blob: 6e0fe5c59125935b28034e76fa4f0f7fb8614ada [file] [log] [blame]
/*
* Copyright (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 1999 Antti Koivisto (koivisto@kde.org)
* (C) 2000 Dirk Mueller (mueller@kde.org)
* (C) 2004 Allan Sandfeld Jensen (kde@carewolf.com)
* Copyright (C) 2004, 2005, 2006, 2007, 2008, 2011, 2013 Apple Inc. All rights reserved.
* Copyright (C) 2009 Google Inc. All rights reserved.
* Copyright (C) 2009 Torch Mobile Inc. All rights reserved. (http://www.torchmobile.com/)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include "config.h"
#include "RenderObject.h"
#include "AXObjectCache.h"
#include "AnimationController.h"
#include "EventHandler.h"
#include "FloatQuad.h"
#include "FlowThreadController.h"
#include "FocusController.h"
#include "FrameSelection.h"
#include "FrameView.h"
#include "GeometryUtilities.h"
#include "GraphicsContext.h"
#include "HTMLAnchorElement.h"
#include "HTMLElement.h"
#include "HTMLImageElement.h"
#include "HTMLNames.h"
#include "HTMLTableCellElement.h"
#include "HTMLTableElement.h"
#include "HitTestResult.h"
#include "LogicalSelectionOffsetCaches.h"
#include "Page.h"
#include "PseudoElement.h"
#include "RenderCounter.h"
#include "RenderFlowThread.h"
#include "RenderGeometryMap.h"
#include "RenderInline.h"
#include "RenderIterator.h"
#include "RenderLayer.h"
#include "RenderLayerBacking.h"
#include "RenderNamedFlowFragment.h"
#include "RenderNamedFlowThread.h"
#include "RenderSVGResourceContainer.h"
#include "RenderScrollbarPart.h"
#include "RenderTheme.h"
#include "RenderView.h"
#include "SVGRenderSupport.h"
#include "Settings.h"
#include "ShadowRoot.h"
#include "StyleResolver.h"
#include "TransformState.h"
#include "htmlediting.h"
#include <algorithm>
#include <stdio.h>
#include <wtf/RefCountedLeakCounter.h>
#if PLATFORM(IOS)
#include "SelectionRect.h"
#endif
namespace WebCore {
using namespace HTMLNames;
#ifndef NDEBUG
RenderObject::SetLayoutNeededForbiddenScope::SetLayoutNeededForbiddenScope(RenderObject* renderObject, bool isForbidden)
: m_renderObject(renderObject)
, m_preexistingForbidden(m_renderObject->isSetNeedsLayoutForbidden())
{
m_renderObject->setNeedsLayoutIsForbidden(isForbidden);
}
RenderObject::SetLayoutNeededForbiddenScope::~SetLayoutNeededForbiddenScope()
{
m_renderObject->setNeedsLayoutIsForbidden(m_preexistingForbidden);
}
#endif
struct SameSizeAsRenderObject {
virtual ~SameSizeAsRenderObject() { } // Allocate vtable pointer.
void* pointers[4];
#ifndef NDEBUG
unsigned m_debugBitfields : 2;
#endif
unsigned m_bitfields;
};
COMPILE_ASSERT(sizeof(RenderObject) == sizeof(SameSizeAsRenderObject), RenderObject_should_stay_small);
DEFINE_DEBUG_ONLY_GLOBAL(WTF::RefCountedLeakCounter, renderObjectCounter, ("RenderObject"));
RenderObject::RenderObject(Node& node)
: CachedImageClient()
, m_node(node)
, m_parent(0)
, m_previous(0)
, m_next(0)
#ifndef NDEBUG
, m_hasAXObject(false)
, m_setNeedsLayoutForbidden(false)
#endif
, m_bitfields(node)
{
if (!node.isDocumentNode())
view().didCreateRenderer();
#ifndef NDEBUG
renderObjectCounter.increment();
#endif
}
RenderObject::~RenderObject()
{
#ifndef NDEBUG
ASSERT(!m_hasAXObject);
renderObjectCounter.decrement();
#endif
view().didDestroyRenderer();
}
RenderTheme& RenderObject::theme() const
{
ASSERT(document().page());
return document().page()->theme();
}
bool RenderObject::isDescendantOf(const RenderObject* obj) const
{
for (const RenderObject* r = this; r; r = r->m_parent) {
if (r == obj)
return true;
}
return false;
}
bool RenderObject::isLegend() const
{
return node() && node()->hasTagName(legendTag);
}
bool RenderObject::isHTMLMarquee() const
{
return node() && node()->renderer() == this && node()->hasTagName(marqueeTag);
}
void RenderObject::setFlowThreadStateIncludingDescendants(FlowThreadState state)
{
setFlowThreadState(state);
for (RenderObject* child = firstChildSlow(); child; child = child->nextSibling()) {
// If the child is a fragmentation context it already updated the descendants flag accordingly.
if (child->isRenderFlowThread())
continue;
ASSERT(state != child->flowThreadState());
child->setFlowThreadStateIncludingDescendants(state);
}
}
void RenderObject::setParent(RenderElement* parent)
{
m_parent = parent;
// Only update if our flow thread state is different from our new parent and if we're not a RenderFlowThread.
// A RenderFlowThread is always considered to be inside itself, so it never has to change its state
// in response to parent changes.
FlowThreadState newState = parent ? parent->flowThreadState() : NotInsideFlowThread;
if (newState != flowThreadState() && !isRenderFlowThread())
setFlowThreadStateIncludingDescendants(newState);
}
void RenderObject::removeFromParent()
{
if (parent())
parent()->removeChild(*this);
}
RenderObject* RenderObject::nextInPreOrder() const
{
if (RenderObject* o = firstChildSlow())
return o;
return nextInPreOrderAfterChildren();
}
RenderObject* RenderObject::nextInPreOrderAfterChildren() const
{
RenderObject* o;
if (!(o = nextSibling())) {
o = parent();
while (o && !o->nextSibling())
o = o->parent();
if (o)
o = o->nextSibling();
}
return o;
}
RenderObject* RenderObject::nextInPreOrder(const RenderObject* stayWithin) const
{
if (RenderObject* o = firstChildSlow())
return o;
return nextInPreOrderAfterChildren(stayWithin);
}
RenderObject* RenderObject::nextInPreOrderAfterChildren(const RenderObject* stayWithin) const
{
if (this == stayWithin)
return 0;
const RenderObject* current = this;
RenderObject* next;
while (!(next = current->nextSibling())) {
current = current->parent();
if (!current || current == stayWithin)
return 0;
}
return next;
}
RenderObject* RenderObject::previousInPreOrder() const
{
if (RenderObject* o = previousSibling()) {
while (RenderObject* last = o->lastChildSlow())
o = last;
return o;
}
return parent();
}
RenderObject* RenderObject::previousInPreOrder(const RenderObject* stayWithin) const
{
if (this == stayWithin)
return 0;
return previousInPreOrder();
}
RenderObject* RenderObject::childAt(unsigned index) const
{
RenderObject* child = firstChildSlow();
for (unsigned i = 0; child && i < index; i++)
child = child->nextSibling();
return child;
}
RenderObject* RenderObject::firstLeafChild() const
{
RenderObject* r = firstChildSlow();
while (r) {
RenderObject* n = 0;
n = r->firstChildSlow();
if (!n)
break;
r = n;
}
return r;
}
RenderObject* RenderObject::lastLeafChild() const
{
RenderObject* r = lastChildSlow();
while (r) {
RenderObject* n = 0;
n = r->lastChildSlow();
if (!n)
break;
r = n;
}
return r;
}
#if ENABLE(IOS_TEXT_AUTOSIZING)
// Inspired by Node::traverseNextNode.
RenderObject* RenderObject::traverseNext(const RenderObject* stayWithin) const
{
RenderObject* child = firstChildSlow();
if (child) {
ASSERT(!stayWithin || child->isDescendantOf(stayWithin));
return child;
}
if (this == stayWithin)
return 0;
if (nextSibling()) {
ASSERT(!stayWithin || nextSibling()->isDescendantOf(stayWithin));
return nextSibling();
}
const RenderObject* n = this;
while (n && !n->nextSibling() && (!stayWithin || n->parent() != stayWithin))
n = n->parent();
if (n) {
ASSERT(!stayWithin || !n->nextSibling() || n->nextSibling()->isDescendantOf(stayWithin));
return n->nextSibling();
}
return 0;
}
// Non-recursive version of the DFS search.
RenderObject* RenderObject::traverseNext(const RenderObject* stayWithin, HeightTypeTraverseNextInclusionFunction inclusionFunction, int& currentDepth, int& newFixedDepth) const
{
BlockContentHeightType overflowType;
// Check for suitable children.
for (RenderObject* child = firstChildSlow(); child; child = child->nextSibling()) {
overflowType = inclusionFunction(child);
if (overflowType != FixedHeight) {
currentDepth++;
if (overflowType == OverflowHeight)
newFixedDepth = currentDepth;
ASSERT(!stayWithin || child->isDescendantOf(stayWithin));
return child;
}
}
if (this == stayWithin)
return 0;
// Now we traverse other nodes if they exist, otherwise
// we go to the parent node and try doing the same.
const RenderObject* n = this;
while (n) {
while (n && !n->nextSibling() && (!stayWithin || n->parent() != stayWithin)) {
n = n->parent();
currentDepth--;
}
if (!n)
return 0;
for (RenderObject* sibling = n->nextSibling(); sibling; sibling = sibling->nextSibling()) {
overflowType = inclusionFunction(sibling);
if (overflowType != FixedHeight) {
if (overflowType == OverflowHeight)
newFixedDepth = currentDepth;
ASSERT(!stayWithin || !n->nextSibling() || n->nextSibling()->isDescendantOf(stayWithin));
return sibling;
}
}
if (!stayWithin || n->parent() != stayWithin) {
n = n->parent();
currentDepth--;
} else
return 0;
}
return 0;
}
RenderObject* RenderObject::traverseNext(const RenderObject* stayWithin, TraverseNextInclusionFunction inclusionFunction) const
{
for (RenderObject* child = firstChildSlow(); child; child = child->nextSibling()) {
if (inclusionFunction(child)) {
ASSERT(!stayWithin || child->isDescendantOf(stayWithin));
return child;
}
}
if (this == stayWithin)
return 0;
for (RenderObject* sibling = nextSibling(); sibling; sibling = sibling->nextSibling()) {
if (inclusionFunction(sibling)) {
ASSERT(!stayWithin || sibling->isDescendantOf(stayWithin));
return sibling;
}
}
const RenderObject* n = this;
while (n) {
while (n && !n->nextSibling() && (!stayWithin || n->parent() != stayWithin))
n = n->parent();
if (n) {
for (RenderObject* sibling = n->nextSibling(); sibling; sibling = sibling->nextSibling()) {
if (inclusionFunction(sibling)) {
ASSERT(!stayWithin || !n->nextSibling() || n->nextSibling()->isDescendantOf(stayWithin));
return sibling;
}
}
if ((!stayWithin || n->parent() != stayWithin))
n = n->parent();
else
return 0;
}
}
return 0;
}
static RenderObject::BlockContentHeightType includeNonFixedHeight(const RenderObject* renderer)
{
const RenderStyle& style = renderer->style();
if (style.height().type() == Fixed) {
if (is<RenderBlock>(*renderer)) {
// For fixed height styles, if the overflow size of the element spills out of the specified
// height, assume we can apply text auto-sizing.
if (style.overflowY() == OVISIBLE
&& style.height().value() < downcast<RenderBlock>(renderer)->layoutOverflowRect().maxY())
return RenderObject::OverflowHeight;
}
return RenderObject::FixedHeight;
}
return RenderObject::FlexibleHeight;
}
void RenderObject::adjustComputedFontSizesOnBlocks(float size, float visibleWidth)
{
Document* document = view().frameView().frame().document();
if (!document)
return;
Vector<int> depthStack;
int currentDepth = 0;
int newFixedDepth = 0;
// We don't apply autosizing to nodes with fixed height normally.
// But we apply it to nodes which are located deep enough
// (nesting depth is greater than some const) inside of a parent block
// which has fixed height but its content overflows intentionally.
for (RenderObject* descendent = traverseNext(this, includeNonFixedHeight, currentDepth, newFixedDepth); descendent; descendent = descendent->traverseNext(this, includeNonFixedHeight, currentDepth, newFixedDepth)) {
while (depthStack.size() > 0 && currentDepth <= depthStack[depthStack.size() - 1])
depthStack.remove(depthStack.size() - 1);
if (newFixedDepth)
depthStack.append(newFixedDepth);
int stackSize = depthStack.size();
if (is<RenderBlockFlow>(*descendent) && !descendent->isListItem() && (!stackSize || currentDepth - depthStack[stackSize - 1] > TextAutoSizingFixedHeightDepth))
downcast<RenderBlockFlow>(*descendent).adjustComputedFontSizes(size, visibleWidth);
newFixedDepth = 0;
}
// Remove style from auto-sizing table that are no longer valid.
document->validateAutoSizingNodes();
}
void RenderObject::resetTextAutosizing()
{
Document* document = view().frameView().frame().document();
if (!document)
return;
document->resetAutoSizingNodes();
Vector<int> depthStack;
int currentDepth = 0;
int newFixedDepth = 0;
for (RenderObject* descendent = traverseNext(this, includeNonFixedHeight, currentDepth, newFixedDepth); descendent; descendent = descendent->traverseNext(this, includeNonFixedHeight, currentDepth, newFixedDepth)) {
while (depthStack.size() > 0 && currentDepth <= depthStack[depthStack.size() - 1])
depthStack.remove(depthStack.size() - 1);
if (newFixedDepth)
depthStack.append(newFixedDepth);
int stackSize = depthStack.size();
if (is<RenderBlockFlow>(*descendent) && !descendent->isListItem() && (!stackSize || currentDepth - depthStack[stackSize - 1] > TextAutoSizingFixedHeightDepth))
downcast<RenderBlockFlow>(*descendent).resetComputedFontSize();
newFixedDepth = 0;
}
}
#endif // ENABLE(IOS_TEXT_AUTOSIZING)
RenderLayer* RenderObject::enclosingLayer() const
{
for (auto& renderer : lineageOfType<RenderLayerModelObject>(*this)) {
if (renderer.layer())
return renderer.layer();
}
return nullptr;
}
bool RenderObject::scrollRectToVisible(const LayoutRect& rect, const ScrollAlignment& alignX, const ScrollAlignment& alignY)
{
RenderLayer* enclosingLayer = this->enclosingLayer();
if (!enclosingLayer)
return false;
enclosingLayer->scrollRectToVisible(rect, alignX, alignY);
return true;
}
RenderBox& RenderObject::enclosingBox() const
{
return *lineageOfType<RenderBox>(const_cast<RenderObject&>(*this)).first();
}
RenderBoxModelObject& RenderObject::enclosingBoxModelObject() const
{
return *lineageOfType<RenderBoxModelObject>(const_cast<RenderObject&>(*this)).first();
}
bool RenderObject::fixedPositionedWithNamedFlowContainingBlock() const
{
return ((flowThreadState() == RenderObject::InsideOutOfFlowThread)
&& (style().position() == FixedPosition)
&& (containingBlock()->isOutOfFlowRenderFlowThread()));
}
static bool hasFixedPosInNamedFlowContainingBlock(const RenderObject* renderer)
{
ASSERT(renderer->flowThreadState() != RenderObject::NotInsideFlowThread);
RenderObject* curr = const_cast<RenderObject*>(renderer);
while (curr) {
if (curr->fixedPositionedWithNamedFlowContainingBlock())
return true;
curr = curr->containingBlock();
}
return false;
}
RenderBlock* RenderObject::firstLineBlock() const
{
return 0;
}
static inline bool objectIsRelayoutBoundary(const RenderElement* object)
{
// FIXME: In future it may be possible to broaden these conditions in order to improve performance.
if (object->isRenderView())
return true;
if (object->isTextControl())
return true;
if (object->isSVGRoot())
return true;
if (!object->hasOverflowClip())
return false;
if (object->style().width().isIntrinsicOrAuto() || object->style().height().isIntrinsicOrAuto() || object->style().height().isPercent())
return false;
// Table parts can't be relayout roots since the table is responsible for layouting all the parts.
if (object->isTablePart())
return false;
return true;
}
void RenderObject::clearNeedsLayout()
{
m_bitfields.setNeedsLayout(false);
setEverHadLayout(true);
setPosChildNeedsLayoutBit(false);
setNeedsSimplifiedNormalFlowLayoutBit(false);
setNormalChildNeedsLayoutBit(false);
setNeedsPositionedMovementLayoutBit(false);
if (is<RenderElement>(*this))
downcast<RenderElement>(*this).setAncestorLineBoxDirty(false);
#ifndef NDEBUG
checkBlockPositionedObjectsNeedLayout();
#endif
}
static void scheduleRelayoutForSubtree(RenderElement& renderer)
{
if (!renderer.isRenderView()) {
if (!renderer.isRooted())
return;
renderer.view().frameView().scheduleRelayoutOfSubtree(renderer);
return;
}
toRenderView(renderer).frameView().scheduleRelayout();
}
void RenderObject::markContainingBlocksForLayout(bool scheduleRelayout, RenderElement* newRoot)
{
ASSERT(!scheduleRelayout || !newRoot);
ASSERT(!isSetNeedsLayoutForbidden());
auto ancestor = container();
bool simplifiedNormalFlowLayout = needsSimplifiedNormalFlowLayout() && !selfNeedsLayout() && !normalChildNeedsLayout();
bool hasOutOfFlowPosition = !isText() && style().hasOutOfFlowPosition();
while (ancestor) {
#ifndef NDEBUG
// FIXME: Remove this once we remove the special cases for counters, quotes and mathml
// calling setNeedsLayout during preferred width computation.
SetLayoutNeededForbiddenScope layoutForbiddenScope(ancestor, isSetNeedsLayoutForbidden());
#endif
// Don't mark the outermost object of an unrooted subtree. That object will be
// marked when the subtree is added to the document.
auto container = ancestor->container();
if (!container && !ancestor->isRenderView())
return;
if (hasOutOfFlowPosition) {
bool willSkipRelativelyPositionedInlines = !ancestor->isRenderBlock() || ancestor->isAnonymousBlock();
// Skip relatively positioned inlines and anonymous blocks to get to the enclosing RenderBlock.
while (ancestor && (!ancestor->isRenderBlock() || ancestor->isAnonymousBlock()))
ancestor = ancestor->container();
if (!ancestor || ancestor->posChildNeedsLayout())
return;
if (willSkipRelativelyPositionedInlines)
container = ancestor->container();
ancestor->setPosChildNeedsLayoutBit(true);
simplifiedNormalFlowLayout = true;
} else if (simplifiedNormalFlowLayout) {
if (ancestor->needsSimplifiedNormalFlowLayout())
return;
ancestor->setNeedsSimplifiedNormalFlowLayoutBit(true);
} else {
if (ancestor->normalChildNeedsLayout())
return;
ancestor->setNormalChildNeedsLayoutBit(true);
}
ASSERT(!ancestor->isSetNeedsLayoutForbidden());
if (ancestor == newRoot)
return;
if (scheduleRelayout && objectIsRelayoutBoundary(ancestor))
break;
hasOutOfFlowPosition = ancestor->style().hasOutOfFlowPosition();
ancestor = container;
}
if (scheduleRelayout && ancestor)
scheduleRelayoutForSubtree(*ancestor);
}
#ifndef NDEBUG
void RenderObject::checkBlockPositionedObjectsNeedLayout()
{
ASSERT(!needsLayout());
if (is<RenderBlock>(*this))
downcast<RenderBlock>(*this).checkPositionedObjectsNeedLayout();
}
#endif
void RenderObject::setPreferredLogicalWidthsDirty(bool shouldBeDirty, MarkingBehavior markParents)
{
bool alreadyDirty = preferredLogicalWidthsDirty();
m_bitfields.setPreferredLogicalWidthsDirty(shouldBeDirty);
if (shouldBeDirty && !alreadyDirty && markParents == MarkContainingBlockChain && (isText() || !style().hasOutOfFlowPosition()))
invalidateContainerPreferredLogicalWidths();
}
void RenderObject::invalidateContainerPreferredLogicalWidths()
{
// In order to avoid pathological behavior when inlines are deeply nested, we do include them
// in the chain that we mark dirty (even though they're kind of irrelevant).
auto o = isTableCell() ? containingBlock() : container();
while (o && !o->preferredLogicalWidthsDirty()) {
// Don't invalidate the outermost object of an unrooted subtree. That object will be
// invalidated when the subtree is added to the document.
auto container = o->isTableCell() ? o->containingBlock() : o->container();
if (!container && !o->isRenderView())
break;
o->m_bitfields.setPreferredLogicalWidthsDirty(true);
if (o->style().hasOutOfFlowPosition())
// A positioned object has no effect on the min/max width of its containing block ever.
// We can optimize this case and not go up any further.
break;
o = container;
}
}
void RenderObject::setLayerNeedsFullRepaint()
{
ASSERT(hasLayer());
toRenderLayerModelObject(this)->layer()->setRepaintStatus(NeedsFullRepaint);
}
void RenderObject::setLayerNeedsFullRepaintForPositionedMovementLayout()
{
ASSERT(hasLayer());
toRenderLayerModelObject(this)->layer()->setRepaintStatus(NeedsFullRepaintForPositionedMovementLayout);
}
RenderBlock* RenderObject::containingBlock() const
{
auto parent = this->parent();
if (!parent && is<RenderScrollbarPart>(*this))
parent = downcast<RenderScrollbarPart>(*this).rendererOwningScrollbar();
const RenderStyle& style = this->style();
if (!is<RenderText>(*this) && style.position() == FixedPosition)
parent = containingBlockForFixedPosition(parent);
else if (!is<RenderText>(*this) && style.position() == AbsolutePosition)
parent = containingBlockForAbsolutePosition(parent);
else
parent = containingBlockForObjectInFlow(parent);
if (!is<RenderBlock>(parent))
return nullptr; // This can still happen in case of an orphaned tree
return downcast<RenderBlock>(parent);
}
void RenderObject::drawLineForBoxSide(GraphicsContext* graphicsContext, float x1, float y1, float x2, float y2,
BoxSide side, Color color, EBorderStyle borderStyle, float adjacentWidth1, float adjacentWidth2, bool antialias) const
{
float deviceScaleFactor = document().deviceScaleFactor();
float thickness;
float length;
if (side == BSTop || side == BSBottom) {
thickness = y2 - y1;
length = x2 - x1;
} else {
thickness = x2 - x1;
length = y2 - y1;
}
if (borderStyle == DOUBLE && (thickness * deviceScaleFactor) < 3)
borderStyle = SOLID;
// FIXME: We really would like this check to be an ASSERT as we don't want to draw empty borders. However
// nothing guarantees that the following recursive calls to drawLineForBoxSide will have non-null dimensions.
if (!thickness || !length)
return;
const RenderStyle& style = this->style();
switch (borderStyle) {
case BNONE:
case BHIDDEN:
return;
case DOTTED:
case DASHED: {
if (thickness > 0) {
bool wasAntialiased = graphicsContext->shouldAntialias();
StrokeStyle oldStrokeStyle = graphicsContext->strokeStyle();
graphicsContext->setShouldAntialias(antialias);
graphicsContext->setStrokeColor(color, style.colorSpace());
graphicsContext->setStrokeThickness(thickness);
graphicsContext->setStrokeStyle(borderStyle == DASHED ? DashedStroke : DottedStroke);
// FIXME: There's some odd adjustment in GraphicsContext::drawLine() that disables device pixel precision line drawing.
int adjustedX = floorToInt((x1 + x2) / 2);
int adjustedY = floorToInt((y1 + y2) / 2);
switch (side) {
case BSBottom:
case BSTop:
graphicsContext->drawLine(FloatPoint(x1, adjustedY), FloatPoint(x2, adjustedY));
break;
case BSRight:
case BSLeft:
graphicsContext->drawLine(FloatPoint(adjustedX, y1), FloatPoint(adjustedX, y2));
break;
}
graphicsContext->setShouldAntialias(wasAntialiased);
graphicsContext->setStrokeStyle(oldStrokeStyle);
}
break;
}
case DOUBLE: {
float thirdOfThickness = ceilToDevicePixel(thickness / 3, deviceScaleFactor);
ASSERT(thirdOfThickness);
if (adjacentWidth1 == 0 && adjacentWidth2 == 0) {
StrokeStyle oldStrokeStyle = graphicsContext->strokeStyle();
graphicsContext->setStrokeStyle(NoStroke);
graphicsContext->setFillColor(color, style.colorSpace());
bool wasAntialiased = graphicsContext->shouldAntialias();
graphicsContext->setShouldAntialias(antialias);
switch (side) {
case BSTop:
case BSBottom:
graphicsContext->drawRect(snapRectToDevicePixels(x1, y1, length, thirdOfThickness, deviceScaleFactor));
graphicsContext->drawRect(snapRectToDevicePixels(x1, y2 - thirdOfThickness, length, thirdOfThickness, deviceScaleFactor));
break;
case BSLeft:
case BSRight:
graphicsContext->drawRect(snapRectToDevicePixels(x1, y1, thirdOfThickness, length, deviceScaleFactor));
graphicsContext->drawRect(snapRectToDevicePixels(x2 - thirdOfThickness, y1, thirdOfThickness, length, deviceScaleFactor));
break;
}
graphicsContext->setShouldAntialias(wasAntialiased);
graphicsContext->setStrokeStyle(oldStrokeStyle);
} else {
float adjacent1BigThird = ceilToDevicePixel(adjacentWidth1 / 3, deviceScaleFactor);
float adjacent2BigThird = ceilToDevicePixel(adjacentWidth2 / 3, deviceScaleFactor);
float offset1 = floorToDevicePixel(fabs(adjacentWidth1) * 2 / 3, deviceScaleFactor);
float offset2 = floorToDevicePixel(fabs(adjacentWidth2) * 2 / 3, deviceScaleFactor);
float mitreOffset1 = adjacentWidth1 < 0 ? offset1 : 0;
float mitreOffset2 = adjacentWidth1 > 0 ? offset1 : 0;
float mitreOffset3 = adjacentWidth2 < 0 ? offset2 : 0;
float mitreOffset4 = adjacentWidth2 > 0 ? offset2 : 0;
FloatRect paintBorderRect;
switch (side) {
case BSTop:
paintBorderRect = snapRectToDevicePixels(LayoutRect(x1 + mitreOffset1, y1, (x2 - mitreOffset3) - (x1 + mitreOffset1), thirdOfThickness), deviceScaleFactor);
drawLineForBoxSide(graphicsContext, paintBorderRect.x(), paintBorderRect.y(), paintBorderRect.maxX(), paintBorderRect.maxY(), side, color, SOLID,
adjacent1BigThird, adjacent2BigThird, antialias);
paintBorderRect = snapRectToDevicePixels(LayoutRect(x1 + mitreOffset2, y2 - thirdOfThickness, (x2 - mitreOffset4) - (x1 + mitreOffset2), thirdOfThickness), deviceScaleFactor);
drawLineForBoxSide(graphicsContext, paintBorderRect.x(), paintBorderRect.y(), paintBorderRect.maxX(), paintBorderRect.maxY(), side, color, SOLID,
adjacent1BigThird, adjacent2BigThird, antialias);
break;
case BSLeft:
paintBorderRect = snapRectToDevicePixels(LayoutRect(x1, y1 + mitreOffset1, thirdOfThickness, (y2 - mitreOffset3) - (y1 + mitreOffset1)), deviceScaleFactor);
drawLineForBoxSide(graphicsContext, paintBorderRect.x(), paintBorderRect.y(), paintBorderRect.maxX(), paintBorderRect.maxY(), side, color, SOLID,
adjacent1BigThird, adjacent2BigThird, antialias);
paintBorderRect = snapRectToDevicePixels(LayoutRect(x2 - thirdOfThickness, y1 + mitreOffset2, thirdOfThickness, (y2 - mitreOffset4) - (y1 + mitreOffset2)), deviceScaleFactor);
drawLineForBoxSide(graphicsContext, paintBorderRect.x(), paintBorderRect.y(), paintBorderRect.maxX(), paintBorderRect.maxY(), side, color, SOLID,
adjacent1BigThird, adjacent2BigThird, antialias);
break;
case BSBottom:
paintBorderRect = snapRectToDevicePixels(LayoutRect(x1 + mitreOffset2, y1, (x2 - mitreOffset4) - (x1 + mitreOffset2), thirdOfThickness), deviceScaleFactor);
drawLineForBoxSide(graphicsContext, paintBorderRect.x(), paintBorderRect.y(), paintBorderRect.maxX(), paintBorderRect.maxY(), side, color, SOLID,
adjacent1BigThird, adjacent2BigThird, antialias);
paintBorderRect = snapRectToDevicePixels(LayoutRect(x1 + mitreOffset1, y2 - thirdOfThickness, (x2 - mitreOffset3) - (x1 + mitreOffset1), thirdOfThickness), deviceScaleFactor);
drawLineForBoxSide(graphicsContext, paintBorderRect.x(), paintBorderRect.y(), paintBorderRect.maxX(), paintBorderRect.maxY(), side, color, SOLID,
adjacent1BigThird, adjacent2BigThird, antialias);
break;
case BSRight:
paintBorderRect = snapRectToDevicePixels(LayoutRect(x1, y1 + mitreOffset2, thirdOfThickness, (y2 - mitreOffset4) - (y1 + mitreOffset2)), deviceScaleFactor);
drawLineForBoxSide(graphicsContext, paintBorderRect.x(), paintBorderRect.y(), paintBorderRect.maxX(), paintBorderRect.maxY(), side, color, SOLID,
adjacent1BigThird, adjacent2BigThird, antialias);
paintBorderRect = snapRectToDevicePixels(LayoutRect(x2 - thirdOfThickness, y1 + mitreOffset1, thirdOfThickness, (y2 - mitreOffset3) - (y1 + mitreOffset1)), deviceScaleFactor);
drawLineForBoxSide(graphicsContext, paintBorderRect.x(), paintBorderRect.y(), paintBorderRect.maxX(), paintBorderRect.maxY(), side, color, SOLID,
adjacent1BigThird, adjacent2BigThird, antialias);
break;
default:
break;
}
}
break;
}
case RIDGE:
case GROOVE: {
EBorderStyle s1;
EBorderStyle s2;
if (borderStyle == GROOVE) {
s1 = INSET;
s2 = OUTSET;
} else {
s1 = OUTSET;
s2 = INSET;
}
float adjacent1BigHalf = ceilToDevicePixel(adjacentWidth1 / 2, deviceScaleFactor);
float adjacent2BigHalf = ceilToDevicePixel(adjacentWidth2 / 2, deviceScaleFactor);
float adjacent1SmallHalf = floorToDevicePixel(adjacentWidth1 / 2, deviceScaleFactor);
float adjacent2SmallHalf = floorToDevicePixel(adjacentWidth2 / 2, deviceScaleFactor);
float offset1 = 0;
float offset2 = 0;
float offset3 = 0;
float offset4 = 0;
if (((side == BSTop || side == BSLeft) && adjacentWidth1 < 0) || ((side == BSBottom || side == BSRight) && adjacentWidth1 > 0))
offset1 = floorToDevicePixel(adjacentWidth1 / 2, deviceScaleFactor);
if (((side == BSTop || side == BSLeft) && adjacentWidth2 < 0) || ((side == BSBottom || side == BSRight) && adjacentWidth2 > 0))
offset2 = ceilToDevicePixel(adjacentWidth2 / 2, deviceScaleFactor);
if (((side == BSTop || side == BSLeft) && adjacentWidth1 > 0) || ((side == BSBottom || side == BSRight) && adjacentWidth1 < 0))
offset3 = floorToDevicePixel(fabs(adjacentWidth1) / 2, deviceScaleFactor);
if (((side == BSTop || side == BSLeft) && adjacentWidth2 > 0) || ((side == BSBottom || side == BSRight) && adjacentWidth2 < 0))
offset4 = ceilToDevicePixel(adjacentWidth2 / 2, deviceScaleFactor);
float adjustedX = ceilToDevicePixel((x1 + x2) / 2, deviceScaleFactor);
float adjustedY = ceilToDevicePixel((y1 + y2) / 2, deviceScaleFactor);
/// Quads can't use the default snapping rect functions.
x1 = roundToDevicePixel(x1, deviceScaleFactor);
x2 = roundToDevicePixel(x2, deviceScaleFactor);
y1 = roundToDevicePixel(y1, deviceScaleFactor);
y2 = roundToDevicePixel(y2, deviceScaleFactor);
switch (side) {
case BSTop:
drawLineForBoxSide(graphicsContext, x1 + offset1, y1, x2 - offset2, adjustedY, side, color, s1, adjacent1BigHalf, adjacent2BigHalf, antialias);
drawLineForBoxSide(graphicsContext, x1 + offset3, adjustedY, x2 - offset4, y2, side, color, s2, adjacent1SmallHalf, adjacent2SmallHalf, antialias);
break;
case BSLeft:
drawLineForBoxSide(graphicsContext, x1, y1 + offset1, adjustedX, y2 - offset2, side, color, s1, adjacent1BigHalf, adjacent2BigHalf, antialias);
drawLineForBoxSide(graphicsContext, adjustedX, y1 + offset3, x2, y2 - offset4, side, color, s2, adjacent1SmallHalf, adjacent2SmallHalf, antialias);
break;
case BSBottom:
drawLineForBoxSide(graphicsContext, x1 + offset1, y1, x2 - offset2, adjustedY, side, color, s2, adjacent1BigHalf, adjacent2BigHalf, antialias);
drawLineForBoxSide(graphicsContext, x1 + offset3, adjustedY, x2 - offset4, y2, side, color, s1, adjacent1SmallHalf, adjacent2SmallHalf, antialias);
break;
case BSRight:
drawLineForBoxSide(graphicsContext, x1, y1 + offset1, adjustedX, y2 - offset2, side, color, s2, adjacent1BigHalf, adjacent2BigHalf, antialias);
drawLineForBoxSide(graphicsContext, adjustedX, y1 + offset3, x2, y2 - offset4, side, color, s1, adjacent1SmallHalf, adjacent2SmallHalf, antialias);
break;
}
break;
}
case INSET:
// FIXME: Maybe we should lighten the colors on one side like Firefox.
// https://bugs.webkit.org/show_bug.cgi?id=58608
if (side == BSTop || side == BSLeft)
color = color.dark();
FALLTHROUGH;
case OUTSET:
if (borderStyle == OUTSET && (side == BSBottom || side == BSRight))
color = color.dark();
FALLTHROUGH;
case SOLID: {
StrokeStyle oldStrokeStyle = graphicsContext->strokeStyle();
ASSERT(x2 >= x1);
ASSERT(y2 >= y1);
if (!adjacentWidth1 && !adjacentWidth2) {
// Turn off antialiasing to match the behavior of drawConvexPolygon();
// this matters for rects in transformed contexts.
graphicsContext->setStrokeStyle(NoStroke);
graphicsContext->setFillColor(color, style.colorSpace());
bool wasAntialiased = graphicsContext->shouldAntialias();
graphicsContext->setShouldAntialias(antialias);
graphicsContext->drawRect(snapRectToDevicePixels(x1, y1, x2 - x1, y2 - y1, deviceScaleFactor));
graphicsContext->setShouldAntialias(wasAntialiased);
graphicsContext->setStrokeStyle(oldStrokeStyle);
return;
}
// FIXME: These roundings should be replaced by ASSERT(device pixel positioned) when all the callers transitioned to device pixels.
x1 = roundToDevicePixel(x1, deviceScaleFactor);
y1 = roundToDevicePixel(y1, deviceScaleFactor);
x2 = roundToDevicePixel(x2, deviceScaleFactor);
y2 = roundToDevicePixel(y2, deviceScaleFactor);
FloatPoint quad[4];
switch (side) {
case BSTop:
quad[0] = FloatPoint(x1 + std::max<float>(-adjacentWidth1, 0), y1);
quad[1] = FloatPoint(x1 + std::max<float>(adjacentWidth1, 0), y2);
quad[2] = FloatPoint(x2 - std::max<float>(adjacentWidth2, 0), y2);
quad[3] = FloatPoint(x2 - std::max<float>(-adjacentWidth2, 0), y1);
break;
case BSBottom:
quad[0] = FloatPoint(x1 + std::max<float>(adjacentWidth1, 0), y1);
quad[1] = FloatPoint(x1 + std::max<float>(-adjacentWidth1, 0), y2);
quad[2] = FloatPoint(x2 - std::max<float>(-adjacentWidth2, 0), y2);
quad[3] = FloatPoint(x2 - std::max<float>(adjacentWidth2, 0), y1);
break;
case BSLeft:
quad[0] = FloatPoint(x1, y1 + std::max<float>(-adjacentWidth1, 0));
quad[1] = FloatPoint(x1, y2 - std::max<float>(-adjacentWidth2, 0));
quad[2] = FloatPoint(x2, y2 - std::max<float>(adjacentWidth2, 0));
quad[3] = FloatPoint(x2, y1 + std::max<float>(adjacentWidth1, 0));
break;
case BSRight:
quad[0] = FloatPoint(x1, y1 + std::max<float>(adjacentWidth1, 0));
quad[1] = FloatPoint(x1, y2 - std::max<float>(adjacentWidth2, 0));
quad[2] = FloatPoint(x2, y2 - std::max<float>(-adjacentWidth2, 0));
quad[3] = FloatPoint(x2, y1 + std::max<float>(-adjacentWidth1, 0));
break;
}
graphicsContext->setStrokeStyle(NoStroke);
graphicsContext->setFillColor(color, style.colorSpace());
graphicsContext->drawConvexPolygon(4, quad, antialias);
graphicsContext->setStrokeStyle(oldStrokeStyle);
break;
}
}
}
void RenderObject::paintFocusRing(PaintInfo& paintInfo, const LayoutPoint& paintOffset, RenderStyle* style)
{
ASSERT(style->outlineStyleIsAuto());
Vector<IntRect> focusRingRects;
addFocusRingRects(focusRingRects, paintOffset, paintInfo.paintContainer);
#if PLATFORM(MAC)
bool needsRepaint;
paintInfo.context->drawFocusRing(focusRingRects, style->outlineWidth(), style->outlineOffset(), document().page()->focusController().timeSinceFocusWasSet(), needsRepaint);
if (needsRepaint)
document().page()->focusController().setFocusedElementNeedsRepaint();
#else
paintInfo.context->drawFocusRing(focusRingRects, style->outlineWidth(), style->outlineOffset(), style->visitedDependentColor(CSSPropertyOutlineColor));
#endif
}
void RenderObject::addPDFURLRect(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
Vector<IntRect> focusRingRects;
addFocusRingRects(focusRingRects, paintOffset, paintInfo.paintContainer);
IntRect urlRect = unionRect(focusRingRects);
if (urlRect.isEmpty())
return;
Node* node = this->node();
if (!is<Element>(node) || !node->isLink())
return;
const AtomicString& href = downcast<Element>(*node).getAttribute(hrefAttr);
if (href.isNull())
return;
paintInfo.context->setURLForRect(node->document().completeURL(href), snappedIntRect(urlRect));
}
void RenderObject::paintOutline(PaintInfo& paintInfo, const LayoutRect& paintRect)
{
if (!hasOutline())
return;
RenderStyle& styleToUse = style();
LayoutUnit outlineWidth = styleToUse.outlineWidth();
int outlineOffset = styleToUse.outlineOffset();
// Only paint the focus ring by hand if the theme isn't able to draw it.
if (styleToUse.outlineStyleIsAuto() && !theme().supportsFocusRing(styleToUse))
paintFocusRing(paintInfo, paintRect.location(), &styleToUse);
if (hasOutlineAnnotation() && !styleToUse.outlineStyleIsAuto() && !theme().supportsFocusRing(styleToUse))
addPDFURLRect(paintInfo, paintRect.location());
if (styleToUse.outlineStyleIsAuto() || styleToUse.outlineStyle() == BNONE)
return;
IntRect inner = snappedIntRect(paintRect);
inner.inflate(outlineOffset);
IntRect outer = snappedIntRect(inner);
outer.inflate(outlineWidth);
// FIXME: This prevents outlines from painting inside the object. See bug 12042
if (outer.isEmpty())
return;
EBorderStyle outlineStyle = styleToUse.outlineStyle();
Color outlineColor = styleToUse.visitedDependentColor(CSSPropertyOutlineColor);
GraphicsContext* graphicsContext = paintInfo.context;
bool useTransparencyLayer = outlineColor.hasAlpha();
if (useTransparencyLayer) {
if (outlineStyle == SOLID) {
Path path;
path.addRect(outer);
path.addRect(inner);
graphicsContext->setFillRule(RULE_EVENODD);
graphicsContext->setFillColor(outlineColor, styleToUse.colorSpace());
graphicsContext->fillPath(path);
return;
}
graphicsContext->beginTransparencyLayer(static_cast<float>(outlineColor.alpha()) / 255);
outlineColor = Color(outlineColor.red(), outlineColor.green(), outlineColor.blue());
}
int leftOuter = outer.x();
int leftInner = inner.x();
int rightOuter = outer.maxX();
int rightInner = inner.maxX();
int topOuter = outer.y();
int topInner = inner.y();
int bottomOuter = outer.maxY();
int bottomInner = inner.maxY();
drawLineForBoxSide(graphicsContext, leftOuter, topOuter, leftInner, bottomOuter, BSLeft, outlineColor, outlineStyle, outlineWidth, outlineWidth);
drawLineForBoxSide(graphicsContext, leftOuter, topOuter, rightOuter, topInner, BSTop, outlineColor, outlineStyle, outlineWidth, outlineWidth);
drawLineForBoxSide(graphicsContext, rightInner, topOuter, rightOuter, bottomOuter, BSRight, outlineColor, outlineStyle, outlineWidth, outlineWidth);
drawLineForBoxSide(graphicsContext, leftOuter, bottomInner, rightOuter, bottomOuter, BSBottom, outlineColor, outlineStyle, outlineWidth, outlineWidth);
if (useTransparencyLayer)
graphicsContext->endTransparencyLayer();
}
#if PLATFORM(IOS)
// This function is similar in spirit to RenderText::absoluteRectsForRange, but returns rectangles
// which are annotated with additional state which helps iOS draw selections in its unique way.
// No annotations are added in this class.
// FIXME: Move to RenderText with absoluteRectsForRange()?
void RenderObject::collectSelectionRects(Vector<SelectionRect>& rects, unsigned start, unsigned end)
{
Vector<FloatQuad> quads;
if (!firstChildSlow()) {
// FIXME: WebKit's position for an empty span after a BR is incorrect, so we can't trust
// quads for them. We don't need selection rects for those anyway though, since they
// are just empty containers. See <https://bugs.webkit.org/show_bug.cgi?id=49358>.
RenderObject* previous = previousSibling();
Node* node = this->node();
if (!previous || !previous->isBR() || !node || !node->isContainerNode() || !isInline()) {
// For inline elements we don't use absoluteQuads, since it takes into account continuations and leads to wrong results.
absoluteQuadsForSelection(quads);
}
} else {
unsigned offset = start;
for (RenderObject* child = childAt(start); child && offset < end; child = child->nextSibling(), ++offset)
child->absoluteQuads(quads);
}
unsigned numberOfQuads = quads.size();
for (unsigned i = 0; i < numberOfQuads; ++i)
rects.append(SelectionRect(quads[i].enclosingBoundingBox(), isHorizontalWritingMode(), view().pageNumberForBlockProgressionOffset(quads[i].enclosingBoundingBox().x())));
}
#endif
IntRect RenderObject::absoluteBoundingBoxRect(bool useTransforms) const
{
if (useTransforms) {
Vector<FloatQuad> quads;
absoluteQuads(quads);
size_t n = quads.size();
if (!n)
return IntRect();
IntRect result = quads[0].enclosingBoundingBox();
for (size_t i = 1; i < n; ++i)
result.unite(quads[i].enclosingBoundingBox());
return result;
}
FloatPoint absPos = localToAbsolute();
Vector<IntRect> rects;
absoluteRects(rects, flooredLayoutPoint(absPos));
size_t n = rects.size();
if (!n)
return IntRect();
LayoutRect result = rects[0];
for (size_t i = 1; i < n; ++i)
result.unite(rects[i]);
return snappedIntRect(result);
}
void RenderObject::absoluteFocusRingQuads(Vector<FloatQuad>& quads)
{
Vector<IntRect> rects;
// FIXME: addFocusRingRects() needs to be passed this transform-unaware
// localToAbsolute() offset here because RenderInline::addFocusRingRects()
// implicitly assumes that. This doesn't work correctly with transformed
// descendants.
FloatPoint absolutePoint = localToAbsolute();
addFocusRingRects(rects, flooredLayoutPoint(absolutePoint));
size_t count = rects.size();
for (size_t i = 0; i < count; ++i) {
IntRect rect = rects[i];
rect.move(-absolutePoint.x(), -absolutePoint.y());
quads.append(localToAbsoluteQuad(FloatQuad(rect)));
}
}
FloatRect RenderObject::absoluteBoundingBoxRectForRange(const Range* range)
{
if (!range || !range->startContainer())
return FloatRect();
range->ownerDocument().updateLayout();
Vector<FloatQuad> quads;
range->textQuads(quads);
if (quads.isEmpty())
return FloatRect();
FloatRect result = quads[0].boundingBox();
for (size_t i = 1; i < quads.size(); ++i)
result.uniteEvenIfEmpty(quads[i].boundingBox());
return result;
}
void RenderObject::addAbsoluteRectForLayer(LayoutRect& result)
{
if (hasLayer())
result.unite(absoluteBoundingBoxRectIgnoringTransforms());
for (RenderObject* current = firstChildSlow(); current; current = current->nextSibling())
current->addAbsoluteRectForLayer(result);
}
// FIXME: change this to use the subtreePaint terminology
LayoutRect RenderObject::paintingRootRect(LayoutRect& topLevelRect)
{
LayoutRect result = absoluteBoundingBoxRectIgnoringTransforms();
topLevelRect = result;
for (RenderObject* current = firstChildSlow(); current; current = current->nextSibling())
current->addAbsoluteRectForLayer(result);
return result;
}
RenderLayerModelObject* RenderObject::containerForRepaint() const
{
RenderLayerModelObject* repaintContainer = 0;
if (view().usesCompositing()) {
if (RenderLayer* parentLayer = enclosingLayer()) {
RenderLayer* compLayer = parentLayer->enclosingCompositingLayerForRepaint();
if (compLayer)
repaintContainer = &compLayer->renderer();
}
}
if (view().hasSoftwareFilters()) {
if (RenderLayer* parentLayer = enclosingLayer()) {
RenderLayer* enclosingFilterLayer = parentLayer->enclosingFilterLayer();
if (enclosingFilterLayer)
return &enclosingFilterLayer->renderer();
}
}
// If we have a flow thread, then we need to do individual repaints within the RenderRegions instead.
// Return the flow thread as a repaint container in order to create a chokepoint that allows us to change
// repainting to do individual region repaints.
RenderFlowThread* parentRenderFlowThread = flowThreadContainingBlock();
if (parentRenderFlowThread) {
// If the element has a fixed positioned element with named flow as CB along the CB chain
// then the repaint container is not the flow thread.
if (hasFixedPosInNamedFlowContainingBlock(this))
return repaintContainer;
// If we have already found a repaint container then we will repaint into that container only if it is part of the same
// flow thread. Otherwise we will need to catch the repaint call and send it to the flow thread.
RenderFlowThread* repaintContainerFlowThread = repaintContainer ? repaintContainer->flowThreadContainingBlock() : 0;
if (!repaintContainerFlowThread || repaintContainerFlowThread != parentRenderFlowThread)
repaintContainer = parentRenderFlowThread;
}
return repaintContainer;
}
void RenderObject::repaintUsingContainer(const RenderLayerModelObject* repaintContainer, const LayoutRect& r, bool shouldClipToLayer) const
{
if (!repaintContainer) {
view().repaintViewRectangle(r);
return;
}
if (repaintContainer->isRenderFlowThread()) {
toRenderFlowThread(repaintContainer)->repaintRectangleInRegions(r);
return;
}
if (repaintContainer->hasFilter() && repaintContainer->layer() && repaintContainer->layer()->requiresFullLayerImageForFilters()) {
repaintContainer->layer()->setFilterBackendNeedsRepaintingInRect(r);
return;
}
RenderView& v = view();
if (repaintContainer->isRenderView()) {
ASSERT(repaintContainer == &v);
bool viewHasCompositedLayer = v.hasLayer() && v.layer()->isComposited();
if (!viewHasCompositedLayer || v.layer()->backing()->paintsIntoWindow()) {
v.repaintViewRectangle(viewHasCompositedLayer && v.layer()->transform() ? LayoutRect(v.layer()->transform()->mapRect(snapRectToDevicePixels(r, document().deviceScaleFactor()))) : r);
return;
}
}
if (v.usesCompositing()) {
ASSERT(repaintContainer->hasLayer() && repaintContainer->layer()->isComposited());
repaintContainer->layer()->setBackingNeedsRepaintInRect(r, shouldClipToLayer ? GraphicsLayer::ClipToLayer : GraphicsLayer::DoNotClipToLayer);
}
}
void RenderObject::repaint() const
{
// Don't repaint if we're unrooted (note that view() still returns the view when unrooted)
RenderView* view;
if (!isRooted(&view))
return;
if (view->printing())
return; // Don't repaint if we're printing.
RenderLayerModelObject* repaintContainer = containerForRepaint();
repaintUsingContainer(repaintContainer ? repaintContainer : view, clippedOverflowRectForRepaint(repaintContainer));
}
void RenderObject::repaintRectangle(const LayoutRect& r, bool shouldClipToLayer) const
{
// Don't repaint if we're unrooted (note that view() still returns the view when unrooted)
RenderView* view;
if (!isRooted(&view))
return;
if (view->printing())
return; // Don't repaint if we're printing.
LayoutRect dirtyRect(r);
// FIXME: layoutDelta needs to be applied in parts before/after transforms and
// repaint containers. https://bugs.webkit.org/show_bug.cgi?id=23308
dirtyRect.move(view->layoutDelta());
RenderLayerModelObject* repaintContainer = containerForRepaint();
computeRectForRepaint(repaintContainer, dirtyRect);
repaintUsingContainer(repaintContainer ? repaintContainer : view, dirtyRect, shouldClipToLayer);
}
void RenderObject::repaintSlowRepaintObject() const
{
// Don't repaint if we're unrooted (note that view() still returns the view when unrooted)
RenderView* view;
if (!isRooted(&view))
return;
// Don't repaint if we're printing.
if (view->printing())
return;
RenderLayerModelObject* repaintContainer = containerForRepaint();
if (!repaintContainer)
repaintContainer = view;
bool shouldClipToLayer = true;
IntRect repaintRect;
// If this is the root background, we need to check if there is an extended background rect. If
// there is, then we should not allow painting to clip to the layer size.
if (isRoot() || isBody()) {
shouldClipToLayer = !view->frameView().hasExtendedBackgroundRectForPainting();
repaintRect = snappedIntRect(view->backgroundRect(view));
} else
repaintRect = snappedIntRect(clippedOverflowRectForRepaint(repaintContainer));
repaintUsingContainer(repaintContainer, repaintRect, shouldClipToLayer);
}
IntRect RenderObject::pixelSnappedAbsoluteClippedOverflowRect() const
{
return snappedIntRect(absoluteClippedOverflowRect());
}
bool RenderObject::checkForRepaintDuringLayout() const
{
return !document().view()->needsFullRepaint() && !hasLayer() && everHadLayout();
}
LayoutRect RenderObject::rectWithOutlineForRepaint(const RenderLayerModelObject* repaintContainer, LayoutUnit outlineWidth) const
{
LayoutRect r(clippedOverflowRectForRepaint(repaintContainer));
r.inflate(outlineWidth);
return r;
}
LayoutRect RenderObject::clippedOverflowRectForRepaint(const RenderLayerModelObject*) const
{
ASSERT_NOT_REACHED();
return LayoutRect();
}
void RenderObject::computeRectForRepaint(const RenderLayerModelObject* repaintContainer, LayoutRect& rect, bool fixed) const
{
if (repaintContainer == this)
return;
if (auto o = parent()) {
if (o->hasOverflowClip()) {
RenderBox* boxParent = toRenderBox(o);
boxParent->applyCachedClipAndScrollOffsetForRepaint(rect);
if (rect.isEmpty())
return;
}
o->computeRectForRepaint(repaintContainer, rect, fixed);
}
}
void RenderObject::computeFloatRectForRepaint(const RenderLayerModelObject*, FloatRect&, bool) const
{
ASSERT_NOT_REACHED();
}
#ifndef NDEBUG
static void showRenderTreeLegend()
{
fprintf(stderr, "\n(R)elative/A(B)solute/Fi(X)ed/Stick(Y) positioned, (O)verflow clipping, (A)nonymous, (G)enerated, (F)loating, has(L)ayer, (C)omposited, (D)irty layout, Dirty (S)tyle\n");
}
void RenderObject::showNodeTreeForThis() const
{
if (!node())
return;
node()->showTreeForThis();
}
void RenderObject::showRenderTreeForThis() const
{
const WebCore::RenderObject* root = this;
while (root->parent())
root = root->parent();
showRenderTreeLegend();
root->showRenderSubTreeAndMark(this, 1);
}
void RenderObject::showLineTreeForThis() const
{
if (!is<RenderBlockFlow>(*this))
return;
showRenderTreeLegend();
showRenderObject(false, 1);
downcast<RenderBlockFlow>(*this).showLineTreeAndMark(nullptr, 2);
}
void RenderObject::showRegionsInformation() const
{
if (RenderFlowThread* flowThread = flowThreadContainingBlock()) {
const RenderBox* box = isBox() ? toRenderBox(this) : nullptr;
if (box) {
RenderRegion* startRegion = nullptr;
RenderRegion* endRegion = nullptr;
flowThread->getRegionRangeForBox(box, startRegion, endRegion);
fprintf(stderr, " [Rs:%p Re:%p]", startRegion, endRegion);
}
}
}
void RenderObject::showRenderObject(bool mark, int depth) const
{
#if COMPILER(CLANG)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunknown-pragmas"
#pragma clang diagnostic ignored "-Wundefined-bool-conversion"
#endif
// As this function is intended to be used when debugging, the |this| pointer may be 0.
if (!this) {
fprintf(stderr, "(null)\n");
return;
}
#if COMPILER(CLANG)
#pragma clang diagnostic pop
#endif
if (isPositioned()) {
if (isRelPositioned())
fputc('R', stderr);
else if (isStickyPositioned())
fputc('Y', stderr);
else if (isOutOfFlowPositioned()) {
if (style().position() == AbsolutePosition)
fputc('B', stderr);
else
fputc('X', stderr);
}
} else
fputc('-', stderr);
if (hasOverflowClip())
fputc('O', stderr);
else
fputc('-', stderr);
if (isAnonymousBlock())
fputc('A', stderr);
else
fputc('-', stderr);
if (isPseudoElement() || isAnonymous())
fputc('G', stderr);
else
fputc('-', stderr);
if (isFloating())
fputc('F', stderr);
else
fputc('-', stderr);
if (hasLayer())
fputc('L', stderr);
else
fputc('-', stderr);
if (isComposited())
fputc('C', stderr);
else
fputc('-', stderr);
fputc(' ', stderr);
if (needsLayout())
fputc('D', stderr);
else
fputc('-', stderr);
if (node() && node()->needsStyleRecalc())
fputc('S', stderr);
else
fputc('-', stderr);
int printedCharacters = 0;
if (mark) {
fprintf(stderr, "*");
++printedCharacters;
}
while (++printedCharacters <= depth * 2)
fputc(' ', stderr);
if (node())
fprintf(stderr, "%s ", node()->nodeName().utf8().data());
String name = renderName();
// FIXME: Renderer's name should not include property value listing.
int pos = name.find('(');
if (pos > 0)
fprintf(stderr, "%s", name.left(pos - 1).utf8().data());
else
fprintf(stderr, "%s", name.utf8().data());
if (isBox()) {
const RenderBox* box = toRenderBox(this);
fprintf(stderr, " (%.2f, %.2f) (%.2f, %.2f)", box->x().toFloat(), box->y().toFloat(), box->width().toFloat(), box->height().toFloat());
}
fprintf(stderr, " renderer->(%p)", this);
if (node()) {
fprintf(stderr, " node->(%p)", node());
if (node()->isTextNode()) {
String value = node()->nodeValue();
fprintf(stderr, " length->(%u)", value.length());
value.replaceWithLiteral('\\', "\\\\");
value.replaceWithLiteral('\n', "\\n");
const int maxPrintedLength = 80;
if (value.length() > maxPrintedLength) {
String substring = value.substring(0, maxPrintedLength);
fprintf(stderr, " \"%s\"...", substring.utf8().data());
} else
fprintf(stderr, " \"%s\"", value.utf8().data());
}
}
showRegionsInformation();
fprintf(stderr, "\n");
}
void RenderObject::showRenderSubTreeAndMark(const RenderObject* markedObject, int depth) const
{
#if COMPILER(CLANG)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunknown-pragmas"
#pragma clang diagnostic ignored "-Wundefined-bool-conversion"
#endif
// As this function is intended to be used when debugging, the |this| pointer may be 0.
if (!this)
return;
#if COMPILER(CLANG)
#pragma clang diagnostic pop
#endif
showRenderObject(markedObject == this, depth);
if (is<RenderBlockFlow>(*this))
downcast<RenderBlockFlow>(*this).showLineTreeAndMark(nullptr, depth + 1);
for (const RenderObject* child = firstChildSlow(); child; child = child->nextSibling())
child->showRenderSubTreeAndMark(markedObject, depth + 1);
}
#endif // NDEBUG
Color RenderObject::selectionBackgroundColor() const
{
Color color;
if (style().userSelect() != SELECT_NONE) {
if (frame().selection().shouldShowBlockCursor() && frame().selection().isCaret())
color = style().visitedDependentColor(CSSPropertyColor).blendWithWhite();
else {
RefPtr<RenderStyle> pseudoStyle = selectionPseudoStyle();
if (pseudoStyle && pseudoStyle->visitedDependentColor(CSSPropertyBackgroundColor).isValid())
color = pseudoStyle->visitedDependentColor(CSSPropertyBackgroundColor).blendWithWhite();
else
color = frame().selection().isFocusedAndActive() ? theme().activeSelectionBackgroundColor() : theme().inactiveSelectionBackgroundColor();
}
}
return color;
}
Color RenderObject::selectionColor(int colorProperty) const
{
Color color;
// If the element is unselectable, or we are only painting the selection,
// don't override the foreground color with the selection foreground color.
if (style().userSelect() == SELECT_NONE
|| (view().frameView().paintBehavior() & PaintBehaviorSelectionOnly))
return color;
if (RefPtr<RenderStyle> pseudoStyle = selectionPseudoStyle()) {
color = pseudoStyle->visitedDependentColor(colorProperty);
if (!color.isValid())
color = pseudoStyle->visitedDependentColor(CSSPropertyColor);
} else
color = frame().selection().isFocusedAndActive() ? theme().activeSelectionForegroundColor() : theme().inactiveSelectionForegroundColor();
return color;
}
PassRefPtr<RenderStyle> RenderObject::selectionPseudoStyle() const
{
if (isAnonymous())
return nullptr;
if (ShadowRoot* root = m_node.containingShadowRoot()) {
if (root->type() == ShadowRoot::UserAgentShadowRoot) {
if (Element* shadowHost = m_node.shadowHost())
return shadowHost->renderer()->getUncachedPseudoStyle(PseudoStyleRequest(SELECTION));
}
}
return getUncachedPseudoStyle(PseudoStyleRequest(SELECTION));
}
Color RenderObject::selectionForegroundColor() const
{
return selectionColor(CSSPropertyWebkitTextFillColor);
}
Color RenderObject::selectionEmphasisMarkColor() const
{
return selectionColor(CSSPropertyWebkitTextEmphasisColor);
}
SelectionSubtreeRoot& RenderObject::selectionRoot() const
{
RenderFlowThread* flowThread = flowThreadContainingBlock();
if (flowThread && flowThread->isRenderNamedFlowThread())
return *toRenderNamedFlowThread(flowThread);
return view();
}
void RenderObject::selectionStartEnd(int& spos, int& epos) const
{
selectionRoot().selectionStartEndPositions(spos, epos);
}
void RenderObject::handleDynamicFloatPositionChange()
{
// We have gone from not affecting the inline status of the parent flow to suddenly
// having an impact. See if there is a mismatch between the parent flow's
// childrenInline() state and our state.
setInline(style().isDisplayInlineType());
if (isInline() != parent()->childrenInline()) {
if (!isInline())
downcast<RenderBoxModelObject>(*parent()).childBecameNonInline(this);
else {
// An anonymous block must be made to wrap this inline.
RenderBlock* block = downcast<RenderBlock>(*parent()).createAnonymousBlock();
parent()->insertChildInternal(block, this, RenderElement::NotifyChildren);
parent()->removeChildInternal(*this, RenderElement::NotifyChildren);
block->insertChildInternal(this, nullptr, RenderElement::NotifyChildren);
}
}
}
void RenderObject::removeAnonymousWrappersForInlinesIfNecessary()
{
RenderBlock& parentBlock = downcast<RenderBlock>(*parent());
if (!parentBlock.canCollapseAnonymousBlockChild())
return;
// We have changed to floated or out-of-flow positioning so maybe all our parent's
// children can be inline now. Bail if there are any block children left on the line,
// otherwise we can proceed to stripping solitary anonymous wrappers from the inlines.
// FIXME: We should also handle split inlines here - we exclude them at the moment by returning
// if we find a continuation.
RenderObject* current = parent()->firstChild();
while (current && ((current->isAnonymousBlock() && !downcast<RenderBlock>(*current).isAnonymousBlockContinuation()) || current->style().isFloating() || current->style().hasOutOfFlowPosition()))
current = current->nextSibling();
if (current)
return;
RenderObject* next;
for (current = parent()->firstChild(); current; current = next) {
next = current->nextSibling();
if (current->isAnonymousBlock())
parentBlock.collapseAnonymousBoxChild(parentBlock, downcast<RenderBlock>(current));
}
}
FloatPoint RenderObject::localToAbsolute(const FloatPoint& localPoint, MapCoordinatesFlags mode) const
{
TransformState transformState(TransformState::ApplyTransformDirection, localPoint);
mapLocalToContainer(0, transformState, mode | ApplyContainerFlip);
transformState.flatten();
return transformState.lastPlanarPoint();
}
FloatPoint RenderObject::absoluteToLocal(const FloatPoint& containerPoint, MapCoordinatesFlags mode) const
{
TransformState transformState(TransformState::UnapplyInverseTransformDirection, containerPoint);
mapAbsoluteToLocalPoint(mode, transformState);
transformState.flatten();
return transformState.lastPlanarPoint();
}
FloatQuad RenderObject::absoluteToLocalQuad(const FloatQuad& quad, MapCoordinatesFlags mode) const
{
TransformState transformState(TransformState::UnapplyInverseTransformDirection, quad.boundingBox().center(), quad);
mapAbsoluteToLocalPoint(mode, transformState);
transformState.flatten();
return transformState.lastPlanarQuad();
}
void RenderObject::mapLocalToContainer(const RenderLayerModelObject* repaintContainer, TransformState& transformState, MapCoordinatesFlags mode, bool* wasFixed) const
{
if (repaintContainer == this)
return;
auto o = parent();
if (!o)
return;
// FIXME: this should call offsetFromContainer to share code, but I'm not sure it's ever called.
LayoutPoint centerPoint(transformState.mappedPoint());
if (mode & ApplyContainerFlip && o->isBox()) {
if (o->style().isFlippedBlocksWritingMode())
transformState.move(toRenderBox(o)->flipForWritingMode(LayoutPoint(transformState.mappedPoint())) - centerPoint);
mode &= ~ApplyContainerFlip;
}
if (o->isBox())
transformState.move(-toRenderBox(o)->scrolledContentOffset());
o->mapLocalToContainer(repaintContainer, transformState, mode, wasFixed);
}
const RenderObject* RenderObject::pushMappingToContainer(const RenderLayerModelObject* ancestorToStopAt, RenderGeometryMap& geometryMap) const
{
ASSERT_UNUSED(ancestorToStopAt, ancestorToStopAt != this);
auto container = parent();
if (!container)
return 0;
// FIXME: this should call offsetFromContainer to share code, but I'm not sure it's ever called.
LayoutSize offset;
if (container->isBox())
offset = -toRenderBox(container)->scrolledContentOffset();
geometryMap.push(this, offset, false);
return container;
}
void RenderObject::mapAbsoluteToLocalPoint(MapCoordinatesFlags mode, TransformState& transformState) const
{
auto o = parent();
if (o) {
o->mapAbsoluteToLocalPoint(mode, transformState);
if (o->isBox())
transformState.move(toRenderBox(o)->scrolledContentOffset());
}
}
bool RenderObject::shouldUseTransformFromContainer(const RenderObject* containerObject) const
{
#if ENABLE(3D_RENDERING)
// hasTransform() indicates whether the object has transform, transform-style or perspective. We just care about transform,
// so check the layer's transform directly.
return (hasLayer() && toRenderLayerModelObject(this)->layer()->transform()) || (containerObject && containerObject->style().hasPerspective());
#else
UNUSED_PARAM(containerObject);
return hasTransform();
#endif
}
void RenderObject::getTransformFromContainer(const RenderObject* containerObject, const LayoutSize& offsetInContainer, TransformationMatrix& transform) const
{
transform.makeIdentity();
transform.translate(offsetInContainer.width(), offsetInContainer.height());
RenderLayer* layer;
if (hasLayer() && (layer = toRenderLayerModelObject(this)->layer()) && layer->transform())
transform.multiply(layer->currentTransform());
#if ENABLE(3D_RENDERING)
if (containerObject && containerObject->hasLayer() && containerObject->style().hasPerspective()) {
// Perpsective on the container affects us, so we have to factor it in here.
ASSERT(containerObject->hasLayer());
FloatPoint perspectiveOrigin = toRenderLayerModelObject(containerObject)->layer()->perspectiveOrigin();
TransformationMatrix perspectiveMatrix;
perspectiveMatrix.applyPerspective(containerObject->style().perspective());
transform.translateRight3d(-perspectiveOrigin.x(), -perspectiveOrigin.y(), 0);
transform = perspectiveMatrix * transform;
transform.translateRight3d(perspectiveOrigin.x(), perspectiveOrigin.y(), 0);
}
#else
UNUSED_PARAM(containerObject);
#endif
}
FloatQuad RenderObject::localToContainerQuad(const FloatQuad& localQuad, const RenderLayerModelObject* repaintContainer, MapCoordinatesFlags mode, bool* wasFixed) const
{
// Track the point at the center of the quad's bounding box. As mapLocalToContainer() calls offsetFromContainer(),
// it will use that point as the reference point to decide which column's transform to apply in multiple-column blocks.
TransformState transformState(TransformState::ApplyTransformDirection, localQuad.boundingBox().center(), localQuad);
mapLocalToContainer(repaintContainer, transformState, mode | ApplyContainerFlip | UseTransforms, wasFixed);
transformState.flatten();
return transformState.lastPlanarQuad();
}
FloatPoint RenderObject::localToContainerPoint(const FloatPoint& localPoint, const RenderLayerModelObject* repaintContainer, MapCoordinatesFlags mode, bool* wasFixed) const
{
TransformState transformState(TransformState::ApplyTransformDirection, localPoint);
mapLocalToContainer(repaintContainer, transformState, mode | ApplyContainerFlip | UseTransforms, wasFixed);
transformState.flatten();
return transformState.lastPlanarPoint();
}
LayoutSize RenderObject::offsetFromContainer(RenderElement& container, const LayoutPoint&, bool* offsetDependsOnPoint) const
{
ASSERT(&container == this->container());
LayoutSize offset;
if (is<RenderBox>(container))
offset -= downcast<RenderBox>(container).scrolledContentOffset();
if (offsetDependsOnPoint)
*offsetDependsOnPoint = is<RenderFlowThread>(container);
return offset;
}
LayoutSize RenderObject::offsetFromAncestorContainer(RenderElement& container) const
{
LayoutSize offset;
LayoutPoint referencePoint;
const RenderObject* currContainer = this;
do {
RenderElement* nextContainer = currContainer->container();
ASSERT(nextContainer); // This means we reached the top without finding container.
if (!nextContainer)
break;
ASSERT(!currContainer->hasTransform());
LayoutSize currentOffset = currContainer->offsetFromContainer(*nextContainer, referencePoint);
offset += currentOffset;
referencePoint.move(currentOffset);
currContainer = nextContainer;
} while (currContainer != &container);
return offset;
}
LayoutRect RenderObject::localCaretRect(InlineBox*, int, LayoutUnit* extraWidthToEndOfLine)
{
if (extraWidthToEndOfLine)
*extraWidthToEndOfLine = 0;
return LayoutRect();
}
bool RenderObject::isRooted(RenderView** view) const
{
const RenderObject* o = this;
while (o->parent())
o = o->parent();
if (!o->isRenderView())
return false;
if (view)
*view = &const_cast<RenderView&>(toRenderView(*o));
return true;
}
RespectImageOrientationEnum RenderObject::shouldRespectImageOrientation() const
{
#if USE(CG) || USE(CAIRO)
// This can only be enabled for ports which honor the orientation flag in their drawing code.
if (document().isImageDocument())
return RespectImageOrientation;
#endif
// Respect the image's orientation if it's being used as a full-page image or it's
// an <img> and the setting to respect it everywhere is set.
return (frame().settings().shouldRespectImageOrientation() && is<HTMLImageElement>(node())) ? RespectImageOrientation : DoNotRespectImageOrientation;
}
bool RenderObject::hasOutlineAnnotation() const
{
return node() && node()->isLink() && document().printing();
}
bool RenderObject::hasEntirelyFixedBackground() const
{
return style().hasEntirelyFixedBackground();
}
RenderElement* RenderObject::container(const RenderLayerModelObject* repaintContainer, bool* repaintContainerSkipped) const
{
if (repaintContainerSkipped)
*repaintContainerSkipped = false;
// This method is extremely similar to containingBlock(), but with a few notable
// exceptions.
// (1) It can be used on orphaned subtrees, i.e., it can be called safely even when
// the object is not part of the primary document subtree yet.
// (2) For normal flow elements, it just returns the parent.
// (3) For absolute positioned elements, it will return a relative positioned inline.
// containingBlock() simply skips relpositioned inlines and lets an enclosing block handle
// the layout of the positioned object. This does mean that computePositionedLogicalWidth and
// computePositionedLogicalHeight have to use container().
auto o = parent();
if (isText())
return o;
EPosition pos = style().position();
if (pos == FixedPosition) {
// container() can be called on an object that is not in the
// tree yet. We don't call view() since it will assert if it
// can't get back to the canvas. Instead we just walk as high up
// as we can. If we're in the tree, we'll get the root. If we
// aren't we'll get the root of our little subtree (most likely
// we'll just return 0).
// FIXME: The definition of view() has changed to not crawl up the render tree. It might
// be safe now to use it.
while (o && o->parent() && !(o->hasTransform() && o->isRenderBlock())) {
// foreignObject is the containing block for its contents.
if (o->isSVGForeignObject())
break;
// The render flow thread is the top most containing block
// for the fixed positioned elements.
if (o->isOutOfFlowRenderFlowThread())
break;
if (repaintContainerSkipped && o == repaintContainer)
*repaintContainerSkipped = true;
o = o->parent();
}
} else if (pos == AbsolutePosition) {
// Same goes here. We technically just want our containing block, but
// we may not have one if we're part of an uninstalled subtree. We'll
// climb as high as we can though.
while (o && o->style().position() == StaticPosition && !o->isRenderView() && !(o->hasTransform() && o->isRenderBlock())) {
if (o->isSVGForeignObject()) // foreignObject is the containing block for contents inside it
break;
if (repaintContainerSkipped && o == repaintContainer)
*repaintContainerSkipped = true;
o = o->parent();
}
}
return o;
}
bool RenderObject::isSelectionBorder() const
{
SelectionState st = selectionState();
return st == SelectionStart
|| st == SelectionEnd
|| st == SelectionBoth
|| view().selectionUnsplitStart() == this
|| view().selectionUnsplitEnd() == this;
}
inline void RenderObject::clearLayoutRootIfNeeded() const
{
if (documentBeingDestroyed())
return;
if (view().frameView().layoutRoot() == this) {
ASSERT_NOT_REACHED();
// This indicates a failure to layout the child, which is why
// the layout root is still set to |this|. Make sure to clear it
// since we are getting destroyed.
view().frameView().clearLayoutRoot();
}
}
void RenderObject::willBeDestroyed()
{
// For accessibility management, notify the parent of the imminent change to its child set.
// We do it now, before remove(), while the parent pointer is still available.
if (AXObjectCache* cache = document().existingAXObjectCache())
cache->childrenChanged(this->parent());
removeFromParent();
ASSERT(documentBeingDestroyed() || !is<RenderElement>(*this) || !view().frameView().hasSlowRepaintObject(downcast<RenderElement>(this)));
// The remove() call above may invoke axObjectCache()->childrenChanged() on the parent, which may require the AX render
// object for this renderer. So we remove the AX render object now, after the renderer is removed.
if (AXObjectCache* cache = document().existingAXObjectCache())
cache->remove(this);
// FIXME: Would like to do this in RenderBoxModelObject, but the timing is so complicated that this can't easily
// be moved into RenderBoxModelObject::destroy.
if (hasLayer()) {
setHasLayer(false);
toRenderLayerModelObject(this)->destroyLayer();
}
clearLayoutRootIfNeeded();
}
void RenderObject::insertedIntoTree()
{
// FIXME: We should ASSERT(isRooted()) here but generated content makes some out-of-order insertion.
if (!isFloating() && parent()->childrenInline())
parent()->dirtyLinesFromChangedChild(*this);
if (RenderFlowThread* flowThread = flowThreadContainingBlock())
flowThread->flowThreadDescendantInserted(this);
}
void RenderObject::willBeRemovedFromTree()
{
// FIXME: We should ASSERT(isRooted()) but we have some out-of-order removals which would need to be fixed first.
removeFromRenderFlowThread();
// Update cached boundaries in SVG renderers, if a child is removed.
parent()->setNeedsBoundariesUpdate();
}
void RenderObject::removeFromRenderFlowThread()
{
if (flowThreadState() == NotInsideFlowThread)
return;
// Sometimes we remove the element from the flow, but it's not destroyed at that time.
// It's only until later when we actually destroy it and remove all the children from it.
// Currently, that happens for firstLetter elements and list markers.
// Pass in the flow thread so that we don't have to look it up for all the children.
removeFromRenderFlowThreadIncludingDescendants(true);
}
void RenderObject::removeFromRenderFlowThreadIncludingDescendants(bool shouldUpdateState)
{
// Once we reach another flow thread we don't need to update the flow thread state
// but we have to continue cleanup the flow thread info.
if (isRenderFlowThread())
shouldUpdateState = false;
for (RenderObject* child = firstChildSlow(); child; child = child->nextSibling())
child->removeFromRenderFlowThreadIncludingDescendants(shouldUpdateState);
// We have to ask for our containing flow thread as it may be above the removed sub-tree.
RenderFlowThread* flowThreadContainingBlock = this->flowThreadContainingBlock();
if (flowThreadContainingBlock)
flowThreadContainingBlock->removeFlowChildInfo(this);
if (is<RenderBlock>(*this))
downcast<RenderBlock>(*this).setCachedFlowThreadContainingBlockNeedsUpdate();
if (shouldUpdateState)
setFlowThreadState(NotInsideFlowThread);
}
void RenderObject::invalidateFlowThreadContainingBlockIncludingDescendants(RenderFlowThread* flowThread)
{
if (flowThreadState() == NotInsideFlowThread)
return;
if (is<RenderBlock>(*this)) {
RenderBlock& block = downcast<RenderBlock>(*this);
if (block.cachedFlowThreadContainingBlockNeedsUpdate())
return;
flowThread = block.cachedFlowThreadContainingBlock();
block.setCachedFlowThreadContainingBlockNeedsUpdate();
}
if (flowThread)
flowThread->removeFlowChildInfo(this);
for (RenderObject* child = firstChildSlow(); child; child = child->nextSibling())
child->invalidateFlowThreadContainingBlockIncludingDescendants(flowThread);
}
void RenderObject::destroyAndCleanupAnonymousWrappers()
{
// If the tree is destroyed, there is no need for a clean-up phase.
if (documentBeingDestroyed()) {
destroy();
return;
}
RenderObject* destroyRoot = this;
for (auto destroyRootParent = destroyRoot->parent(); destroyRootParent && destroyRootParent->isAnonymous(); destroyRoot = destroyRootParent, destroyRootParent = destroyRootParent->parent()) {
// Currently we only remove anonymous cells' and table sections' wrappers but we should remove all unneeded
// wrappers. See http://webkit.org/b/52123 as an example where this is needed.
if (!destroyRootParent->isTableCell() && !destroyRootParent->isTableSection())
break;
if (destroyRootParent->firstChild() != this || destroyRootParent->lastChild() != this)
break;
}
destroyRoot->destroy();
// WARNING: |this| is deleted here.
}
void RenderObject::destroy()
{
#if PLATFORM(IOS)
if (hasLayer())
downcast<RenderBoxModelObject>(*this).layer()->willBeDestroyed();
#endif
willBeDestroyed();
delete this;
}
VisiblePosition RenderObject::positionForPoint(const LayoutPoint&, const RenderRegion*)
{
return createVisiblePosition(caretMinOffset(), DOWNSTREAM);
}
void RenderObject::updateDragState(bool dragOn)
{
bool valueChanged = (dragOn != isDragging());
setIsDragging(dragOn);
if (valueChanged && node() && (style().affectedByDrag() || (is<Element>(*node()) && downcast<Element>(*node()).childrenAffectedByDrag())))
node()->setNeedsStyleRecalc();
for (RenderObject* curr = firstChildSlow(); curr; curr = curr->nextSibling())
curr->updateDragState(dragOn);
}
bool RenderObject::isComposited() const
{
return hasLayer() && toRenderLayerModelObject(this)->layer()->isComposited();
}
bool RenderObject::hitTest(const HitTestRequest& request, HitTestResult& result, const HitTestLocation& locationInContainer, const LayoutPoint& accumulatedOffset, HitTestFilter hitTestFilter)
{
bool inside = false;
if (hitTestFilter != HitTestSelf) {
// First test the foreground layer (lines and inlines).
inside = nodeAtPoint(request, result, locationInContainer, accumulatedOffset, HitTestForeground);
// Test floats next.
if (!inside)
inside = nodeAtPoint(request, result, locationInContainer, accumulatedOffset, HitTestFloat);
// Finally test to see if the mouse is in the background (within a child block's background).
if (!inside)
inside = nodeAtPoint(request, result, locationInContainer, accumulatedOffset, HitTestChildBlockBackgrounds);
}
// See if the mouse is inside us but not any of our descendants
if (hitTestFilter != HitTestDescendants && !inside)
inside = nodeAtPoint(request, result, locationInContainer, accumulatedOffset, HitTestBlockBackground);
return inside;
}
void RenderObject::updateHitTestResult(HitTestResult& result, const LayoutPoint& point)
{
if (result.innerNode())
return;
Node* node = this->node();
// If we hit the anonymous renderers inside generated content we should
// actually hit the generated content so walk up to the PseudoElement.
if (!node && parent() && parent()->isBeforeOrAfterContent()) {
for (auto renderer = parent(); renderer && !node; renderer = renderer->parent())
node = renderer->element();
}
if (node) {
result.setInnerNode(node);
if (!result.innerNonSharedNode())
result.setInnerNonSharedNode(node);
result.setLocalPoint(point);
}
}
bool RenderObject::nodeAtPoint(const HitTestRequest&, HitTestResult&, const HitTestLocation& /*locationInContainer*/, const LayoutPoint& /*accumulatedOffset*/, HitTestAction)
{
return false;
}
int RenderObject::innerLineHeight() const
{
return style().computedLineHeight();
}
RenderStyle* RenderObject::getCachedPseudoStyle(PseudoId pseudo, RenderStyle* parentStyle) const
{
if (pseudo < FIRST_INTERNAL_PSEUDOID && !style().hasPseudoStyle(pseudo))
return 0;
RenderStyle* cachedStyle = style().getCachedPseudoStyle(pseudo);
if (cachedStyle)
return cachedStyle;
RefPtr<RenderStyle> result = getUncachedPseudoStyle(PseudoStyleRequest(pseudo), parentStyle);
if (result)
return style().addCachedPseudoStyle(result.release());
return 0;
}
PassRefPtr<RenderStyle> RenderObject::getUncachedPseudoStyle(const PseudoStyleRequest& pseudoStyleRequest, RenderStyle* parentStyle, RenderStyle* ownStyle) const
{
if (pseudoStyleRequest.pseudoId < FIRST_INTERNAL_PSEUDOID && !ownStyle && !style().hasPseudoStyle(pseudoStyleRequest.pseudoId))
return nullptr;
if (!parentStyle) {
ASSERT(!ownStyle);
parentStyle = &style();
}
// FIXME: This "find nearest element parent" should be a helper function.
Node* node = this->node();
while (node && !is<Element>(*node))
node = node->parentNode();
if (!node)
return nullptr;
Element& element = downcast<Element>(*node);
if (pseudoStyleRequest.pseudoId == FIRST_LINE_INHERITED) {
RefPtr<RenderStyle> result = document().ensureStyleResolver().styleForElement(&element, parentStyle, DisallowStyleSharing);
result->setStyleType(FIRST_LINE_INHERITED);
return result.release();
}
return document().ensureStyleResolver().pseudoStyleForElement(&element, pseudoStyleRequest, parentStyle);
}
static Color decorationColor(RenderStyle* style)
{
Color result;
// Check for text decoration color first.
result = style->visitedDependentColor(CSSPropertyWebkitTextDecorationColor);
if (result.isValid())
return result;
if (style->textStrokeWidth() > 0) {
// Prefer stroke color if possible but not if it's fully transparent.
result = style->visitedDependentColor(CSSPropertyWebkitTextStrokeColor);
if (result.alpha())
return result;
}
result = style->visitedDependentColor(CSSPropertyWebkitTextFillColor);
return result;
}
void RenderObject::getTextDecorationColors(int decorations, Color& underline, Color& overline,
Color& linethrough, bool quirksMode, bool firstlineStyle)
{
RenderObject* current = this;
RenderStyle* styleToUse = nullptr;
TextDecoration currDecs = TextDecorationNone;
Color resultColor;
do {
styleToUse = firstlineStyle ? &current->firstLineStyle() : &current->style();
currDecs = styleToUse->textDecoration();
resultColor = decorationColor(styleToUse);
// Parameter 'decorations' is cast as an int to enable the bitwise operations below.
if (currDecs) {
if (currDecs & TextDecorationUnderline) {
decorations &= ~TextDecorationUnderline;
underline = resultColor;
}
if (currDecs & TextDecorationOverline) {
decorations &= ~TextDecorationOverline;
overline = resultColor;
}
if (currDecs & TextDecorationLineThrough) {
decorations &= ~TextDecorationLineThrough;
linethrough = resultColor;
}
}
if (current->isRubyText())
return;
current = current->parent();
if (current && current->isAnonymousBlock() && downcast<RenderBlock>(*current).continuation())
current = downcast<RenderBlock>(*current).continuation();
} while (current && decorations && (!quirksMode || !current->node() || (!is<HTMLAnchorElement>(*current->node()) && !current->node()->hasTagName(fontTag))));
// If we bailed out, use the element we bailed out at (typically a <font> or <a> element).
if (decorations && current) {
styleToUse = firstlineStyle ? &current->firstLineStyle() : &current->style();
resultColor = decorationColor(styleToUse);
if (decorations & TextDecorationUnderline)
underline = resultColor;
if (decorations & TextDecorationOverline)
overline = resultColor;
if (decorations & TextDecorationLineThrough)
linethrough = resultColor;
}
}
#if ENABLE(DASHBOARD_SUPPORT)
void RenderObject::addAnnotatedRegions(Vector<AnnotatedRegionValue>& regions)
{
// Convert the style regions to absolute coordinates.
if (style().visibility() != VISIBLE || !isBox())
return;
RenderBox* box = toRenderBox(this);
FloatPoint absPos = localToAbsolute();
const Vector<StyleDashboardRegion>& styleRegions = style().dashboardRegions();
unsigned i, count = styleRegions.size();
for (i = 0; i < count; i++) {
StyleDashboardRegion styleRegion = styleRegions[i];
LayoutUnit w = box->width();
LayoutUnit h = box->height();
AnnotatedRegionValue region;
region.label = styleRegion.label;
region.bounds = LayoutRect(styleRegion.offset.left().value(),
styleRegion.offset.top().value(),
w - styleRegion.offset.left().value() - styleRegion.offset.right().value(),
h - styleRegion.offset.top().value() - styleRegion.offset.bottom().value());
region.type = styleRegion.type;
region.clip = region.bounds;
computeAbsoluteRepaintRect(region.clip);
if (region.clip.height() < 0) {
region.clip.setHeight(0);
region.clip.setWidth(0);
}
region.bounds.setX(absPos.x() + styleRegion.offset.left().value());
region.bounds.setY(absPos.y() + styleRegion.offset.top().value());
regions.append(region);
}
}
void RenderObject::collectAnnotatedRegions(Vector<AnnotatedRegionValue>& regions)
{
// RenderTexts don't have their own style, they just use their parent's style,
// so we don't want to include them.
if (is<RenderText>(*this))
return;
addAnnotatedRegions(regions);
for (RenderObject* current = downcast<RenderElement>(*this).firstChild(); current; current = current->nextSibling())
current->collectAnnotatedRegions(regions);
}
#endif
int RenderObject::maximalOutlineSize(PaintPhase p) const
{
if (p != PaintPhaseOutline && p != PaintPhaseSelfOutline && p != PaintPhaseChildOutlines)
return 0;
return view().maximalOutlineSize();
}
int RenderObject::caretMinOffset() const
{
return 0;
}
int RenderObject::caretMaxOffset() const
{
if (isReplaced())
return node() ? std::max(1U, node()->countChildNodes()) : 1;
if (isHR())
return 1;
return 0;
}
int RenderObject::previousOffset(int current) const
{
return current - 1;
}
int RenderObject::previousOffsetForBackwardDeletion(int current) const
{
return current - 1;
}
int RenderObject::nextOffset(int current) const
{
return current + 1;
}
void RenderObject::adjustRectForOutlineAndShadow(LayoutRect& rect) const
{
int outlineSize = outlineStyleForRepaint().outlineSize();
if (const ShadowData* boxShadow = style().boxShadow()) {
boxShadow->adjustRectForShadow(rect, outlineSize);
return;
}
rect.inflate(outlineSize);
}
void RenderObject::imageChanged(CachedImage* image, const IntRect* rect)
{
imageChanged(static_cast<WrappedImagePtr>(image), rect);
}
RenderBoxModelObject* RenderObject::offsetParent() const
{
// If any of the following holds true return null and stop this algorithm:
// A is the root element.
// A is the HTML body element.
// The computed value of the position property for element A is fixed.
if (isRoot() || isBody() || (isOutOfFlowPositioned() && style().position() == FixedPosition))
return nullptr;
// If A is an area HTML element which has a map HTML element somewhere in the ancestor
// chain return the nearest ancestor map HTML element and stop this algorithm.
// FIXME: Implement!
// Return the nearest ancestor element of A for which at least one of the following is
// true and stop this algorithm if such an ancestor is found:
// * The computed value of the position property is not static.
// * It is the HTML body element.
// * The computed value of the position property of A is static and the ancestor
// is one of the following HTML elements: td, th, or table.
// * Our own extension: if there is a difference in the effective zoom
bool skipTables = isPositioned();
float currZoom = style().effectiveZoom();
auto current = parent();
while (current && (!current->element() || (!current->isPositioned() && !current->isBody())) && !is<RenderNamedFlowThread>(*current)) {
Element* element = current->element();
if (!skipTables && element && (is<HTMLTableElement>(*element) || is<HTMLTableCellElement>(*element)))
break;
float newZoom = current->style().effectiveZoom();
if (currZoom != newZoom)
break;
currZoom = newZoom;
current = current->parent();
}
// CSS regions specification says that region flows should return the body element as their offsetParent.
if (is<RenderNamedFlowThread>(current))
current = document().body() ? document().body()->renderer() : nullptr;
return is<RenderBoxModelObject>(current) ? downcast<RenderBoxModelObject>(current) : nullptr;
}
VisiblePosition RenderObject::createVisiblePosition(int offset, EAffinity affinity) const
{
// If this is a non-anonymous renderer in an editable area, then it's simple.
if (Node* node = nonPseudoNode()) {
if (!node->hasEditableStyle()) {
// If it can be found, we prefer a visually equivalent position that is editable.
Position position = createLegacyEditingPosition(node, offset);
Position candidate = position.downstream(CanCrossEditingBoundary);
if (candidate.deprecatedNode()->hasEditableStyle())
return VisiblePosition(candidate, affinity);
candidate = position.upstream(CanCrossEditingBoundary);
if (candidate.deprecatedNode()->hasEditableStyle())
return VisiblePosition(candidate, affinity);
}
// FIXME: Eliminate legacy editing positions
return VisiblePosition(createLegacyEditingPosition(node, offset), affinity);
}
// We don't want to cross the boundary between editable and non-editable
// regions of the document, but that is either impossible or at least
// extremely unlikely in any normal case because we stop as soon as we
// find a single non-anonymous renderer.
// Find a nearby non-anonymous renderer.
const RenderObject* child = this;
while (const auto parent = child->parent()) {
// Find non-anonymous content after.
const RenderObject* renderer = child;
while ((renderer = renderer->nextInPreOrder(parent))) {
if (Node* node = renderer->nonPseudoNode())
return VisiblePosition(firstPositionInOrBeforeNode(node), DOWNSTREAM);
}
// Find non-anonymous content before.
renderer = child;
while ((renderer = renderer->previousInPreOrder())) {
if (renderer == parent)
break;
if (Node* node = renderer->nonPseudoNode())
return VisiblePosition(lastPositionInOrAfterNode(node), DOWNSTREAM);
}
// Use the parent itself unless it too is anonymous.
if (Element* element = parent->nonPseudoElement())
return VisiblePosition(firstPositionInOrBeforeNode(element), DOWNSTREAM);
// Repeat at the next level up.
child = parent;
}
// Everything was anonymous. Give up.
return VisiblePosition();
}
VisiblePosition RenderObject::createVisiblePosition(const Position& position) const
{
if (position.isNotNull())
return VisiblePosition(position);
ASSERT(!node());
return createVisiblePosition(0, DOWNSTREAM);
}
CursorDirective RenderObject::getCursor(const LayoutPoint&, Cursor&) const
{
return SetCursorBasedOnStyle;
}
bool RenderObject::canUpdateSelectionOnRootLineBoxes()
{
if (needsLayout())
return false;
RenderBlock* containingBlock = this->containingBlock();
return containingBlock ? !containingBlock->needsLayout() : true;
}
// We only create "generated" child renderers like one for first-letter if:
// - the firstLetterBlock can have children in the DOM and
// - the block doesn't have any special assumption on its text children.
// This correctly prevents form controls from having such renderers.
bool RenderObject::canHaveGeneratedChildren() const
{
return canHaveChildren();
}
Node* RenderObject::generatingPseudoHostElement() const
{
return downcast<PseudoElement>(*node()).hostElement();
}
void RenderObject::setNeedsBoundariesUpdate()
{
if (auto renderer = parent())
renderer->setNeedsBoundariesUpdate();
}
FloatRect RenderObject::objectBoundingBox() const
{
ASSERT_NOT_REACHED();
return FloatRect();
}
FloatRect RenderObject::strokeBoundingBox() const
{
ASSERT_NOT_REACHED();
return FloatRect();
}
// Returns the smallest rectangle enclosing all of the painted content
// respecting clipping, masking, filters, opacity, stroke-width and markers
FloatRect RenderObject::repaintRectInLocalCoordinates() const
{
ASSERT_NOT_REACHED();
return FloatRect();
}
AffineTransform RenderObject::localTransform() const
{
static const AffineTransform identity;
return identity;
}
const AffineTransform& RenderObject::localToParentTransform() const
{
static const AffineTransform identity;
return identity;
}
bool RenderObject::nodeAtFloatPoint(const HitTestRequest&, HitTestResult&, const FloatPoint&, HitTestAction)
{
ASSERT_NOT_REACHED();
return false;
}
RenderNamedFlowFragment* RenderObject::currentRenderNamedFlowFragment() const
{
RenderFlowThread* flowThread = flowThreadContainingBlock();
if (!flowThread || !flowThread->isRenderNamedFlowThread())
return nullptr;
// FIXME: Once regions are fully integrated with the compositing system we should uncomment this assert.
// This assert needs to be disabled because it's possible to ask for the ancestor clipping rectangle of
// a layer without knowing the containing region in advance.
// ASSERT(flowThread->currentRegion() && flowThread->currentRegion()->isRenderNamedFlowFragment());
return toRenderNamedFlowFragment(flowThread->currentRegion());
}
RenderFlowThread* RenderObject::locateFlowThreadContainingBlock() const
{
RenderBlock* containingBlock = this->containingBlock();
return containingBlock ? containingBlock->flowThreadContainingBlock() : nullptr;
}
} // namespace WebCore
#ifndef NDEBUG
void showNodeTree(const WebCore::RenderObject* object)
{
if (!object)
return;
object->showNodeTreeForThis();
}
void showLineTree(const WebCore::RenderObject* object)
{
if (!object)
return;
object->showLineTreeForThis();
}
void showRenderTree(const WebCore::RenderObject* object)
{
if (!object)
return;
object->showRenderTreeForThis();
}
#endif