blob: 788c7999a6d37e312544d96e2984452cd6f5a2ea [file] [log] [blame]
/*
* Copyright (C) 2008-2010, 2012-2015 Apple Inc. All rights reserved.
* Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "CodeBlock.h"
#include "BasicBlockLocation.h"
#include "BytecodeGenerator.h"
#include "BytecodeUseDef.h"
#include "CallLinkStatus.h"
#include "DFGCapabilities.h"
#include "DFGCommon.h"
#include "DFGDriver.h"
#include "DFGJITCode.h"
#include "DFGWorklist.h"
#include "Debugger.h"
#include "FunctionExecutableDump.h"
#include "GetPutInfo.h"
#include "InlineCallFrame.h"
#include "Interpreter.h"
#include "JIT.h"
#include "JITStubs.h"
#include "JSCJSValue.h"
#include "JSFunction.h"
#include "JSLexicalEnvironment.h"
#include "JSModuleEnvironment.h"
#include "LLIntEntrypoint.h"
#include "LowLevelInterpreter.h"
#include "JSCInlines.h"
#include "PolymorphicAccess.h"
#include "ProfilerDatabase.h"
#include "ReduceWhitespace.h"
#include "Repatch.h"
#include "SlotVisitorInlines.h"
#include "StackVisitor.h"
#include "TypeLocationCache.h"
#include "TypeProfiler.h"
#include "UnlinkedInstructionStream.h"
#include <wtf/BagToHashMap.h>
#include <wtf/CommaPrinter.h>
#include <wtf/StringExtras.h>
#include <wtf/StringPrintStream.h>
#include <wtf/text/UniquedStringImpl.h>
#if ENABLE(JIT)
#include "RegisterAtOffsetList.h"
#endif
#if ENABLE(DFG_JIT)
#include "DFGOperations.h"
#endif
#if ENABLE(FTL_JIT)
#include "FTLJITCode.h"
#endif
namespace JSC {
CString CodeBlock::inferredName() const
{
switch (codeType()) {
case GlobalCode:
return "<global>";
case EvalCode:
return "<eval>";
case FunctionCode:
return jsCast<FunctionExecutable*>(ownerExecutable())->inferredName().utf8();
case ModuleCode:
return "<module>";
default:
CRASH();
return CString("", 0);
}
}
bool CodeBlock::hasHash() const
{
return !!m_hash;
}
bool CodeBlock::isSafeToComputeHash() const
{
return !isCompilationThread();
}
CodeBlockHash CodeBlock::hash() const
{
if (!m_hash) {
RELEASE_ASSERT(isSafeToComputeHash());
m_hash = CodeBlockHash(ownerScriptExecutable()->source(), specializationKind());
}
return m_hash;
}
CString CodeBlock::sourceCodeForTools() const
{
if (codeType() != FunctionCode)
return ownerScriptExecutable()->source().toUTF8();
SourceProvider* provider = source();
FunctionExecutable* executable = jsCast<FunctionExecutable*>(ownerExecutable());
UnlinkedFunctionExecutable* unlinked = executable->unlinkedExecutable();
unsigned unlinkedStartOffset = unlinked->startOffset();
unsigned linkedStartOffset = executable->source().startOffset();
int delta = linkedStartOffset - unlinkedStartOffset;
unsigned rangeStart = delta + unlinked->unlinkedFunctionNameStart();
unsigned rangeEnd = delta + unlinked->startOffset() + unlinked->sourceLength();
return toCString(
"function ",
provider->source().impl()->utf8ForRange(rangeStart, rangeEnd - rangeStart));
}
CString CodeBlock::sourceCodeOnOneLine() const
{
return reduceWhitespace(sourceCodeForTools());
}
CString CodeBlock::hashAsStringIfPossible() const
{
if (hasHash() || isSafeToComputeHash())
return toCString(hash());
return "<no-hash>";
}
void CodeBlock::dumpAssumingJITType(PrintStream& out, JITCode::JITType jitType) const
{
out.print(inferredName(), "#", hashAsStringIfPossible());
out.print(":[", RawPointer(this), "->");
if (!!m_alternative)
out.print(RawPointer(m_alternative.get()), "->");
out.print(RawPointer(ownerExecutable()), ", ", jitType, codeType());
if (codeType() == FunctionCode)
out.print(specializationKind());
out.print(", ", instructionCount());
if (this->jitType() == JITCode::BaselineJIT && m_shouldAlwaysBeInlined)
out.print(" (ShouldAlwaysBeInlined)");
if (ownerScriptExecutable()->neverInline())
out.print(" (NeverInline)");
if (ownerScriptExecutable()->neverOptimize())
out.print(" (NeverOptimize)");
if (ownerScriptExecutable()->didTryToEnterInLoop())
out.print(" (DidTryToEnterInLoop)");
if (ownerScriptExecutable()->isStrictMode())
out.print(" (StrictMode)");
if (this->jitType() == JITCode::BaselineJIT && m_didFailFTLCompilation)
out.print(" (FTLFail)");
if (this->jitType() == JITCode::BaselineJIT && m_hasBeenCompiledWithFTL)
out.print(" (HadFTLReplacement)");
out.print("]");
}
void CodeBlock::dump(PrintStream& out) const
{
dumpAssumingJITType(out, jitType());
}
static CString idName(int id0, const Identifier& ident)
{
return toCString(ident.impl(), "(@id", id0, ")");
}
CString CodeBlock::registerName(int r) const
{
if (isConstantRegisterIndex(r))
return constantName(r);
return toCString(VirtualRegister(r));
}
CString CodeBlock::constantName(int index) const
{
JSValue value = getConstant(index);
return toCString(value, "(", VirtualRegister(index), ")");
}
static CString regexpToSourceString(RegExp* regExp)
{
char postfix[5] = { '/', 0, 0, 0, 0 };
int index = 1;
if (regExp->global())
postfix[index++] = 'g';
if (regExp->ignoreCase())
postfix[index++] = 'i';
if (regExp->multiline())
postfix[index] = 'm';
return toCString("/", regExp->pattern().impl(), postfix);
}
static CString regexpName(int re, RegExp* regexp)
{
return toCString(regexpToSourceString(regexp), "(@re", re, ")");
}
NEVER_INLINE static const char* debugHookName(int debugHookID)
{
switch (static_cast<DebugHookID>(debugHookID)) {
case DidEnterCallFrame:
return "didEnterCallFrame";
case WillLeaveCallFrame:
return "willLeaveCallFrame";
case WillExecuteStatement:
return "willExecuteStatement";
case WillExecuteProgram:
return "willExecuteProgram";
case DidExecuteProgram:
return "didExecuteProgram";
case DidReachBreakpoint:
return "didReachBreakpoint";
}
RELEASE_ASSERT_NOT_REACHED();
return "";
}
void CodeBlock::printUnaryOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op)
{
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, op);
out.printf("%s, %s", registerName(r0).data(), registerName(r1).data());
}
void CodeBlock::printBinaryOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op)
{
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, op);
out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data());
}
void CodeBlock::printConditionalJump(PrintStream& out, ExecState* exec, const Instruction*, const Instruction*& it, int location, const char* op)
{
int r0 = (++it)->u.operand;
int offset = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, op);
out.printf("%s, %d(->%d)", registerName(r0).data(), offset, location + offset);
}
void CodeBlock::printGetByIdOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it)
{
const char* op;
switch (exec->interpreter()->getOpcodeID(it->u.opcode)) {
case op_get_by_id:
op = "get_by_id";
break;
case op_get_array_length:
op = "array_length";
break;
default:
RELEASE_ASSERT_NOT_REACHED();
#if COMPILER_QUIRK(CONSIDERS_UNREACHABLE_CODE)
op = 0;
#endif
}
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int id0 = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, op);
out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), idName(id0, identifier(id0)).data());
it += 4; // Increment up to the value profiler.
}
static void dumpStructure(PrintStream& out, const char* name, Structure* structure, const Identifier& ident)
{
if (!structure)
return;
out.printf("%s = %p", name, structure);
PropertyOffset offset = structure->getConcurrently(ident.impl());
if (offset != invalidOffset)
out.printf(" (offset = %d)", offset);
}
static void dumpChain(PrintStream& out, StructureChain* chain, const Identifier& ident)
{
out.printf("chain = %p: [", chain);
bool first = true;
for (WriteBarrier<Structure>* currentStructure = chain->head();
*currentStructure;
++currentStructure) {
if (first)
first = false;
else
out.printf(", ");
dumpStructure(out, "struct", currentStructure->get(), ident);
}
out.printf("]");
}
void CodeBlock::printGetByIdCacheStatus(PrintStream& out, ExecState* exec, int location, const StubInfoMap& map)
{
Instruction* instruction = instructions().begin() + location;
const Identifier& ident = identifier(instruction[3].u.operand);
UNUSED_PARAM(ident); // tell the compiler to shut up in certain platform configurations.
if (exec->interpreter()->getOpcodeID(instruction[0].u.opcode) == op_get_array_length)
out.printf(" llint(array_length)");
else if (StructureID structureID = instruction[4].u.structureID) {
Structure* structure = m_vm->heap.structureIDTable().get(structureID);
out.printf(" llint(");
dumpStructure(out, "struct", structure, ident);
out.printf(")");
}
#if ENABLE(JIT)
if (StructureStubInfo* stubPtr = map.get(CodeOrigin(location))) {
StructureStubInfo& stubInfo = *stubPtr;
if (stubInfo.resetByGC)
out.print(" (Reset By GC)");
if (stubInfo.seen) {
out.printf(" jit(");
Structure* baseStructure = nullptr;
PolymorphicAccess* stub = nullptr;
switch (stubInfo.cacheType) {
case CacheType::GetByIdSelf:
out.printf("self");
baseStructure = stubInfo.u.byIdSelf.baseObjectStructure.get();
break;
case CacheType::Stub:
out.printf("stub");
stub = stubInfo.u.stub;
break;
case CacheType::Unset:
out.printf("unset");
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
if (baseStructure) {
out.printf(", ");
dumpStructure(out, "struct", baseStructure, ident);
}
if (stub)
out.print(", ", *stub);
out.printf(")");
}
}
#else
UNUSED_PARAM(map);
#endif
}
void CodeBlock::printPutByIdCacheStatus(PrintStream& out, int location, const StubInfoMap& map)
{
Instruction* instruction = instructions().begin() + location;
const Identifier& ident = identifier(instruction[2].u.operand);
UNUSED_PARAM(ident); // tell the compiler to shut up in certain platform configurations.
out.print(", ", instruction[8].u.putByIdFlags);
if (StructureID structureID = instruction[4].u.structureID) {
Structure* structure = m_vm->heap.structureIDTable().get(structureID);
out.print(" llint(");
if (StructureID newStructureID = instruction[6].u.structureID) {
Structure* newStructure = m_vm->heap.structureIDTable().get(newStructureID);
dumpStructure(out, "prev", structure, ident);
out.print(", ");
dumpStructure(out, "next", newStructure, ident);
if (StructureChain* chain = instruction[7].u.structureChain.get()) {
out.print(", ");
dumpChain(out, chain, ident);
}
} else
dumpStructure(out, "struct", structure, ident);
out.print(")");
}
#if ENABLE(JIT)
if (StructureStubInfo* stubPtr = map.get(CodeOrigin(location))) {
StructureStubInfo& stubInfo = *stubPtr;
if (stubInfo.resetByGC)
out.print(" (Reset By GC)");
if (stubInfo.seen) {
out.printf(" jit(");
switch (stubInfo.cacheType) {
case CacheType::PutByIdReplace:
out.print("replace, ");
dumpStructure(out, "struct", stubInfo.u.byIdSelf.baseObjectStructure.get(), ident);
break;
case CacheType::Stub: {
out.print("stub, ", *stubInfo.u.stub);
break;
}
case CacheType::Unset:
out.printf("unset");
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
out.printf(")");
}
}
#else
UNUSED_PARAM(map);
#endif
}
void CodeBlock::printCallOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op, CacheDumpMode cacheDumpMode, bool& hasPrintedProfiling, const CallLinkInfoMap& map)
{
int dst = (++it)->u.operand;
int func = (++it)->u.operand;
int argCount = (++it)->u.operand;
int registerOffset = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, op);
out.printf("%s, %s, %d, %d", registerName(dst).data(), registerName(func).data(), argCount, registerOffset);
if (cacheDumpMode == DumpCaches) {
LLIntCallLinkInfo* callLinkInfo = it[1].u.callLinkInfo;
if (callLinkInfo->lastSeenCallee) {
out.printf(
" llint(%p, exec %p)",
callLinkInfo->lastSeenCallee.get(),
callLinkInfo->lastSeenCallee->executable());
}
#if ENABLE(JIT)
if (CallLinkInfo* info = map.get(CodeOrigin(location))) {
JSFunction* target = info->lastSeenCallee();
if (target)
out.printf(" jit(%p, exec %p)", target, target->executable());
}
if (jitType() != JITCode::FTLJIT)
out.print(" status(", CallLinkStatus::computeFor(this, location, map), ")");
#else
UNUSED_PARAM(map);
#endif
}
++it;
++it;
dumpArrayProfiling(out, it, hasPrintedProfiling);
dumpValueProfiling(out, it, hasPrintedProfiling);
}
void CodeBlock::printPutByIdOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op)
{
int r0 = (++it)->u.operand;
int id0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, op);
out.printf("%s, %s, %s", registerName(r0).data(), idName(id0, identifier(id0)).data(), registerName(r1).data());
it += 5;
}
void CodeBlock::dumpSource()
{
dumpSource(WTF::dataFile());
}
void CodeBlock::dumpSource(PrintStream& out)
{
ScriptExecutable* executable = ownerScriptExecutable();
if (executable->isFunctionExecutable()) {
FunctionExecutable* functionExecutable = reinterpret_cast<FunctionExecutable*>(executable);
String source = functionExecutable->source().provider()->getRange(
functionExecutable->parametersStartOffset(),
functionExecutable->typeProfilingEndOffset() + 1); // Type profiling end offset is the character before the '}'.
out.print("function ", inferredName(), source);
return;
}
out.print(executable->source().toString());
}
void CodeBlock::dumpBytecode()
{
dumpBytecode(WTF::dataFile());
}
void CodeBlock::dumpBytecode(PrintStream& out)
{
// We only use the ExecState* for things that don't actually lead to JS execution,
// like converting a JSString to a String. Hence the globalExec is appropriate.
ExecState* exec = m_globalObject->globalExec();
size_t instructionCount = 0;
for (size_t i = 0; i < instructions().size(); i += opcodeLengths[exec->interpreter()->getOpcodeID(instructions()[i].u.opcode)])
++instructionCount;
out.print(*this);
out.printf(
": %lu m_instructions; %lu bytes; %d parameter(s); %d callee register(s); %d variable(s)",
static_cast<unsigned long>(instructions().size()),
static_cast<unsigned long>(instructions().size() * sizeof(Instruction)),
m_numParameters, m_numCalleeRegisters, m_numVars);
if (needsActivation() && codeType() == FunctionCode)
out.printf("; lexical environment in r%d", activationRegister().offset());
out.printf("\n");
StubInfoMap stubInfos;
CallLinkInfoMap callLinkInfos;
getStubInfoMap(stubInfos);
getCallLinkInfoMap(callLinkInfos);
const Instruction* begin = instructions().begin();
const Instruction* end = instructions().end();
for (const Instruction* it = begin; it != end; ++it)
dumpBytecode(out, exec, begin, it, stubInfos, callLinkInfos);
if (numberOfIdentifiers()) {
out.printf("\nIdentifiers:\n");
size_t i = 0;
do {
out.printf(" id%u = %s\n", static_cast<unsigned>(i), identifier(i).string().utf8().data());
++i;
} while (i != numberOfIdentifiers());
}
if (!m_constantRegisters.isEmpty()) {
out.printf("\nConstants:\n");
size_t i = 0;
do {
const char* sourceCodeRepresentationDescription = nullptr;
switch (m_constantsSourceCodeRepresentation[i]) {
case SourceCodeRepresentation::Double:
sourceCodeRepresentationDescription = ": in source as double";
break;
case SourceCodeRepresentation::Integer:
sourceCodeRepresentationDescription = ": in source as integer";
break;
case SourceCodeRepresentation::Other:
sourceCodeRepresentationDescription = "";
break;
}
out.printf(" k%u = %s%s\n", static_cast<unsigned>(i), toCString(m_constantRegisters[i].get()).data(), sourceCodeRepresentationDescription);
++i;
} while (i < m_constantRegisters.size());
}
if (size_t count = m_unlinkedCode->numberOfRegExps()) {
out.printf("\nm_regexps:\n");
size_t i = 0;
do {
out.printf(" re%u = %s\n", static_cast<unsigned>(i), regexpToSourceString(m_unlinkedCode->regexp(i)).data());
++i;
} while (i < count);
}
if (m_rareData && !m_rareData->m_exceptionHandlers.isEmpty()) {
out.printf("\nException Handlers:\n");
unsigned i = 0;
do {
HandlerInfo& handler = m_rareData->m_exceptionHandlers[i];
out.printf("\t %d: { start: [%4d] end: [%4d] target: [%4d] } %s\n",
i + 1, handler.start, handler.end, handler.target, handler.typeName());
++i;
} while (i < m_rareData->m_exceptionHandlers.size());
}
if (m_rareData && !m_rareData->m_switchJumpTables.isEmpty()) {
out.printf("Switch Jump Tables:\n");
unsigned i = 0;
do {
out.printf(" %1d = {\n", i);
int entry = 0;
Vector<int32_t>::const_iterator end = m_rareData->m_switchJumpTables[i].branchOffsets.end();
for (Vector<int32_t>::const_iterator iter = m_rareData->m_switchJumpTables[i].branchOffsets.begin(); iter != end; ++iter, ++entry) {
if (!*iter)
continue;
out.printf("\t\t%4d => %04d\n", entry + m_rareData->m_switchJumpTables[i].min, *iter);
}
out.printf(" }\n");
++i;
} while (i < m_rareData->m_switchJumpTables.size());
}
if (m_rareData && !m_rareData->m_stringSwitchJumpTables.isEmpty()) {
out.printf("\nString Switch Jump Tables:\n");
unsigned i = 0;
do {
out.printf(" %1d = {\n", i);
StringJumpTable::StringOffsetTable::const_iterator end = m_rareData->m_stringSwitchJumpTables[i].offsetTable.end();
for (StringJumpTable::StringOffsetTable::const_iterator iter = m_rareData->m_stringSwitchJumpTables[i].offsetTable.begin(); iter != end; ++iter)
out.printf("\t\t\"%s\" => %04d\n", iter->key->utf8().data(), iter->value.branchOffset);
out.printf(" }\n");
++i;
} while (i < m_rareData->m_stringSwitchJumpTables.size());
}
out.printf("\n");
}
void CodeBlock::beginDumpProfiling(PrintStream& out, bool& hasPrintedProfiling)
{
if (hasPrintedProfiling) {
out.print("; ");
return;
}
out.print(" ");
hasPrintedProfiling = true;
}
void CodeBlock::dumpValueProfiling(PrintStream& out, const Instruction*& it, bool& hasPrintedProfiling)
{
ConcurrentJITLocker locker(m_lock);
++it;
CString description = it->u.profile->briefDescription(locker);
if (!description.length())
return;
beginDumpProfiling(out, hasPrintedProfiling);
out.print(description);
}
void CodeBlock::dumpArrayProfiling(PrintStream& out, const Instruction*& it, bool& hasPrintedProfiling)
{
ConcurrentJITLocker locker(m_lock);
++it;
if (!it->u.arrayProfile)
return;
CString description = it->u.arrayProfile->briefDescription(locker, this);
if (!description.length())
return;
beginDumpProfiling(out, hasPrintedProfiling);
out.print(description);
}
void CodeBlock::dumpRareCaseProfile(PrintStream& out, const char* name, RareCaseProfile* profile, bool& hasPrintedProfiling)
{
if (!profile || !profile->m_counter)
return;
beginDumpProfiling(out, hasPrintedProfiling);
out.print(name, profile->m_counter);
}
void CodeBlock::printLocationAndOp(PrintStream& out, ExecState*, int location, const Instruction*&, const char* op)
{
out.printf("[%4d] %-17s ", location, op);
}
void CodeBlock::printLocationOpAndRegisterOperand(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op, int operand)
{
printLocationAndOp(out, exec, location, it, op);
out.printf("%s", registerName(operand).data());
}
void CodeBlock::dumpBytecode(
PrintStream& out, ExecState* exec, const Instruction* begin, const Instruction*& it,
const StubInfoMap& stubInfos, const CallLinkInfoMap& callLinkInfos)
{
int location = it - begin;
bool hasPrintedProfiling = false;
OpcodeID opcode = exec->interpreter()->getOpcodeID(it->u.opcode);
switch (opcode) {
case op_enter: {
printLocationAndOp(out, exec, location, it, "enter");
break;
}
case op_get_scope: {
int r0 = (++it)->u.operand;
printLocationOpAndRegisterOperand(out, exec, location, it, "get_scope", r0);
break;
}
case op_load_arrowfunction_this: {
int r0 = (++it)->u.operand;
printLocationOpAndRegisterOperand(out, exec, location, it, "load_arrowfunction_this", r0);
break;
}
case op_create_direct_arguments: {
int r0 = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "create_direct_arguments");
out.printf("%s", registerName(r0).data());
break;
}
case op_create_scoped_arguments: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "create_scoped_arguments");
out.printf("%s, %s", registerName(r0).data(), registerName(r1).data());
break;
}
case op_create_out_of_band_arguments: {
int r0 = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "create_out_of_band_arguments");
out.printf("%s", registerName(r0).data());
break;
}
case op_create_this: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
unsigned inferredInlineCapacity = (++it)->u.operand;
unsigned cachedFunction = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "create_this");
out.printf("%s, %s, %u, %u", registerName(r0).data(), registerName(r1).data(), inferredInlineCapacity, cachedFunction);
break;
}
case op_to_this: {
int r0 = (++it)->u.operand;
printLocationOpAndRegisterOperand(out, exec, location, it, "to_this", r0);
Structure* structure = (++it)->u.structure.get();
if (structure)
out.print(", cache(struct = ", RawPointer(structure), ")");
out.print(", ", (++it)->u.toThisStatus);
break;
}
case op_check_tdz: {
int r0 = (++it)->u.operand;
printLocationOpAndRegisterOperand(out, exec, location, it, "op_check_tdz", r0);
break;
}
case op_new_object: {
int r0 = (++it)->u.operand;
unsigned inferredInlineCapacity = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "new_object");
out.printf("%s, %u", registerName(r0).data(), inferredInlineCapacity);
++it; // Skip object allocation profile.
break;
}
case op_new_array: {
int dst = (++it)->u.operand;
int argv = (++it)->u.operand;
int argc = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "new_array");
out.printf("%s, %s, %d", registerName(dst).data(), registerName(argv).data(), argc);
++it; // Skip array allocation profile.
break;
}
case op_new_array_with_size: {
int dst = (++it)->u.operand;
int length = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "new_array_with_size");
out.printf("%s, %s", registerName(dst).data(), registerName(length).data());
++it; // Skip array allocation profile.
break;
}
case op_new_array_buffer: {
int dst = (++it)->u.operand;
int argv = (++it)->u.operand;
int argc = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "new_array_buffer");
out.printf("%s, %d, %d", registerName(dst).data(), argv, argc);
++it; // Skip array allocation profile.
break;
}
case op_new_regexp: {
int r0 = (++it)->u.operand;
int re0 = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "new_regexp");
out.printf("%s, ", registerName(r0).data());
if (r0 >=0 && r0 < (int)m_unlinkedCode->numberOfRegExps())
out.printf("%s", regexpName(re0, regexp(re0)).data());
else
out.printf("bad_regexp(%d)", re0);
break;
}
case op_mov: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "mov");
out.printf("%s, %s", registerName(r0).data(), registerName(r1).data());
break;
}
case op_profile_type: {
int r0 = (++it)->u.operand;
++it;
++it;
++it;
++it;
printLocationAndOp(out, exec, location, it, "op_profile_type");
out.printf("%s", registerName(r0).data());
break;
}
case op_profile_control_flow: {
BasicBlockLocation* basicBlockLocation = (++it)->u.basicBlockLocation;
printLocationAndOp(out, exec, location, it, "profile_control_flow");
out.printf("[%d, %d]", basicBlockLocation->startOffset(), basicBlockLocation->endOffset());
break;
}
case op_not: {
printUnaryOp(out, exec, location, it, "not");
break;
}
case op_eq: {
printBinaryOp(out, exec, location, it, "eq");
break;
}
case op_eq_null: {
printUnaryOp(out, exec, location, it, "eq_null");
break;
}
case op_neq: {
printBinaryOp(out, exec, location, it, "neq");
break;
}
case op_neq_null: {
printUnaryOp(out, exec, location, it, "neq_null");
break;
}
case op_stricteq: {
printBinaryOp(out, exec, location, it, "stricteq");
break;
}
case op_nstricteq: {
printBinaryOp(out, exec, location, it, "nstricteq");
break;
}
case op_less: {
printBinaryOp(out, exec, location, it, "less");
break;
}
case op_lesseq: {
printBinaryOp(out, exec, location, it, "lesseq");
break;
}
case op_greater: {
printBinaryOp(out, exec, location, it, "greater");
break;
}
case op_greatereq: {
printBinaryOp(out, exec, location, it, "greatereq");
break;
}
case op_inc: {
int r0 = (++it)->u.operand;
printLocationOpAndRegisterOperand(out, exec, location, it, "inc", r0);
break;
}
case op_dec: {
int r0 = (++it)->u.operand;
printLocationOpAndRegisterOperand(out, exec, location, it, "dec", r0);
break;
}
case op_to_number: {
printUnaryOp(out, exec, location, it, "to_number");
break;
}
case op_to_string: {
printUnaryOp(out, exec, location, it, "to_string");
break;
}
case op_negate: {
printUnaryOp(out, exec, location, it, "negate");
break;
}
case op_add: {
printBinaryOp(out, exec, location, it, "add");
++it;
break;
}
case op_mul: {
printBinaryOp(out, exec, location, it, "mul");
++it;
break;
}
case op_div: {
printBinaryOp(out, exec, location, it, "div");
++it;
break;
}
case op_mod: {
printBinaryOp(out, exec, location, it, "mod");
break;
}
case op_sub: {
printBinaryOp(out, exec, location, it, "sub");
++it;
break;
}
case op_lshift: {
printBinaryOp(out, exec, location, it, "lshift");
break;
}
case op_rshift: {
printBinaryOp(out, exec, location, it, "rshift");
break;
}
case op_urshift: {
printBinaryOp(out, exec, location, it, "urshift");
break;
}
case op_bitand: {
printBinaryOp(out, exec, location, it, "bitand");
++it;
break;
}
case op_bitxor: {
printBinaryOp(out, exec, location, it, "bitxor");
++it;
break;
}
case op_bitor: {
printBinaryOp(out, exec, location, it, "bitor");
++it;
break;
}
case op_check_has_instance: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
int offset = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "check_has_instance");
out.printf("%s, %s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), registerName(r2).data(), offset, location + offset);
break;
}
case op_instanceof: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "instanceof");
out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data());
break;
}
case op_unsigned: {
printUnaryOp(out, exec, location, it, "unsigned");
break;
}
case op_typeof: {
printUnaryOp(out, exec, location, it, "typeof");
break;
}
case op_is_undefined: {
printUnaryOp(out, exec, location, it, "is_undefined");
break;
}
case op_is_boolean: {
printUnaryOp(out, exec, location, it, "is_boolean");
break;
}
case op_is_number: {
printUnaryOp(out, exec, location, it, "is_number");
break;
}
case op_is_string: {
printUnaryOp(out, exec, location, it, "is_string");
break;
}
case op_is_object: {
printUnaryOp(out, exec, location, it, "is_object");
break;
}
case op_is_object_or_null: {
printUnaryOp(out, exec, location, it, "is_object_or_null");
break;
}
case op_is_function: {
printUnaryOp(out, exec, location, it, "is_function");
break;
}
case op_in: {
printBinaryOp(out, exec, location, it, "in");
break;
}
case op_get_by_id:
case op_get_array_length: {
printGetByIdOp(out, exec, location, it);
printGetByIdCacheStatus(out, exec, location, stubInfos);
dumpValueProfiling(out, it, hasPrintedProfiling);
break;
}
case op_put_by_id: {
printPutByIdOp(out, exec, location, it, "put_by_id");
printPutByIdCacheStatus(out, location, stubInfos);
break;
}
case op_put_getter_by_id: {
int r0 = (++it)->u.operand;
int id0 = (++it)->u.operand;
int n0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "put_getter_by_id");
out.printf("%s, %s, %d, %s", registerName(r0).data(), idName(id0, identifier(id0)).data(), n0, registerName(r1).data());
break;
}
case op_put_setter_by_id: {
int r0 = (++it)->u.operand;
int id0 = (++it)->u.operand;
int n0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "put_setter_by_id");
out.printf("%s, %s, %d, %s", registerName(r0).data(), idName(id0, identifier(id0)).data(), n0, registerName(r1).data());
break;
}
case op_put_getter_setter: {
int r0 = (++it)->u.operand;
int id0 = (++it)->u.operand;
int n0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "put_getter_setter");
out.printf("%s, %s, %d, %s, %s", registerName(r0).data(), idName(id0, identifier(id0)).data(), n0, registerName(r1).data(), registerName(r2).data());
break;
}
case op_put_getter_by_val: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int n0 = (++it)->u.operand;
int r2 = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "put_getter_by_val");
out.printf("%s, %s, %d, %s", registerName(r0).data(), registerName(r1).data(), n0, registerName(r2).data());
break;
}
case op_put_setter_by_val: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int n0 = (++it)->u.operand;
int r2 = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "put_setter_by_val");
out.printf("%s, %s, %d, %s", registerName(r0).data(), registerName(r1).data(), n0, registerName(r2).data());
break;
}
case op_del_by_id: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int id0 = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "del_by_id");
out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), idName(id0, identifier(id0)).data());
break;
}
case op_get_by_val: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "get_by_val");
out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data());
dumpArrayProfiling(out, it, hasPrintedProfiling);
dumpValueProfiling(out, it, hasPrintedProfiling);
break;
}
case op_put_by_val: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "put_by_val");
out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data());
dumpArrayProfiling(out, it, hasPrintedProfiling);
break;
}
case op_put_by_val_direct: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "put_by_val_direct");
out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data());
dumpArrayProfiling(out, it, hasPrintedProfiling);
break;
}
case op_del_by_val: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "del_by_val");
out.printf("%s, %s, %s", registerName(r0).data(), registerName(r1).data(), registerName(r2).data());
break;
}
case op_put_by_index: {
int r0 = (++it)->u.operand;
unsigned n0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "put_by_index");
out.printf("%s, %u, %s", registerName(r0).data(), n0, registerName(r1).data());
break;
}
case op_jmp: {
int offset = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "jmp");
out.printf("%d(->%d)", offset, location + offset);
break;
}
case op_jtrue: {
printConditionalJump(out, exec, begin, it, location, "jtrue");
break;
}
case op_jfalse: {
printConditionalJump(out, exec, begin, it, location, "jfalse");
break;
}
case op_jeq_null: {
printConditionalJump(out, exec, begin, it, location, "jeq_null");
break;
}
case op_jneq_null: {
printConditionalJump(out, exec, begin, it, location, "jneq_null");
break;
}
case op_jneq_ptr: {
int r0 = (++it)->u.operand;
Special::Pointer pointer = (++it)->u.specialPointer;
int offset = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "jneq_ptr");
out.printf("%s, %d (%p), %d(->%d)", registerName(r0).data(), pointer, m_globalObject->actualPointerFor(pointer), offset, location + offset);
break;
}
case op_jless: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "jless");
out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset);
break;
}
case op_jlesseq: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "jlesseq");
out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset);
break;
}
case op_jgreater: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "jgreater");
out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset);
break;
}
case op_jgreatereq: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "jgreatereq");
out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset);
break;
}
case op_jnless: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "jnless");
out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset);
break;
}
case op_jnlesseq: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "jnlesseq");
out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset);
break;
}
case op_jngreater: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "jngreater");
out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset);
break;
}
case op_jngreatereq: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "jngreatereq");
out.printf("%s, %s, %d(->%d)", registerName(r0).data(), registerName(r1).data(), offset, location + offset);
break;
}
case op_loop_hint: {
printLocationAndOp(out, exec, location, it, "loop_hint");
break;
}
case op_switch_imm: {
int tableIndex = (++it)->u.operand;
int defaultTarget = (++it)->u.operand;
int scrutineeRegister = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "switch_imm");
out.printf("%d, %d(->%d), %s", tableIndex, defaultTarget, location + defaultTarget, registerName(scrutineeRegister).data());
break;
}
case op_switch_char: {
int tableIndex = (++it)->u.operand;
int defaultTarget = (++it)->u.operand;
int scrutineeRegister = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "switch_char");
out.printf("%d, %d(->%d), %s", tableIndex, defaultTarget, location + defaultTarget, registerName(scrutineeRegister).data());
break;
}
case op_switch_string: {
int tableIndex = (++it)->u.operand;
int defaultTarget = (++it)->u.operand;
int scrutineeRegister = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "switch_string");
out.printf("%d, %d(->%d), %s", tableIndex, defaultTarget, location + defaultTarget, registerName(scrutineeRegister).data());
break;
}
case op_new_func: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int f0 = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "new_func");
out.printf("%s, %s, f%d", registerName(r0).data(), registerName(r1).data(), f0);
break;
}
case op_new_arrow_func_exp: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int f0 = (++it)->u.operand;
int r2 = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "op_new_arrow_func_exp");
out.printf("%s, %s, f%d, %s", registerName(r0).data(), registerName(r1).data(), f0, registerName(r2).data());
break;
}
case op_new_func_exp: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int f0 = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "new_func_exp");
out.printf("%s, %s, f%d", registerName(r0).data(), registerName(r1).data(), f0);
break;
}
case op_call: {
printCallOp(out, exec, location, it, "call", DumpCaches, hasPrintedProfiling, callLinkInfos);
break;
}
case op_tail_call: {
printCallOp(out, exec, location, it, "tail_call", DumpCaches, hasPrintedProfiling, callLinkInfos);
break;
}
case op_call_eval: {
printCallOp(out, exec, location, it, "call_eval", DontDumpCaches, hasPrintedProfiling, callLinkInfos);
break;
}
case op_construct_varargs:
case op_call_varargs:
case op_tail_call_varargs: {
int result = (++it)->u.operand;
int callee = (++it)->u.operand;
int thisValue = (++it)->u.operand;
int arguments = (++it)->u.operand;
int firstFreeRegister = (++it)->u.operand;
int varArgOffset = (++it)->u.operand;
++it;
printLocationAndOp(out, exec, location, it, opcode == op_call_varargs ? "call_varargs" : opcode == op_construct_varargs ? "construct_varargs" : "tail_call_varargs");
out.printf("%s, %s, %s, %s, %d, %d", registerName(result).data(), registerName(callee).data(), registerName(thisValue).data(), registerName(arguments).data(), firstFreeRegister, varArgOffset);
dumpValueProfiling(out, it, hasPrintedProfiling);
break;
}
case op_ret: {
int r0 = (++it)->u.operand;
printLocationOpAndRegisterOperand(out, exec, location, it, "ret", r0);
break;
}
case op_construct: {
printCallOp(out, exec, location, it, "construct", DumpCaches, hasPrintedProfiling, callLinkInfos);
break;
}
case op_strcat: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int count = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "strcat");
out.printf("%s, %s, %d", registerName(r0).data(), registerName(r1).data(), count);
break;
}
case op_to_primitive: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "to_primitive");
out.printf("%s, %s", registerName(r0).data(), registerName(r1).data());
break;
}
case op_get_enumerable_length: {
int dst = it[1].u.operand;
int base = it[2].u.operand;
printLocationAndOp(out, exec, location, it, "op_get_enumerable_length");
out.printf("%s, %s", registerName(dst).data(), registerName(base).data());
it += OPCODE_LENGTH(op_get_enumerable_length) - 1;
break;
}
case op_has_indexed_property: {
int dst = it[1].u.operand;
int base = it[2].u.operand;
int propertyName = it[3].u.operand;
ArrayProfile* arrayProfile = it[4].u.arrayProfile;
printLocationAndOp(out, exec, location, it, "op_has_indexed_property");
out.printf("%s, %s, %s, %p", registerName(dst).data(), registerName(base).data(), registerName(propertyName).data(), arrayProfile);
it += OPCODE_LENGTH(op_has_indexed_property) - 1;
break;
}
case op_has_structure_property: {
int dst = it[1].u.operand;
int base = it[2].u.operand;
int propertyName = it[3].u.operand;
int enumerator = it[4].u.operand;
printLocationAndOp(out, exec, location, it, "op_has_structure_property");
out.printf("%s, %s, %s, %s", registerName(dst).data(), registerName(base).data(), registerName(propertyName).data(), registerName(enumerator).data());
it += OPCODE_LENGTH(op_has_structure_property) - 1;
break;
}
case op_has_generic_property: {
int dst = it[1].u.operand;
int base = it[2].u.operand;
int propertyName = it[3].u.operand;
printLocationAndOp(out, exec, location, it, "op_has_generic_property");
out.printf("%s, %s, %s", registerName(dst).data(), registerName(base).data(), registerName(propertyName).data());
it += OPCODE_LENGTH(op_has_generic_property) - 1;
break;
}
case op_get_direct_pname: {
int dst = it[1].u.operand;
int base = it[2].u.operand;
int propertyName = it[3].u.operand;
int index = it[4].u.operand;
int enumerator = it[5].u.operand;
ValueProfile* profile = it[6].u.profile;
printLocationAndOp(out, exec, location, it, "op_get_direct_pname");
out.printf("%s, %s, %s, %s, %s, %p", registerName(dst).data(), registerName(base).data(), registerName(propertyName).data(), registerName(index).data(), registerName(enumerator).data(), profile);
it += OPCODE_LENGTH(op_get_direct_pname) - 1;
break;
}
case op_get_property_enumerator: {
int dst = it[1].u.operand;
int base = it[2].u.operand;
printLocationAndOp(out, exec, location, it, "op_get_property_enumerator");
out.printf("%s, %s", registerName(dst).data(), registerName(base).data());
it += OPCODE_LENGTH(op_get_property_enumerator) - 1;
break;
}
case op_enumerator_structure_pname: {
int dst = it[1].u.operand;
int enumerator = it[2].u.operand;
int index = it[3].u.operand;
printLocationAndOp(out, exec, location, it, "op_enumerator_structure_pname");
out.printf("%s, %s, %s", registerName(dst).data(), registerName(enumerator).data(), registerName(index).data());
it += OPCODE_LENGTH(op_enumerator_structure_pname) - 1;
break;
}
case op_enumerator_generic_pname: {
int dst = it[1].u.operand;
int enumerator = it[2].u.operand;
int index = it[3].u.operand;
printLocationAndOp(out, exec, location, it, "op_enumerator_generic_pname");
out.printf("%s, %s, %s", registerName(dst).data(), registerName(enumerator).data(), registerName(index).data());
it += OPCODE_LENGTH(op_enumerator_generic_pname) - 1;
break;
}
case op_to_index_string: {
int dst = it[1].u.operand;
int index = it[2].u.operand;
printLocationAndOp(out, exec, location, it, "op_to_index_string");
out.printf("%s, %s", registerName(dst).data(), registerName(index).data());
it += OPCODE_LENGTH(op_to_index_string) - 1;
break;
}
case op_push_with_scope: {
int dst = (++it)->u.operand;
int newScope = (++it)->u.operand;
int currentScope = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "push_with_scope");
out.printf("%s, %s, %s", registerName(dst).data(), registerName(newScope).data(), registerName(currentScope).data());
break;
}
case op_get_parent_scope: {
int dst = (++it)->u.operand;
int parentScope = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "get_parent_scope");
out.printf("%s, %s", registerName(dst).data(), registerName(parentScope).data());
break;
}
case op_create_lexical_environment: {
int dst = (++it)->u.operand;
int scope = (++it)->u.operand;
int symbolTable = (++it)->u.operand;
int initialValue = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "create_lexical_environment");
out.printf("%s, %s, %s, %s",
registerName(dst).data(), registerName(scope).data(), registerName(symbolTable).data(), registerName(initialValue).data());
break;
}
case op_catch: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "catch");
out.printf("%s, %s", registerName(r0).data(), registerName(r1).data());
break;
}
case op_throw: {
int r0 = (++it)->u.operand;
printLocationOpAndRegisterOperand(out, exec, location, it, "throw", r0);
break;
}
case op_throw_static_error: {
int k0 = (++it)->u.operand;
int k1 = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "throw_static_error");
out.printf("%s, %s", constantName(k0).data(), k1 ? "true" : "false");
break;
}
case op_debug: {
int debugHookID = (++it)->u.operand;
int hasBreakpointFlag = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "debug");
out.printf("%s %d", debugHookName(debugHookID), hasBreakpointFlag);
break;
}
case op_profile_will_call: {
int function = (++it)->u.operand;
printLocationOpAndRegisterOperand(out, exec, location, it, "profile_will_call", function);
break;
}
case op_profile_did_call: {
int function = (++it)->u.operand;
printLocationOpAndRegisterOperand(out, exec, location, it, "profile_did_call", function);
break;
}
case op_end: {
int r0 = (++it)->u.operand;
printLocationOpAndRegisterOperand(out, exec, location, it, "end", r0);
break;
}
case op_resolve_scope: {
int r0 = (++it)->u.operand;
int scope = (++it)->u.operand;
int id0 = (++it)->u.operand;
ResolveType resolveType = static_cast<ResolveType>((++it)->u.operand);
int depth = (++it)->u.operand;
void* pointer = (++it)->u.pointer;
printLocationAndOp(out, exec, location, it, "resolve_scope");
out.printf("%s, %s, %s, <%s>, %d, %p", registerName(r0).data(), registerName(scope).data(), idName(id0, identifier(id0)).data(), resolveTypeName(resolveType), depth, pointer);
break;
}
case op_get_from_scope: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int id0 = (++it)->u.operand;
GetPutInfo getPutInfo = GetPutInfo((++it)->u.operand);
++it; // Structure
int operand = (++it)->u.operand; // Operand
printLocationAndOp(out, exec, location, it, "get_from_scope");
out.print(registerName(r0), ", ", registerName(r1));
if (static_cast<unsigned>(id0) == UINT_MAX)
out.print(", anonymous");
else
out.print(", ", idName(id0, identifier(id0)));
out.print(", ", getPutInfo.operand(), "<", resolveModeName(getPutInfo.resolveMode()), "|", resolveTypeName(getPutInfo.resolveType()), "|", initializationModeName(getPutInfo.initializationMode()), ">, ", operand);
dumpValueProfiling(out, it, hasPrintedProfiling);
break;
}
case op_put_to_scope: {
int r0 = (++it)->u.operand;
int id0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
GetPutInfo getPutInfo = GetPutInfo((++it)->u.operand);
++it; // Structure
int operand = (++it)->u.operand; // Operand
printLocationAndOp(out, exec, location, it, "put_to_scope");
out.print(registerName(r0));
if (static_cast<unsigned>(id0) == UINT_MAX)
out.print(", anonymous");
else
out.print(", ", idName(id0, identifier(id0)));
out.print(", ", registerName(r1), ", ", getPutInfo.operand(), "<", resolveModeName(getPutInfo.resolveMode()), "|", resolveTypeName(getPutInfo.resolveType()), "|", initializationModeName(getPutInfo.initializationMode()), ">, <structure>, ", operand);
break;
}
case op_get_from_arguments: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "get_from_arguments");
out.printf("%s, %s, %d", registerName(r0).data(), registerName(r1).data(), offset);
dumpValueProfiling(out, it, hasPrintedProfiling);
break;
}
case op_put_to_arguments: {
int r0 = (++it)->u.operand;
int offset = (++it)->u.operand;
int r1 = (++it)->u.operand;
printLocationAndOp(out, exec, location, it, "put_to_arguments");
out.printf("%s, %d, %s", registerName(r0).data(), offset, registerName(r1).data());
break;
}
default:
RELEASE_ASSERT_NOT_REACHED();
}
dumpRareCaseProfile(out, "rare case: ", rareCaseProfileForBytecodeOffset(location), hasPrintedProfiling);
dumpRareCaseProfile(out, "special fast case: ", specialFastCaseProfileForBytecodeOffset(location), hasPrintedProfiling);
#if ENABLE(DFG_JIT)
Vector<DFG::FrequentExitSite> exitSites = exitProfile().exitSitesFor(location);
if (!exitSites.isEmpty()) {
out.print(" !! frequent exits: ");
CommaPrinter comma;
for (unsigned i = 0; i < exitSites.size(); ++i)
out.print(comma, exitSites[i].kind(), " ", exitSites[i].jitType());
}
#else // ENABLE(DFG_JIT)
UNUSED_PARAM(location);
#endif // ENABLE(DFG_JIT)
out.print("\n");
}
void CodeBlock::dumpBytecode(
PrintStream& out, unsigned bytecodeOffset,
const StubInfoMap& stubInfos, const CallLinkInfoMap& callLinkInfos)
{
ExecState* exec = m_globalObject->globalExec();
const Instruction* it = instructions().begin() + bytecodeOffset;
dumpBytecode(out, exec, instructions().begin(), it, stubInfos, callLinkInfos);
}
#define FOR_EACH_MEMBER_VECTOR(macro) \
macro(instructions) \
macro(callLinkInfos) \
macro(linkedCallerList) \
macro(identifiers) \
macro(functionExpressions) \
macro(constantRegisters)
#define FOR_EACH_MEMBER_VECTOR_RARE_DATA(macro) \
macro(regexps) \
macro(functions) \
macro(exceptionHandlers) \
macro(switchJumpTables) \
macro(stringSwitchJumpTables) \
macro(evalCodeCache) \
macro(expressionInfo) \
macro(lineInfo) \
macro(callReturnIndexVector)
template<typename T>
static size_t sizeInBytes(const Vector<T>& vector)
{
return vector.capacity() * sizeof(T);
}
namespace {
class PutToScopeFireDetail : public FireDetail {
public:
PutToScopeFireDetail(CodeBlock* codeBlock, const Identifier& ident)
: m_codeBlock(codeBlock)
, m_ident(ident)
{
}
virtual void dump(PrintStream& out) const override
{
out.print("Linking put_to_scope in ", FunctionExecutableDump(jsCast<FunctionExecutable*>(m_codeBlock->ownerExecutable())), " for ", m_ident);
}
private:
CodeBlock* m_codeBlock;
const Identifier& m_ident;
};
} // anonymous namespace
CodeBlock::CodeBlock(CopyParsedBlockTag, CodeBlock& other)
: m_globalObject(other.m_globalObject)
, m_heap(other.m_heap)
, m_numCalleeRegisters(other.m_numCalleeRegisters)
, m_numVars(other.m_numVars)
, m_isConstructor(other.m_isConstructor)
, m_shouldAlwaysBeInlined(true)
, m_didFailFTLCompilation(false)
, m_hasBeenCompiledWithFTL(false)
, m_unlinkedCode(*other.m_vm, other.m_ownerExecutable.get(), other.m_unlinkedCode.get())
, m_hasDebuggerStatement(false)
, m_steppingMode(SteppingModeDisabled)
, m_numBreakpoints(0)
, m_ownerExecutable(*other.m_vm, other.m_ownerExecutable.get(), other.m_ownerExecutable.get())
, m_vm(other.m_vm)
, m_instructions(other.m_instructions)
, m_thisRegister(other.m_thisRegister)
, m_scopeRegister(other.m_scopeRegister)
, m_lexicalEnvironmentRegister(other.m_lexicalEnvironmentRegister)
, m_isStrictMode(other.m_isStrictMode)
, m_needsActivation(other.m_needsActivation)
, m_source(other.m_source)
, m_sourceOffset(other.m_sourceOffset)
, m_firstLineColumnOffset(other.m_firstLineColumnOffset)
, m_codeType(other.m_codeType)
, m_constantRegisters(other.m_constantRegisters)
, m_constantsSourceCodeRepresentation(other.m_constantsSourceCodeRepresentation)
, m_functionDecls(other.m_functionDecls)
, m_functionExprs(other.m_functionExprs)
, m_osrExitCounter(0)
, m_optimizationDelayCounter(0)
, m_reoptimizationRetryCounter(0)
, m_hash(other.m_hash)
#if ENABLE(JIT)
, m_capabilityLevelState(DFG::CapabilityLevelNotSet)
#endif
{
m_visitStronglyHasBeenCalled.store(false, std::memory_order_relaxed);
m_visitAggregateHasBeenCalled.store(false, std::memory_order_relaxed);
ASSERT(m_heap->isDeferred());
ASSERT(m_scopeRegister.isLocal());
setNumParameters(other.numParameters());
optimizeAfterWarmUp();
jitAfterWarmUp();
if (other.m_rareData) {
createRareDataIfNecessary();
m_rareData->m_exceptionHandlers = other.m_rareData->m_exceptionHandlers;
m_rareData->m_constantBuffers = other.m_rareData->m_constantBuffers;
m_rareData->m_switchJumpTables = other.m_rareData->m_switchJumpTables;
m_rareData->m_stringSwitchJumpTables = other.m_rareData->m_stringSwitchJumpTables;
}
m_heap->m_codeBlocks.add(this);
m_heap->reportExtraMemoryAllocated(sizeof(CodeBlock));
}
CodeBlock::CodeBlock(ScriptExecutable* ownerExecutable, UnlinkedCodeBlock* unlinkedCodeBlock, JSScope* scope, PassRefPtr<SourceProvider> sourceProvider, unsigned sourceOffset, unsigned firstLineColumnOffset)
: m_globalObject(scope->globalObject()->vm(), ownerExecutable, scope->globalObject())
, m_heap(&m_globalObject->vm().heap)
, m_numCalleeRegisters(unlinkedCodeBlock->m_numCalleeRegisters)
, m_numVars(unlinkedCodeBlock->m_numVars)
, m_isConstructor(unlinkedCodeBlock->isConstructor())
, m_shouldAlwaysBeInlined(true)
, m_didFailFTLCompilation(false)
, m_hasBeenCompiledWithFTL(false)
, m_unlinkedCode(m_globalObject->vm(), ownerExecutable, unlinkedCodeBlock)
, m_hasDebuggerStatement(false)
, m_steppingMode(SteppingModeDisabled)
, m_numBreakpoints(0)
, m_ownerExecutable(m_globalObject->vm(), ownerExecutable, ownerExecutable)
, m_vm(unlinkedCodeBlock->vm())
, m_thisRegister(unlinkedCodeBlock->thisRegister())
, m_scopeRegister(unlinkedCodeBlock->scopeRegister())
, m_lexicalEnvironmentRegister(unlinkedCodeBlock->activationRegister())
, m_isStrictMode(unlinkedCodeBlock->isStrictMode())
, m_needsActivation(unlinkedCodeBlock->hasActivationRegister() && unlinkedCodeBlock->codeType() == FunctionCode)
, m_source(sourceProvider)
, m_sourceOffset(sourceOffset)
, m_firstLineColumnOffset(firstLineColumnOffset)
, m_codeType(unlinkedCodeBlock->codeType())
, m_osrExitCounter(0)
, m_optimizationDelayCounter(0)
, m_reoptimizationRetryCounter(0)
#if ENABLE(JIT)
, m_capabilityLevelState(DFG::CapabilityLevelNotSet)
#endif
{
m_visitStronglyHasBeenCalled.store(false, std::memory_order_relaxed);
m_visitAggregateHasBeenCalled.store(false, std::memory_order_relaxed);
ASSERT(m_heap->isDeferred());
ASSERT(m_scopeRegister.isLocal());
ASSERT(m_source);
setNumParameters(unlinkedCodeBlock->numParameters());
if (vm()->typeProfiler() || vm()->controlFlowProfiler())
vm()->functionHasExecutedCache()->removeUnexecutedRange(ownerExecutable->sourceID(), ownerExecutable->typeProfilingStartOffset(), ownerExecutable->typeProfilingEndOffset());
setConstantRegisters(unlinkedCodeBlock->constantRegisters(), unlinkedCodeBlock->constantsSourceCodeRepresentation());
if (unlinkedCodeBlock->usesGlobalObject())
m_constantRegisters[unlinkedCodeBlock->globalObjectRegister().toConstantIndex()].set(*m_vm, ownerExecutable, m_globalObject.get());
for (unsigned i = 0; i < LinkTimeConstantCount; i++) {
LinkTimeConstant type = static_cast<LinkTimeConstant>(i);
if (unsigned registerIndex = unlinkedCodeBlock->registerIndexForLinkTimeConstant(type))
m_constantRegisters[registerIndex].set(*m_vm, ownerExecutable, m_globalObject->jsCellForLinkTimeConstant(type));
}
HashSet<int, WTF::IntHash<int>, WTF::UnsignedWithZeroKeyHashTraits<int>> clonedConstantSymbolTables;
{
HashSet<SymbolTable*> clonedSymbolTables;
for (unsigned i = 0; i < m_constantRegisters.size(); i++) {
if (m_constantRegisters[i].get().isEmpty())
continue;
if (SymbolTable* symbolTable = jsDynamicCast<SymbolTable*>(m_constantRegisters[i].get())) {
RELEASE_ASSERT(clonedSymbolTables.add(symbolTable).isNewEntry);
if (m_vm->typeProfiler()) {
ConcurrentJITLocker locker(symbolTable->m_lock);
symbolTable->prepareForTypeProfiling(locker);
}
m_constantRegisters[i].set(*m_vm, ownerExecutable, symbolTable->cloneScopePart(*m_vm));
clonedConstantSymbolTables.add(i + FirstConstantRegisterIndex);
}
}
}
// We already have the cloned symbol table for the module environment since we need to instantiate
// the module environments before linking the code block. We replace the stored symbol table with the already cloned one.
if (UnlinkedModuleProgramCodeBlock* unlinkedModuleProgramCodeBlock = jsDynamicCast<UnlinkedModuleProgramCodeBlock*>(unlinkedCodeBlock)) {
SymbolTable* clonedSymbolTable = jsCast<ModuleProgramExecutable*>(ownerExecutable)->moduleEnvironmentSymbolTable();
if (m_vm->typeProfiler()) {
ConcurrentJITLocker locker(clonedSymbolTable->m_lock);
clonedSymbolTable->prepareForTypeProfiling(locker);
}
replaceConstant(unlinkedModuleProgramCodeBlock->moduleEnvironmentSymbolTableConstantRegisterOffset(), clonedSymbolTable);
}
m_functionDecls.resizeToFit(unlinkedCodeBlock->numberOfFunctionDecls());
for (size_t count = unlinkedCodeBlock->numberOfFunctionDecls(), i = 0; i < count; ++i) {
UnlinkedFunctionExecutable* unlinkedExecutable = unlinkedCodeBlock->functionDecl(i);
if (vm()->typeProfiler() || vm()->controlFlowProfiler())
vm()->functionHasExecutedCache()->insertUnexecutedRange(ownerExecutable->sourceID(), unlinkedExecutable->typeProfilingStartOffset(), unlinkedExecutable->typeProfilingEndOffset());
m_functionDecls[i].set(*m_vm, ownerExecutable, unlinkedExecutable->link(*m_vm, ownerExecutable->source()));
}
m_functionExprs.resizeToFit(unlinkedCodeBlock->numberOfFunctionExprs());
for (size_t count = unlinkedCodeBlock->numberOfFunctionExprs(), i = 0; i < count; ++i) {
UnlinkedFunctionExecutable* unlinkedExecutable = unlinkedCodeBlock->functionExpr(i);
if (vm()->typeProfiler() || vm()->controlFlowProfiler())
vm()->functionHasExecutedCache()->insertUnexecutedRange(ownerExecutable->sourceID(), unlinkedExecutable->typeProfilingStartOffset(), unlinkedExecutable->typeProfilingEndOffset());
m_functionExprs[i].set(*m_vm, ownerExecutable, unlinkedExecutable->link(*m_vm, ownerExecutable->source()));
}
if (unlinkedCodeBlock->hasRareData()) {
createRareDataIfNecessary();
if (size_t count = unlinkedCodeBlock->constantBufferCount()) {
m_rareData->m_constantBuffers.grow(count);
for (size_t i = 0; i < count; i++) {
const UnlinkedCodeBlock::ConstantBuffer& buffer = unlinkedCodeBlock->constantBuffer(i);
m_rareData->m_constantBuffers[i] = buffer;
}
}
if (size_t count = unlinkedCodeBlock->numberOfExceptionHandlers()) {
m_rareData->m_exceptionHandlers.resizeToFit(count);
for (size_t i = 0; i < count; i++) {
const UnlinkedHandlerInfo& unlinkedHandler = unlinkedCodeBlock->exceptionHandler(i);
HandlerInfo& handler = m_rareData->m_exceptionHandlers[i];
#if ENABLE(JIT)
handler.initialize(unlinkedHandler, CodeLocationLabel(MacroAssemblerCodePtr::createFromExecutableAddress(LLInt::getCodePtr(op_catch))));
#else
handler.initialize(unlinkedHandler);
#endif
}
}
if (size_t count = unlinkedCodeBlock->numberOfStringSwitchJumpTables()) {
m_rareData->m_stringSwitchJumpTables.grow(count);
for (size_t i = 0; i < count; i++) {
UnlinkedStringJumpTable::StringOffsetTable::iterator ptr = unlinkedCodeBlock->stringSwitchJumpTable(i).offsetTable.begin();
UnlinkedStringJumpTable::StringOffsetTable::iterator end = unlinkedCodeBlock->stringSwitchJumpTable(i).offsetTable.end();
for (; ptr != end; ++ptr) {
OffsetLocation offset;
offset.branchOffset = ptr->value;
m_rareData->m_stringSwitchJumpTables[i].offsetTable.add(ptr->key, offset);
}
}
}
if (size_t count = unlinkedCodeBlock->numberOfSwitchJumpTables()) {
m_rareData->m_switchJumpTables.grow(count);
for (size_t i = 0; i < count; i++) {
UnlinkedSimpleJumpTable& sourceTable = unlinkedCodeBlock->switchJumpTable(i);
SimpleJumpTable& destTable = m_rareData->m_switchJumpTables[i];
destTable.branchOffsets = sourceTable.branchOffsets;
destTable.min = sourceTable.min;
}
}
}
// Allocate metadata buffers for the bytecode
if (size_t size = unlinkedCodeBlock->numberOfLLintCallLinkInfos())
m_llintCallLinkInfos.resizeToFit(size);
if (size_t size = unlinkedCodeBlock->numberOfArrayProfiles())
m_arrayProfiles.grow(size);
if (size_t size = unlinkedCodeBlock->numberOfArrayAllocationProfiles())
m_arrayAllocationProfiles.resizeToFit(size);
if (size_t size = unlinkedCodeBlock->numberOfValueProfiles())
m_valueProfiles.resizeToFit(size);
if (size_t size = unlinkedCodeBlock->numberOfObjectAllocationProfiles())
m_objectAllocationProfiles.resizeToFit(size);
#if ENABLE(JIT)
setCalleeSaveRegisters(RegisterSet::llintBaselineCalleeSaveRegisters());
#endif
// Copy and translate the UnlinkedInstructions
unsigned instructionCount = unlinkedCodeBlock->instructions().count();
UnlinkedInstructionStream::Reader instructionReader(unlinkedCodeBlock->instructions());
// Bookkeep the strongly referenced module environments.
HashSet<JSModuleEnvironment*> stronglyReferencedModuleEnvironments;
Vector<Instruction, 0, UnsafeVectorOverflow> instructions(instructionCount);
for (unsigned i = 0; !instructionReader.atEnd(); ) {
const UnlinkedInstruction* pc = instructionReader.next();
unsigned opLength = opcodeLength(pc[0].u.opcode);
instructions[i] = vm()->interpreter->getOpcode(pc[0].u.opcode);
for (size_t j = 1; j < opLength; ++j) {
if (sizeof(int32_t) != sizeof(intptr_t))
instructions[i + j].u.pointer = 0;
instructions[i + j].u.operand = pc[j].u.operand;
}
switch (pc[0].u.opcode) {
case op_has_indexed_property: {
int arrayProfileIndex = pc[opLength - 1].u.operand;
m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i);
instructions[i + opLength - 1] = &m_arrayProfiles[arrayProfileIndex];
break;
}
case op_call_varargs:
case op_tail_call_varargs:
case op_construct_varargs:
case op_get_by_val: {
int arrayProfileIndex = pc[opLength - 2].u.operand;
m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i);
instructions[i + opLength - 2] = &m_arrayProfiles[arrayProfileIndex];
FALLTHROUGH;
}
case op_get_direct_pname:
case op_get_by_id:
case op_get_from_arguments: {
ValueProfile* profile = &m_valueProfiles[pc[opLength - 1].u.operand];
ASSERT(profile->m_bytecodeOffset == -1);
profile->m_bytecodeOffset = i;
instructions[i + opLength - 1] = profile;
break;
}
case op_put_by_val: {
int arrayProfileIndex = pc[opLength - 1].u.operand;
m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i);
instructions[i + opLength - 1] = &m_arrayProfiles[arrayProfileIndex];
break;
}
case op_put_by_val_direct: {
int arrayProfileIndex = pc[opLength - 1].u.operand;
m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i);
instructions[i + opLength - 1] = &m_arrayProfiles[arrayProfileIndex];
break;
}
case op_new_array:
case op_new_array_buffer:
case op_new_array_with_size: {
int arrayAllocationProfileIndex = pc[opLength - 1].u.operand;
instructions[i + opLength - 1] = &m_arrayAllocationProfiles[arrayAllocationProfileIndex];
break;
}
case op_new_object: {
int objectAllocationProfileIndex = pc[opLength - 1].u.operand;
ObjectAllocationProfile* objectAllocationProfile = &m_objectAllocationProfiles[objectAllocationProfileIndex];
int inferredInlineCapacity = pc[opLength - 2].u.operand;
instructions[i + opLength - 1] = objectAllocationProfile;
objectAllocationProfile->initialize(*vm(),
ownerExecutable, m_globalObject->objectPrototype(), inferredInlineCapacity);
break;
}
case op_call:
case op_tail_call:
case op_call_eval: {
ValueProfile* profile = &m_valueProfiles[pc[opLength - 1].u.operand];
ASSERT(profile->m_bytecodeOffset == -1);
profile->m_bytecodeOffset = i;
instructions[i + opLength - 1] = profile;
int arrayProfileIndex = pc[opLength - 2].u.operand;
m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i);
instructions[i + opLength - 2] = &m_arrayProfiles[arrayProfileIndex];
instructions[i + 5] = &m_llintCallLinkInfos[pc[5].u.operand];
break;
}
case op_construct: {
instructions[i + 5] = &m_llintCallLinkInfos[pc[5].u.operand];
ValueProfile* profile = &m_valueProfiles[pc[opLength - 1].u.operand];
ASSERT(profile->m_bytecodeOffset == -1);
profile->m_bytecodeOffset = i;
instructions[i + opLength - 1] = profile;
break;
}
case op_get_array_length:
CRASH();
case op_create_lexical_environment: {
int symbolTableIndex = pc[3].u.operand;
RELEASE_ASSERT(clonedConstantSymbolTables.contains(symbolTableIndex));
break;
}
case op_resolve_scope: {
const Identifier& ident = identifier(pc[3].u.operand);
ResolveType type = static_cast<ResolveType>(pc[4].u.operand);
RELEASE_ASSERT(type != LocalClosureVar);
int localScopeDepth = pc[5].u.operand;
ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), localScopeDepth, scope, ident, Get, type, NotInitialization);
instructions[i + 4].u.operand = op.type;
instructions[i + 5].u.operand = op.depth;
if (op.lexicalEnvironment) {
if (op.type == ModuleVar) {
// Keep the linked module environment strongly referenced.
if (stronglyReferencedModuleEnvironments.add(jsCast<JSModuleEnvironment*>(op.lexicalEnvironment)).isNewEntry)
addConstant(op.lexicalEnvironment);
instructions[i + 6].u.jsCell.set(*vm(), ownerExecutable, op.lexicalEnvironment);
} else
instructions[i + 6].u.symbolTable.set(*vm(), ownerExecutable, op.lexicalEnvironment->symbolTable());
} else if (JSScope* constantScope = JSScope::constantScopeForCodeBlock(op.type, this))
instructions[i + 6].u.jsCell.set(*vm(), ownerExecutable, constantScope);
else
instructions[i + 6].u.pointer = nullptr;
break;
}
case op_get_from_scope: {
ValueProfile* profile = &m_valueProfiles[pc[opLength - 1].u.operand];
ASSERT(profile->m_bytecodeOffset == -1);
profile->m_bytecodeOffset = i;
instructions[i + opLength - 1] = profile;
// get_from_scope dst, scope, id, GetPutInfo, Structure, Operand
int localScopeDepth = pc[5].u.operand;
instructions[i + 5].u.pointer = nullptr;
GetPutInfo getPutInfo = GetPutInfo(pc[4].u.operand);
ASSERT(getPutInfo.initializationMode() == NotInitialization);
if (getPutInfo.resolveType() == LocalClosureVar) {
instructions[i + 4] = GetPutInfo(getPutInfo.resolveMode(), ClosureVar, getPutInfo.initializationMode()).operand();
break;
}
const Identifier& ident = identifier(pc[3].u.operand);
ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), localScopeDepth, scope, ident, Get, getPutInfo.resolveType(), NotInitialization);
instructions[i + 4].u.operand = GetPutInfo(getPutInfo.resolveMode(), op.type, getPutInfo.initializationMode()).operand();
if (op.type == ModuleVar)
instructions[i + 4].u.operand = GetPutInfo(getPutInfo.resolveMode(), ClosureVar, getPutInfo.initializationMode()).operand();
if (op.type == GlobalVar || op.type == GlobalVarWithVarInjectionChecks || op.type == GlobalLexicalVar || op.type == GlobalLexicalVarWithVarInjectionChecks)
instructions[i + 5].u.watchpointSet = op.watchpointSet;
else if (op.structure)
instructions[i + 5].u.structure.set(*vm(), ownerExecutable, op.structure);
instructions[i + 6].u.pointer = reinterpret_cast<void*>(op.operand);
break;
}
case op_put_to_scope: {
// put_to_scope scope, id, value, GetPutInfo, Structure, Operand
GetPutInfo getPutInfo = GetPutInfo(pc[4].u.operand);
if (getPutInfo.resolveType() == LocalClosureVar) {
// Only do watching if the property we're putting to is not anonymous.
if (static_cast<unsigned>(pc[2].u.operand) != UINT_MAX) {
int symbolTableIndex = pc[5].u.operand;
RELEASE_ASSERT(clonedConstantSymbolTables.contains(symbolTableIndex));
SymbolTable* symbolTable = jsCast<SymbolTable*>(getConstant(symbolTableIndex));
const Identifier& ident = identifier(pc[2].u.operand);
ConcurrentJITLocker locker(symbolTable->m_lock);
auto iter = symbolTable->find(locker, ident.impl());
RELEASE_ASSERT(iter != symbolTable->end(locker));
iter->value.prepareToWatch();
instructions[i + 5].u.watchpointSet = iter->value.watchpointSet();
} else
instructions[i + 5].u.watchpointSet = nullptr;
break;
}
const Identifier& ident = identifier(pc[2].u.operand);
int localScopeDepth = pc[5].u.operand;
instructions[i + 5].u.pointer = nullptr;
ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), localScopeDepth, scope, ident, Put, getPutInfo.resolveType(), getPutInfo.initializationMode());
instructions[i + 4].u.operand = GetPutInfo(getPutInfo.resolveMode(), op.type, getPutInfo.initializationMode()).operand();
if (op.type == GlobalVar || op.type == GlobalVarWithVarInjectionChecks || op.type == GlobalLexicalVar || op.type == GlobalLexicalVarWithVarInjectionChecks)
instructions[i + 5].u.watchpointSet = op.watchpointSet;
else if (op.type == ClosureVar || op.type == ClosureVarWithVarInjectionChecks) {
if (op.watchpointSet)
op.watchpointSet->invalidate(PutToScopeFireDetail(this, ident));
} else if (op.structure)
instructions[i + 5].u.structure.set(*vm(), ownerExecutable, op.structure);
instructions[i + 6].u.pointer = reinterpret_cast<void*>(op.operand);
break;
}
case op_profile_type: {
RELEASE_ASSERT(vm()->typeProfiler());
// The format of this instruction is: op_profile_type regToProfile, TypeLocation*, flag, identifier?, resolveType?
size_t instructionOffset = i + opLength - 1;
unsigned divotStart, divotEnd;
GlobalVariableID globalVariableID = 0;
RefPtr<TypeSet> globalTypeSet;
bool shouldAnalyze = m_unlinkedCode->typeProfilerExpressionInfoForBytecodeOffset(instructionOffset, divotStart, divotEnd);
VirtualRegister profileRegister(pc[1].u.operand);
ProfileTypeBytecodeFlag flag = static_cast<ProfileTypeBytecodeFlag>(pc[3].u.operand);
SymbolTable* symbolTable = nullptr;
switch (flag) {
case ProfileTypeBytecodeClosureVar: {
const Identifier& ident = identifier(pc[4].u.operand);
int localScopeDepth = pc[2].u.operand;
ResolveType type = static_cast<ResolveType>(pc[5].u.operand);
// Even though type profiling may be profiling either a Get or a Put, we can always claim a Get because
// we're abstractly "read"ing from a JSScope.
ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), localScopeDepth, scope, ident, Get, type, NotInitialization);
if (op.type == ClosureVar || op.type == ModuleVar)
symbolTable = op.lexicalEnvironment->symbolTable();
else if (op.type == GlobalVar)
symbolTable = m_globalObject.get()->symbolTable();
UniquedStringImpl* impl = (op.type == ModuleVar) ? op.importedName.get() : ident.impl();
if (symbolTable) {
ConcurrentJITLocker locker(symbolTable->m_lock);
// If our parent scope was created while profiling was disabled, it will not have prepared for profiling yet.
symbolTable->prepareForTypeProfiling(locker);
globalVariableID = symbolTable->uniqueIDForVariable(locker, impl, *vm());
globalTypeSet = symbolTable->globalTypeSetForVariable(locker, impl, *vm());
} else
globalVariableID = TypeProfilerNoGlobalIDExists;
break;
}
case ProfileTypeBytecodeLocallyResolved: {
int symbolTableIndex = pc[2].u.operand;
RELEASE_ASSERT(clonedConstantSymbolTables.contains(symbolTableIndex));
SymbolTable* symbolTable = jsCast<SymbolTable*>(getConstant(symbolTableIndex));
const Identifier& ident = identifier(pc[4].u.operand);
ConcurrentJITLocker locker(symbolTable->m_lock);
// If our parent scope was created while profiling was disabled, it will not have prepared for profiling yet.
globalVariableID = symbolTable->uniqueIDForVariable(locker, ident.impl(), *vm());
globalTypeSet = symbolTable->globalTypeSetForVariable(locker, ident.impl(), *vm());
break;
}
case ProfileTypeBytecodeDoesNotHaveGlobalID:
case ProfileTypeBytecodeFunctionArgument: {
globalVariableID = TypeProfilerNoGlobalIDExists;
break;
}
case ProfileTypeBytecodeFunctionReturnStatement: {
RELEASE_ASSERT(ownerExecutable->isFunctionExecutable());
globalTypeSet = jsCast<FunctionExecutable*>(ownerExecutable)->returnStatementTypeSet();
globalVariableID = TypeProfilerReturnStatement;
if (!shouldAnalyze) {
// Because a return statement can be added implicitly to return undefined at the end of a function,
// and these nodes don't emit expression ranges because they aren't in the actual source text of
// the user's program, give the type profiler some range to identify these return statements.
// Currently, the text offset that is used as identification is "f" in the function keyword
// and is stored on TypeLocation's m_divotForFunctionOffsetIfReturnStatement member variable.
divotStart = divotEnd = ownerExecutable->typeProfilingStartOffset();
shouldAnalyze = true;
}
break;
}
}
std::pair<TypeLocation*, bool> locationPair = vm()->typeProfiler()->typeLocationCache()->getTypeLocation(globalVariableID,
ownerExecutable->sourceID(), divotStart, divotEnd, globalTypeSet, vm());
TypeLocation* location = locationPair.first;
bool isNewLocation = locationPair.second;
if (flag == ProfileTypeBytecodeFunctionReturnStatement)
location->m_divotForFunctionOffsetIfReturnStatement = ownerExecutable->typeProfilingStartOffset();
if (shouldAnalyze && isNewLocation)
vm()->typeProfiler()->insertNewLocation(location);
instructions[i + 2].u.location = location;
break;
}
case op_debug: {
if (pc[1].u.index == DidReachBreakpoint)
m_hasDebuggerStatement = true;
break;
}
default:
break;
}
i += opLength;
}
if (vm()->controlFlowProfiler())
insertBasicBlockBoundariesForControlFlowProfiler(instructions);
m_instructions = WTF::RefCountedArray<Instruction>(instructions);
// Set optimization thresholds only after m_instructions is initialized, since these
// rely on the instruction count (and are in theory permitted to also inspect the
// instruction stream to more accurate assess the cost of tier-up).
optimizeAfterWarmUp();
jitAfterWarmUp();
// If the concurrent thread will want the code block's hash, then compute it here
// synchronously.
if (Options::alwaysComputeHash())
hash();
if (Options::dumpGeneratedBytecodes())
dumpBytecode();
m_heap->m_codeBlocks.add(this);
m_heap->reportExtraMemoryAllocated(sizeof(CodeBlock) + m_instructions.size() * sizeof(Instruction));
}
#if ENABLE(WEBASSEMBLY)
CodeBlock::CodeBlock(WebAssemblyExecutable* ownerExecutable, VM& vm, JSGlobalObject* globalObject)
: m_globalObject(globalObject->vm(), ownerExecutable, globalObject)
, m_heap(&m_globalObject->vm().heap)
, m_numCalleeRegisters(0)
, m_numVars(0)
, m_isConstructor(false)
, m_shouldAlwaysBeInlined(false)
, m_didFailFTLCompilation(false)
, m_hasBeenCompiledWithFTL(false)
, m_hasDebuggerStatement(false)
, m_steppingMode(SteppingModeDisabled)
, m_numBreakpoints(0)
, m_ownerExecutable(m_globalObject->vm(), ownerExecutable, ownerExecutable)
, m_vm(&vm)
, m_isStrictMode(false)
, m_needsActivation(false)
, m_codeType(FunctionCode)
, m_osrExitCounter(0)
, m_optimizationDelayCounter(0)
, m_reoptimizationRetryCounter(0)
#if ENABLE(JIT)
, m_capabilityLevelState(DFG::CannotCompile)
#endif
{
ASSERT(m_heap->isDeferred());
m_heap->m_codeBlocks.add(this);
m_heap->reportExtraMemoryAllocated(sizeof(CodeBlock));
}
#endif
CodeBlock::~CodeBlock()
{
if (m_vm->m_perBytecodeProfiler)
m_vm->m_perBytecodeProfiler->notifyDestruction(this);
#if ENABLE(VERBOSE_VALUE_PROFILE)
dumpValueProfiles();
#endif
while (m_incomingLLIntCalls.begin() != m_incomingLLIntCalls.end())
m_incomingLLIntCalls.begin()->remove();
#if ENABLE(JIT)
// We may be destroyed before any CodeBlocks that refer to us are destroyed.
// Consider that two CodeBlocks become unreachable at the same time. There
// is no guarantee about the order in which the CodeBlocks are destroyed.
// So, if we don't remove incoming calls, and get destroyed before the
// CodeBlock(s) that have calls into us, then the CallLinkInfo vector's
// destructor will try to remove nodes from our (no longer valid) linked list.
while (m_incomingCalls.begin() != m_incomingCalls.end())
m_incomingCalls.begin()->remove();
while (m_incomingPolymorphicCalls.begin() != m_incomingPolymorphicCalls.end())
m_incomingPolymorphicCalls.begin()->remove();
// Note that our outgoing calls will be removed from other CodeBlocks'
// m_incomingCalls linked lists through the execution of the ~CallLinkInfo
// destructors.
for (Bag<StructureStubInfo>::iterator iter = m_stubInfos.begin(); !!iter; ++iter)
(*iter)->deref();
#endif // ENABLE(JIT)
}
void CodeBlock::setNumParameters(int newValue)
{
m_numParameters = newValue;
m_argumentValueProfiles.resizeToFit(newValue);
}
void EvalCodeCache::visitAggregate(SlotVisitor& visitor)
{
EvalCacheMap::iterator end = m_cacheMap.end();
for (EvalCacheMap::iterator ptr = m_cacheMap.begin(); ptr != end; ++ptr)
visitor.append(&ptr->value);
}
CodeBlock* CodeBlock::specialOSREntryBlockOrNull()
{
#if ENABLE(FTL_JIT)
if (jitType() != JITCode::DFGJIT)
return 0;
DFG::JITCode* jitCode = m_jitCode->dfg();
return jitCode->osrEntryBlock.get();
#else // ENABLE(FTL_JIT)
return 0;
#endif // ENABLE(FTL_JIT)
}
void CodeBlock::visitStrongly(SlotVisitor& visitor)
{
bool setByMe = m_visitStronglyHasBeenCalled.compareExchangeStrong(false, true);
if (!setByMe)
return;
visitAggregate(visitor);
stronglyVisitStrongReferences(visitor);
stronglyVisitWeakReferences(visitor);
propagateTransitions(visitor);
}
void CodeBlock::visitAggregate(SlotVisitor& visitor)
{
// I may be asked to scan myself more than once, and it may even happen concurrently.
// To this end, use an atomic operation to check (and set) if I've been called already.
// Only one thread may proceed past this point - whichever one wins the atomic set race.
bool setByMe = m_visitAggregateHasBeenCalled.compareExchangeStrong(false, true);
if (!setByMe)
return;
if (!!m_alternative)
m_alternative->visitAggregate(visitor);
if (CodeBlock* otherBlock = specialOSREntryBlockOrNull())
otherBlock->visitAggregate(visitor);
visitor.reportExtraMemoryVisited(ownerExecutable(), sizeof(CodeBlock));
if (m_jitCode)
visitor.reportExtraMemoryVisited(ownerExecutable(), m_jitCode->size());
if (m_instructions.size()) {
// Divide by refCount() because m_instructions points to something that is shared
// by multiple CodeBlocks, and we only want to count it towards the heap size once.
// Having each CodeBlock report only its proportional share of the size is one way
// of accomplishing this.
visitor.reportExtraMemoryVisited(ownerExecutable(), m_instructions.size() * sizeof(Instruction) / m_instructions.refCount());
}
visitor.append(&m_unlinkedCode);
// There are two things that may use unconditional finalizers: inline cache clearing
// and jettisoning. The probability of us wanting to do at least one of those things
// is probably quite close to 1. So we add one no matter what and when it runs, it
// figures out whether it has any work to do.
visitor.addUnconditionalFinalizer(this);
m_allTransitionsHaveBeenMarked = false;
if (shouldVisitStrongly()) {
visitStrongly(visitor);
return;
}
// There are two things that we use weak reference harvesters for: DFG fixpoint for
// jettisoning, and trying to find structures that would be live based on some
// inline cache. So it makes sense to register them regardless.
visitor.addWeakReferenceHarvester(this);
#if ENABLE(DFG_JIT)
// We get here if we're live in the sense that our owner executable is live,
// but we're not yet live for sure in another sense: we may yet decide that this
// code block should be jettisoned based on its outgoing weak references being
// stale. Set a flag to indicate that we're still assuming that we're dead, and
// perform one round of determining if we're live. The GC may determine, based on
// either us marking additional objects, or by other objects being marked for
// other reasons, that this iteration should run again; it will notify us of this
// decision by calling harvestWeakReferences().
m_jitCode->dfgCommon()->livenessHasBeenProved = false;
propagateTransitions(visitor);
determineLiveness(visitor);
#else // ENABLE(DFG_JIT)
RELEASE_ASSERT_NOT_REACHED();
#endif // ENABLE(DFG_JIT)
}
bool CodeBlock::shouldVisitStrongly()
{
#if ENABLE(DFG_JIT)
// Interpreter and Baseline JIT CodeBlocks don't need to be jettisoned when
// their weak references go stale. So if a basline JIT CodeBlock gets
// scanned, we can assume that this means that it's live.
if (!JITCode::isOptimizingJIT(jitType()))
return true;
if (Options::forceDFGCodeBlockLiveness())
return true;
return false;
#else
return true;
#endif
}
bool CodeBlock::isKnownToBeLiveDuringGC()
{
// This should return true for:
// - Code blocks that behave like normal objects - i.e. if they are referenced then they
// are live.
// - Code blocks that were running on the stack.
// - Code blocks that survived the last GC if the current GC is an Eden GC. This is
// because livenessHasBeenProved would have survived as true.
// - Code blocks that don't have any dead weak references.
if (m_visitStronglyHasBeenCalled.load(std::memory_order_relaxed))
return true;
#if ENABLE(DFG_JIT)
if (JITCode::isOptimizingJIT(jitType())) {
if (m_jitCode->dfgCommon()->livenessHasBeenProved)
return true;
}
#endif
return false;
}
bool CodeBlock::shouldJettisonDueToWeakReference()
{
return !isKnownToBeLiveDuringGC();
}
bool CodeBlock::shouldJettisonDueToOldAge()
{
if (m_visitStronglyHasBeenCalled.load(std::memory_order_relaxed))
return false;
if (!JITCode::isOptimizingJIT(jitType()))
return false;
if (timeSinceInstall() < JITCode::timeToLive(jitType()))
return false;
return true;
}
#if ENABLE(DFG_JIT)
static bool shouldMarkTransition(DFG::WeakReferenceTransition& transition)
{
if (transition.m_codeOrigin && !Heap::isMarked(transition.m_codeOrigin.get()))
return false;
if (!Heap::isMarked(transition.m_from.get()))
return false;
return true;
}
#endif // ENABLE(DFG_JIT)
void CodeBlock::propagateTransitions(SlotVisitor& visitor)
{
UNUSED_PARAM(visitor);
if (m_allTransitionsHaveBeenMarked)
return;
bool allAreMarkedSoFar = true;
Interpreter* interpreter = m_vm->interpreter;
if (jitType() == JITCode::InterpreterThunk) {
const Vector<unsigned>& propertyAccessInstructions = m_unlinkedCode->propertyAccessInstructions();
for (size_t i = 0; i < propertyAccessInstructions.size(); ++i) {
Instruction* instruction = &instructions()[propertyAccessInstructions[i]];
switch (interpreter->getOpcodeID(instruction[0].u.opcode)) {
case op_put_by_id: {
StructureID oldStructureID = instruction[4].u.structureID;
StructureID newStructureID = instruction[6].u.structureID;
if (!oldStructureID || !newStructureID)
break;
Structure* oldStructure =
m_vm->heap.structureIDTable().get(oldStructureID);
Structure* newStructure =
m_vm->heap.structureIDTable().get(newStructureID);
if (Heap::isMarked(oldStructure))
visitor.appendUnbarrieredReadOnlyPointer(newStructure);
else
allAreMarkedSoFar = false;
break;
}
default:
break;
}
}
}
#if ENABLE(JIT)
if (JITCode::isJIT(jitType())) {
for (Bag<StructureStubInfo>::iterator iter = m_stubInfos.begin(); !!iter; ++iter) {
StructureStubInfo& stubInfo = **iter;
if (stubInfo.cacheType != CacheType::Stub)
continue;
PolymorphicAccess* list = stubInfo.u.stub;
JSCell* origin = stubInfo.codeOrigin.codeOriginOwner();
if (origin && !Heap::isMarked(origin)) {
allAreMarkedSoFar = false;
continue;
}
for (unsigned j = list->size(); j--;) {
const AccessCase& access = list->at(j);
if (access.type() != AccessCase::Transition)
continue;
if (Heap::isMarked(access.structure()))
visitor.appendUnbarrieredReadOnlyPointer(access.newStructure());
else
allAreMarkedSoFar = false;
}
}
}
#endif // ENABLE(JIT)
#if ENABLE(DFG_JIT)
if (JITCode::isOptimizingJIT(jitType())) {
DFG::CommonData* dfgCommon = m_jitCode->dfgCommon();
for (unsigned i = 0; i < dfgCommon->transitions.size(); ++i) {
if (shouldMarkTransition(dfgCommon->transitions[i])) {
// If the following three things are live, then the target of the
// transition is also live:
//
// - This code block. We know it's live already because otherwise
// we wouldn't be scanning ourselves.
//
// - The code origin of the transition. Transitions may arise from
// code that was inlined. They are not relevant if the user's
// object that is required for the inlinee to run is no longer
// live.
//
// - The source of the transition. The transition checks if some
// heap location holds the source, and if so, stores the target.
// Hence the source must be live for the transition to be live.
//
// We also short-circuit the liveness if the structure is harmless
// to mark (i.e. its global object and prototype are both already
// live).
visitor.append(&dfgCommon->transitions[i].m_to);
} else
allAreMarkedSoFar = false;
}
}
#endif // ENABLE(DFG_JIT)
if (allAreMarkedSoFar)
m_allTransitionsHaveBeenMarked = true;
}
void CodeBlock::determineLiveness(SlotVisitor& visitor)
{
UNUSED_PARAM(visitor);
#if ENABLE(DFG_JIT)
// Check if we have any remaining work to do.
DFG::CommonData* dfgCommon = m_jitCode->dfgCommon();
if (dfgCommon->livenessHasBeenProved)
return;
// Now check all of our weak references. If all of them are live, then we
// have proved liveness and so we scan our strong references. If at end of
// GC we still have not proved liveness, then this code block is toast.
bool allAreLiveSoFar = true;
for (unsigned i = 0; i < dfgCommon->weakReferences.size(); ++i) {
if (!Heap::isMarked(dfgCommon->weakReferences[i].get())) {
allAreLiveSoFar = false;
break;
}
}
if (allAreLiveSoFar) {
for (unsigned i = 0; i < dfgCommon->weakStructureReferences.size(); ++i) {
if (!Heap::isMarked(dfgCommon->weakStructureReferences[i].get())) {
allAreLiveSoFar = false;
break;
}
}
}
// If some weak references are dead, then this fixpoint iteration was
// unsuccessful.
if (!allAreLiveSoFar)
return;
// All weak references are live. Record this information so we don't
// come back here again, and scan the strong references.
dfgCommon->livenessHasBeenProved = true;
stronglyVisitStrongReferences(visitor);
#endif // ENABLE(DFG_JIT)
}
void CodeBlock::visitWeakReferences(SlotVisitor& visitor)
{
propagateTransitions(visitor);
determineLiveness(visitor);
}
void CodeBlock::finalizeLLIntInlineCaches()
{
#if ENABLE(WEBASSEMBLY)
if (m_ownerExecutable->isWebAssemblyExecutable())
return;
#endif
Interpreter* interpreter = m_vm->interpreter;
const Vector<unsigned>& propertyAccessInstructions = m_unlinkedCode->propertyAccessInstructions();
for (size_t size = propertyAccessInstructions.size(), i = 0; i < size; ++i) {
Instruction* curInstruction = &instructions()[propertyAccessInstructions[i]];
switch (interpreter->getOpcodeID(curInstruction[0].u.opcode)) {
case op_get_by_id: {
StructureID oldStructureID = curInstruction[4].u.structureID;
if (!oldStructureID || Heap::isMarked(m_vm->heap.structureIDTable().get(oldStructureID)))
break;
if (Options::verboseOSR())
dataLogF("Clearing LLInt property access.\n");
curInstruction[4].u.structureID = 0;
curInstruction[5].u.operand = 0;
break;
}
case op_put_by_id: {
StructureID oldStructureID = curInstruction[4].u.structureID;
StructureID newStructureID = curInstruction[6].u.structureID;
StructureChain* chain = curInstruction[7].u.structureChain.get();
if ((!oldStructureID || Heap::isMarked(m_vm->heap.structureIDTable().get(oldStructureID))) &&
(!newStructureID || Heap::isMarked(m_vm->heap.structureIDTable().get(newStructureID))) &&
(!chain || Heap::isMarked(chain)))
break;
if (Options::verboseOSR())
dataLogF("Clearing LLInt put transition.\n");
curInstruction[4].u.structureID = 0;
curInstruction[5].u.operand = 0;
curInstruction[6].u.structureID = 0;
curInstruction[7].u.structureChain.clear();
break;
}
case op_get_array_length:
break;
case op_to_this:
if (!curInstruction[2].u.structure || Heap::isMarked(curInstruction[2].u.structure.get()))
break;
if (Options::verboseOSR())
dataLogF("Clearing LLInt to_this with structure %p.\n", curInstruction[2].u.structure.get());
curInstruction[2].u.structure.clear();
curInstruction[3].u.toThisStatus = merge(
curInstruction[3].u.toThisStatus, ToThisClearedByGC);
break;
case op_create_this: {
auto& cacheWriteBarrier = curInstruction[4].u.jsCell;
if (!cacheWriteBarrier || cacheWriteBarrier.unvalidatedGet() == JSCell::seenMultipleCalleeObjects())
break;
JSCell* cachedFunction = cacheWriteBarrier.get();
if (Heap::isMarked(cachedFunction))
break;
if (Options::verboseOSR())
dataLogF("Clearing LLInt create_this with cached callee %p.\n", cachedFunction);
cacheWriteBarrier.clear();
break;
}
case op_resolve_scope: {
// Right now this isn't strictly necessary. Any symbol tables that this will refer to
// are for outer functions, and we refer to those functions strongly, and they refer
// to the symbol table strongly. But it's nice to be on the safe side.
WriteBarrierBase<SymbolTable>& symbolTable = curInstruction[6].u.symbolTable;
if (!symbolTable || Heap::isMarked(symbolTable.get()))
break;
if (Options::verboseOSR())
dataLogF("Clearing dead symbolTable %p.\n", symbolTable.get());
symbolTable.clear();
break;
}
case op_get_from_scope:
case op_put_to_scope: {
GetPutInfo getPutInfo = GetPutInfo(curInstruction[4].u.operand);
if (getPutInfo.resolveType() == GlobalVar || getPutInfo.resolveType() == GlobalVarWithVarInjectionChecks
|| getPutInfo.resolveType() == LocalClosureVar || getPutInfo.resolveType() == GlobalLexicalVar || getPutInfo.resolveType() == GlobalLexicalVarWithVarInjectionChecks)
continue;
WriteBarrierBase<Structure>& structure = curInstruction[5].u.structure;
if (!structure || Heap::isMarked(structure.get()))
break;
if (Options::verboseOSR())
dataLogF("Clearing scope access with structure %p.\n", structure.get());
structure.clear();
break;
}
default:
OpcodeID opcodeID = interpreter->getOpcodeID(curInstruction[0].u.opcode);
ASSERT_WITH_MESSAGE_UNUSED(opcodeID, false, "Unhandled opcode in CodeBlock::finalizeUnconditionally, %s(%d) at bc %u", opcodeNames[opcodeID], opcodeID, propertyAccessInstructions[i]);
}
}
for (unsigned i = 0; i < m_llintCallLinkInfos.size(); ++i) {
if (m_llintCallLinkInfos[i].isLinked() && !Heap::isMarked(m_llintCallLinkInfos[i].callee.get())) {
if (Options::verboseOSR())
dataLog("Clearing LLInt call from ", *this, "\n");
m_llintCallLinkInfos[i].unlink();
}
if (!!m_llintCallLinkInfos[i].lastSeenCallee && !Heap::isMarked(m_llintCallLinkInfos[i].lastSeenCallee.get()))
m_llintCallLinkInfos[i].lastSeenCallee.clear();
}
}
void CodeBlock::finalizeBaselineJITInlineCaches()
{
#if ENABLE(JIT)
for (auto iter = callLinkInfosBegin(); !!iter; ++iter)
(*iter)->visitWeak(*vm());
for (Bag<StructureStubInfo>::iterator iter = m_stubInfos.begin(); !!iter; ++iter) {
StructureStubInfo& stubInfo = **iter;
stubInfo.visitWeakReferences(this);
}
#endif
}
void CodeBlock::finalizeUnconditionally()
{
#if ENABLE(DFG_JIT)
if (shouldJettisonDueToWeakReference()) {
jettison(Profiler::JettisonDueToWeakReference);
return;
}
#endif // ENABLE(DFG_JIT)
if (shouldJettisonDueToOldAge()) {
jettison(Profiler::JettisonDueToOldAge);
return;
}
if (JITCode::couldBeInterpreted(jitType()))
finalizeLLIntInlineCaches();
#if ENABLE(JIT)
if (!!jitCode())
finalizeBaselineJITInlineCaches();
#endif
}
void CodeBlock::getStubInfoMap(const ConcurrentJITLocker&, StubInfoMap& result)
{
#if ENABLE(JIT)
toHashMap(m_stubInfos, getStructureStubInfoCodeOrigin, result);
#else
UNUSED_PARAM(result);
#endif
}
void CodeBlock::getStubInfoMap(StubInfoMap& result)
{
ConcurrentJITLocker locker(m_lock);
getStubInfoMap(locker, result);
}
void CodeBlock::getCallLinkInfoMap(const ConcurrentJITLocker&, CallLinkInfoMap& result)
{
#if ENABLE(JIT)
toHashMap(m_callLinkInfos, getCallLinkInfoCodeOrigin, result);
#else
UNUSED_PARAM(result);
#endif
}
void CodeBlock::getCallLinkInfoMap(CallLinkInfoMap& result)
{
ConcurrentJITLocker locker(m_lock);
getCallLinkInfoMap(locker, result);
}
void CodeBlock::getByValInfoMap(const ConcurrentJITLocker&, ByValInfoMap& result)
{
#if ENABLE(JIT)
for (auto* byValInfo : m_byValInfos)
result.add(CodeOrigin(byValInfo->bytecodeIndex), byValInfo);
#else
UNUSED_PARAM(result);
#endif
}
void CodeBlock::getByValInfoMap(ByValInfoMap& result)
{
ConcurrentJITLocker locker(m_lock);
getByValInfoMap(locker, result);
}
#if ENABLE(JIT)
StructureStubInfo* CodeBlock::addStubInfo(AccessType accessType)
{
ConcurrentJITLocker locker(m_lock);
return m_stubInfos.add(accessType);
}
StructureStubInfo* CodeBlock::findStubInfo(CodeOrigin codeOrigin)
{
for (StructureStubInfo* stubInfo : m_stubInfos) {
if (stubInfo->codeOrigin == codeOrigin)
return stubInfo;
}
return nullptr;
}
ByValInfo* CodeBlock::addByValInfo()
{
ConcurrentJITLocker locker(m_lock);
return m_byValInfos.add();
}
CallLinkInfo* CodeBlock::addCallLinkInfo()
{
ConcurrentJITLocker locker(m_lock);
return m_callLinkInfos.add();
}
CallLinkInfo* CodeBlock::getCallLinkInfoForBytecodeIndex(unsigned index)
{
for (auto iter = m_callLinkInfos.begin(); !!iter; ++iter) {
if ((*iter)->codeOrigin() == CodeOrigin(index))
return *iter;
}
return nullptr;
}
#endif
void CodeBlock::visitOSRExitTargets(SlotVisitor& visitor)
{
// OSR exits, once compiled, link themselves directly to their targets.
// We need to keep those targets alive in order to keep OSR exit from
// jumping to an invalid destination.
alternative()->visitStrongly(visitor);
#if ENABLE(DFG_JIT)
DFG::CommonData* dfgCommon = m_jitCode->dfgCommon();
if (dfgCommon->inlineCallFrames) {
for (auto* inlineCallFrame : *dfgCommon->inlineCallFrames)
inlineCallFrame->baselineCodeBlock()->visitStrongly(visitor);
}
#endif
}
void CodeBlock::stronglyVisitStrongReferences(SlotVisitor& visitor)
{
visitor.append(&m_globalObject);
visitor.append(&m_ownerExecutable);
visitor.append(&m_unlinkedCode);
if (m_rareData)
m_rareData->m_evalCodeCache.visitAggregate(visitor);
visitor.appendValues(m_constantRegisters.data(), m_constantRegisters.size());
for (size_t i = 0; i < m_functionExprs.size(); ++i)
visitor.append(&m_functionExprs[i]);
for (size_t i = 0; i < m_functionDecls.size(); ++i)
visitor.append(&m_functionDecls[i]);
for (unsigned i = 0; i < m_objectAllocationProfiles.size(); ++i)
m_objectAllocationProfiles[i].visitAggregate(visitor);
#if ENABLE(DFG_JIT)
if (JITCode::isOptimizingJIT(jitType()))
visitOSRExitTargets(visitor);
#endif
updateAllPredictions();
}
void CodeBlock::stronglyVisitWeakReferences(SlotVisitor& visitor)
{
UNUSED_PARAM(visitor);
#if ENABLE(DFG_JIT)
if (!JITCode::isOptimizingJIT(jitType()))
return;
DFG::CommonData* dfgCommon = m_jitCode->dfgCommon();
for (unsigned i = 0; i < dfgCommon->transitions.size(); ++i) {
if (!!dfgCommon->transitions[i].m_codeOrigin)
visitor.append(&dfgCommon->transitions[i].m_codeOrigin); // Almost certainly not necessary, since the code origin should also be a weak reference. Better to be safe, though.
visitor.append(&dfgCommon->transitions[i].m_from);
visitor.append(&dfgCommon->transitions[i].m_to);
}
for (unsigned i = 0; i < dfgCommon->weakReferences.size(); ++i)
visitor.append(&dfgCommon->weakReferences[i]);
for (unsigned i = 0; i < dfgCommon->weakStructureReferences.size(); ++i)
visitor.append(&dfgCommon->weakStructureReferences[i]);
dfgCommon->livenessHasBeenProved = true;
#endif
}
CodeBlock* CodeBlock::baselineAlternative()
{
#if ENABLE(JIT)
CodeBlock* result = this;
while (result->alternative())
result = result->alternative();
RELEASE_ASSERT(result);
RELEASE_ASSERT(JITCode::isBaselineCode(result->jitType()) || result->jitType() == JITCode::None);
return result;
#else
return this;
#endif
}
CodeBlock* CodeBlock::baselineVersion()
{
#if ENABLE(JIT)
if (JITCode::isBaselineCode(jitType()))
return this;
CodeBlock* result = replacement();
if (!result) {
// This can happen if we're creating the original CodeBlock for an executable.
// Assume that we're the baseline CodeBlock.
RELEASE_ASSERT(jitType() == JITCode::None);
return this;
}
result = result->baselineAlternative();
return result;
#else
return this;
#endif
}
#if ENABLE(JIT)
bool CodeBlock::hasOptimizedReplacement(JITCode::JITType typeToReplace)
{
return JITCode::isHigherTier(replacement()->jitType(), typeToReplace);
}
bool CodeBlock::hasOptimizedReplacement()
{
return hasOptimizedReplacement(jitType());
}
#endif
HandlerInfo* CodeBlock::handlerForBytecodeOffset(unsigned bytecodeOffset, RequiredHandler requiredHandler)
{
RELEASE_ASSERT(bytecodeOffset < instructions().size());
if (!m_rareData)
return 0;
Vector<HandlerInfo>& exceptionHandlers = m_rareData->m_exceptionHandlers;
for (size_t i = 0; i < exceptionHandlers.size(); ++i) {
HandlerInfo& handler = exceptionHandlers[i];
if ((requiredHandler == RequiredHandler::CatchHandler) && !handler.isCatchHandler())
continue;
// Handlers are ordered innermost first, so the first handler we encounter
// that contains the source address is the correct handler to use.
if (handler.start <= bytecodeOffset && handler.end > bytecodeOffset)
return &handler;
}
return 0;
}
unsigned CodeBlock::lineNumberForBytecodeOffset(unsigned bytecodeOffset)
{
RELEASE_ASSERT(bytecodeOffset < instructions().size());
return ownerScriptExecutable()->firstLine() + m_unlinkedCode->lineNumberForBytecodeOffset(bytecodeOffset);
}
unsigned CodeBlock::columnNumberForBytecodeOffset(unsigned bytecodeOffset)
{
int divot;
int startOffset;
int endOffset;
unsigned line;
unsigned column;
expressionRangeForBytecodeOffset(bytecodeOffset, divot, startOffset, endOffset, line, column);
return column;
}
void CodeBlock::expressionRangeForBytecodeOffset(unsigned bytecodeOffset, int& divot, int& startOffset, int& endOffset, unsigned& line, unsigned& column)
{
m_unlinkedCode->expressionRangeForBytecodeOffset(bytecodeOffset, divot, startOffset, endOffset, line, column);
divot += m_sourceOffset;
column += line ? 1 : firstLineColumnOffset();
line += ownerScriptExecutable()->firstLine();
}
bool CodeBlock::hasOpDebugForLineAndColumn(unsigned line, unsigned column)
{
Interpreter* interpreter = vm()->interpreter;
const Instruction* begin = instructions().begin();
const Instruction* end = instructions().end();
for (const Instruction* it = begin; it != end;) {
OpcodeID opcodeID = interpreter->getOpcodeID(it->u.opcode);
if (opcodeID == op_debug) {
unsigned bytecodeOffset = it - begin;
int unused;
unsigned opDebugLine;
unsigned opDebugColumn;
expressionRangeForBytecodeOffset(bytecodeOffset, unused, unused, unused, opDebugLine, opDebugColumn);
if (line == opDebugLine && (column == Breakpoint::unspecifiedColumn || column == opDebugColumn))
return true;
}
it += opcodeLengths[opcodeID];
}
return false;
}
void CodeBlock::shrinkToFit(ShrinkMode shrinkMode)
{
m_rareCaseProfiles.shrinkToFit();
m_specialFastCaseProfiles.shrinkToFit();
if (shrinkMode == EarlyShrink) {
m_constantRegisters.shrinkToFit();
m_constantsSourceCodeRepresentation.shrinkToFit();
if (m_rareData) {
m_rareData->m_switchJumpTables.shrinkToFit();
m_rareData->m_stringSwitchJumpTables.shrinkToFit();
}
} // else don't shrink these, because we would have already pointed pointers into these tables.
}
#if ENABLE(JIT)
void CodeBlock::linkIncomingCall(ExecState* callerFrame, CallLinkInfo* incoming)
{
noticeIncomingCall(callerFrame);
m_incomingCalls.push(incoming);
}
void CodeBlock::linkIncomingPolymorphicCall(ExecState* callerFrame, PolymorphicCallNode* incoming)
{
noticeIncomingCall(callerFrame);
m_incomingPolymorphicCalls.push(incoming);
}
#endif // ENABLE(JIT)
void CodeBlock::unlinkIncomingCalls()
{
while (m_incomingLLIntCalls.begin() != m_incomingLLIntCalls.end())
m_incomingLLIntCalls.begin()->unlink();
#if ENABLE(JIT)
if (m_incomingCalls.isEmpty() && m_incomingPolymorphicCalls.isEmpty())
return;
while (m_incomingCalls.begin() != m_incomingCalls.end())
m_incomingCalls.begin()->unlink(*vm());
while (m_incomingPolymorphicCalls.begin() != m_incomingPolymorphicCalls.end())
m_incomingPolymorphicCalls.begin()->unlink(*vm());
#endif // ENABLE(JIT)
}
void CodeBlock::linkIncomingCall(ExecState* callerFrame, LLIntCallLinkInfo* incoming)
{
noticeIncomingCall(callerFrame);
m_incomingLLIntCalls.push(incoming);
}
void CodeBlock::install()
{
ownerScriptExecutable()->installCode(this);
}
PassRefPtr<CodeBlock> CodeBlock::newReplacement()
{
return ownerScriptExecutable()->newReplacementCodeBlockFor(specializationKind());
}
#if ENABLE(JIT)
CodeBlock* ProgramCodeBlock::replacement()
{
return jsCast<ProgramExecutable*>(ownerExecutable())->codeBlock();
}
CodeBlock* ModuleProgramCodeBlock::replacement()
{
return jsCast<ModuleProgramExecutable*>(ownerExecutable())->codeBlock();
}
CodeBlock* EvalCodeBlock::replacement()
{
return jsCast<EvalExecutable*>(ownerExecutable())->codeBlock();
}
CodeBlock* FunctionCodeBlock::replacement()
{
return jsCast<FunctionExecutable*>(ownerExecutable())->codeBlockFor(m_isConstructor ? CodeForConstruct : CodeForCall);
}
DFG::CapabilityLevel ProgramCodeBlock::capabilityLevelInternal()
{
return DFG::programCapabilityLevel(this);
}
DFG::CapabilityLevel ModuleProgramCodeBlock::capabilityLevelInternal()
{
return DFG::programCapabilityLevel(this);
}
DFG::CapabilityLevel EvalCodeBlock::capabilityLevelInternal()
{
return DFG::evalCapabilityLevel(this);
}
DFG::CapabilityLevel FunctionCodeBlock::capabilityLevelInternal()
{
if (m_isConstructor)
return DFG::functionForConstructCapabilityLevel(this);
return DFG::functionForCallCapabilityLevel(this);
}
#if ENABLE(WEBASSEMBLY)
CodeBlock* WebAssemblyCodeBlock::replacement()
{
return nullptr;
}
DFG::CapabilityLevel WebAssemblyCodeBlock::capabilityLevelInternal()
{
return DFG::CannotCompile;
}
#endif
#endif
void CodeBlock::jettison(Profiler::JettisonReason reason, ReoptimizationMode mode, const FireDetail* detail)
{
RELEASE_ASSERT(reason != Profiler::NotJettisoned);
#if ENABLE(DFG_JIT)
if (DFG::shouldShowDisassembly()) {
dataLog("Jettisoning ", *this);
if (mode == CountReoptimization)
dataLog(" and counting reoptimization");
dataLog(" due to ", reason);
if (detail)
dataLog(", ", *detail);
dataLog(".\n");
}
if (reason == Profiler::JettisonDueToWeakReference) {
if (DFG::shouldShowDisassembly()) {
dataLog(*this, " will be jettisoned because of the following dead references:\n");
DFG::CommonData* dfgCommon = m_jitCode->dfgCommon();
for (unsigned i = 0; i < dfgCommon->transitions.size(); ++i) {
DFG::WeakReferenceTransition& transition = dfgCommon->transitions[i];
JSCell* origin = transition.m_codeOrigin.get();
JSCell* from = transition.m_from.get();
JSCell* to = transition.m_to.get();
if ((!origin || Heap::isMarked(origin)) && Heap::isMarked(from))
continue;
dataLog(" Transition under ", RawPointer(origin), ", ", RawPointer(from), " -> ", RawPointer(to), ".\n");
}
for (unsigned i = 0; i < dfgCommon->weakReferences.size(); ++i) {
JSCell* weak = dfgCommon->weakReferences[i].get();
if (Heap::isMarked(weak))
continue;
dataLog(" Weak reference ", RawPointer(weak), ".\n");
}
}
}
DeferGCForAWhile deferGC(*m_heap);
RELEASE_ASSERT(JITCode::isOptimizingJIT(jitType()));
if (Profiler::Compilation* compilation = jitCode()->dfgCommon()->compilation.get())
compilation->setJettisonReason(reason, detail);
// We want to accomplish two things here:
// 1) Make sure that if this CodeBlock is on the stack right now, then if we return to it
// we should OSR exit at the top of the next bytecode instruction after the return.
// 2) Make sure that if we call the owner executable, then we shouldn't call this CodeBlock.
if (reason != Profiler::JettisonDueToOldAge) {
// This accomplishes (1), and does its own book-keeping about whether it has already happened.
if (!jitCode()->dfgCommon()->invalidate()) {
// We've already been invalidated.
RELEASE_ASSERT(this != replacement());
return;
}
}
if (DFG::shouldShowDisassembly())
dataLog(" Did invalidate ", *this, "\n");
// Count the reoptimization if that's what the user wanted.
if (mode == CountReoptimization) {
// FIXME: Maybe this should call alternative().
// https://bugs.webkit.org/show_bug.cgi?id=123677
baselineAlternative()->countReoptimization();
if (DFG::shouldShowDisassembly())
dataLog(" Did count reoptimization for ", *this, "\n");
}
// This accomplishes (2).
if (this != replacement()) {
// This means that we were never the entrypoint. This can happen for OSR entry code
// blocks.
return;
}
alternative()->optimizeAfterWarmUp();
if (reason != Profiler::JettisonDueToOldAge)
tallyFrequentExitSites();
alternative()->install();
if (DFG::shouldShowDisassembly())
dataLog(" Did install baseline version of ", *this, "\n");
#else // ENABLE(DFG_JIT)
UNUSED_PARAM(mode);
UNUSED_PARAM(detail);
UNREACHABLE_FOR_PLATFORM();
#endif // ENABLE(DFG_JIT)
}
JSGlobalObject* CodeBlock::globalObjectFor(CodeOrigin codeOrigin)
{
if (!codeOrigin.inlineCallFrame)
return globalObject();
return jsCast<FunctionExecutable*>(codeOrigin.inlineCallFrame->executable.get())->eitherCodeBlock()->globalObject();
}
class RecursionCheckFunctor {
public:
RecursionCheckFunctor(CallFrame* startCallFrame, CodeBlock* codeBlock, unsigned depthToCheck)
: m_startCallFrame(startCallFrame)
, m_codeBlock(codeBlock)
, m_depthToCheck(depthToCheck)
, m_foundStartCallFrame(false)
, m_didRecurse(false)
{ }
StackVisitor::Status operator()(StackVisitor& visitor)
{
CallFrame* currentCallFrame = visitor->callFrame();
if (currentCallFrame == m_startCallFrame)
m_foundStartCallFrame = true;
if (m_foundStartCallFrame) {
if (visitor->callFrame()->codeBlock() == m_codeBlock) {
m_didRecurse = true;
return StackVisitor::Done;
}
if (!m_depthToCheck--)
return StackVisitor::Done;
}
return StackVisitor::Continue;
}
bool didRecurse() const { return m_didRecurse; }
private:
CallFrame* m_startCallFrame;
CodeBlock* m_codeBlock;
unsigned m_depthToCheck;
bool m_foundStartCallFrame;
bool m_didRecurse;
};
void CodeBlock::noticeIncomingCall(ExecState* callerFrame)
{
CodeBlock* callerCodeBlock = callerFrame->codeBlock();
if (Options::verboseCallLink())
dataLog("Noticing call link from ", pointerDump(callerCodeBlock), " to ", *this, "\n");
#if ENABLE(DFG_JIT)
if (!m_shouldAlwaysBeInlined)
return;
if (!callerCodeBlock) {
m_shouldAlwaysBeInlined = false;
if (Options::verboseCallLink())
dataLog(" Clearing SABI because caller is native.\n");
return;
}
if (!hasBaselineJITProfiling())
return;
if (!DFG::mightInlineFunction(this))
return;
if (!canInline(m_capabilityLevelState))
return;
if (!DFG::isSmallEnoughToInlineCodeInto(callerCodeBlock)) {
m_shouldAlwaysBeInlined = false;
if (Options::verboseCallLink())
dataLog(" Clearing SABI because caller is too large.\n");
return;
}
if (callerCodeBlock->jitType() == JITCode::InterpreterThunk) {
// If the caller is still in the interpreter, then we can't expect inlining to
// happen anytime soon. Assume it's profitable to optimize it separately. This
// ensures that a function is SABI only if it is called no more frequently than
// any of its callers.
m_shouldAlwaysBeInlined = false;
if (Options::verboseCallLink())
dataLog(" Clearing SABI because caller is in LLInt.\n");
return;
}
if (JITCode::isOptimizingJIT(callerCodeBlock->jitType())) {
m_shouldAlwaysBeInlined = false;
if (Options::verboseCallLink())
dataLog(" Clearing SABI bcause caller was already optimized.\n");
return;
}
if (callerCodeBlock->codeType() != FunctionCode) {
// If the caller is either eval or global code, assume that that won't be
// optimized anytime soon. For eval code this is particularly true since we
// delay eval optimization by a *lot*.
m_shouldAlwaysBeInlined = false;
if (Options::verboseCallLink())
dataLog(" Clearing SABI because caller is not a function.\n");
return;
}
// Recursive calls won't be inlined.
RecursionCheckFunctor functor(callerFrame, this, Options::maximumInliningDepth());
vm()->topCallFrame->iterate(functor);
if (functor.didRecurse()) {
if (Options::verboseCallLink())
dataLog(" Clearing SABI because recursion was detected.\n");
m_shouldAlwaysBeInlined = false;
return;
}
if (callerCodeBlock->m_capabilityLevelState == DFG::CapabilityLevelNotSet) {
dataLog("In call from ", *callerCodeBlock, " ", callerFrame->codeOrigin(), " to ", *this, ": caller's DFG capability level is not set.\n");
CRASH();
}
if (canCompile(callerCodeBlock->m_capabilityLevelState))
return;
if (Options::verboseCallLink())
dataLog(" Clearing SABI because the caller is not a DFG candidate.\n");
m_shouldAlwaysBeInlined = false;
#endif
}
unsigned CodeBlock::reoptimizationRetryCounter() const
{
#if ENABLE(JIT)
ASSERT(m_reoptimizationRetryCounter <= Options::reoptimizationRetryCounterMax());
return m_reoptimizationRetryCounter;
#else
return 0;
#endif // ENABLE(JIT)
}
#if ENABLE(JIT)
void CodeBlock::setCalleeSaveRegisters(RegisterSet calleeSaveRegisters)
{
m_calleeSaveRegisters = std::make_unique<RegisterAtOffsetList>(calleeSaveRegisters);
}
void CodeBlock::setCalleeSaveRegisters(std::unique_ptr<RegisterAtOffsetList> registerAtOffsetList)
{
m_calleeSaveRegisters = WTF::move(registerAtOffsetList);
}
static size_t roundCalleeSaveSpaceAsVirtualRegisters(size_t calleeSaveRegisters)
{
static const unsigned cpuRegisterSize = sizeof(void*);
return (WTF::roundUpToMultipleOf(sizeof(Register), calleeSaveRegisters * cpuRegisterSize) / sizeof(Register));
}
size_t CodeBlock::llintBaselineCalleeSaveSpaceAsVirtualRegisters()
{
return roundCalleeSaveSpaceAsVirtualRegisters(numberOfLLIntBaselineCalleeSaveRegisters());
}
size_t CodeBlock::calleeSaveSpaceAsVirtualRegisters()
{
return roundCalleeSaveSpaceAsVirtualRegisters(m_calleeSaveRegisters->size());
}
void CodeBlock::countReoptimization()
{
m_reoptimizationRetryCounter++;
if (m_reoptimizationRetryCounter > Options::reoptimizationRetryCounterMax())
m_reoptimizationRetryCounter = Options::reoptimizationRetryCounterMax();
}
unsigned CodeBlock::numberOfDFGCompiles()
{
ASSERT(JITCode::isBaselineCode(jitType()));
if (Options::testTheFTL()) {
if (m_didFailFTLCompilation)
return 1000000;
return (m_hasBeenCompiledWithFTL ? 1 : 0) + m_reoptimizationRetryCounter;
}
return (JITCode::isOptimizingJIT(replacement()->jitType()) ? 1 : 0) + m_reoptimizationRetryCounter;
}
int32_t CodeBlock::codeTypeThresholdMultiplier() const
{
if (codeType() == EvalCode)
return Options::evalThresholdMultiplier();
return 1;
}
double CodeBlock::optimizationThresholdScalingFactor()
{
// This expression arises from doing a least-squares fit of
//
// F[x_] =: a * Sqrt[x + b] + Abs[c * x] + d
//
// against the data points:
//
// x F[x_]
// 10 0.9 (smallest reasonable code block)
// 200 1.0 (typical small-ish code block)
// 320 1.2 (something I saw in 3d-cube that I wanted to optimize)
// 1268 5.0 (something I saw in 3d-cube that I didn't want to optimize)
// 4000 5.5 (random large size, used to cause the function to converge to a shallow curve of some sort)
// 10000 6.0 (similar to above)
//
// I achieve the minimization using the following Mathematica code:
//
// MyFunctionTemplate[x_, a_, b_, c_, d_] := a*Sqrt[x + b] + Abs[c*x] + d
//
// samples = {{10, 0.9}, {200, 1}, {320, 1.2}, {1268, 5}, {4000, 5.5}, {10000, 6}}
//
// solution =
// Minimize[Plus @@ ((MyFunctionTemplate[#[[1]], a, b, c, d] - #[[2]])^2 & /@ samples),
// {a, b, c, d}][[2]]
//
// And the code below (to initialize a, b, c, d) is generated by:
//
// Print["const double " <> ToString[#[[1]]] <> " = " <>
// If[#[[2]] < 0.00001, "0.0", ToString[#[[2]]]] <> ";"] & /@ solution
//
// We've long known the following to be true:
// - Small code blocks are cheap to optimize and so we should do it sooner rather
// than later.
// - Large code blocks are expensive to optimize and so we should postpone doing so,
// and sometimes have a large enough threshold that we never optimize them.
// - The difference in cost is not totally linear because (a) just invoking the
// DFG incurs some base cost and (b) for large code blocks there is enough slop
// in the correlation between instruction count and the actual compilation cost
// that for those large blocks, the instruction count should not have a strong
// influence on our threshold.
//
// I knew the goals but I didn't know how to achieve them; so I picked an interesting
// example where the heuristics were right (code block in 3d-cube with instruction
// count 320, which got compiled early as it should have been) and one where they were
// totally wrong (code block in 3d-cube with instruction count 1268, which was expensive
// to compile and didn't run often enough to warrant compilation in my opinion), and
// then threw in additional data points that represented my own guess of what our
// heuristics should do for some round-numbered examples.
//
// The expression to which I decided to fit the data arose because I started with an
// affine function, and then did two things: put the linear part in an Abs to ensure
// that the fit didn't end up choosing a negative value of c (which would result in
// the function turning over and going negative for large x) and I threw in a Sqrt
// term because Sqrt represents my intution that the function should be more sensitive
// to small changes in small values of x, but less sensitive when x gets large.
// Note that the current fit essentially eliminates the linear portion of the
// expression (c == 0.0).
const double a = 0.061504;
const double b = 1.02406;
const double c = 0.0;
const double d = 0.825914;
double instructionCount = this->instructionCount();
ASSERT(instructionCount); // Make sure this is called only after we have an instruction stream; otherwise it'll just return the value of d, which makes no sense.
double result = d + a * sqrt(instructionCount + b) + c * instructionCount;
result *= codeTypeThresholdMultiplier();
if (Options::verboseOSR()) {
dataLog(
*this, ": instruction count is ", instructionCount,
", scaling execution counter by ", result, " * ", codeTypeThresholdMultiplier(),
"\n");
}
return result;
}
static int32_t clipThreshold(double threshold)
{
if (threshold < 1.0)
return 1;
if (threshold > static_cast<double>(std::numeric_limits<int32_t>::max()))
return std::numeric_limits<int32_t>::max();
return static_cast<int32_t>(threshold);
}
int32_t CodeBlock::adjustedCounterValue(int32_t desiredThreshold)
{
return clipThreshold(
static_cast<double>(desiredThreshold) *
optimizationThresholdScalingFactor() *
(1 << reoptimizationRetryCounter()));
}
bool CodeBlock::checkIfOptimizationThresholdReached()
{
#if ENABLE(DFG_JIT)
if (DFG::Worklist* worklist = DFG::existingGlobalDFGWorklistOrNull()) {
if (worklist->compilationState(DFG::CompilationKey(this, DFG::DFGMode))
== DFG::Worklist::Compiled) {
optimizeNextInvocation();
return true;
}
}
#endif
return m_jitExecuteCounter.checkIfThresholdCrossedAndSet(this);
}
void CodeBlock::optimizeNextInvocation()
{
if (Options::verboseOSR())
dataLog(*this, ": Optimizing next invocation.\n");
m_jitExecuteCounter.setNewThreshold(0, this);
}
void CodeBlock::dontOptimizeAnytimeSoon()
{
if (Options::verboseOSR())
dataLog(*this, ": Not optimizing anytime soon.\n");
m_jitExecuteCounter.deferIndefinitely();
}
void CodeBlock::optimizeAfterWarmUp()
{
if (Options::verboseOSR())
dataLog(*this, ": Optimizing after warm-up.\n");
#if ENABLE(DFG_JIT)
m_jitExecuteCounter.setNewThreshold(
adjustedCounterValue(Options::thresholdForOptimizeAfterWarmUp()), this);
#endif
}
void CodeBlock::optimizeAfterLongWarmUp()
{
if (Options::verboseOSR())
dataLog(*this, ": Optimizing after long warm-up.\n");
#if ENABLE(DFG_JIT)
m_jitExecuteCounter.setNewThreshold(
adjustedCounterValue(Options::thresholdForOptimizeAfterLongWarmUp()), this);
#endif
}
void CodeBlock::optimizeSoon()
{
if (Options::verboseOSR())
dataLog(*this, ": Optimizing soon.\n");
#if ENABLE(DFG_JIT)
m_jitExecuteCounter.setNewThreshold(
adjustedCounterValue(Options::thresholdForOptimizeSoon()), this);
#endif
}
void CodeBlock::forceOptimizationSlowPathConcurrently()
{
if (Options::verboseOSR())
dataLog(*this, ": Forcing slow path concurrently.\n");
m_jitExecuteCounter.forceSlowPathConcurrently();
}
#if ENABLE(DFG_JIT)
void CodeBlock::setOptimizationThresholdBasedOnCompilationResult(CompilationResult result)
{
JITCode::JITType type = jitType();
if (type != JITCode::BaselineJIT) {
dataLog(*this, ": expected to have baseline code but have ", type, "\n");
RELEASE_ASSERT_NOT_REACHED();
}
CodeBlock* theReplacement = replacement();
if ((result == CompilationSuccessful) != (theReplacement != this)) {
dataLog(*this, ": we have result = ", result, " but ");
if (theReplacement == this)
dataLog("we are our own replacement.\n");
else
dataLog("our replacement is ", pointerDump(theReplacement), "\n");
RELEASE_ASSERT_NOT_REACHED();
}
switch (result) {
case CompilationSuccessful:
RELEASE_ASSERT(JITCode::isOptimizingJIT(replacement()->jitType()));
optimizeNextInvocation();
return;
case CompilationFailed:
dontOptimizeAnytimeSoon();
return;
case CompilationDeferred:
// We'd like to do dontOptimizeAnytimeSoon() but we cannot because
// forceOptimizationSlowPathConcurrently() is inherently racy. It won't
// necessarily guarantee anything. So, we make sure that even if that
// function ends up being a no-op, we still eventually retry and realize
// that we have optimized code ready.
optimizeAfterWarmUp();
return;
case CompilationInvalidated:
// Retry with exponential backoff.
countReoptimization();
optimizeAfterWarmUp();
return;
}
dataLog("Unrecognized result: ", static_cast<int>(result), "\n");
RELEASE_ASSERT_NOT_REACHED();
}
#endif
uint32_t CodeBlock::adjustedExitCountThreshold(uint32_t desiredThreshold)
{
ASSERT(JITCode::isOptimizingJIT(jitType()));
// Compute this the lame way so we don't saturate. This is called infrequently
// enough that this loop won't hurt us.
unsigned result = desiredThreshold;
for (unsigned n = baselineVersion()->reoptimizationRetryCounter(); n--;) {
unsigned newResult = result << 1;
if (newResult < result)
return std::numeric_limits<uint32_t>::max();
result = newResult;
}
return result;
}
uint32_t CodeBlock::exitCountThresholdForReoptimization()
{
return adjustedExitCountThreshold(Options::osrExitCountForReoptimization() * codeTypeThresholdMultiplier());
}
uint32_t CodeBlock::exitCountThresholdForReoptimizationFromLoop()
{
return adjustedExitCountThreshold(Options::osrExitCountForReoptimizationFromLoop() * codeTypeThresholdMultiplier());
}
bool CodeBlock::shouldReoptimizeNow()
{
return osrExitCounter() >= exitCountThresholdForReoptimization();
}
bool CodeBlock::shouldReoptimizeFromLoopNow()
{
return osrExitCounter() >= exitCountThresholdForReoptimizationFromLoop();
}
#endif
ArrayProfile* CodeBlock::getArrayProfile(unsigned bytecodeOffset)
{
for (unsigned i = 0; i < m_arrayProfiles.size(); ++i) {
if (m_arrayProfiles[i].bytecodeOffset() == bytecodeOffset)
return &m_arrayProfiles[i];
}
return 0;
}
ArrayProfile* CodeBlock::getOrAddArrayProfile(unsigned bytecodeOffset)
{
ArrayProfile* result = getArrayProfile(bytecodeOffset);
if (result)
return result;
return addArrayProfile(bytecodeOffset);
}
void CodeBlock::updateAllPredictionsAndCountLiveness(unsigned& numberOfLiveNonArgumentValueProfiles, unsigned& numberOfSamplesInProfiles)
{
ConcurrentJITLocker locker(m_lock);
numberOfLiveNonArgumentValueProfiles = 0;
numberOfSamplesInProfiles = 0; // If this divided by ValueProfile::numberOfBuckets equals numberOfValueProfiles() then value profiles are full.
for (unsigned i = 0; i < totalNumberOfValueProfiles(); ++i) {
ValueProfile* profile = getFromAllValueProfiles(i);
unsigned numSamples = profile->totalNumberOfSamples();
if (numSamples > ValueProfile::numberOfBuckets)
numSamples = ValueProfile::numberOfBuckets; // We don't want profiles that are extremely hot to be given more weight.
numberOfSamplesInProfiles += numSamples;
if (profile->m_bytecodeOffset < 0) {
profile->computeUpdatedPrediction(locker);
continue;
}
if (profile->numberOfSamples() || profile->m_prediction != SpecNone)
numberOfLiveNonArgumentValueProfiles++;
profile->computeUpdatedPrediction(locker);
}
#if ENABLE(DFG_JIT)
m_lazyOperandValueProfiles.computeUpdatedPredictions(locker);
#endif
}
void CodeBlock::updateAllValueProfilePredictions()
{
unsigned ignoredValue1, ignoredValue2;
updateAllPredictionsAndCountLiveness(ignoredValue1, ignoredValue2);
}
void CodeBlock::updateAllArrayPredictions()
{
ConcurrentJITLocker locker(m_lock);
for (unsigned i = m_arrayProfiles.size(); i--;)
m_arrayProfiles[i].computeUpdatedPrediction(locker, this);
// Don't count these either, for similar reasons.
for (unsigned i = m_arrayAllocationProfiles.size(); i--;)
m_arrayAllocationProfiles[i].updateIndexingType();
}
void CodeBlock::updateAllPredictions()
{
#if ENABLE(WEBASSEMBLY)
if (m_ownerExecutable->isWebAssemblyExecutable())
return;
#endif
updateAllValueProfilePredictions();
updateAllArrayPredictions();
}
bool CodeBlock::shouldOptimizeNow()
{
if (Options::verboseOSR())
dataLog("Considering optimizing ", *this, "...\n");
if (m_optimizationDelayCounter >= Options::maximumOptimizationDelay())
return true;
updateAllArrayPredictions();
unsigned numberOfLiveNonArgumentValueProfiles;
unsigned numberOfSamplesInProfiles;
updateAllPredictionsAndCountLiveness(numberOfLiveNonArgumentValueProfiles, numberOfSamplesInProfiles);
if (Options::verboseOSR()) {
dataLogF(
"Profile hotness: %lf (%u / %u), %lf (%u / %u)\n",
(double)numberOfLiveNonArgumentValueProfiles / numberOfValueProfiles(),
numberOfLiveNonArgumentValueProfiles, numberOfValueProfiles(),
(double)numberOfSamplesInProfiles / ValueProfile::numberOfBuckets / numberOfValueProfiles(),
numberOfSamplesInProfiles, ValueProfile::numberOfBuckets * numberOfValueProfiles());
}
if ((!numberOfValueProfiles() || (double)numberOfLiveNonArgumentValueProfiles / numberOfValueProfiles() >= Options::desiredProfileLivenessRate())
&& (!totalNumberOfValueProfiles() || (double)numberOfSamplesInProfiles / ValueProfile::numberOfBuckets / totalNumberOfValueProfiles() >= Options::desiredProfileFullnessRate())
&& static_cast<unsigned>(m_optimizationDelayCounter) + 1 >= Options::minimumOptimizationDelay())
return true;
ASSERT(m_optimizationDelayCounter < std::numeric_limits<uint8_t>::max());
m_optimizationDelayCounter++;
optimizeAfterWarmUp();
return false;
}
#if ENABLE(DFG_JIT)
void CodeBlock::tallyFrequentExitSites()
{
ASSERT(JITCode::isOptimizingJIT(jitType()));
ASSERT(alternative()->jitType() == JITCode::BaselineJIT);
CodeBlock* profiledBlock = alternative();
switch (jitType()) {
case JITCode::DFGJIT: {
DFG::JITCode* jitCode = m_jitCode->dfg();
for (unsigned i = 0; i < jitCode->osrExit.size(); ++i) {
DFG::OSRExit& exit = jitCode->osrExit[i];
exit.considerAddingAsFrequentExitSite(profiledBlock);
}
break;
}
#if ENABLE(FTL_JIT)
case JITCode::FTLJIT: {
// There is no easy way to avoid duplicating this code since the FTL::JITCode::osrExit
// vector contains a totally different type, that just so happens to behave like
// DFG::JITCode::osrExit.
FTL::JITCode* jitCode = m_jitCode->ftl();
for (unsigned i = 0; i < jitCode->osrExit.size(); ++i) {
FTL::OSRExit& exit = jitCode->osrExit[i];
exit.considerAddingAsFrequentExitSite(profiledBlock);
}
break;
}
#endif
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
}
#endif // ENABLE(DFG_JIT)
#if ENABLE(VERBOSE_VALUE_PROFILE)
void CodeBlock::dumpValueProfiles()
{
dataLog("ValueProfile for ", *this, ":\n");
for (unsigned i = 0; i < totalNumberOfValueProfiles(); ++i) {
ValueProfile* profile = getFromAllValueProfiles(i);
if (profile->m_bytecodeOffset < 0) {
ASSERT(profile->m_bytecodeOffset == -1);
dataLogF(" arg = %u: ", i);
} else
dataLogF(" bc = %d: ", profile->m_bytecodeOffset);
if (!profile->numberOfSamples() && profile->m_prediction == SpecNone) {
dataLogF("<empty>\n");
continue;
}
profile->dump(WTF::dataFile());
dataLogF("\n");
}
dataLog("RareCaseProfile for ", *this, ":\n");
for (unsigned i = 0; i < numberOfRareCaseProfiles(); ++i) {
RareCaseProfile* profile = rareCaseProfile(i);
dataLogF(" bc = %d: %u\n", profile->m_bytecodeOffset, profile->m_counter);
}
dataLog("SpecialFastCaseProfile for ", *this, ":\n");
for (unsigned i = 0; i < numberOfSpecialFastCaseProfiles(); ++i) {
RareCaseProfile* profile = specialFastCaseProfile(i);
dataLogF(" bc = %d: %u\n", profile->m_bytecodeOffset, profile->m_counter);
}
}
#endif // ENABLE(VERBOSE_VALUE_PROFILE)
unsigned CodeBlock::frameRegisterCount()
{
switch (jitType()) {
case JITCode::InterpreterThunk:
return LLInt::frameRegisterCountFor(this);
#if ENABLE(JIT)
case JITCode::BaselineJIT:
return JIT::frameRegisterCountFor(this);
#endif // ENABLE(JIT)
#if ENABLE(DFG_JIT)
case JITCode::DFGJIT:
case JITCode::FTLJIT:
return jitCode()->dfgCommon()->frameRegisterCount;
#endif // ENABLE(DFG_JIT)
default:
RELEASE_ASSERT_NOT_REACHED();
return 0;
}
}
int CodeBlock::stackPointerOffset()
{
return virtualRegisterForLocal(frameRegisterCount() - 1).offset();
}
size_t CodeBlock::predictedMachineCodeSize()
{
// This will be called from CodeBlock::CodeBlock before either m_vm or the
// instructions have been initialized. It's OK to return 0 because what will really
// matter is the recomputation of this value when the slow path is triggered.
if (!m_vm)
return 0;
if (!m_vm->machineCodeBytesPerBytecodeWordForBaselineJIT)
return 0; // It's as good of a prediction as we'll get.
// Be conservative: return a size that will be an overestimation 84% of the time.
double multiplier = m_vm->machineCodeBytesPerBytecodeWordForBaselineJIT.mean() +
m_vm->machineCodeBytesPerBytecodeWordForBaselineJIT.standardDeviation();
// Be paranoid: silently reject bogus multipiers. Silently doing the "wrong" thing
// here is OK, since this whole method is just a heuristic.
if (multiplier < 0 || multiplier > 1000)
return 0;
double doubleResult = multiplier * m_instructions.size();
// Be even more paranoid: silently reject values that won't fit into a size_t. If
// the function is so huge that we can't even fit it into virtual memory then we
// should probably have some other guards in place to prevent us from even getting
// to this point.
if (doubleResult > std::numeric_limits<size_t>::max())
return 0;
return static_cast<size_t>(doubleResult);
}
bool CodeBlock::usesOpcode(OpcodeID opcodeID)
{
Interpreter* interpreter = vm()->interpreter;
Instruction* instructionsBegin = instructions().begin();
unsigned instructionCount = instructions().size();
for (unsigned bytecodeOffset = 0; bytecodeOffset < instructionCount; ) {
switch (interpreter->getOpcodeID(instructionsBegin[bytecodeOffset].u.opcode)) {
#define DEFINE_OP(curOpcode, length) \
case curOpcode: \
if (curOpcode == opcodeID) \
return true; \
bytecodeOffset += length; \
break;
FOR_EACH_OPCODE_ID(DEFINE_OP)
#undef DEFINE_OP
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
}
return false;
}
String CodeBlock::nameForRegister(VirtualRegister virtualRegister)
{
for (unsigned i = 0; i < m_constantRegisters.size(); i++) {
if (m_constantRegisters[i].get().isEmpty())
continue;
if (SymbolTable* symbolTable = jsDynamicCast<SymbolTable*>(m_constantRegisters[i].get())) {
ConcurrentJITLocker locker(symbolTable->m_lock);
auto end = symbolTable->end(locker);
for (auto ptr = symbolTable->begin(locker); ptr != end; ++ptr) {
if (ptr->value.varOffset() == VarOffset(virtualRegister)) {
// FIXME: This won't work from the compilation thread.
// https://bugs.webkit.org/show_bug.cgi?id=115300
return ptr->key.get();
}
}
}
}
if (virtualRegister == thisRegister())
return ASCIILiteral("this");
if (virtualRegister.isArgument())
return String::format("arguments[%3d]", virtualRegister.toArgument());
return "";
}
ValueProfile* CodeBlock::valueProfileForBytecodeOffset(int bytecodeOffset)
{
ValueProfile* result = binarySearch<ValueProfile, int>(
m_valueProfiles, m_valueProfiles.size(), bytecodeOffset,
getValueProfileBytecodeOffset<ValueProfile>);
ASSERT(result->m_bytecodeOffset != -1);
ASSERT(instructions()[bytecodeOffset + opcodeLength(
m_vm->interpreter->getOpcodeID(
instructions()[bytecodeOffset].u.opcode)) - 1].u.profile == result);
return result;
}
void CodeBlock::validate()
{
BytecodeLivenessAnalysis liveness(this); // Compute directly from scratch so it doesn't effect CodeBlock footprint.
FastBitVector liveAtHead = liveness.getLivenessInfoAtBytecodeOffset(0);
if (liveAtHead.numBits() != static_cast<size_t>(m_numCalleeRegisters)) {
beginValidationDidFail();
dataLog(" Wrong number of bits in result!\n");
dataLog(" Result: ", liveAtHead, "\n");
dataLog(" Bit count: ", liveAtHead.numBits(), "\n");
endValidationDidFail();
}
for (unsigned i = m_numCalleeRegisters; i--;) {
VirtualRegister reg = virtualRegisterForLocal(i);
if (liveAtHead.get(i)) {
beginValidationDidFail();
dataLog(" Variable ", reg, " is expected to be dead.\n");
dataLog(" Result: ", liveAtHead, "\n");
endValidationDidFail();
}
}
}
void CodeBlock::beginValidationDidFail()
{
dataLog("Validation failure in ", *this, ":\n");
dataLog("\n");
}
void CodeBlock::endValidationDidFail()
{
dataLog("\n");
dumpBytecode();
dataLog("\n");
dataLog("Validation failure.\n");
RELEASE_ASSERT_NOT_REACHED();
}
void CodeBlock::addBreakpoint(unsigned numBreakpoints)
{
m_numBreakpoints += numBreakpoints;
ASSERT(m_numBreakpoints);
if (JITCode::isOptimizingJIT(jitType()))
jettison(Profiler::JettisonDueToDebuggerBreakpoint);
}
void CodeBlock::setSteppingMode(CodeBlock::SteppingMode mode)
{
m_steppingMode = mode;
if (mode == SteppingModeEnabled && JITCode::isOptimizingJIT(jitType()))
jettison(Profiler::JettisonDueToDebuggerStepping);
}
RareCaseProfile* CodeBlock::rareCaseProfileForBytecodeOffset(int bytecodeOffset)
{
return tryBinarySearch<RareCaseProfile, int>(
m_rareCaseProfiles, m_rareCaseProfiles.size(), bytecodeOffset,
getRareCaseProfileBytecodeOffset);
}
#if ENABLE(JIT)
DFG::CapabilityLevel CodeBlock::capabilityLevel()
{
DFG::CapabilityLevel result = capabilityLevelInternal();
m_capabilityLevelState = result;
return result;
}
#endif
void CodeBlock::insertBasicBlockBoundariesForControlFlowProfiler(Vector<Instruction, 0, UnsafeVectorOverflow>& instructions)
{
const Vector<size_t>& bytecodeOffsets = unlinkedCodeBlock()->opProfileControlFlowBytecodeOffsets();
for (size_t i = 0, offsetsLength = bytecodeOffsets.size(); i < offsetsLength; i++) {
// Because op_profile_control_flow is emitted at the beginning of every basic block, finding
// the next op_profile_control_flow will give us the text range of a single basic block.
size_t startIdx = bytecodeOffsets[i];
RELEASE_ASSERT(vm()->interpreter->getOpcodeID(instructions[startIdx].u.opcode) == op_profile_control_flow);
int basicBlockStartOffset = instructions[startIdx + 1].u.operand;
int basicBlockEndOffset;
if (i + 1 < offsetsLength) {
size_t endIdx = bytecodeOffsets[i + 1];
RELEASE_ASSERT(vm()->interpreter->getOpcodeID(instructions[endIdx].u.opcode) == op_profile_control_flow);
basicBlockEndOffset = instructions[endIdx + 1].u.operand - 1;
} else {
basicBlockEndOffset = m_sourceOffset + ownerScriptExecutable()->source().length() - 1; // Offset before the closing brace.
basicBlockStartOffset = std::min(basicBlockStartOffset, basicBlockEndOffset); // Some start offsets may be at the closing brace, ensure it is the offset before.
}
// The following check allows for the same textual JavaScript basic block to have its bytecode emitted more
// than once and still play nice with the control flow profiler. When basicBlockStartOffset is larger than
// basicBlockEndOffset, it indicates that the bytecode generator has emitted code for the same AST node
// more than once (for example: ForInNode, Finally blocks in TryNode, etc). Though these are different
// basic blocks at the bytecode level, they are generated from the same textual basic block in the JavaScript
// program. The condition:
// (basicBlockEndOffset < basicBlockStartOffset)
// is encountered when op_profile_control_flow lies across the boundary of these duplicated bytecode basic
// blocks and the textual offset goes from the end of the duplicated block back to the beginning. These
// ranges are dummy ranges and are ignored. The duplicated bytecode basic blocks point to the same
// internal data structure, so if any of them execute, it will record the same textual basic block in the
// JavaScript program as executing.
// At the bytecode level, this situation looks like:
// j: op_profile_control_flow (from j->k, we have basicBlockEndOffset < basicBlockStartOffset)
// ...
// k: op_profile_control_flow (we want to skip over the j->k block and start fresh at offset k as the start of a new basic block k->m).
// ...
// m: op_profile_control_flow
if (basicBlockEndOffset < basicBlockStartOffset) {
RELEASE_ASSERT(i + 1 < offsetsLength); // We should never encounter dummy blocks at the end of a CodeBlock.
instructions[startIdx + 1].u.basicBlockLocation = vm()->controlFlowProfiler()->dummyBasicBlock();
continue;
}
BasicBlockLocation* basicBlockLocation = vm()->controlFlowProfiler()->getBasicBlockLocation(ownerScriptExecutable()->sourceID(), basicBlockStartOffset, basicBlockEndOffset);
// Find all functions that are enclosed within the range: [basicBlockStartOffset, basicBlockEndOffset]
// and insert these functions' start/end offsets as gaps in the current BasicBlockLocation.
// This is necessary because in the original source text of a JavaScript program,
// function literals form new basic blocks boundaries, but they aren't represented
// inside the CodeBlock's instruction stream.
auto insertFunctionGaps = [basicBlockLocation, basicBlockStartOffset, basicBlockEndOffset] (const WriteBarrier<FunctionExecutable>& functionExecutable) {
const UnlinkedFunctionExecutable* executable = functionExecutable->unlinkedExecutable();
int functionStart = executable->typeProfilingStartOffset();
int functionEnd = executable->typeProfilingEndOffset();
if (functionStart >= basicBlockStartOffset && functionEnd <= basicBlockEndOffset)
basicBlockLocation->insertGap(functionStart, functionEnd);
};
for (const WriteBarrier<FunctionExecutable>& executable : m_functionDecls)
insertFunctionGaps(executable);
for (const WriteBarrier<FunctionExecutable>& executable : m_functionExprs)
insertFunctionGaps(executable);
instructions[startIdx + 1].u.basicBlockLocation = basicBlockLocation;
}
}
} // namespace JSC