blob: 76a62d01abd86a0ce4e70a76374aad72d1cf82be [file] [log] [blame]
/*
* Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
* Copyright (C) 2001 Peter Kelly (pmk@post.com)
* Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2011 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifndef MarkedBlock_h
#define MarkedBlock_h
#include "HeapOperation.h"
#include "IterationStatus.h"
#include "WeakSet.h"
#include <wtf/Bitmap.h>
#include <wtf/DataLog.h>
#include <wtf/DoublyLinkedList.h>
#include <wtf/HashFunctions.h>
#include <wtf/StdLibExtras.h>
#include <wtf/Vector.h>
// Set to log state transitions of blocks.
#define HEAP_LOG_BLOCK_STATE_TRANSITIONS 0
#if HEAP_LOG_BLOCK_STATE_TRANSITIONS
#define HEAP_LOG_BLOCK_STATE_TRANSITION(block) do { \
dataLogF( \
"%s:%d %s: block %s = %p, %d\n", \
__FILE__, __LINE__, __FUNCTION__, \
#block, (block), (block)->m_state); \
} while (false)
#else
#define HEAP_LOG_BLOCK_STATE_TRANSITION(block) ((void)0)
#endif
namespace JSC {
class Heap;
class JSCell;
class MarkedAllocator;
typedef uintptr_t Bits;
static const size_t MB = 1024 * 1024;
bool isZapped(const JSCell*);
// A marked block is a page-aligned container for heap-allocated objects.
// Objects are allocated within cells of the marked block. For a given
// marked block, all cells have the same size. Objects smaller than the
// cell size may be allocated in the marked block, in which case the
// allocation suffers from internal fragmentation: wasted space whose
// size is equal to the difference between the cell size and the object
// size.
class MarkedBlock : public DoublyLinkedListNode<MarkedBlock> {
friend class WTF::DoublyLinkedListNode<MarkedBlock>;
friend class LLIntOffsetsExtractor;
friend struct VerifyMarkedOrRetired;
public:
static const size_t atomSize = 16; // bytes
static const size_t atomShiftAmount = 4; // log_2(atomSize) FIXME: Change atomSize to 16.
static const size_t blockSize = 16 * KB;
static const size_t blockMask = ~(blockSize - 1); // blockSize must be a power of two.
static const size_t atomsPerBlock = blockSize / atomSize;
static const size_t atomMask = atomsPerBlock - 1;
static const size_t markByteShiftAmount = 3; // log_2(word size for m_marks) FIXME: Change word size for m_marks to uint8_t.
struct FreeCell {
FreeCell* next;
};
struct FreeList {
FreeCell* head;
size_t bytes;
FreeList();
FreeList(FreeCell*, size_t);
};
struct VoidFunctor {
typedef void ReturnType;
void returnValue() { }
};
class CountFunctor {
public:
typedef size_t ReturnType;
CountFunctor() : m_count(0) { }
void count(size_t count) { m_count += count; }
ReturnType returnValue() { return m_count; }
private:
ReturnType m_count;
};
static MarkedBlock* create(MarkedAllocator*, size_t capacity, size_t cellSize, bool needsDestruction);
static void destroy(MarkedBlock*);
static bool isAtomAligned(const void*);
static MarkedBlock* blockFor(const void*);
static size_t firstAtom();
void lastChanceToFinalize();
MarkedAllocator* allocator() const;
Heap* heap() const;
VM* vm() const;
WeakSet& weakSet();
enum SweepMode { SweepOnly, SweepToFreeList };
FreeList sweep(SweepMode = SweepOnly);
void shrink();
void visitWeakSet(HeapRootVisitor&);
void reapWeakSet();
// While allocating from a free list, MarkedBlock temporarily has bogus
// cell liveness data. To restore accurate cell liveness data, call one
// of these functions:
void didConsumeFreeList(); // Call this once you've allocated all the items in the free list.
void stopAllocating(const FreeList&);
FreeList resumeAllocating(); // Call this if you canonicalized a block for some non-collection related purpose.
// Returns true if the "newly allocated" bitmap was non-null
// and was successfully cleared and false otherwise.
bool clearNewlyAllocated();
void clearMarks();
template <HeapOperation collectionType>
void clearMarksWithCollectionType();
size_t markCount();
bool isEmpty();
size_t cellSize();
bool needsDestruction() const;
size_t size();
size_t capacity();
bool isMarked(const void*);
bool testAndSetMarked(const void*);
bool isLive(const JSCell*);
bool isLiveCell(const void*);
bool isMarkedOrNewlyAllocated(const JSCell*);
void setMarked(const void*);
void clearMarked(const void*);
bool isNewlyAllocated(const void*);
void setNewlyAllocated(const void*);
void clearNewlyAllocated(const void*);
bool isAllocated() const;
bool needsSweeping();
void didRetireBlock(const FreeList&);
void willRemoveBlock();
template <typename Functor> IterationStatus forEachCell(Functor&);
template <typename Functor> IterationStatus forEachLiveCell(Functor&);
template <typename Functor> IterationStatus forEachDeadCell(Functor&);
private:
static const size_t atomAlignmentMask = atomSize - 1; // atomSize must be a power of two.
enum BlockState { New, FreeListed, Allocated, Marked, Retired };
template<bool callDestructors> FreeList sweepHelper(SweepMode = SweepOnly);
typedef char Atom[atomSize];
MarkedBlock(MarkedAllocator*, size_t capacity, size_t cellSize, bool needsDestruction);
Atom* atoms();
size_t atomNumber(const void*);
void callDestructor(JSCell*);
template<BlockState, SweepMode, bool callDestructors> FreeList specializedSweep();
MarkedBlock* m_prev;
MarkedBlock* m_next;
size_t m_atomsPerCell;
size_t m_endAtom; // This is a fuzzy end. Always test for < m_endAtom.
#if ENABLE(PARALLEL_GC)
WTF::Bitmap<atomsPerBlock, WTF::BitmapAtomic, uint8_t> m_marks;
#else
WTF::Bitmap<atomsPerBlock, WTF::BitmapNotAtomic, uint8_t> m_marks;
#endif
std::unique_ptr<WTF::Bitmap<atomsPerBlock>> m_newlyAllocated;
size_t m_capacity;
bool m_needsDestruction;
MarkedAllocator* m_allocator;
BlockState m_state;
WeakSet m_weakSet;
};
inline MarkedBlock::FreeList::FreeList()
: head(0)
, bytes(0)
{
}
inline MarkedBlock::FreeList::FreeList(FreeCell* head, size_t bytes)
: head(head)
, bytes(bytes)
{
}
inline size_t MarkedBlock::firstAtom()
{
return WTF::roundUpToMultipleOf<atomSize>(sizeof(MarkedBlock)) / atomSize;
}
inline MarkedBlock::Atom* MarkedBlock::atoms()
{
return reinterpret_cast<Atom*>(this);
}
inline bool MarkedBlock::isAtomAligned(const void* p)
{
return !(reinterpret_cast<Bits>(p) & atomAlignmentMask);
}
inline MarkedBlock* MarkedBlock::blockFor(const void* p)
{
return reinterpret_cast<MarkedBlock*>(reinterpret_cast<Bits>(p) & blockMask);
}
inline MarkedAllocator* MarkedBlock::allocator() const
{
return m_allocator;
}
inline Heap* MarkedBlock::heap() const
{
return m_weakSet.heap();
}
inline VM* MarkedBlock::vm() const
{
return m_weakSet.vm();
}
inline WeakSet& MarkedBlock::weakSet()
{
return m_weakSet;
}
inline void MarkedBlock::shrink()
{
m_weakSet.shrink();
}
inline void MarkedBlock::visitWeakSet(HeapRootVisitor& heapRootVisitor)
{
m_weakSet.visit(heapRootVisitor);
}
inline void MarkedBlock::reapWeakSet()
{
m_weakSet.reap();
}
inline void MarkedBlock::willRemoveBlock()
{
ASSERT(m_state != Retired);
}
inline void MarkedBlock::didConsumeFreeList()
{
HEAP_LOG_BLOCK_STATE_TRANSITION(this);
ASSERT(m_state == FreeListed);
m_state = Allocated;
}
inline size_t MarkedBlock::markCount()
{
return m_marks.count();
}
inline bool MarkedBlock::isEmpty()
{
return m_marks.isEmpty() && m_weakSet.isEmpty() && (!m_newlyAllocated || m_newlyAllocated->isEmpty());
}
inline size_t MarkedBlock::cellSize()
{
return m_atomsPerCell * atomSize;
}
inline bool MarkedBlock::needsDestruction() const
{
return m_needsDestruction;
}
inline size_t MarkedBlock::size()
{
return markCount() * cellSize();
}
inline size_t MarkedBlock::capacity()
{
return m_capacity;
}
inline size_t MarkedBlock::atomNumber(const void* p)
{
return (reinterpret_cast<Bits>(p) - reinterpret_cast<Bits>(this)) / atomSize;
}
inline bool MarkedBlock::isMarked(const void* p)
{
return m_marks.get(atomNumber(p));
}
inline bool MarkedBlock::testAndSetMarked(const void* p)
{
return m_marks.concurrentTestAndSet(atomNumber(p));
}
inline void MarkedBlock::setMarked(const void* p)
{
m_marks.set(atomNumber(p));
}
inline void MarkedBlock::clearMarked(const void* p)
{
ASSERT(m_marks.get(atomNumber(p)));
m_marks.clear(atomNumber(p));
}
inline bool MarkedBlock::isNewlyAllocated(const void* p)
{
return m_newlyAllocated->get(atomNumber(p));
}
inline void MarkedBlock::setNewlyAllocated(const void* p)
{
m_newlyAllocated->set(atomNumber(p));
}
inline void MarkedBlock::clearNewlyAllocated(const void* p)
{
m_newlyAllocated->clear(atomNumber(p));
}
inline bool MarkedBlock::clearNewlyAllocated()
{
if (m_newlyAllocated) {
m_newlyAllocated = nullptr;
return true;
}
return false;
}
inline bool MarkedBlock::isMarkedOrNewlyAllocated(const JSCell* cell)
{
ASSERT(m_state == Retired || m_state == Marked);
return m_marks.get(atomNumber(cell)) || (m_newlyAllocated && isNewlyAllocated(cell));
}
inline bool MarkedBlock::isLive(const JSCell* cell)
{
switch (m_state) {
case Allocated:
return true;
case Retired:
case Marked:
return isMarkedOrNewlyAllocated(cell);
case New:
case FreeListed:
RELEASE_ASSERT_NOT_REACHED();
return false;
}
RELEASE_ASSERT_NOT_REACHED();
return false;
}
inline bool MarkedBlock::isLiveCell(const void* p)
{
ASSERT(MarkedBlock::isAtomAligned(p));
size_t atomNumber = this->atomNumber(p);
size_t firstAtom = this->firstAtom();
if (atomNumber < firstAtom) // Filters pointers into MarkedBlock metadata.
return false;
if ((atomNumber - firstAtom) % m_atomsPerCell) // Filters pointers into cell middles.
return false;
if (atomNumber >= m_endAtom) // Filters pointers into invalid cells out of the range.
return false;
return isLive(static_cast<const JSCell*>(p));
}
template <typename Functor> inline IterationStatus MarkedBlock::forEachCell(Functor& functor)
{
for (size_t i = firstAtom(); i < m_endAtom; i += m_atomsPerCell) {
JSCell* cell = reinterpret_cast_ptr<JSCell*>(&atoms()[i]);
if (functor(cell) == IterationStatus::Done)
return IterationStatus::Done;
}
return IterationStatus::Continue;
}
template <typename Functor> inline IterationStatus MarkedBlock::forEachLiveCell(Functor& functor)
{
for (size_t i = firstAtom(); i < m_endAtom; i += m_atomsPerCell) {
JSCell* cell = reinterpret_cast_ptr<JSCell*>(&atoms()[i]);
if (!isLive(cell))
continue;
if (functor(cell) == IterationStatus::Done)
return IterationStatus::Done;
}
return IterationStatus::Continue;
}
template <typename Functor> inline IterationStatus MarkedBlock::forEachDeadCell(Functor& functor)
{
for (size_t i = firstAtom(); i < m_endAtom; i += m_atomsPerCell) {
JSCell* cell = reinterpret_cast_ptr<JSCell*>(&atoms()[i]);
if (isLive(cell))
continue;
if (functor(cell) == IterationStatus::Done)
return IterationStatus::Done;
}
return IterationStatus::Continue;
}
inline bool MarkedBlock::needsSweeping()
{
return m_state == Marked;
}
inline bool MarkedBlock::isAllocated() const
{
return m_state == Allocated;
}
} // namespace JSC
namespace WTF {
struct MarkedBlockHash : PtrHash<JSC::MarkedBlock*> {
static unsigned hash(JSC::MarkedBlock* const& key)
{
// Aligned VM regions tend to be monotonically increasing integers,
// which is a great hash function, but we have to remove the low bits,
// since they're always zero, which is a terrible hash function!
return reinterpret_cast<JSC::Bits>(key) / JSC::MarkedBlock::blockSize;
}
};
template<> struct DefaultHash<JSC::MarkedBlock*> {
typedef MarkedBlockHash Hash;
};
} // namespace WTF
#endif // MarkedBlock_h