| /* |
| * Copyright (C) 2017 Apple Inc. All rights reserved. |
| * Copyright (C) 2017 Metrological Group B.V. |
| * Copyright (C) 2017 Igalia S.L. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS |
| * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
| * THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "CryptoAlgorithmAES_CTR.h" |
| |
| #if ENABLE(WEB_CRYPTO) |
| |
| #include "CryptoAlgorithmAesCtrParams.h" |
| #include "CryptoKeyAES.h" |
| #include <pal/crypto/gcrypt/Handle.h> |
| #include <pal/crypto/gcrypt/Utilities.h> |
| |
| namespace WebCore { |
| |
| // This is a helper function that resets the cipher object, sets the provided counter data, |
| // and executes the encrypt or decrypt operation, retrieving and returning the output data. |
| static Optional<Vector<uint8_t>> callOperation(PAL::GCrypt::CipherOperation operation, gcry_cipher_hd_t handle, const Vector<uint8_t>& counter, const uint8_t* data, const size_t size) |
| { |
| gcry_error_t error = gcry_cipher_reset(handle); |
| if (error != GPG_ERR_NO_ERROR) { |
| PAL::GCrypt::logError(error); |
| return WTF::nullopt; |
| } |
| |
| error = gcry_cipher_setctr(handle, counter.data(), counter.size()); |
| if (error != GPG_ERR_NO_ERROR) { |
| PAL::GCrypt::logError(error); |
| return WTF::nullopt; |
| } |
| |
| error = gcry_cipher_final(handle); |
| if (error != GPG_ERR_NO_ERROR) { |
| PAL::GCrypt::logError(error); |
| return WTF::nullopt; |
| } |
| |
| Vector<uint8_t> output(size); |
| error = operation(handle, output.data(), output.size(), data, size); |
| if (error != GPG_ERR_NO_ERROR) { |
| PAL::GCrypt::logError(error); |
| return WTF::nullopt; |
| } |
| |
| return output; |
| } |
| |
| static Optional<Vector<uint8_t>> gcryptAES_CTR(PAL::GCrypt::CipherOperation operation, const Vector<uint8_t>& key, const Vector<uint8_t>& counter, size_t counterLength, const Vector<uint8_t>& inputText) |
| { |
| constexpr size_t blockSize = 16; |
| auto algorithm = PAL::GCrypt::aesAlgorithmForKeySize(key.size() * 8); |
| if (!algorithm) |
| return WTF::nullopt; |
| |
| // Construct the libgcrypt cipher object and attach the key to it. Key information on this |
| // cipher object will live through any gcry_cipher_reset() calls. |
| PAL::GCrypt::Handle<gcry_cipher_hd_t> handle; |
| gcry_error_t error = gcry_cipher_open(&handle, *algorithm, GCRY_CIPHER_MODE_CTR, 0); |
| if (error != GPG_ERR_NO_ERROR) { |
| PAL::GCrypt::logError(error); |
| return WTF::nullopt; |
| } |
| |
| error = gcry_cipher_setkey(handle, key.data(), key.size()); |
| if (error != GPG_ERR_NO_ERROR) { |
| PAL::GCrypt::logError(error); |
| return WTF::nullopt; |
| } |
| |
| // Calculate the block count: ((inputText.size() + blockSize - 1) / blockSize), remainder discarded. |
| PAL::GCrypt::Handle<gcry_mpi_t> blockCountMPI(gcry_mpi_new(0)); |
| { |
| PAL::GCrypt::Handle<gcry_mpi_t> blockSizeMPI(gcry_mpi_set_ui(nullptr, blockSize)); |
| PAL::GCrypt::Handle<gcry_mpi_t> roundedUpSize(gcry_mpi_set_ui(nullptr, inputText.size())); |
| |
| gcry_mpi_add_ui(roundedUpSize, roundedUpSize, blockSize - 1); |
| gcry_mpi_div(blockCountMPI, nullptr, roundedUpSize, blockSizeMPI, 0); |
| } |
| |
| // Calculate the counter limit for the specified counter length: (2 << counterLength). |
| // (counterLimitMPI - 1) is the maximum value the counter can hold -- essentially it's |
| // a bit-mask for valid counter values. |
| PAL::GCrypt::Handle<gcry_mpi_t> counterLimitMPI(gcry_mpi_set_ui(nullptr, 1)); |
| gcry_mpi_mul_2exp(counterLimitMPI, counterLimitMPI, counterLength); |
| |
| // Counter values must not repeat for a given cipher text. If the counter limit (i.e. |
| // the number of unique counter values we could produce for the specified counter |
| // length) is lower than the deduced block count, we bail. |
| if (gcry_mpi_cmp(counterLimitMPI, blockCountMPI) < 0) |
| return WTF::nullopt; |
| |
| // If the counter length, in bits, matches the size of the counter data, we don't have to |
| // use any part of the counter Vector<> as nonce. This allows us to directly encrypt or |
| // decrypt all the provided data in a single step. |
| if (counterLength == counter.size() * 8) |
| return callOperation(operation, handle, counter, inputText.data(), inputText.size()); |
| |
| // Scan the counter data into the MPI format. We'll do all the counter computations with |
| // the MPI API. |
| PAL::GCrypt::Handle<gcry_mpi_t> counterDataMPI; |
| error = gcry_mpi_scan(&counterDataMPI, GCRYMPI_FMT_USG, counter.data(), counter.size(), nullptr); |
| if (error != GPG_ERR_NO_ERROR) { |
| PAL::GCrypt::logError(error); |
| return WTF::nullopt; |
| } |
| |
| // Extract the counter MPI from the counterDataMPI: (counterDataMPI % counterLimitMPI). |
| // This MPI represents solely the counter value, as initially provided. |
| PAL::GCrypt::Handle<gcry_mpi_t> counterMPI(gcry_mpi_new(0)); |
| gcry_mpi_mod(counterMPI, counterDataMPI, counterLimitMPI); |
| |
| { |
| // Calculate the leeway of the initially-provided counter: counterLimitMPI - counterMPI. |
| // This is essentially the number of blocks we can encrypt/decrypt with that counter |
| // (incrementing it after each operation) before the counter wraps around to 0. |
| PAL::GCrypt::Handle<gcry_mpi_t> counterLeewayMPI(gcry_mpi_new(0)); |
| gcry_mpi_sub(counterLeewayMPI, counterLimitMPI, counterMPI); |
| |
| // If counterLeewayMPI is larger or equal to the deduced block count, we can directly |
| // encrypt or decrypt the provided data in a single step since it's ensured that the |
| // counter won't overflow. |
| if (gcry_mpi_cmp(counterLeewayMPI, blockCountMPI) >= 0) |
| return callOperation(operation, handle, counter, inputText.data(), inputText.size()); |
| } |
| |
| // From here onwards we're dealing with a counter of which the length doesn't match the |
| // provided data, meaning we'll also have to manage the nonce data. The counter will also |
| // wrap around, so we'll have to address that too. |
| |
| // Determine the nonce MPI that we'll use to reconstruct the counter data for each block: |
| // (counterDataMPI - counterMPI). This is equivalent to counterDataMPI with the lowest |
| // counterLength bits cleared. |
| PAL::GCrypt::Handle<gcry_mpi_t> nonceMPI(gcry_mpi_new(0)); |
| gcry_mpi_sub(nonceMPI, counterDataMPI, counterMPI); |
| |
| // FIXME: This should be optimized further by first encrypting the amount of blocks for |
| // which the counter won't yet wrap around, and then encrypting the rest of the blocks |
| // starting from the counter set to 0. |
| |
| Vector<uint8_t> output; |
| Vector<uint8_t> blockCounterData(16); |
| size_t inputTextSize = inputText.size(); |
| |
| for (size_t i = 0; i < inputTextSize; i += 16) { |
| size_t blockInputSize = std::min<size_t>(16, inputTextSize - i); |
| |
| // Construct the block-specific counter: (nonceMPI + counterMPI). |
| PAL::GCrypt::Handle<gcry_mpi_t> blockCounterMPI(gcry_mpi_new(0)); |
| gcry_mpi_add(blockCounterMPI, nonceMPI, counterMPI); |
| |
| error = gcry_mpi_print(GCRYMPI_FMT_USG, blockCounterData.data(), blockCounterData.size(), nullptr, blockCounterMPI); |
| if (error != GPG_ERR_NO_ERROR) { |
| PAL::GCrypt::logError(error); |
| return WTF::nullopt; |
| } |
| |
| // Encrypt/decrypt this single block with the block-specific counter. Output for this |
| // single block is appended to the general output vector. |
| auto blockOutput = callOperation(operation, handle, blockCounterData, inputText.data() + i, blockInputSize); |
| if (!blockOutput) |
| return WTF::nullopt; |
| |
| output.appendVector(*blockOutput); |
| |
| // Increment the counter. The modulus operation takes care of any wrap-around. |
| PAL::GCrypt::Handle<gcry_mpi_t> counterIncrementMPI(gcry_mpi_new(0)); |
| gcry_mpi_add_ui(counterIncrementMPI, counterMPI, 1); |
| gcry_mpi_mod(counterMPI, counterIncrementMPI, counterLimitMPI); |
| } |
| |
| return output; |
| } |
| |
| ExceptionOr<Vector<uint8_t>> CryptoAlgorithmAES_CTR::platformEncrypt(const CryptoAlgorithmAesCtrParams& parameters, const CryptoKeyAES& key, const Vector<uint8_t>& plainText) |
| { |
| auto output = gcryptAES_CTR(gcry_cipher_encrypt, key.key(), parameters.counterVector(), parameters.length, plainText); |
| if (!output) |
| return Exception { OperationError }; |
| return WTFMove(*output); |
| } |
| |
| ExceptionOr<Vector<uint8_t>> CryptoAlgorithmAES_CTR::platformDecrypt(const CryptoAlgorithmAesCtrParams& parameters, const CryptoKeyAES& key, const Vector<uint8_t>& cipherText) |
| { |
| auto output = gcryptAES_CTR(gcry_cipher_decrypt, key.key(), parameters.counterVector(), parameters.length, cipherText); |
| if (!output) |
| return Exception { OperationError }; |
| return WTFMove(*output); |
| } |
| |
| } // namespace WebCore |
| |
| #endif // ENABLE(WEB_CRYPTO) |