseExpression(context);
declsEnd = lastTokenEndPosition();
m_allowsIn = true;
failIfFalse(decls, "Cannot parse for loop declarations");
}
if (match(SEMICOLON)) {
standardForLoop:
// Standard for loop
next();
TreeExpression condition = 0;
failIfTrue(forLoopConstDoesNotHaveInitializer && isConstDeclaration, "const variables in for loops must have initializers");
if (!match(SEMICOLON)) {
condition = parseExpression(context);
failIfFalse(condition, "Cannot parse for loop condition expression");
}
consumeOrFail(SEMICOLON, "Expected a ';' after the for loop condition expression");
TreeExpression increment = 0;
if (!match(CLOSEPAREN)) {
increment = parseExpression(context);
failIfFalse(increment, "Cannot parse for loop iteration expression");
}
int endLine = tokenLine();
handleProductionOrFail(CLOSEPAREN, ")", "end", "for-loop header");
const Identifier* unused = 0;
startLoop();
TreeStatement statement = parseStatement(context, unused);
endLoop();
failIfFalse(statement, "Expected a statement as the body of a for loop");
gatherLexicalVariablesIfNecessary();
TreeStatement result = context.createForLoop(location, decls, condition, increment, statement, startLine, endLine, *lexicalVariables);
popLexicalScopeIfNecessary();
return result;
}
// For-in and For-of loop
enumerationLoop:
failIfFalse(nonLHSCount == m_nonLHSCount, "Expected a reference on the left hand side of an enumeration statement");
bool isOfEnumeration = false;
if (!consume(INTOKEN)) {
failIfFalse(match(IDENT) && *m_token.m_data.ident == m_vm->propertyNames->of, "Expected either 'in' or 'of' in enumeration syntax");
isOfEnumeration = true;
next();
}
TreeExpression expr = parseExpression(context);
failIfFalse(expr, "Cannot parse subject for-", isOfEnumeration ? "of" : "in", " statement");
JSTextPosition exprEnd = lastTokenEndPosition();
int endLine = tokenLine();
handleProductionOrFail(CLOSEPAREN, ")", "end", (isOfEnumeration ? "for-of header" : "for-in header"));
const Identifier* unused = 0;
startLoop();
TreeStatement statement = parseStatement(context, unused);
endLoop();
failIfFalse(statement, "Expected a statement as the body of a for-", isOfEnumeration ? "of" : "in", "loop");
gatherLexicalVariablesIfNecessary();
TreeStatement result;
if (pattern) {
ASSERT(!decls);
if (isOfEnumeration)
result = context.createForOfLoop(location, pattern, expr, statement, declsStart, declsEnd, exprEnd, startLine, endLine, *lexicalVariables);
else
result = context.createForInLoop(location, pattern, expr, statement, declsStart, declsEnd, exprEnd, startLine, endLine, *lexicalVariables);
popLexicalScopeIfNecessary();
return result;
}
if (isOfEnumeration)
result = context.createForOfLoop(location, decls, expr, statement, declsStart, declsEnd, exprEnd, startLine, endLine, *lexicalVariables);
else
result = context.createForInLoop(location, decls, expr, statement, declsStart, declsEnd, exprEnd, startLine, endLine, *lexicalVariables);
popLexicalScopeIfNecessary();
return result;
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseBreakStatement(TreeBuilder& context)
{
ASSERT(match(BREAK));
JSTokenLocation location(tokenLocation());
JSTextPosition start = tokenStartPosition();
JSTextPosition end = tokenEndPosition();
next();
if (autoSemiColon()) {
semanticFailIfFalse(breakIsValid(), "'break' is only valid inside a switch or loop statement");
return context.createBreakStatement(location, &m_vm->propertyNames->nullIdentifier, start, end);
}
failIfFalse(match(IDENT) || isLETMaskedAsIDENT(), "Expected an identifier as the target for a break statement");
const Identifier* ident = m_token.m_data.ident;
semanticFailIfFalse(getLabel(ident), "Cannot use the undeclared label '", ident->impl(), "'");
end = tokenEndPosition();
next();
failIfFalse(autoSemiColon(), "Expected a ';' following a targeted break statement");
return context.createBreakStatement(location, ident, start, end);
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseContinueStatement(TreeBuilder& context)
{
ASSERT(match(CONTINUE));
JSTokenLocation location(tokenLocation());
JSTextPosition start = tokenStartPosition();
JSTextPosition end = tokenEndPosition();
next();
if (autoSemiColon()) {
semanticFailIfFalse(continueIsValid(), "'continue' is only valid inside a loop statement");
return context.createContinueStatement(location, &m_vm->propertyNames->nullIdentifier, start, end);
}
failIfFalse(match(IDENT) || isLETMaskedAsIDENT(), "Expected an identifier as the target for a continue statement");
const Identifier* ident = m_token.m_data.ident;
ScopeLabelInfo* label = getLabel(ident);
semanticFailIfFalse(label, "Cannot use the undeclared label '", ident->impl(), "'");
semanticFailIfFalse(label->isLoop, "Cannot continue to the label '", ident->impl(), "' as it is not targeting a loop");
end = tokenEndPosition();
next();
failIfFalse(autoSemiColon(), "Expected a ';' following a targeted continue statement");
return context.createContinueStatement(location, ident, start, end);
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseReturnStatement(TreeBuilder& context)
{
ASSERT(match(RETURN));
JSTokenLocation location(tokenLocation());
semanticFailIfFalse(currentScope()->isFunction(), "Return statements are only valid inside functions");
JSTextPosition start = tokenStartPosition();
JSTextPosition end = tokenEndPosition();
next();
// We do the auto semicolon check before attempting to parse expression
// as we need to ensure the a line break after the return correctly terminates
// the statement
if (match(SEMICOLON))
end = tokenEndPosition();
if (autoSemiColon())
return context.createReturnStatement(location, 0, start, end);
TreeExpression expr = parseExpression(context);
failIfFalse(expr, "Cannot parse the return expression");
end = lastTokenEndPosition();
if (match(SEMICOLON))
end = tokenEndPosition();
if (!autoSemiColon())
failWithMessage("Expected a ';' following a return statement");
return context.createReturnStatement(location, expr, start, end);
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseThrowStatement(TreeBuilder& context)
{
ASSERT(match(THROW));
JSTokenLocation location(tokenLocation());
JSTextPosition start = tokenStartPosition();
next();
failIfTrue(match(SEMICOLON), "Expected expression after 'throw'");
semanticFailIfTrue(autoSemiColon(), "Cannot have a newline after 'throw'");
TreeExpression expr = parseExpression(context);
failIfFalse(expr, "Cannot parse expression for throw statement");
JSTextPosition end = lastTokenEndPosition();
failIfFalse(autoSemiColon(), "Expected a ';' after a throw statement");
return context.createThrowStatement(location, expr, start, end);
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseWithStatement(TreeBuilder& context)
{
ASSERT(match(WITH));
JSTokenLocation location(tokenLocation());
semanticFailIfTrue(strictMode(), "'with' statements are not valid in strict mode");
currentScope()->setNeedsFullActivation();
int startLine = tokenLine();
next();
handleProductionOrFail(OPENPAREN, "(", "start", "subject of a 'with' statement");
int start = tokenStart();
TreeExpression expr = parseExpression(context);
failIfFalse(expr, "Cannot parse 'with' subject expression");
JSTextPosition end = lastTokenEndPosition();
int endLine = tokenLine();
handleProductionOrFail(CLOSEPAREN, ")", "start", "subject of a 'with' statement");
const Identifier* unused = 0;
TreeStatement statement = parseStatement(context, unused);
failIfFalse(statement, "A 'with' statement must have a body");
return context.createWithStatement(location, expr, statement, start, end, startLine, endLine);
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseSwitchStatement(TreeBuilder& context)
{
ASSERT(match(SWITCH));
JSTokenLocation location(tokenLocation());
int startLine = tokenLine();
next();
handleProductionOrFail(OPENPAREN, "(", "start", "subject of a 'switch'");
TreeExpression expr = parseExpression(context);
failIfFalse(expr, "Cannot parse switch subject expression");
int endLine = tokenLine();
handleProductionOrFail(CLOSEPAREN, ")", "end", "subject of a 'switch'");
handleProductionOrFail(OPENBRACE, "{", "start", "body of a 'switch'");
AutoPopScopeRef lexicalScope(this, pushScope());
lexicalScope->setIsLexicalScope();
lexicalScope->preventVarDeclarations();
startSwitch();
TreeClauseList firstClauses = parseSwitchClauses(context);
propagateError();
TreeClause defaultClause = parseSwitchDefaultClause(context);
propagateError();
TreeClauseList secondClauses = parseSwitchClauses(context);
propagateError();
endSwitch();
handleProductionOrFail(CLOSEBRACE, "}", "end", "body of a 'switch'");
TreeStatement result = context.createSwitchStatement(location, expr, firstClauses, defaultClause, secondClauses, startLine, endLine, lexicalScope->finalizeLexicalEnvironment());
popScope(lexicalScope, TreeBuilder::NeedsFreeVariableInfo);
return result;
}
template <typename LexerType>
template <class TreeBuilder> TreeClauseList Parser<LexerType>::parseSwitchClauses(TreeBuilder& context)
{
if (!match(CASE))
return 0;
unsigned startOffset = tokenStart();
next();
TreeExpression condition = parseExpression(context);
failIfFalse(condition, "Cannot parse switch clause");
consumeOrFail(COLON, "Expected a ':' after switch clause expression");
TreeSourceElements statements = parseSourceElements(context, DontCheckForStrictMode);
failIfFalse(statements, "Cannot parse the body of a switch clause");
TreeClause clause = context.createClause(condition, statements);
context.setStartOffset(clause, startOffset);
TreeClauseList clauseList = context.createClauseList(clause);
TreeClauseList tail = clauseList;
while (match(CASE)) {
startOffset = tokenStart();
next();
TreeExpression condition = parseExpression(context);
failIfFalse(condition, "Cannot parse switch case expression");
consumeOrFail(COLON, "Expected a ':' after switch clause expression");
TreeSourceElements statements = parseSourceElements(context, DontCheckForStrictMode);
failIfFalse(statements, "Cannot parse the body of a switch clause");
clause = context.createClause(condition, statements);
context.setStartOffset(clause, startOffset);
tail = context.createClauseList(tail, clause);
}
return clauseList;
}
template <typename LexerType>
template <class TreeBuilder> TreeClause Parser<LexerType>::parseSwitchDefaultClause(TreeBuilder& context)
{
if (!match(DEFAULT))
return 0;
unsigned startOffset = tokenStart();
next();
consumeOrFail(COLON, "Expected a ':' after switch default clause");
TreeSourceElements statements = parseSourceElements(context, DontCheckForStrictMode);
failIfFalse(statements, "Cannot parse the body of a switch default clause");
TreeClause result = context.createClause(0, statements);
context.setStartOffset(result, startOffset);
return result;
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseTryStatement(TreeBuilder& context)
{
ASSERT(match(TRY));
JSTokenLocation location(tokenLocation());
TreeStatement tryBlock = 0;
const Identifier* ident = &m_vm->propertyNames->nullIdentifier;
TreeStatement catchBlock = 0;
TreeStatement finallyBlock = 0;
int firstLine = tokenLine();
next();
matchOrFail(OPENBRACE, "Expected a block statement as body of a try statement");
tryBlock = parseBlockStatement(context);
failIfFalse(tryBlock, "Cannot parse the body of try block");
int lastLine = m_lastTokenEndPosition.line;
VariableEnvironment catchEnvironment;
if (match(CATCH)) {
next();
handleProductionOrFail(OPENPAREN, "(", "start", "'catch' target");
if (!(match(IDENT) || isLETMaskedAsIDENT())) {
semanticFailureDueToKeyword("catch variable name");
failWithMessage("Expected identifier name as catch target");
}
ident = m_token.m_data.ident;
next();
AutoPopScopeRef catchScope(this, pushScope());
catchScope->setIsLexicalScope();
catchScope->preventVarDeclarations();
failIfTrueIfStrict(catchScope->declareLexicalVariable(ident, false) & DeclarationResult::InvalidStrictMode, "Cannot declare a catch variable named '", ident->impl(), "' in strict mode");
handleProductionOrFail(CLOSEPAREN, ")", "end", "'catch' target");
matchOrFail(OPENBRACE, "Expected exception handler to be a block statement");
catchBlock = parseBlockStatement(context);
failIfFalse(catchBlock, "Unable to parse 'catch' block");
catchEnvironment = catchScope->finalizeLexicalEnvironment();
RELEASE_ASSERT(catchEnvironment.size() == 1 && catchEnvironment.contains(ident->impl()));
popScope(catchScope, TreeBuilder::NeedsFreeVariableInfo);
}
if (match(FINALLY)) {
next();
matchOrFail(OPENBRACE, "Expected block statement for finally body");
finallyBlock = parseBlockStatement(context);
failIfFalse(finallyBlock, "Cannot parse finally body");
}
failIfFalse(catchBlock || finallyBlock, "Try statements must have at least a catch or finally block");
return context.createTryStatement(location, tryBlock, ident, catchBlock, finallyBlock, firstLine, lastLine, catchEnvironment);
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseDebuggerStatement(TreeBuilder& context)
{
ASSERT(match(DEBUGGER));
JSTokenLocation location(tokenLocation());
int startLine = tokenLine();
int endLine = startLine;
next();
if (match(SEMICOLON))
startLine = tokenLine();
failIfFalse(autoSemiColon(), "Debugger keyword must be followed by a ';'");
return context.createDebugger(location, startLine, endLine);
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseBlockStatement(TreeBuilder& context)
{
ASSERT(match(OPENBRACE));
// We should treat the first block statement of the function (the body of the function) as the lexical
// scope of the function itself, and not the lexical scope of a 'block' statement within the function.
AutoCleanupLexicalScope lexicalScope;
bool shouldPushLexicalScope = m_statementDepth > 0;
if (shouldPushLexicalScope) {
ScopeRef newScope = pushScope();
newScope->setIsLexicalScope();
newScope->preventVarDeclarations();
lexicalScope.setIsValid(newScope, this);
}
JSTokenLocation location(tokenLocation());
int startOffset = m_token.m_data.offset;
int start = tokenLine();
VariableEnvironment emptyEnvironment;
next();
if (match(CLOSEBRACE)) {
int endOffset = m_token.m_data.offset;
next();
TreeStatement result = context.createBlockStatement(location, 0, start, m_lastTokenEndPosition.line, shouldPushLexicalScope ? currentScope()->finalizeLexicalEnvironment() : emptyEnvironment);
context.setStartOffset(result, startOffset);
context.setEndOffset(result, endOffset);
if (shouldPushLexicalScope)
popScope(lexicalScope, TreeBuilder::NeedsFreeVariableInfo);
return result;
}
TreeSourceElements subtree = parseSourceElements(context, DontCheckForStrictMode);
failIfFalse(subtree, "Cannot parse the body of the block statement");
matchOrFail(CLOSEBRACE, "Expected a closing '}' at the end of a block statement");
int endOffset = m_token.m_data.offset;
next();
TreeStatement result = context.createBlockStatement(location, subtree, start, m_lastTokenEndPosition.line, shouldPushLexicalScope ? currentScope()->finalizeLexicalEnvironment() : emptyEnvironment);
context.setStartOffset(result, startOffset);
context.setEndOffset(result, endOffset);
if (shouldPushLexicalScope)
popScope(lexicalScope, TreeBuilder::NeedsFreeVariableInfo);
return result;
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseStatement(TreeBuilder& context, const Identifier*& directive, unsigned* directiveLiteralLength)
{
DepthManager statementDepth(&m_statementDepth);
m_statementDepth++;
directive = 0;
int nonTrivialExpressionCount = 0;
failIfStackOverflow();
TreeStatement result = 0;
bool shouldSetEndOffset = true;
switch (m_token.m_type) {
case OPENBRACE:
result = parseBlockStatement(context);
shouldSetEndOffset = false;
break;
case VAR:
result = parseVariableDeclaration(context, DeclarationType::VarDeclaration);
break;
case FUNCTION:
failIfFalseIfStrict(m_statementDepth == 1, "Strict mode does not allow function declarations in a lexically nested statement");
result = parseFunctionDeclaration(context);
break;
case SEMICOLON: {
JSTokenLocation location(tokenLocation());
next();
result = context.createEmptyStatement(location);
break;
}
case IF:
result = parseIfStatement(context);
break;
case DO:
result = parseDoWhileStatement(context);
break;
case WHILE:
result = parseWhileStatement(context);
break;
case FOR:
result = parseForStatement(context);
break;
case CONTINUE:
result = parseContinueStatement(context);
break;
case BREAK:
result = parseBreakStatement(context);
break;
case RETURN:
result = parseReturnStatement(context);
break;
case WITH:
result = parseWithStatement(context);
break;
case SWITCH:
result = parseSwitchStatement(context);
break;
case THROW:
result = parseThrowStatement(context);
break;
case TRY:
result = parseTryStatement(context);
break;
case DEBUGGER:
result = parseDebuggerStatement(context);
break;
case EOFTOK:
case CASE:
case CLOSEBRACE:
case DEFAULT:
// These tokens imply the end of a set of source elements
return 0;
case IDENT:
result = parseExpressionOrLabelStatement(context);
break;
case STRING:
directive = m_token.m_data.ident;
if (directiveLiteralLength)
*directiveLiteralLength = m_token.m_location.endOffset - m_token.m_location.startOffset;
nonTrivialExpressionCount = m_nonTrivialExpressionCount;
FALLTHROUGH;
default:
TreeStatement exprStatement = parseExpressionStatement(context);
if (directive && nonTrivialExpressionCount != m_nonTrivialExpressionCount)
directive = 0;
result = exprStatement;
break;
}
if (result && shouldSetEndOffset)
context.setEndOffset(result, m_lastTokenEndPosition.offset);
return result;
}
template <typename LexerType>
template <class TreeBuilder> bool Parser<LexerType>::parseFormalParameters(TreeBuilder& context, TreeFormalParameterList list, unsigned& parameterCount)
{
#define failFromDuplicate() \
if (duplicateParameter) {\
semanticFailIfTrue(defaultValue, "Duplicate parameter '", duplicateParameter->impl(), "' not allowed in function with default parameter values");\
semanticFailIfTrue(hasDestructuringPattern, "Duplicate parameter '", duplicateParameter->impl(), "' not allowed in function with destructuring parameters");\
}
const Identifier* duplicateParameter = nullptr;
bool hasDestructuringPattern = false;
auto parameter = parseDestructuringPattern(context, DestructureToParameters, ExportType::NotExported, &duplicateParameter, &hasDestructuringPattern);
failIfFalse(parameter, "Cannot parse parameter pattern");
auto defaultValue = parseDefaultValueForDestructuringPattern(context);
propagateError();
failFromDuplicate();
context.appendParameter(list, parameter, defaultValue);
parameterCount++;
while (consume(COMMA)) {
parameter = parseDestructuringPattern(context, DestructureToParameters, ExportType::NotExported, &duplicateParameter, &hasDestructuringPattern);
failIfFalse(parameter, "Cannot parse parameter pattern");
defaultValue = parseDefaultValueForDestructuringPattern(context);
propagateError();
failFromDuplicate();
context.appendParameter(list, parameter, defaultValue);
parameterCount++;
}
return true;
#undef failFromDuplicate
}
template <typename LexerType>
template <class TreeBuilder> TreeFunctionBody Parser<LexerType>::parseFunctionBody(
TreeBuilder& context, const JSTokenLocation& startLocation, int startColumn, int functionKeywordStart, int functionNameStart, int parametersStart,
ConstructorKind constructorKind, FunctionBodyType bodyType, unsigned parameterCount, SourceParseMode parseMode)
{
bool isArrowFunction = FunctionBodyType::StandardFunctionBodyBlock != bodyType;
bool isArrowFunctionBodyExpression = bodyType == ArrowFunctionBodyExpression;
if (!isArrowFunctionBodyExpression) {
next();
if (match(CLOSEBRACE)) {
unsigned endColumn = tokenColumn();
return context.createFunctionMetadata(startLocation, tokenLocation(), startColumn, endColumn, functionKeywordStart, functionNameStart, parametersStart, strictMode(), constructorKind, parameterCount, parseMode, isArrowFunction, isArrowFunctionBodyExpression);
}
}
DepthManager statementDepth(&m_statementDepth);
m_statementDepth = 0;
SyntaxChecker syntaxChecker(const_cast<VM*>(m_vm), m_lexer.get());
if (bodyType == ArrowFunctionBodyExpression)
failIfFalse(parseArrowFunctionSingleExpressionBodySourceElements(syntaxChecker), "Cannot parse body of this arrow function");
else
failIfFalse(parseSourceElements(syntaxChecker, CheckForStrictMode), bodyType == StandardFunctionBodyBlock ? "Cannot parse body of this function" : "Cannot parse body of this arrow function");
unsigned endColumn = tokenColumn();
return context.createFunctionMetadata(startLocation, tokenLocation(), startColumn, endColumn, functionKeywordStart, functionNameStart, parametersStart, strictMode(), constructorKind, parameterCount, parseMode, isArrowFunction, isArrowFunctionBodyExpression);
}
static const char* stringForFunctionMode(SourceParseMode mode)
{
switch (mode) {
case SourceParseMode::GetterMode:
return "getter";
case SourceParseMode::SetterMode:
return "setter";
case SourceParseMode::NormalFunctionMode:
return "function";
case SourceParseMode::MethodMode:
return "method";
case SourceParseMode::ArrowFunctionMode:
return "arrow function";
case SourceParseMode::ProgramMode:
case SourceParseMode::ModuleAnalyzeMode:
case SourceParseMode::ModuleEvaluateMode:
RELEASE_ASSERT_NOT_REACHED();
return "";
}
RELEASE_ASSERT_NOT_REACHED();
return nullptr;
}
template <typename LexerType> template <class TreeBuilder> int Parser<LexerType>::parseFunctionParameters(TreeBuilder& context, SourceParseMode mode, ParserFunctionInfo<TreeBuilder>& functionInfo)
{
RELEASE_ASSERT(mode != SourceParseMode::ProgramMode && mode != SourceParseMode::ModuleAnalyzeMode && mode != SourceParseMode::ModuleEvaluateMode);
int parametersStart = m_token.m_location.startOffset;
TreeFormalParameterList parameterList = context.createFormalParameterList();
functionInfo.parameters = parameterList;
functionInfo.startOffset = parametersStart;
if (mode == SourceParseMode::ArrowFunctionMode) {
if (!match(IDENT) && !match(OPENPAREN)) {
semanticFailureDueToKeyword(stringForFunctionMode(mode), " name");
failWithMessage("Expected an arrow function input parameter");
} else {
if (match(OPENPAREN)) {
next();
if (match(CLOSEPAREN))
functionInfo.parameterCount = 0;
else
failIfFalse(parseFormalParameters(context, parameterList, functionInfo.parameterCount), "Cannot parse parameters for this ", stringForFunctionMode(mode));
consumeOrFail(CLOSEPAREN, "Expected a ')' or a ',' after a parameter declaration");
} else {
functionInfo.parameterCount = 1;
auto parameter = parseDestructuringPattern(context, DestructureToParameters, ExportType::NotExported);
failIfFalse(parameter, "Cannot parse parameter pattern");
context.appendParameter(parameterList, parameter, 0);
}
}
return parametersStart;
}
if (!consume(OPENPAREN)) {
semanticFailureDueToKeyword(stringForFunctionMode(mode), " name");
failWithMessage("Expected an opening '(' before a ", stringForFunctionMode(mode), "'s parameter list");
}
if (mode == SourceParseMode::GetterMode) {
consumeOrFail(CLOSEPAREN, "getter functions must have no parameters");
functionInfo.parameterCount = 0;
} else if (mode == SourceParseMode::SetterMode) {
failIfTrue(match(CLOSEPAREN), "setter functions must have one parameter");
const Identifier* duplicateParameter = nullptr;
auto parameter = parseDestructuringPattern(context, DestructureToParameters, ExportType::NotExported, &duplicateParameter);
failIfFalse(parameter, "setter functions must have one parameter");
auto defaultValue = parseDefaultValueForDestructuringPattern(context);
propagateError();
semanticFailIfTrue(duplicateParameter && defaultValue, "Duplicate parameter '", duplicateParameter->impl(), "' not allowed in function with default parameter values");
context.appendParameter(parameterList, parameter, defaultValue);
functionInfo.parameterCount = 1;
failIfTrue(match(COMMA), "setter functions must have one parameter");
consumeOrFail(CLOSEPAREN, "Expected a ')' after a parameter declaration");
} else {
if (match(CLOSEPAREN))
functionInfo.parameterCount = 0;
else
failIfFalse(parseFormalParameters(context, parameterList, functionInfo.parameterCount), "Cannot parse parameters for this ", stringForFunctionMode(mode));
consumeOrFail(CLOSEPAREN, "Expected a ')' or a ',' after a parameter declaration");
}
return parametersStart;
}
template <typename LexerType>
template <class TreeBuilder> bool Parser<LexerType>::parseFunctionInfo(TreeBuilder& context, FunctionRequirements requirements, SourceParseMode mode, bool nameIsInContainingScope, ConstructorKind constructorKind, SuperBinding expectedSuperBinding, int functionKeywordStart, ParserFunctionInfo<TreeBuilder>& functionInfo, FunctionParseType parseType)
{
RELEASE_ASSERT(isFunctionParseMode(mode));
AutoPopScopeRef functionScope(this, pushScope());
functionScope->setIsFunction();
int functionNameStart = m_token.m_location.startOffset;
const Identifier* lastFunctionName = m_lastFunctionName;
m_lastFunctionName = nullptr;
int parametersStart;
JSTokenLocation startLocation;
int startColumn;
FunctionBodyType functionBodyType;
switch (parseType) {
case StandardFunctionParseType: {
RELEASE_ASSERT(mode != SourceParseMode::ArrowFunctionMode);
if (match(IDENT) || isLETMaskedAsIDENT()) {
functionInfo.name = m_token.m_data.ident;
m_lastFunctionName = functionInfo.name;
next();
if (!nameIsInContainingScope)
failIfTrueIfStrict(functionScope->declareVariable(functionInfo.name) & DeclarationResult::InvalidStrictMode, "'", functionInfo.name->impl(), "' is not a valid ", stringForFunctionMode(mode), " name in strict mode");
} else if (requirements == FunctionNeedsName) {
if (match(OPENPAREN) && mode == SourceParseMode::NormalFunctionMode)
semanticFail("Function statements must have a name");
semanticFailureDueToKeyword(stringForFunctionMode(mode), " name");
failDueToUnexpectedToken();
return false;
}
startLocation = tokenLocation();
functionInfo.startLine = tokenLine();
startColumn = tokenColumn();
parametersStart = parseFunctionParameters(context, mode, functionInfo);
propagateError();
matchOrFail(OPENBRACE, "Expected an opening '{' at the start of a ", stringForFunctionMode(mode), " body");
// BytecodeGenerator emits code to throw TypeError when a class constructor is "call"ed.
// Set ConstructorKind to None for non-constructor methods of classes.
if (m_defaultConstructorKind != ConstructorKind::None) {
constructorKind = m_defaultConstructorKind;
expectedSuperBinding = m_defaultConstructorKind == ConstructorKind::Derived ? SuperBinding::Needed : SuperBinding::NotNeeded;
}
functionBodyType = StandardFunctionBodyBlock;
break;
}
#if ENABLE(ES6_ARROWFUNCTION_SYNTAX)
case ArrowFunctionParseType: {
RELEASE_ASSERT(mode == SourceParseMode::ArrowFunctionMode);
startLocation = tokenLocation();
functionInfo.startLine = tokenLine();
startColumn = tokenColumn();
parametersStart = parseFunctionParameters(context, mode, functionInfo);
propagateError();
matchOrFail(ARROWFUNCTION, "Expected a '=>' after arrow function parameter declaration");
if (m_lexer->prevTerminator())
failDueToUnexpectedToken();
ASSERT(constructorKind == ConstructorKind::None);
// Check if arrow body start with {. If it true it mean that arrow function is Fat arrow function
// and we need use common approach to parse function body
next();
functionBodyType = match(OPENBRACE) ? ArrowFunctionBodyBlock : ArrowFunctionBodyExpression;
break;
}
#else
default:
RELEASE_ASSERT_NOT_REACHED();
#endif
}
bool isClassConstructor = constructorKind != ConstructorKind::None;
functionInfo.bodyStartColumn = startColumn;
// If we know about this function already, we can use the cached info and skip the parser to the end of the function.
if (const SourceProviderCacheItem* cachedInfo = TreeBuilder::CanUseFunctionCache ? findCachedFunctionInfo(functionInfo.startOffset) : 0) {
// If we're in a strict context, the cached function info must say it was strict too.
ASSERT(!strictMode() || cachedInfo->strictMode);
JSTokenLocation endLocation;
endLocation.line = cachedInfo->lastTockenLine;
endLocation.startOffset = cachedInfo->lastTockenStartOffset;
endLocation.lineStartOffset = cachedInfo->lastTockenLineStartOffset;
bool endColumnIsOnStartLine = (endLocation.line == functionInfo.startLine);
ASSERT(endLocation.startOffset >= endLocation.lineStartOffset);
unsigned bodyEndColumn = endColumnIsOnStartLine ?
endLocation.startOffset - m_token.m_data.lineStartOffset :
endLocation.startOffset - endLocation.lineStartOffset;
unsigned currentLineStartOffset = m_token.m_location.lineStartOffset;
bool isArrowFunction = parseType == ArrowFunctionParseType;
functionInfo.body = context.createFunctionMetadata(
startLocation, endLocation, functionInfo.bodyStartColumn, bodyEndColumn,
functionKeywordStart, functionNameStart, parametersStart,
cachedInfo->strictMode, constructorKind, cachedInfo->parameterCount, mode, isArrowFunction, functionBodyType == ArrowFunctionBodyExpression);
functionScope->restoreFromSourceProviderCache(cachedInfo);
popScope(functionScope, TreeBuilder::NeedsFreeVariableInfo);
m_token = cachedInfo->endFunctionToken();
if (endColumnIsOnStartLine)
m_token.m_location.lineStartOffset = currentLineStartOffset;
m_lexer->setOffset(m_token.m_location.endOffset, m_token.m_location.lineStartOffset);
m_lexer->setLineNumber(m_token.m_location.line);
functionInfo.endOffset = cachedInfo->endFunctionOffset;
if (isArrowFunction)
functionBodyType = cachedInfo->isBodyArrowExpression ? ArrowFunctionBodyExpression : ArrowFunctionBodyBlock;
else
functionBodyType = StandardFunctionBodyBlock;
switch (functionBodyType) {
case ArrowFunctionBodyExpression:
next();
context.setEndOffset(functionInfo.body, m_lexer->currentOffset());
break;
case ArrowFunctionBodyBlock:
case StandardFunctionBodyBlock:
context.setEndOffset(functionInfo.body, m_lexer->currentOffset());
next();
break;
}
functionInfo.endLine = m_lastTokenEndPosition.line;
return true;
}
m_lastFunctionName = lastFunctionName;
ParserState oldState = saveState();
functionInfo.body = parseFunctionBody(context, startLocation, startColumn, functionKeywordStart, functionNameStart, parametersStart, constructorKind, functionBodyType, functionInfo.parameterCount, mode);
restoreState(oldState);
failIfFalse(functionInfo.body, "Cannot parse the body of this ", stringForFunctionMode(mode));
context.setEndOffset(functionInfo.body, m_lexer->currentOffset());
if (functionScope->strictMode() && functionInfo.name) {
RELEASE_ASSERT(mode == SourceParseMode::NormalFunctionMode || mode == SourceParseMode::MethodMode || mode == SourceParseMode::ArrowFunctionMode);
semanticFailIfTrue(m_vm->propertyNames->arguments == *functionInfo.name, "'", functionInfo.name->impl(), "' is not a valid function name in strict mode");
semanticFailIfTrue(m_vm->propertyNames->eval == *functionInfo.name, "'", functionInfo.name->impl(), "' is not a valid function name in strict mode");
}
if (functionScope->hasDirectSuper()) {
semanticFailIfTrue(!isClassConstructor, "Cannot call super() outside of a class constructor");
semanticFailIfTrue(constructorKind != ConstructorKind::Derived, "Cannot call super() in a base class constructor");
}
if (functionScope->needsSuperBinding())
semanticFailIfTrue(expectedSuperBinding == SuperBinding::NotNeeded, "super can only be used in a method of a derived class");
JSTokenLocation location = JSTokenLocation(m_token.m_location);
functionInfo.endOffset = m_token.m_data.offset;
if (functionBodyType == ArrowFunctionBodyExpression) {
location = locationBeforeLastToken();
functionInfo.endOffset = location.endOffset;
}
// Cache the tokenizer state and the function scope the first time the function is parsed.
// Any future reparsing can then skip the function.
static const int minimumFunctionLengthToCache = 16;
std::unique_ptr<SourceProviderCacheItem> newInfo;
int functionLength = functionInfo.endOffset - functionInfo.startOffset;
if (TreeBuilder::CanUseFunctionCache && m_functionCache && functionLength > minimumFunctionLengthToCache) {
SourceProviderCacheItemCreationParameters parameters;
parameters.endFunctionOffset = functionInfo.endOffset;
parameters.functionNameStart = functionNameStart;
parameters.lastTockenLine = location.line;
parameters.lastTockenStartOffset = location.startOffset;
parameters.lastTockenEndOffset = location.endOffset;
parameters.lastTockenLineStartOffset = location.lineStartOffset;
parameters.parameterCount = functionInfo.parameterCount;
if (functionBodyType == ArrowFunctionBodyExpression) {
parameters.isBodyArrowExpression = true;
parameters.tokenType = m_token.m_type;
}
functionScope->fillParametersForSourceProviderCache(parameters);
newInfo = SourceProviderCacheItem::create(parameters);
}
popScope(functionScope, TreeBuilder::NeedsFreeVariableInfo);
if (functionBodyType == ArrowFunctionBodyExpression)
failIfFalse(isEndOfArrowFunction(), "Expected the closing ';' ',' ']' ')' '}', line terminator or EOF after arrow function");
else {
matchOrFail(CLOSEBRACE, "Expected a closing '}' after a ", stringForFunctionMode(mode), " body");
next();
}
if (newInfo)
m_functionCache->add(functionInfo.startOffset, WTF::move(newInfo));
functionInfo.endLine = m_lastTokenEndPosition.line;
return true;
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseFunctionDeclaration(TreeBuilder& context, ExportType exportType)
{
ASSERT(match(FUNCTION));
JSTokenLocation location(tokenLocation());
unsigned functionKeywordStart = tokenStart();
next();
ParserFunctionInfo<TreeBuilder> functionInfo;
failIfFalse((parseFunctionInfo(context, FunctionNeedsName, SourceParseMode::NormalFunctionMode, true, ConstructorKind::None, SuperBinding::NotNeeded,
functionKeywordStart, functionInfo, StandardFunctionParseType)), "Cannot parse this function");
failIfFalse(functionInfo.name, "Function statements must have a name");
failIfTrueIfStrict(declareVariable(functionInfo.name) & DeclarationResult::InvalidStrictMode, "Cannot declare a function named '", functionInfo.name->impl(), "' in strict mode");
if (exportType == ExportType::Exported) {
semanticFailIfFalse(exportName(*functionInfo.name), "Cannot export a duplicate function name: '", functionInfo.name->impl(), "'");
currentScope()->moduleScopeData().exportBinding(*functionInfo.name);
}
return context.createFuncDeclStatement(location, functionInfo);
}
#if ENABLE(ES6_CLASS_SYNTAX)
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseClassDeclaration(TreeBuilder& context, ExportType exportType)
{
ASSERT(match(CLASSTOKEN));
JSTokenLocation location(tokenLocation());
JSTextPosition classStart = tokenStartPosition();
unsigned classStartLine = tokenLine();
ParserClassInfo<TreeBuilder> info;
TreeClassExpression classExpr = parseClass(context, FunctionNeedsName, info);
failIfFalse(classExpr, "Failed to parse class");
DeclarationResultMask declarationResult = declareVariable(info.className, DeclarationType::LetDeclaration);
if (declarationResult & DeclarationResult::InvalidDuplicateDeclaration)
internalFailWithMessage(false, "Cannot declare a class twice: '", info.className->impl(), "'");
if (exportType == ExportType::Exported) {
semanticFailIfFalse(exportName(*info.className), "Cannot export a duplicate class name: '", info.className->impl(), "'");
currentScope()->moduleScopeData().exportBinding(*info.className);
}
JSTextPosition classEnd = lastTokenEndPosition();
unsigned classEndLine = tokenLine();
return context.createClassDeclStatement(location, classExpr, classStart, classEnd, classStartLine, classEndLine);
}
template <typename LexerType>
template <class TreeBuilder> TreeClassExpression Parser<LexerType>::parseClass(TreeBuilder& context, FunctionRequirements requirements, ParserClassInfo<TreeBuilder>& info)
{
ASSERT(match(CLASSTOKEN));
JSTokenLocation location(tokenLocation());
next();
AutoPopScopeRef classScope(this, pushScope());
classScope->setStrictMode();
const Identifier* className = nullptr;
if (match(IDENT)) {
className = m_token.m_data.ident;
info.className = className;
next();
failIfTrue(classScope->declareVariable(className) & DeclarationResult::InvalidStrictMode, "'", className->impl(), "' is not a valid class name");
} else if (requirements == FunctionNeedsName) {
if (match(OPENBRACE))
semanticFail("Class statements must have a name");
semanticFailureDueToKeyword("class name");
failDueToUnexpectedToken();
} else
className = &m_vm->propertyNames->nullIdentifier;
ASSERT(className);
TreeExpression parentClass = 0;
if (consume(EXTENDS)) {
parentClass = parseMemberExpression(context);
failIfFalse(parentClass, "Cannot parse the parent class name");
}
const ConstructorKind constructorKind = parentClass ? ConstructorKind::Derived : ConstructorKind::Base;
consumeOrFail(OPENBRACE, "Expected opening '{' at the start of a class body");
TreeExpression constructor = 0;
TreePropertyList staticMethods = 0;
TreePropertyList instanceMethods = 0;
TreePropertyList instanceMethodsTail = 0;
TreePropertyList staticMethodsTail = 0;
while (!match(CLOSEBRACE)) {
if (match(SEMICOLON)) {
next();
continue;
}
JSTokenLocation methodLocation(tokenLocation());
unsigned methodStart = tokenStart();
// For backwards compatibility, "static" is a non-reserved keyword in non-strict mode.
bool isStaticMethod = match(RESERVED_IF_STRICT) && *m_token.m_data.ident == m_vm->propertyNames->staticKeyword;
if (isStaticMethod)
next();
// FIXME: Figure out a way to share more code with parseProperty.
const CommonIdentifiers& propertyNames = *m_vm->propertyNames;
const Identifier* ident = &propertyNames.nullIdentifier;
TreeExpression computedPropertyName = 0;
bool isGetter = false;
bool isSetter = false;
switch (m_token.m_type) {
case STRING:
ident = m_token.m_data.ident;
ASSERT(ident);
next();
break;
case IDENT:
ident = m_token.m_data.ident;
ASSERT(ident);
next();
if (match(IDENT) || match(STRING) || match(DOUBLE) || match(INTEGER) || match(OPENBRACKET)) {
isGetter = *ident == propertyNames.get;
isSetter = *ident == propertyNames.set;
}
break;
case DOUBLE:
case INTEGER:
ident = &m_parserArena.identifierArena().makeNumericIdentifier(const_cast<VM*>(m_vm), m_token.m_data.doubleValue);
ASSERT(ident);
next();
break;
case OPENBRACKET:
next();
computedPropertyName = parseAssignmentExpression(context);
failIfFalse(computedPropertyName, "Cannot parse computed property name");
handleProductionOrFail(CLOSEBRACKET, "]", "end", "computed property name");
break;
default:
failDueToUnexpectedToken();
}
TreeProperty property;
const bool alwaysStrictInsideClass = true;
if (isGetter || isSetter) {
property = parseGetterSetter(context, alwaysStrictInsideClass, isGetter ? PropertyNode::Getter : PropertyNode::Setter, methodStart,
ConstructorKind::None, SuperBinding::Needed);
failIfFalse(property, "Cannot parse this method");
} else {
ParserFunctionInfo<TreeBuilder> methodInfo;
bool isConstructor = !isStaticMethod && *ident == propertyNames.constructor;
failIfFalse((parseFunctionInfo(context, FunctionNoRequirements, SourceParseMode::MethodMode, false, isConstructor ? constructorKind : ConstructorKind::None, SuperBinding::Needed, methodStart, methodInfo, StandardFunctionParseType)), "Cannot parse this method");
failIfTrue(!computedPropertyName && (declareVariable(ident) & DeclarationResult::InvalidStrictMode), "Cannot declare a method named '", methodInfo.name->impl(), "'");
methodInfo.name = isConstructor ? className : ident;
TreeExpression method = context.createFunctionExpr(methodLocation, methodInfo);
if (isConstructor) {
semanticFailIfTrue(constructor, "Cannot declare multiple constructors in a single class");
constructor = method;
continue;
}
// FIXME: Syntax error when super() is called
semanticFailIfTrue(isStaticMethod && methodInfo.name && *methodInfo.name == propertyNames.prototype,
"Cannot declare a static method named 'prototype'");
if (computedPropertyName) {
property = context.createProperty(computedPropertyName, method, static_cast<PropertyNode::Type>(PropertyNode::Constant | PropertyNode::Computed),
PropertyNode::Unknown, alwaysStrictInsideClass, SuperBinding::Needed);
} else
property = context.createProperty(methodInfo.name, method, PropertyNode::Constant, PropertyNode::Unknown, alwaysStrictInsideClass, SuperBinding::Needed);
}
TreePropertyList& tail = isStaticMethod ? staticMethodsTail : instanceMethodsTail;
if (tail)
tail = context.createPropertyList(methodLocation, property, tail);
else {
tail = context.createPropertyList(methodLocation, property);
if (isStaticMethod)
staticMethods = tail;
else
instanceMethods = tail;
}
}
popScope(classScope, TreeBuilder::NeedsFreeVariableInfo);
consumeOrFail(CLOSEBRACE, "Expected a closing '}' after a class body");
return context.createClassExpr(location, *className, constructor, parentClass, instanceMethods, staticMethods);
}
#endif
struct LabelInfo {
LabelInfo(const Identifier* ident, const JSTextPosition& start, const JSTextPosition& end)
: m_ident(ident)
, m_start(start)
, m_end(end)
{
}
const Identifier* m_ident;
JSTextPosition m_start;
JSTextPosition m_end;
};
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseExpressionOrLabelStatement(TreeBuilder& context)
{
/* Expression and Label statements are ambiguous at LL(1), so we have a
* special case that looks for a colon as the next character in the input.
*/
Vector<LabelInfo> labels;
JSTokenLocation location;
do {
JSTextPosition start = tokenStartPosition();
location = tokenLocation();
if (!nextTokenIsColon()) {
// If we hit this path we're making a expression statement, which
// by definition can't make use of continue/break so we can just
// ignore any labels we might have accumulated.
TreeExpression expression = parseExpression(context);
failIfFalse(expression, "Cannot parse expression statement");
if (!autoSemiColon())
failDueToUnexpectedToken();
return context.createExprStatement(location, expression, start, m_lastTokenEndPosition.line);
}
const Identifier* ident = m_token.m_data.ident;
JSTextPosition end = tokenEndPosition();
next();
consumeOrFail(COLON, "Labels must be followed by a ':'");
if (!m_syntaxAlreadyValidated) {
// This is O(N^2) over the current list of consecutive labels, but I
// have never seen more than one label in a row in the real world.
for (size_t i = 0; i < labels.size(); i++)
failIfTrue(ident->impl() == labels[i].m_ident->impl(), "Attempted to redeclare the label '", ident->impl(), "'");
failIfTrue(getLabel(ident), "Cannot find scope for the label '", ident->impl(), "'");
labels.append(LabelInfo(ident, start, end));
}
} while (match(IDENT) || isLETMaskedAsIDENT());
bool isLoop = false;
switch (m_token.m_type) {
case FOR:
case WHILE:
case DO:
isLoop = true;
break;
default:
break;
}
const Identifier* unused = 0;
ScopeRef labelScope = currentScope();
if (!m_syntaxAlreadyValidated) {
for (size_t i = 0; i < labels.size(); i++)
pushLabel(labels[i].m_ident, isLoop);
}
TreeStatement statement = parseStatement(context, unused);
if (!m_syntaxAlreadyValidated) {
for (size_t i = 0; i < labels.size(); i++)
popLabel(labelScope);
}
failIfFalse(statement, "Cannot parse statement");
for (size_t i = 0; i < labels.size(); i++) {
const LabelInfo& info = labels[labels.size() - i - 1];
statement = context.createLabelStatement(location, info.m_ident, statement, info.m_start, info.m_end);
}
return statement;
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseExpressionStatement(TreeBuilder& context)
{
switch (m_token.m_type) {
// Consult: http://www.ecma-international.org/ecma-262/6.0/index.html#sec-expression-statement
// The ES6 spec mandates that we should fail from FUNCTION token here. We handle this case
// in parseStatement() which is the only caller of parseExpressionStatement().
// We actually allow FUNCTION in situations where it should not be allowed unless we're in strict mode.
case CLASSTOKEN:
failWithMessage("'class' declaration is not directly within a block statement");
break;
default:
// FIXME: when implementing 'let' we should fail when we see the token sequence "let [".
// https://bugs.webkit.org/show_bug.cgi?id=142944
break;
}
JSTextPosition start = tokenStartPosition();
JSTokenLocation location(tokenLocation());
TreeExpression expression = parseExpression(context);
failIfFalse(expression, "Cannot parse expression statement");
failIfFalse(autoSemiColon(), "Parse error");
return context.createExprStatement(location, expression, start, m_lastTokenEndPosition.line);
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseIfStatement(TreeBuilder& context)
{
ASSERT(match(IF));
JSTokenLocation ifLocation(tokenLocation());
int start = tokenLine();
next();
handleProductionOrFail(OPENPAREN, "(", "start", "'if' condition");
TreeExpression condition = parseExpression(context);
failIfFalse(condition, "Expected a expression as the condition for an if statement");
int end = tokenLine();
handleProductionOrFail(CLOSEPAREN, ")", "end", "'if' condition");
const Identifier* unused = 0;
TreeStatement trueBlock = parseStatement(context, unused);
failIfFalse(trueBlock, "Expected a statement as the body of an if block");
if (!match(ELSE))
return context.createIfStatement(ifLocation, condition, trueBlock, 0, start, end);
Vector<TreeExpression> exprStack;
Vector<std::pair<int, int>> posStack;
Vector<JSTokenLocation> tokenLocationStack;
Vector<TreeStatement> statementStack;
bool trailingElse = false;
do {
JSTokenLocation tempLocation = tokenLocation();
next();
if (!match(IF)) {
const Identifier* unused = 0;
TreeStatement block = parseStatement(context, unused);
failIfFalse(block, "Expected a statement as the body of an else block");
statementStack.append(block);
trailingElse = true;
break;
}
int innerStart = tokenLine();
next();
handleProductionOrFail(OPENPAREN, "(", "start", "'if' condition");
TreeExpression innerCondition = parseExpression(context);
failIfFalse(innerCondition, "Expected a expression as the condition for an if statement");
int innerEnd = tokenLine();
handleProductionOrFail(CLOSEPAREN, ")", "end", "'if' condition");
const Identifier* unused = 0;
TreeStatement innerTrueBlock = parseStatement(context, unused);
failIfFalse(innerTrueBlock, "Expected a statement as the body of an if block");
tokenLocationStack.append(tempLocation);
exprStack.append(innerCondition);
posStack.append(std::make_pair(innerStart, innerEnd));
statementStack.append(innerTrueBlock);
} while (match(ELSE));
if (!trailingElse) {
TreeExpression condition = exprStack.last();
exprStack.removeLast();
TreeStatement trueBlock = statementStack.last();
statementStack.removeLast();
std::pair<int, int> pos = posStack.last();
posStack.removeLast();
JSTokenLocation elseLocation = tokenLocationStack.last();
tokenLocationStack.removeLast();
TreeStatement ifStatement = context.createIfStatement(elseLocation, condition, trueBlock, 0, pos.first, pos.second);
context.setEndOffset(ifStatement, context.endOffset(trueBlock));
statementStack.append(ifStatement);
}
while (!exprStack.isEmpty()) {
TreeExpression condition = exprStack.last();
exprStack.removeLast();
TreeStatement falseBlock = statementStack.last();
statementStack.removeLast();
TreeStatement trueBlock = statementStack.last();
statementStack.removeLast();
std::pair<int, int> pos = posStack.last();
posStack.removeLast();
JSTokenLocation elseLocation = tokenLocationStack.last();
tokenLocationStack.removeLast();
TreeStatement ifStatement = context.createIfStatement(elseLocation, condition, trueBlock, falseBlock, pos.first, pos.second);
context.setEndOffset(ifStatement, context.endOffset(falseBlock));
statementStack.append(ifStatement);
}
return context.createIfStatement(ifLocation, condition, trueBlock, statementStack.last(), start, end);
}
template <typename LexerType>
template <class TreeBuilder> typename TreeBuilder::ModuleName Parser<LexerType>::parseModuleName(TreeBuilder& context)
{
// ModuleName (ModuleSpecifier in the spec) represents the module name imported by the script.
// http://www.ecma-international.org/ecma-262/6.0/#sec-imports
// http://www.ecma-international.org/ecma-262/6.0/#sec-exports
JSTokenLocation specifierLocation(tokenLocation());
failIfFalse(match(STRING), "Imported modules names must be string literals");
const Identifier* moduleName = m_token.m_data.ident;
next();
return context.createModuleName(specifierLocation, *moduleName);
}
template <typename LexerType>
template <class TreeBuilder> typename TreeBuilder::ImportSpecifier Parser<LexerType>::parseImportClauseItem(TreeBuilder& context, ImportSpecifierType specifierType)
{
// Produced node is the item of the ImportClause.
// That is the ImportSpecifier, ImportedDefaultBinding or NameSpaceImport.
// http://www.ecma-international.org/ecma-262/6.0/#sec-imports
JSTokenLocation specifierLocation(tokenLocation());
JSToken localNameToken;
const Identifier* importedName = nullptr;
const Identifier* localName = nullptr;
switch (specifierType) {
case ImportSpecifierType::NamespaceImport: {
// NameSpaceImport :
// * as ImportedBinding
// e.g.
// * as namespace
ASSERT(match(TIMES));
importedName = &m_vm->propertyNames->timesIdentifier;
next();
failIfFalse(matchContextualKeyword(m_vm->propertyNames->as), "Expected 'as' before imported binding name");
next();
matchOrFail(IDENT, "Expected a variable name for the import declaration");
localNameToken = m_token;
localName = m_token.m_data.ident;
next();
break;
}
case ImportSpecifierType::NamedImport: {
// ImportSpecifier :
// ImportedBinding
// IdentifierName as ImportedBinding
// e.g.
// A
// A as B
ASSERT(matchIdentifierOrKeyword());
localNameToken = m_token;
localName = m_token.m_data.ident;
importedName = localName;
next();
if (matchContextualKeyword(m_vm->propertyNames->as)) {
next();
matchOrFail(IDENT, "Expected a variable name for the import declaration");
localNameToken = m_token;
localName = m_token.m_data.ident;
next();
}
break;
}
case ImportSpecifierType::DefaultImport: {
// ImportedDefaultBinding :
// ImportedBinding
ASSERT(match(IDENT));
localNameToken = m_token;
localName = m_token.m_data.ident;
importedName = &m_vm->propertyNames->defaultKeyword;
next();
break;
}
}
semanticFailIfTrue(localNameToken.m_type & KeywordTokenFlag, "Cannot use keyword as imported binding name");
DeclarationResultMask declarationResult = declareVariable(localName, DeclarationType::ConstDeclaration, (specifierType == ImportSpecifierType::NamespaceImport) ? DeclarationImportType::ImportedNamespace : DeclarationImportType::Imported);
if (declarationResult != DeclarationResult::Valid) {
failIfTrueIfStrict(declarationResult & DeclarationResult::InvalidStrictMode, "Cannot declare an imported binding named ", localName->impl(), " in strict mode");
if (declarationResult & DeclarationResult::InvalidDuplicateDeclaration)
internalFailWithMessage(false, "Cannot declare an imported binding name twice: '", localName->impl(), "'");
}
return context.createImportSpecifier(specifierLocation, *importedName, *localName);
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseImportDeclaration(TreeBuilder& context)
{
// http://www.ecma-international.org/ecma-262/6.0/#sec-imports
ASSERT(match(IMPORT));
JSTokenLocation importLocation(tokenLocation());
next();
auto specifierList = context.createImportSpecifierList();
if (match(STRING)) {
// import ModuleSpecifier ;
auto moduleName = parseModuleName(context);
failIfFalse(moduleName, "Cannot parse the module name");
failIfFalse(autoSemiColon(), "Expected a ';' following a targeted import declaration");
return context.createImportDeclaration(importLocation, specifierList, moduleName);
}
bool isFinishedParsingImport = false;
if (match(IDENT)) {
// ImportedDefaultBinding :
// ImportedBinding
auto specifier = parseImportClauseItem(context, ImportSpecifierType::DefaultImport);
failIfFalse(specifier, "Cannot parse the default import");
context.appendImportSpecifier(specifierList, specifier);
if (match(COMMA))
next();
else
isFinishedParsingImport = true;
}
if (!isFinishedParsingImport) {
if (match(TIMES)) {
// import NameSpaceImport FromClause ;
auto specifier = parseImportClauseItem(context, ImportSpecifierType::NamespaceImport);
failIfFalse(specifier, "Cannot parse the namespace import");
context.appendImportSpecifier(specifierList, specifier);
} else if (match(OPENBRACE)) {
// NamedImports :
// { }
// { ImportsList }
// { ImportsList , }
next();
while (!match(CLOSEBRACE)) {
failIfFalse(matchIdentifierOrKeyword(), "Expected an imported name for the import declaration");
auto specifier = parseImportClauseItem(context, ImportSpecifierType::NamedImport);
failIfFalse(specifier, "Cannot parse the named import");
context.appendImportSpecifier(specifierList, specifier);
if (!consume(COMMA))
break;
}
handleProductionOrFail(CLOSEBRACE, "}", "end", "import list");
} else
failWithMessage("Expected namespace import or import list");
}
// FromClause :
// from ModuleSpecifier
failIfFalse(matchContextualKeyword(m_vm->propertyNames->from), "Expected 'from' before imported module name");
next();
auto moduleName = parseModuleName(context);
failIfFalse(moduleName, "Cannot parse the module name");
failIfFalse(autoSemiColon(), "Expected a ';' following a targeted import declaration");
return context.createImportDeclaration(importLocation, specifierList, moduleName);
}
template <typename LexerType>
template <class TreeBuilder> typename TreeBuilder::ExportSpecifier Parser<LexerType>::parseExportSpecifier(TreeBuilder& context, Vector<const Identifier*>& maybeLocalNames, bool& hasKeywordForLocalBindings)
{
// ExportSpecifier :
// IdentifierName
// IdentifierName as IdentifierName
// http://www.ecma-international.org/ecma-262/6.0/#sec-exports
ASSERT(matchIdentifierOrKeyword());
JSTokenLocation specifierLocation(tokenLocation());
if (m_token.m_type & KeywordTokenFlag)
hasKeywordForLocalBindings = true;
const Identifier* localName = m_token.m_data.ident;
const Identifier* exportedName = localName;
next();
if (matchContextualKeyword(m_vm->propertyNames->as)) {
next();
failIfFalse(matchIdentifierOrKeyword(), "Expected an exported name for the export declaration");
exportedName = m_token.m_data.ident;
next();
}
semanticFailIfFalse(exportName(*exportedName), "Cannot export a duplicate name '", exportedName->impl(), "'");
maybeLocalNames.append(localName);
return context.createExportSpecifier(specifierLocation, *localName, *exportedName);
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseExportDeclaration(TreeBuilder& context)
{
// http://www.ecma-international.org/ecma-262/6.0/#sec-exports
ASSERT(match(EXPORT));
JSTokenLocation exportLocation(tokenLocation());
next();
switch (m_token.m_type) {
case TIMES: {
// export * FromClause ;
next();
failIfFalse(matchContextualKeyword(m_vm->propertyNames->from), "Expected 'from' before exported module name");
next();
auto moduleName = parseModuleName(context);
failIfFalse(moduleName, "Cannot parse the 'from' clause");
failIfFalse(autoSemiColon(), "Expected a ';' following a targeted export declaration");
return context.createExportAllDeclaration(exportLocation, moduleName);
}
case DEFAULT: {
// export default HoistableDeclaration[Default]
// export default ClassDeclaration[Default]
// export default [lookahead not-in {function, class}] AssignmentExpression[In] ;
next();
TreeStatement result = 0;
bool isFunctionOrClassDeclaration = false;
const Identifier* localName = nullptr;
SavePoint savePoint = createSavePoint();
if (match(FUNCTION)
#if ENABLE(ES6_CLASS_SYNTAX)
|| match(CLASSTOKEN)
#endif
) {
isFunctionOrClassDeclaration = true;
next();
// FIXME: When landing ES6 generators, we need to take care of that '*' comes.
if (match(IDENT))
localName = m_token.m_data.ident;
restoreSavePoint(savePoint);
}
if (localName) {
if (match(FUNCTION))
result = parseFunctionDeclaration(context);
#if ENABLE(ES6_CLASS_SYNTAX)
else {
ASSERT(match(CLASSTOKEN));
result = parseClassDeclaration(context);
}
#endif
} else {
// export default expr;
//
// It should be treated as the same to the following.
//
// const *default* = expr;
// export { *default* as default }
//
// In the above example, *default* is the invisible variable to the users.
// We use the private symbol to represent the name of this variable.
JSTokenLocation location(tokenLocation());
JSTextPosition start = tokenStartPosition();
TreeExpression expression = parseAssignmentExpression(context);
failIfFalse(expression, "Cannot parse expression");
DeclarationResultMask declarationResult = declareVariable(&m_vm->propertyNames->starDefaultPrivateName, DeclarationType::ConstDeclaration);
if (declarationResult & DeclarationResult::InvalidDuplicateDeclaration)
internalFailWithMessage(false, "Only one 'default' export is allowed");
TreeExpression assignment = context.createAssignResolve(location, m_vm->propertyNames->starDefaultPrivateName, expression, start, start, tokenEndPosition(), AssignmentContext::ConstDeclarationStatement);
result = context.createExprStatement(location, assignment, start, tokenEndPosition());
if (!isFunctionOrClassDeclaration)
failIfFalse(autoSemiColon(), "Expected a ';' following a targeted export declaration");
localName = &m_vm->propertyNames->starDefaultPrivateName;
}
failIfFalse(result, "Cannot parse the declaration");
semanticFailIfFalse(exportName(m_vm->propertyNames->defaultKeyword), "Only one 'default' export is allowed");
currentScope()->moduleScopeData().exportBinding(*localName);
return context.createExportDefaultDeclaration(exportLocation, result, *localName);
}
case OPENBRACE: {
// export ExportClause FromClause ;
// export ExportClause ;
//
// ExportClause :
// { }
// { ExportsList }
// { ExportsList , }
//
// ExportsList :
// ExportSpecifier
// ExportsList , ExportSpecifier
next();
auto specifierList = context.createExportSpecifierList();
Vector<const Identifier*> maybeLocalNames;
bool hasKeywordForLocalBindings = false;
while (!match(CLOSEBRACE)) {
failIfFalse(matchIdentifierOrKeyword(), "Expected a variable name for the export declaration");
auto specifier = parseExportSpecifier(context, maybeLocalNames, hasKeywordForLocalBindings);
failIfFalse(specifier, "Cannot parse the named export");
context.appendExportSpecifier(specifierList, specifier);
if (!consume(COMMA))
break;
}
handleProductionOrFail(CLOSEBRACE, "}", "end", "export list");
typename TreeBuilder::ModuleName moduleName = 0;
if (matchContextualKeyword(m_vm->propertyNames->from)) {
next();
moduleName = parseModuleName(context);
failIfFalse(moduleName, "Cannot parse the 'from' clause");
}
failIfFalse(autoSemiColon(), "Expected a ';' following a targeted export declaration");
if (!moduleName) {
semanticFailIfTrue(hasKeywordForLocalBindings, "Cannot use keyword as exported variable name");
// Since this export declaration does not have module specifier part, it exports the local bindings.
// While the export declaration with module specifier does not have any effect on the current module's scope,
// the export named declaration without module specifier references the the local binding names.
// For example,
// export { A, B, C as D } from "mod"
// does not have effect on the current module's scope. But,
// export { A, B, C as D }
// will reference the current module's bindings.
for (const Identifier* localName : maybeLocalNames)
currentScope()->moduleScopeData().exportBinding(*localName);
}
return context.createExportNamedDeclaration(exportLocation, specifierList, moduleName);
}
default: {
// export VariableStatement
// export Declaration
TreeStatement result = 0;
switch (m_token.m_type) {
case VAR:
result = parseVariableDeclaration(context, DeclarationType::VarDeclaration, ExportType::Exported);
break;
case CONSTTOKEN:
result = parseVariableDeclaration(context, DeclarationType::ConstDeclaration, ExportType::Exported);
break;
case LET:
result = parseVariableDeclaration(context, DeclarationType::LetDeclaration, ExportType::Exported);
break;
case FUNCTION:
result = parseFunctionDeclaration(context, ExportType::Exported);
break;
#if ENABLE(ES6_CLASS_SYNTAX)
case CLASSTOKEN:
result = parseClassDeclaration(context, ExportType::Exported);
break;
#endif
default:
failWithMessage("Expected either a declaration or a variable statement");
break;
}
failIfFalse(result, "Cannot parse the declaration");
return context.createExportLocalDeclaration(exportLocation, result);
}
}
RELEASE_ASSERT_NOT_REACHED();
return 0;
}
template <typename LexerType>
template <class TreeBuilder> TreeExpression Parser<LexerType>::parseExpression(TreeBuilder& context)
{
failIfStackOverflow();
JSTokenLocation location(tokenLocation());
TreeExpression node = parseAssignmentExpression(context);
failIfFalse(node, "Cannot parse expression");
context.setEndOffset(node, m_lastTokenEndPosition.offset);
if (!match(COMMA))
return node;
next();
m_nonTrivialExpressionCount++;
m_nonLHSCount++;
TreeExpression right = parseAssignmentExpression(context);
failIfFalse(right, "Cannot parse expression in a comma expression");
context.setEndOffset(right, m_lastTokenEndPosition.offset);
typename TreeBuilder::Comma head = context.createCommaExpr(location, node);
typename TreeBuilder::Comma tail = context.appendToCommaExpr(location, head, head, right);
while (match(COMMA)) {
next(TreeBuilder::DontBuildStrings);
right = parseAssignmentExpression(context);
failIfFalse(right, "Cannot parse expression in a comma expression");
context.setEndOffset(right, m_lastTokenEndPosition.offset);
tail = context.appendToCommaExpr(location, head, tail, right);
}
context.setEndOffset(head, m_lastTokenEndPosition.offset);
return head;
}
template <typename LexerType>
template <typename TreeBuilder> TreeExpression Parser<LexerType>::parseAssignmentExpression(TreeBuilder& context)
{
failIfStackOverflow();
JSTextPosition start = tokenStartPosition();
JSTokenLocation location(tokenLocation());
int initialAssignmentCount = m_assignmentCount;
int initialNonLHSCount = m_nonLHSCount;
if (match(OPENBRACE) || match(OPENBRACKET)) {
SavePoint savePoint = createSavePoint();
auto pattern = tryParseDestructuringPatternExpression(context, AssignmentContext::AssignmentExpression);
if (pattern && consume(EQUAL)) {
auto rhs = parseAssignmentExpression(context);
if (rhs)
return context.createDestructuringAssignment(location, pattern, rhs);
}
restoreSavePoint(savePoint);
}
#if ENABLE(ES6_ARROWFUNCTION_SYNTAX)
if (isArrowFunctionParamters())
return parseArrowFunctionExpression(context);
#endif
TreeExpression lhs = parseConditionalExpression(context);
failIfFalse(lhs, "Cannot parse expression");
if (initialNonLHSCount != m_nonLHSCount) {
if (m_token.m_type >= EQUAL && m_token.m_type <= OREQUAL)
semanticFail("Left hand side of operator '", getToken(), "' must be a reference");
return lhs;
}
int assignmentStack = 0;
Operator op;
bool hadAssignment = false;
while (true) {
switch (m_token.m_type) {
case EQUAL: op = OpEqual; break;
case PLUSEQUAL: op = OpPlusEq; break;
case MINUSEQUAL: op = OpMinusEq; break;
case MULTEQUAL: op = OpMultEq; break;
case DIVEQUAL: op = OpDivEq; break;
case LSHIFTEQUAL: op = OpLShift; break;
case RSHIFTEQUAL: op = OpRShift; break;
case URSHIFTEQUAL: op = OpURShift; break;
case ANDEQUAL: op = OpAndEq; break;
case XOREQUAL: op = OpXOrEq; break;
case OREQUAL: op = OpOrEq; break;
case MODEQUAL: op = OpModEq; break;
default:
goto end;
}
m_nonTrivialExpressionCount++;
hadAssignment = true;
context.assignmentStackAppend(assignmentStack, lhs, start, tokenStartPosition(), m_assignmentCount, op);
start = tokenStartPosition();
m_assignmentCount++;
next(TreeBuilder::DontBuildStrings);
if (strictMode() && m_lastIdentifier && context.isResolve(lhs)) {
failIfTrueIfStrict(m_vm->propertyNames->eval == *m_lastIdentifier, "Cannot modify 'eval' in strict mode");
failIfTrueIfStrict(m_vm->propertyNames->arguments == *m_lastIdentifier, "Cannot modify 'arguments' in strict mode");
declareWrite(m_lastIdentifier);
m_lastIdentifier = 0;
}
lhs = parseAssignmentExpression(context);
failIfFalse(lhs, "Cannot parse the right hand side of an assignment expression");
if (initialNonLHSCount != m_nonLHSCount) {
if (m_token.m_type >= EQUAL && m_token.m_type <= OREQUAL)
semanticFail("Left hand side of operator '", getToken(), "' must be a reference");
break;
}
}
end:
if (hadAssignment)
m_nonLHSCount++;
if (!TreeBuilder::CreatesAST)
return lhs;
while (assignmentStack)
lhs = context.createAssignment(location, assignmentStack, lhs, initialAssignmentCount, m_assignmentCount, lastTokenEndPosition());
return lhs;
}
template <typename LexerType>
template <class TreeBuilder> TreeExpression Parser<LexerType>::parseConditionalExpression(TreeBuilder& context)
{
JSTokenLocation location(tokenLocation());
TreeExpression cond = parseBinaryExpression(context);
failIfFalse(cond, "Cannot parse expression");
if (!match(QUESTION))
return cond;
m_nonTrivialExpressionCount++;
m_nonLHSCount++;
next(TreeBuilder::DontBuildStrings);
TreeExpression lhs = parseAssignmentExpression(context);
failIfFalse(lhs, "Cannot parse left hand side of ternary operator");
context.setEndOffset(lhs, m_lastTokenEndPosition.offset);
consumeOrFailWithFlags(COLON, TreeBuilder::DontBuildStrings, "Expected ':' in ternary operator");
TreeExpression rhs = parseAssignmentExpression(context);
failIfFalse(rhs, "Cannot parse right hand side of ternary operator");
context.setEndOffset(rhs, m_lastTokenEndPosition.offset);
return context.createConditionalExpr(location, cond, lhs, rhs);
}
ALWAYS_INLINE static bool isUnaryOp(JSTokenType token)
{
return token & UnaryOpTokenFlag;
}
template <typename LexerType>
int Parser<LexerType>::isBinaryOperator(JSTokenType token)
{
if (m_allowsIn)
return token & (BinaryOpTokenPrecedenceMask << BinaryOpTokenAllowsInPrecedenceAdditionalShift);
return token & BinaryOpTokenPrecedenceMask;
}
template <typename LexerType>
template <class TreeBuilder> TreeExpression Parser<LexerType>::parseBinaryExpression(TreeBuilder& context)
{
int operandStackDepth = 0;
int operatorStackDepth = 0;
typename TreeBuilder::BinaryExprContext binaryExprContext(context);
JSTokenLocation location(tokenLocation());
while (true) {
JSTextPosition exprStart = tokenStartPosition();
int initialAssignments = m_assignmentCount;
TreeExpression current = parseUnaryExpression(context);
failIfFalse(current, "Cannot parse expression");
context.appendBinaryExpressionInfo(operandStackDepth, current, exprStart, lastTokenEndPosition(), lastTokenEndPosition(), initialAssignments != m_assignmentCount);
int precedence = isBinaryOperator(m_token.m_type);
if (!precedence)
break;
m_nonTrivialExpressionCount++;
m_nonLHSCount++;
int operatorToken = m_token.m_type;
next(TreeBuilder::DontBuildStrings);
while (operatorStackDepth && context.operatorStackHasHigherPrecedence(operatorStackDepth, precedence)) {
ASSERT(operandStackDepth > 1);
typename TreeBuilder::BinaryOperand rhs = context.getFromOperandStack(-1);
typename TreeBuilder::BinaryOperand lhs = context.getFromOperandStack(-2);
context.shrinkOperandStackBy(operandStackDepth, 2);
context.appendBinaryOperation(location, operandStackDepth, operatorStackDepth, lhs, rhs);
context.operatorStackPop(operatorStackDepth);
}
context.operatorStackAppend(operatorStackDepth, operatorToken, precedence);
}
while (operatorStackDepth) {
ASSERT(operandStackDepth > 1);
typename TreeBuilder::BinaryOperand rhs = context.getFromOperandStack(-1);
typename TreeBuilder::BinaryOperand lhs = context.getFromOperandStack(-2);
context.shrinkOperandStackBy(operandStackDepth, 2);
context.appendBinaryOperation(location, operandStackDepth, operatorStackDepth, lhs, rhs);
context.operatorStackPop(operatorStackDepth);
}
return context.popOperandStack(operandStackDepth);
}
template <typename LexerType>
template <class TreeBuilder> TreeProperty Parser<LexerType>::parseProperty(TreeBuilder& context, bool complete)
{
bool wasIdent = false;
switch (m_token.m_type) {
namedProperty:
case IDENT:
wasIdent = true;
FALLTHROUGH;
case STRING: {
const Identifier* ident = m_token.m_data.ident;
unsigned getterOrSetterStartOffset = tokenStart();
if (complete || (wasIdent && (*ident == m_vm->propertyNames->get || *ident == m_vm->propertyNames->set)))
nextExpectIdentifier(LexerFlagsIgnoreReservedWords);
else
nextExpectIdentifier(LexerFlagsIgnoreReservedWords | TreeBuilder::DontBuildKeywords);
if (match(COLON)) {
next();
TreeExpression node = parseAssignmentExpression(context);
failIfFalse(node, "Cannot parse expression for property declaration");
context.setEndOffset(node, m_lexer->currentOffset());
return context.createProperty(ident, node, PropertyNode::Constant, PropertyNode::Unknown, complete);
}
if (match(OPENPAREN)) {
auto method = parsePropertyMethod(context, ident);
propagateError();
return context.createProperty(ident, method, PropertyNode::Constant, PropertyNode::KnownDirect, complete);
}
failIfFalse(wasIdent, "Expected an identifier as property name");
if (match(COMMA) || match(CLOSEBRACE)) {
JSTextPosition start = tokenStartPosition();
JSTokenLocation location(tokenLocation());
currentScope()->useVariable(ident, m_vm->propertyNames->eval == *ident);
TreeExpression node = context.createResolve(location, ident, start);
return context.createProperty(ident, node, static_cast<PropertyNode::Type>(PropertyNode::Constant | PropertyNode::Shorthand), PropertyNode::KnownDirect, complete);
}
PropertyNode::Type type;
if (*ident == m_vm->propertyNames->get)
type = PropertyNode::Getter;
else if (*ident == m_vm->propertyNames->set)
type = PropertyNode::Setter;
else
failWithMessage("Expected a ':' following the property name '", ident->impl(), "'");
return parseGetterSetter(context, complete, type, getterOrSetterStartOffset);
}
case DOUBLE:
case INTEGER: {
double propertyName = m_token.m_data.doubleValue;
next();
if (match(OPENPAREN)) {
const Identifier& ident = m_parserArena.identifierArena().makeNumericIdentifier(const_cast<VM*>(m_vm), propertyName);
auto method = parsePropertyMethod(context, &ident);
propagateError();
return context.createProperty(&ident, method, PropertyNode::Constant, PropertyNode::Unknown, complete);
}
consumeOrFail(COLON, "Expected ':' after property name");
TreeExpression node = parseAssignmentExpression(context);
failIfFalse(node, "Cannot parse expression for property declaration");
context.setEndOffset(node, m_lexer->currentOffset());
return context.createProperty(const_cast<VM*>(m_vm), m_parserArena, propertyName, node, PropertyNode::Constant, PropertyNode::Unknown, complete);
}
case OPENBRACKET: {
next();
auto propertyName = parseAssignmentExpression(context);
failIfFalse(propertyName, "Cannot parse computed property name");
handleProductionOrFail(CLOSEBRACKET, "]", "end", "computed property name");
if (match(OPENPAREN)) {
auto method = parsePropertyMethod(context, &m_vm->propertyNames->nullIdentifier);
propagateError();
return context.createProperty(propertyName, method, static_cast<PropertyNode::Type>(PropertyNode::Constant | PropertyNode::Computed), PropertyNode::KnownDirect, complete);
}
consumeOrFail(COLON, "Expected ':' after property name");
TreeExpression node = parseAssignmentExpression(context);
failIfFalse(node, "Cannot parse expression for property declaration");
context.setEndOffset(node, m_lexer->currentOffset());
return context.createProperty(propertyName, node, static_cast<PropertyNode::Type>(PropertyNode::Constant | PropertyNode::Computed), PropertyNode::Unknown, complete);
}
default:
failIfFalse(m_token.m_type & KeywordTokenFlag, "Expected a property name");
goto namedProperty;
}
}
template <typename LexerType>
template <class TreeBuilder> TreeExpression Parser<LexerType>::parsePropertyMethod(TreeBuilder& context, const Identifier* methodName)
{
JSTokenLocation methodLocation(tokenLocation());
unsigned methodStart = tokenStart();
ParserFunctionInfo<TreeBuilder> methodInfo;
failIfFalse((parseFunctionInfo(context, FunctionNoRequirements, SourceParseMode::MethodMode, false, ConstructorKind::None, SuperBinding::NotNeeded, methodStart, methodInfo, StandardFunctionParseType)), "Cannot parse this method");
methodInfo.name = methodName;
return context.createFunctionExpr(methodLocation, methodInfo);
}
template <typename LexerType>
template <class TreeBuilder> TreeProperty Parser<LexerType>::parseGetterSetter(TreeBuilder& context, bool strict, PropertyNode::Type type, unsigned getterOrSetterStartOffset,
ConstructorKind constructorKind, SuperBinding superBinding)
{
const Identifier* stringPropertyName = 0;
double numericPropertyName = 0;
TreeExpression computedPropertyName = 0;
JSTokenLocation location(tokenLocation());
if (match(IDENT) || match(STRING) || isLETMaskedAsIDENT()) {
stringPropertyName = m_token.m_data.ident;
semanticFailIfTrue(superBinding == SuperBinding::Needed && *stringPropertyName == m_vm->propertyNames->prototype,
"Cannot declare a static method named 'prototype'");
semanticFailIfTrue(superBinding == SuperBinding::Needed && *stringPropertyName == m_vm->propertyNames->constructor,
"Cannot declare a getter or setter named 'constructor'");
next();
} else if (match(DOUBLE) || match(INTEGER)) {
numericPropertyName = m_token.m_data.doubleValue;
next();
} else if (match(OPENBRACKET)) {
next();
computedPropertyName = parseAssignmentExpression(context);
failIfFalse(computedPropertyName, "Cannot parse computed property name");
handleProductionOrFail(CLOSEBRACKET, "]", "end", "computed property name");
} else
failDueToUnexpectedToken();
ParserFunctionInfo<TreeBuilder> info;
if (type & PropertyNode::Getter) {
failIfFalse(match(OPENPAREN), "Expected a parameter list for getter definition");
failIfFalse((parseFunctionInfo(context, FunctionNoRequirements, SourceParseMode::GetterMode, false, constructorKind, superBinding,
getterOrSetterStartOffset, info, StandardFunctionParseType)), "Cannot parse getter definition");
} else {
failIfFalse(match(OPENPAREN), "Expected a parameter list for setter definition");
failIfFalse((parseFunctionInfo(context, FunctionNoRequirements, SourceParseMode::SetterMode, false, constructorKind, superBinding,
getterOrSetterStartOffset, info, StandardFunctionParseType)), "Cannot parse setter definition");
}
if (stringPropertyName)
return context.createGetterOrSetterProperty(location, type, strict, stringPropertyName, info, superBinding);
if (computedPropertyName)
return context.createGetterOrSetterProperty(location, static_cast<PropertyNode::Type>(type | PropertyNode::Computed), strict, computedPropertyName, info, superBinding);
return context.createGetterOrSetterProperty(const_cast<VM*>(m_vm), m_parserArena, location, type, strict, numericPropertyName, info, superBinding);
}
template <typename LexerType>
template <class TreeBuilder> bool Parser<LexerType>::shouldCheckPropertyForUnderscoreProtoDuplicate(TreeBuilder& context, const TreeProperty& property)
{
if (m_syntaxAlreadyValidated)
return false;
if (!context.getName(property))
return false;
// A Constant property that is not a Computed or Shorthand Constant property.
return context.getType(property) == PropertyNode::Constant;
}
template <typename LexerType>
template <class TreeBuilder> TreeExpression Parser<LexerType>::parseObjectLiteral(TreeBuilder& context)
{
auto savePoint = createSavePoint();
consumeOrFailWithFlags(OPENBRACE, TreeBuilder::DontBuildStrings, "Expected opening '{' at the start of an object literal");
int oldNonLHSCount = m_nonLHSCount;
JSTokenLocation location(tokenLocation());
if (match(CLOSEBRACE)) {
next();
return context.createObjectLiteral(location);
}
TreeProperty property = parseProperty(context, false);
failIfFalse(property, "Cannot parse object literal property");
if (!m_syntaxAlreadyValidated && context.getType(property) & (PropertyNode::Getter | PropertyNode::Setter)) {
restoreSavePoint(savePoint);
return parseStrictObjectLiteral(context);
}
bool seenUnderscoreProto = false;
if (shouldCheckPropertyForUnderscoreProtoDuplicate(context, property))
seenUnderscoreProto = *context.getName(property) == m_vm->propertyNames->underscoreProto;
TreePropertyList propertyList = context.createPropertyList(location, property);
TreePropertyList tail = propertyList;
while (match(COMMA)) {
next(TreeBuilder::DontBuildStrings);
if (match(CLOSEBRACE))
break;
JSTokenLocation propertyLocation(tokenLocation());
property = parseProperty(context, false);
failIfFalse(property, "Cannot parse object literal property");
if (!m_syntaxAlreadyValidated && context.getType(property) & (PropertyNode::Getter | PropertyNode::Setter)) {
restoreSavePoint(savePoint);
return parseStrictObjectLiteral(context);
}
if (shouldCheckPropertyForUnderscoreProtoDuplicate(context, property)) {
if (*context.getName(property) == m_vm->propertyNames->underscoreProto) {
semanticFailIfTrue(seenUnderscoreProto, "Attempted to redefine __proto__ property");
seenUnderscoreProto = true;
}
}
tail = context.createPropertyList(propertyLocation, property, tail);
}
location = tokenLocation();
handleProductionOrFail(CLOSEBRACE, "}", "end", "object literal");
m_nonLHSCount = oldNonLHSCount;
return context.createObjectLiteral(location, propertyList);
}
template <typename LexerType>
template <class TreeBuilder> TreeExpression Parser<LexerType>::parseStrictObjectLiteral(TreeBuilder& context)
{
consumeOrFail(OPENBRACE, "Expected opening '{' at the start of an object literal");
int oldNonLHSCount = m_nonLHSCount;
JSTokenLocation location(tokenLocation());
if (match(CLOSEBRACE)) {
next();
return context.createObjectLiteral(location);
}
TreeProperty property = parseProperty(context, true);
failIfFalse(property, "Cannot parse object literal property");
bool seenUnderscoreProto = false;
if (shouldCheckPropertyForUnderscoreProtoDuplicate(context, property))
seenUnderscoreProto = *context.getName(property) == m_vm->propertyNames->underscoreProto;
TreePropertyList propertyList = context.createPropertyList(location, property);
TreePropertyList tail = propertyList;
while (match(COMMA)) {
next();
if (match(CLOSEBRACE))
break;
JSTokenLocation propertyLocation(tokenLocation());
property = parseProperty(context, true);
failIfFalse(property, "Cannot parse object literal property");
if (shouldCheckPropertyForUnderscoreProtoDuplicate(context, property)) {
if (*context.getName(property) == m_vm->propertyNames->underscoreProto) {
semanticFailIfTrue(seenUnderscoreProto, "Attempted to redefine __proto__ property");
seenUnderscoreProto = true;
}
}
tail = context.createPropertyList(propertyLocation, property, tail);
}
location = tokenLocation();
handleProductionOrFail(CLOSEBRACE, "}", "end", "object literal");
m_nonLHSCount = oldNonLHSCount;
return context.createObjectLiteral(location, propertyList);
}
template <typename LexerType>
template <class TreeBuilder> TreeExpression Parser<LexerType>::parseArrayLiteral(TreeBuilder& context)
{
consumeOrFailWithFlags(OPENBRACKET, TreeBuilder::DontBuildStrings, "Expected an opening '[' at the beginning of an array literal");
int oldNonLHSCount = m_nonLHSCount;
int elisions = 0;
while (match(COMMA)) {
next(TreeBuilder::DontBuildStrings);
elisions++;
}
if (match(CLOSEBRACKET)) {
JSTokenLocation location(tokenLocation());
next(TreeBuilder::DontBuildStrings);
return context.createArray(location, elisions);
}
TreeExpression elem;
if (UNLIKELY(match(DOTDOTDOT))) {
auto spreadLocation = m_token.m_location;
auto start = m_token.m_startPosition;
auto divot = m_token.m_endPosition;
next();
auto spreadExpr = parseAssignmentExpression(context);
failIfFalse(spreadExpr, "Cannot parse subject of a spread operation");
elem = context.createSpreadExpression(spreadLocation, spreadExpr, start, divot, m_lastTokenEndPosition);
} else
elem = parseAssignmentExpression(context);
failIfFalse(elem, "Cannot parse array literal element");
typename TreeBuilder::ElementList elementList = context.createElementList(elisions, elem);
typename TreeBuilder::ElementList tail = elementList;
elisions = 0;
while (match(COMMA)) {
next(TreeBuilder::DontBuildStrings);
elisions = 0;
while (match(COMMA)) {
next();
elisions++;
}
if (match(CLOSEBRACKET)) {
JSTokenLocation location(tokenLocation());
next(TreeBuilder::DontBuildStrings);
return context.createArray(location, elisions, elementList);
}
if (UNLIKELY(match(DOTDOTDOT))) {
auto spreadLocation = m_token.m_location;
auto start = m_token.m_startPosition;
auto divot = m_token.m_endPosition;
next();
TreeExpression elem = parseAssignmentExpression(context);
failIfFalse(elem, "Cannot parse subject of a spread operation");
auto spread = context.createSpreadExpression(spreadLocation, elem, start, divot, m_lastTokenEndPosition);
tail = context.createElementList(tail, elisions, spread);
continue;
}
TreeExpression elem = parseAssignmentExpression(context);
failIfFalse(elem, "Cannot parse array literal element");
tail = context.createElementList(tail, elisions, elem);
}
JSTokenLocation location(tokenLocation());
if (!consume(CLOSEBRACKET)) {
failIfFalse(match(DOTDOTDOT), "Expected either a closing ']' or a ',' following an array element");
semanticFail("The '...' operator should come before a target expression");
}
m_nonLHSCount = oldNonLHSCount;
return context.createArray(location, elementList);
}
#if ENABLE(ES6_TEMPLATE_LITERAL_SYNTAX)
template <typename LexerType>
template <class TreeBuilder> typename TreeBuilder::TemplateString Parser<LexerType>::parseTemplateString(TreeBuilder& context, bool isTemplateHead, typename LexerType::RawStringsBuildMode rawStringsBuildMode, bool& elementIsTail)
{
if (!isTemplateHead) {
matchOrFail(CLOSEBRACE, "Expected a closing '}' following an expression in template literal");
// Re-scan the token to recognize it as Template Element.
m_token.m_type = m_lexer->scanTrailingTemplateString(&m_token, rawStringsBuildMode);
}
matchOrFail(TEMPLATE, "Expected an template element");
const Identifier* cooked = m_token.m_data.cooked;
const Identifier* raw = m_token.m_data.raw;
elementIsTail = m_token.m_data.isTail;
JSTokenLocation location(tokenLocation());
next();
return context.createTemplateString(location, *cooked, *raw);
}
template <typename LexerType>
template <class TreeBuilder> typename TreeBuilder::TemplateLiteral Parser<LexerType>::parseTemplateLiteral(TreeBuilder& context, typename LexerType::RawStringsBuildMode rawStringsBuildMode)
{
JSTokenLocation location(tokenLocation());
bool elementIsTail = false;
auto headTemplateString = parseTemplateString(context, true, rawStringsBuildMode, elementIsTail);
failIfFalse(headTemplateString, "Cannot parse head template element");
typename TreeBuilder::TemplateStringList templateStringList = context.createTemplateStringList(headTemplateString);
typename TreeBuilder::TemplateStringList templateStringTail = templateStringList;
if (elementIsTail)
return context.createTemplateLiteral(location, templateStringList);
failIfTrue(match(CLOSEBRACE), "Template literal expression cannot be empty");
TreeExpression expression = parseExpression(context);
failIfFalse(expression, "Cannot parse expression in template literal");
typename TreeBuilder::TemplateExpressionList templateExpressionList = context.createTemplateExpressionList(expression);
typename TreeBuilder::TemplateExpressionList templateExpressionTail = templateExpressionList;
auto templateString = parseTemplateString(context, false, rawStringsBuildMode, elementIsTail);
failIfFalse(templateString, "Cannot parse template element");
templateStringTail = context.createTemplateStringList(templateStringTail, templateString);
while (!elementIsTail) {
failIfTrue(match(CLOSEBRACE), "Template literal expression cannot be empty");
TreeExpression expression = parseExpression(context);
failIfFalse(expression, "Cannot parse expression in template literal");
templateExpressionTail = context.createTemplateExpressionList(templateExpressionTail, expression);
auto templateString = parseTemplateString(context, false, rawStringsBuildMode, elementIsTail);
failIfFalse(templateString, "Cannot parse template element");
templateStringTail = context.createTemplateStringList(templateStringTail, templateString);
}
return context.createTemplateLiteral(location, templateStringList, templateExpressionList);
}
#endif
template <typename LexerType>
template <class TreeBuilder> TreeExpression Parser<LexerType>::parsePrimaryExpression(TreeBuilder& context)
{
failIfStackOverflow();
switch (m_token.m_type) {
case FUNCTION: {
JSTokenLocation location(tokenLocation());
unsigned functionKeywordStart = tokenStart();
next();
ParserFunctionInfo<TreeBuilder> info;
info.name = &m_vm->propertyNames->nullIdentifier;
failIfFalse((parseFunctionInfo(context, FunctionNoRequirements, SourceParseMode::NormalFunctionMode, false, ConstructorKind::None, SuperBinding::NotNeeded, functionKeywordStart, info, StandardFunctionParseType)), "Cannot parse function expression");
return context.createFunctionExpr(location, info);
}
#if ENABLE(ES6_CLASS_SYNTAX)
case CLASSTOKEN: {
ParserClassInfo<TreeBuilder> info;
return parseClass(context, FunctionNoRequirements, info);
}
#endif
case OPENBRACE:
if (strictMode())
return parseStrictObjectLiteral(context);
return parseObjectLiteral(context);
case OPENBRACKET:
return parseArrayLiteral(context);
case OPENPAREN: {
next();
int oldNonLHSCount = m_nonLHSCount;
TreeExpression result = parseExpression(context);
m_nonLHSCount = oldNonLHSCount;
handleProductionOrFail(CLOSEPAREN, ")", "end", "compound expression");
return result;
}
case THISTOKEN: {
JSTokenLocation location(tokenLocation());
next();
return context.createThisExpr(location, m_thisTDZMode);
}
case IDENT: {
identifierExpression:
JSTextPosition start = tokenStartPosition();
const Identifier* ident = m_token.m_data.ident;
JSTokenLocation location(tokenLocation());
next();
currentScope()->useVariable(ident, m_vm->propertyNames->eval == *ident);
m_lastIdentifier = ident;
return context.createResolve(location, ident, start);
}
case STRING: {
const Identifier* ident = m_token.m_data.ident;
JSTokenLocation location(tokenLocation());
next();
return context.createString(location, ident);
}
case DOUBLE: {
double d = m_token.m_data.doubleValue;
JSTokenLocation location(tokenLocation());
next();
return context.createDoubleExpr(location, d);
}
case INTEGER: {
double d = m_token.m_data.doubleValue;
JSTokenLocation location(tokenLocation());
next();
return context.createIntegerExpr(location, d);
}
case NULLTOKEN: {
JSTokenLocation location(tokenLocation());
next();
return context.createNull(location);
}
case TRUETOKEN: {
JSTokenLocation location(tokenLocation());
next();
return context.createBoolean(location, true);
}
case FALSETOKEN: {
JSTokenLocation location(tokenLocation());
next();
return context.createBoolean(location, false);
}
case DIVEQUAL:
case DIVIDE: {
/* regexp */
const Identifier* pattern;
const Identifier* flags;
if (match(DIVEQUAL))
failIfFalse(m_lexer->scanRegExp(pattern, flags, '='), "Invalid regular expression");
else
failIfFalse(m_lexer->scanRegExp(pattern, flags), "Invalid regular expression");
JSTextPosition start = tokenStartPosition();
JSTokenLocation location(tokenLocation());
next();
TreeExpression re = context.createRegExp(location, *pattern, *flags, start);
if (!re) {
const char* yarrErrorMsg = Yarr::checkSyntax(pattern->string());
regexFail(yarrErrorMsg);
}
return re;
}
#if ENABLE(ES6_TEMPLATE_LITERAL_SYNTAX)
case TEMPLATE:
return parseTemplateLiteral(context, LexerType::RawStringsBuildMode::DontBuildRawStrings);
#endif
case LET:
if (!strictMode())
goto identifierExpression;
FALLTHROUGH;
default:
failDueToUnexpectedToken();
}
}
template <typename LexerType>
template <class TreeBuilder> TreeArguments Parser<LexerType>::parseArguments(TreeBuilder& context, SpreadMode mode)
{
consumeOrFailWithFlags(OPENPAREN, TreeBuilder::DontBuildStrings, "Expected opening '(' at start of argument list");
JSTokenLocation location(tokenLocation());
if (match(CLOSEPAREN)) {
next(TreeBuilder::DontBuildStrings);
return context.createArguments();
}
if (match(DOTDOTDOT) && mode == AllowSpread) {
JSTokenLocation spreadLocation(tokenLocation());
auto start = m_token.m_startPosition;
auto divot = m_token.m_endPosition;
next();
auto spreadExpr = parseAssignmentExpression(context);
auto end = m_lastTokenEndPosition;
if (!spreadExpr)
failWithMessage("Cannot parse spread expression");
if (!consume(CLOSEPAREN)) {
if (match(COMMA))
semanticFail("Spread operator may only be applied to the last argument passed to a function");
handleProductionOrFail(CLOSEPAREN, ")", "end", "argument list");
}
auto spread = context.createSpreadExpression(spreadLocation, spreadExpr, start, divot, end);
TreeArgumentsList argList = context.createArgumentsList(location, spread);
return context.createArguments(argList);
}
TreeExpression firstArg = parseAssignmentExpression(context);
failIfFalse(firstArg, "Cannot parse function argument");
TreeArgumentsList argList = context.createArgumentsList(location, firstArg);
TreeArgumentsList tail = argList;
while (match(COMMA)) {
JSTokenLocation argumentLocation(tokenLocation());
next(TreeBuilder::DontBuildStrings);
TreeExpression arg = parseAssignmentExpression(context);
failIfFalse(arg, "Cannot parse function argument");
tail = context.createArgumentsList(argumentLocation, tail, arg);
}
semanticFailIfTrue(match(DOTDOTDOT), "The '...' operator should come before the target expression");
handleProductionOrFail(CLOSEPAREN, ")", "end", "argument list");
return context.createArguments(argList);
}
template <typename LexerType>
template <class TreeBuilder> TreeExpression Parser<LexerType>::parseMemberExpression(TreeBuilder& context)
{
TreeExpression base = 0;
JSTextPosition expressionStart = tokenStartPosition();
int newCount = 0;
JSTokenLocation startLocation = tokenLocation();
JSTokenLocation location;
while (match(NEW)) {
next();
newCount++;
}
#if ENABLE(ES6_CLASS_SYNTAX)
bool baseIsSuper = match(SUPER);
semanticFailIfTrue(baseIsSuper && newCount, "Cannot use new with super");
#else
bool baseIsSuper = false;
#endif
bool baseIsNewTarget = false;
if (newCount && match(DOT)) {
next();
if (match(IDENT)) {
const Identifier* ident = m_token.m_data.ident;
if (m_vm->propertyNames->target == *ident) {
semanticFailIfFalse(currentScope()->isFunction(), "new.target is only valid inside functions");
baseIsNewTarget = true;
base = context.createNewTargetExpr(location);
newCount--;
next();
} else
failWithMessage("\"new.\" can only followed with target");
} else
failDueToUnexpectedToken();
}
if (baseIsSuper) {
semanticFailIfFalse(currentScope()->isFunction(), "super is only valid inside functions");
base = context.createSuperExpr(location);
next();
currentScope()->setNeedsSuperBinding();
} else if (!baseIsNewTarget)
base = parsePrimaryExpression(context);
failIfFalse(base, "Cannot parse base expression");
while (true) {
location = tokenLocation();
switch (m_token.m_type) {
case OPENBRACKET: {
m_nonTrivialExpressionCount++;
JSTextPosition expressionEnd = lastTokenEndPosition();
next();
int nonLHSCount = m_nonLHSCount;
int initialAssignments = m_assignmentCount;
TreeExpression property = parseExpression(context);
failIfFalse(property, "Cannot parse subscript expression");
base = context.createBracketAccess(location, base, property, initialAssignments != m_assignmentCount, expressionStart, expressionEnd, tokenEndPosition());
handleProductionOrFail(CLOSEBRACKET, "]", "end", "subscript expression");
m_nonLHSCount = nonLHSCount;
break;
}
case OPENPAREN: {
m_nonTrivialExpressionCount++;
int nonLHSCount = m_nonLHSCount;
if (newCount) {
newCount--;
JSTextPosition expressionEnd = lastTokenEndPosition();
TreeArguments arguments = parseArguments(context, AllowSpread);
failIfFalse(arguments, "Cannot parse call arguments");
base = context.createNewExpr(location, base, arguments, expressionStart, expressionEnd, lastTokenEndPosition());
} else {
JSTextPosition expressionEnd = lastTokenEndPosition();
TreeArguments arguments = parseArguments(context, AllowSpread);
failIfFalse(arguments, "Cannot parse call arguments");
if (baseIsSuper)
currentScope()->setHasDirectSuper();
base = context.makeFunctionCallNode(startLocation, base, arguments, expressionStart, expressionEnd, lastTokenEndPosition());
}
m_nonLHSCount = nonLHSCount;
break;
}
case DOT: {
m_nonTrivialExpressionCount++;
JSTextPosition expressionEnd = lastTokenEndPosition();
nextExpectIdentifier(LexerFlagsIgnoreReservedWords | TreeBuilder::DontBuildKeywords);
matchOrFail(IDENT, "Expected a property name after '.'");
base = context.createDotAccess(location, base, m_token.m_data.ident, expressionStart, expressionEnd, tokenEndPosition());
next();
break;
}
#if ENABLE(ES6_TEMPLATE_LITERAL_SYNTAX)
case TEMPLATE: {
semanticFailIfTrue(baseIsSuper, "Cannot use super as tag for tagged templates");
JSTextPosition expressionEnd = lastTokenEndPosition();
int nonLHSCount = m_nonLHSCount;
typename TreeBuilder::TemplateLiteral templateLiteral = parseTemplateLiteral(context, LexerType::RawStringsBuildMode::BuildRawStrings);
failIfFalse(templateLiteral, "Cannot parse template literal");
base = context.createTaggedTemplate(location, base, templateLiteral, expressionStart, expressionEnd, lastTokenEndPosition());
m_nonLHSCount = nonLHSCount;
break;
}
#endif
default:
goto endMemberExpression;
}
baseIsSuper = false;
}
endMemberExpression:
semanticFailIfTrue(baseIsSuper, "Cannot reference super");
while (newCount--)
base = context.createNewExpr(location, base, expressionStart, lastTokenEndPosition());
return base;
}
template <typename LexerType>
template <class TreeBuilder> TreeExpression Parser<LexerType>::parseArrowFunctionExpression(TreeBuilder& context)
{
JSTokenLocation location;
unsigned functionKeywordStart = tokenStart();
location = tokenLocation();
ParserFunctionInfo<TreeBuilder> info;
info.name = &m_vm->propertyNames->nullIdentifier;
failIfFalse((parseFunctionInfo(context, FunctionNoRequirements, SourceParseMode::ArrowFunctionMode, true, ConstructorKind::None, SuperBinding::NotNeeded, functionKeywordStart, info, ArrowFunctionParseType)), "Cannot parse arrow function expression");
return context.createArrowFunctionExpr(location, info);
}
static const char* operatorString(bool prefix, unsigned tok)
{
switch (tok) {
case MINUSMINUS:
case AUTOMINUSMINUS:
return prefix ? "prefix-decrement" : "decrement";
case PLUSPLUS:
case AUTOPLUSPLUS:
return prefix ? "prefix-increment" : "increment";
case EXCLAMATION:
return "logical-not";
case TILDE:
return "bitwise-not";
case TYPEOF:
return "typeof";
case VOIDTOKEN:
return "void";
case DELETETOKEN:
return "delete";
}
RELEASE_ASSERT_NOT_REACHED();
return "error";
}
template <typename LexerType>
template <class TreeBuilder> TreeExpression Parser<LexerType>::parseUnaryExpression(TreeBuilder& context)
{
typename TreeBuilder::UnaryExprContext unaryExprContext(context);
AllowInOverride allowInOverride(this);
int tokenStackDepth = 0;
bool modifiesExpr = false;
bool requiresLExpr = false;
unsigned lastOperator = 0;
while (isUnaryOp(m_token.m_type)) {
if (strictMode()) {
switch (m_token.m_type) {
case PLUSPLUS:
case MINUSMINUS:
case AUTOPLUSPLUS:
case AUTOMINUSMINUS:
semanticFailIfTrue(requiresLExpr, "The ", operatorString(true, lastOperator), " operator requires a reference expression");
modifiesExpr = true;
requiresLExpr = true;
break;
case DELETETOKEN:
semanticFailIfTrue(requiresLExpr, "The ", operatorString(true, lastOperator), " operator requires a reference expression");
requiresLExpr = true;
break;
default:
semanticFailIfTrue(requiresLExpr, "The ", operatorString(true, lastOperator), " operator requires a reference expression");
break;
}
}
lastOperator = m_token.m_type;
m_nonLHSCount++;
context.appendUnaryToken(tokenStackDepth, m_token.m_type, tokenStartPosition());
next();
m_nonTrivialExpressionCount++;
}
JSTextPosition subExprStart = tokenStartPosition();
ASSERT(subExprStart.offset >= subExprStart.lineStartOffset);
JSTokenLocation location(tokenLocation());
TreeExpression expr = parseMemberExpression(context);
if (!expr) {
if (lastOperator)
failWithMessage("Cannot parse subexpression of ", operatorString(true, lastOperator), "operator");
failWithMessage("Cannot parse member expression");
}
bool isEvalOrArguments = false;
if (strictMode() && !m_syntaxAlreadyValidated) {
if (context.isResolve(expr))
isEvalOrArguments = *m_lastIdentifier == m_vm->propertyNames->eval || *m_lastIdentifier == m_vm->propertyNames->arguments;
}
failIfTrueIfStrict(isEvalOrArguments && modifiesExpr, "Cannot modify '", m_lastIdentifier->impl(), "' in strict mode");
switch (m_token.m_type) {
case PLUSPLUS:
m_nonTrivialExpressionCount++;
m_nonLHSCount++;
expr = context.makePostfixNode(location, expr, OpPlusPlus, subExprStart, lastTokenEndPosition(), tokenEndPosition());
m_assignmentCount++;
failIfTrueIfStrict(isEvalOrArguments, "Cannot modify '", m_lastIdentifier->impl(), "' in strict mode");
semanticFailIfTrue(requiresLExpr, "The ", operatorString(false, lastOperator), " operator requires a reference expression");
lastOperator = PLUSPLUS;
next();
break;
case MINUSMINUS:
m_nonTrivialExpressionCount++;
m_nonLHSCount++;
expr = context.makePostfixNode(location, expr, OpMinusMinus, subExprStart, lastTokenEndPosition(), tokenEndPosition());
m_assignmentCount++;
failIfTrueIfStrict(isEvalOrArguments, "'", m_lastIdentifier->impl(), "' cannot be modified in strict mode");
semanticFailIfTrue(requiresLExpr, "The ", operatorString(false, lastOperator), " operator requires a reference expression");
lastOperator = PLUSPLUS;
next();
break;
default:
break;
}
JSTextPosition end = lastTokenEndPosition();
if (!TreeBuilder::CreatesAST && (m_syntaxAlreadyValidated || !strictMode()))
return expr;
location = tokenLocation();
location.line = m_lexer->lastLineNumber();
while (tokenStackDepth) {
switch (context.unaryTokenStackLastType(tokenStackDepth)) {
case EXCLAMATION:
expr = context.createLogicalNot(location, expr);
break;
case TILDE:
expr = context.makeBitwiseNotNode(location, expr);
break;
case MINUS:
expr = context.makeNegateNode(location, expr);
break;
case PLUS:
expr = context.createUnaryPlus(location, expr);
break;
case PLUSPLUS:
case AUTOPLUSPLUS:
expr = context.makePrefixNode(location, expr, OpPlusPlus, context.unaryTokenStackLastStart(tokenStackDepth), subExprStart + 1, end);
m_assignmentCount++;
break;
case MINUSMINUS:
case AUTOMINUSMINUS:
expr = context.makePrefixNode(location, expr, OpMinusMinus, context.unaryTokenStackLastStart(tokenStackDepth), subExprStart + 1, end);
m_assignmentCount++;
break;
case TYPEOF:
expr = context.makeTypeOfNode(location, expr);
break;
case VOIDTOKEN:
expr = context.createVoid(location, expr);
break;
case DELETETOKEN:
failIfTrueIfStrict(context.isResolve(expr), "Cannot delete unqualified property '", m_lastIdentifier->impl(), "' in strict mode");
expr = context.makeDeleteNode(location, expr, context.unaryTokenStackLastStart(tokenStackDepth), end, end);
break;
default:
// If we get here something has gone horribly horribly wrong
CRASH();
}
subExprStart = context.unaryTokenStackLastStart(tokenStackDepth);
context.unaryTokenStackRemoveLast(tokenStackDepth);
}
return expr;
}
template <typename LexerType> void Parser<LexerType>::printUnexpectedTokenText(WTF::PrintStream& out)
{
switch (m_token.m_type) {
case EOFTOK:
out.print("Unexpected end of script");
return;
case UNTERMINATED_IDENTIFIER_ESCAPE_ERRORTOK:
case UNTERMINATED_IDENTIFIER_UNICODE_ESCAPE_ERRORTOK:
out.print("Incomplete unicode escape in identifier: '", getToken(), "'");
return;
case UNTERMINATED_MULTILINE_COMMENT_ERRORTOK:
out.print("Unterminated multiline comment");
return;
case UNTERMINATED_NUMERIC_LITERAL_ERRORTOK:
out.print("Unterminated numeric literal '", getToken(), "'");
return;
case UNTERMINATED_STRING_LITERAL_ERRORTOK:
out.print("Unterminated string literal '", getToken(), "'");
return;
case INVALID_IDENTIFIER_ESCAPE_ERRORTOK:
out.print("Invalid escape in identifier: '", getToken(), "'");
return;
case INVALID_IDENTIFIER_UNICODE_ESCAPE_ERRORTOK:
out.print("Invalid unicode escape in identifier: '", getToken(), "'");
return;
case INVALID_NUMERIC_LITERAL_ERRORTOK:
out.print("Invalid numeric literal: '", getToken(), "'");
return;
case UNTERMINATED_OCTAL_NUMBER_ERRORTOK:
out.print("Invalid use of octal: '", getToken(), "'");
return;
case INVALID_STRING_LITERAL_ERRORTOK:
out.print("Invalid string literal: '", getToken(), "'");
return;
case ERRORTOK:
out.print("Unrecognized token '", getToken(), "'");
return;
case STRING:
out.print("Unexpected string literal ", getToken());
return;
case INTEGER:
case DOUBLE:
out.print("Unexpected number '", getToken(), "'");
return;
case RESERVED_IF_STRICT:
out.print("Unexpected use of reserved word '", getToken(), "' in strict mode");
return;
case RESERVED:
out.print("Unexpected use of reserved word '", getToken(), "'");
return;
case INVALID_PRIVATE_NAME_ERRORTOK:
out.print("Invalid private name '", getToken(), "'");
return;
case IDENT:
out.print("Unexpected identifier '", getToken(), "'");
return;
default:
break;
}
if (m_token.m_type & KeywordTokenFlag) {
out.print("Unexpected keyword '", getToken(), "'");
return;
}
out.print("Unexpected token '", getToken(), "'");
}
// Instantiate the two flavors of Parser we need instead of putting most of this file in Parser.h
template class Parser<Lexer<LChar>>;
template class Parser<Lexer<UChar>>;
} // namespace JSC