blob: 133e9cd7578779559d143760ad9ebce16e789031 [file] [log] [blame]
/*
* Copyright (C) 2003, 2006, 2009 Apple Inc. All rights reserved.
* Copyright (C) 2010 Google Inc. All rights reserved.
* Copyright (C) 2013 Xidorn Quan (quanxunzhen@gmail.com)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "RoundedRect.h"
#include "FloatRoundedRect.h"
#include "GeometryUtilities.h"
#include "LayoutRect.h"
#include "LayoutUnit.h"
#include "Region.h"
#include <algorithm>
#include <wtf/MathExtras.h>
namespace WebCore {
bool RoundedRect::Radii::isZero() const
{
return m_topLeft.isZero() && m_topRight.isZero() && m_bottomLeft.isZero() && m_bottomRight.isZero();
}
void RoundedRect::Radii::scale(float factor)
{
if (factor == 1)
return;
// If either radius on a corner becomes zero, reset both radii on that corner.
m_topLeft.scale(factor);
if (!m_topLeft.width() || !m_topLeft.height())
m_topLeft = LayoutSize();
m_topRight.scale(factor);
if (!m_topRight.width() || !m_topRight.height())
m_topRight = LayoutSize();
m_bottomLeft.scale(factor);
if (!m_bottomLeft.width() || !m_bottomLeft.height())
m_bottomLeft = LayoutSize();
m_bottomRight.scale(factor);
if (!m_bottomRight.width() || !m_bottomRight.height())
m_bottomRight = LayoutSize();
}
void RoundedRect::Radii::expand(const LayoutUnit& topWidth, const LayoutUnit& bottomWidth, const LayoutUnit& leftWidth, const LayoutUnit& rightWidth)
{
if (m_topLeft.width() > 0 && m_topLeft.height() > 0) {
m_topLeft.setWidth(std::max<LayoutUnit>(0, m_topLeft.width() + leftWidth));
m_topLeft.setHeight(std::max<LayoutUnit>(0, m_topLeft.height() + topWidth));
}
if (m_topRight.width() > 0 && m_topRight.height() > 0) {
m_topRight.setWidth(std::max<LayoutUnit>(0, m_topRight.width() + rightWidth));
m_topRight.setHeight(std::max<LayoutUnit>(0, m_topRight.height() + topWidth));
}
if (m_bottomLeft.width() > 0 && m_bottomLeft.height() > 0) {
m_bottomLeft.setWidth(std::max<LayoutUnit>(0, m_bottomLeft.width() + leftWidth));
m_bottomLeft.setHeight(std::max<LayoutUnit>(0, m_bottomLeft.height() + bottomWidth));
}
if (m_bottomRight.width() > 0 && m_bottomRight.height() > 0) {
m_bottomRight.setWidth(std::max<LayoutUnit>(0, m_bottomRight.width() + rightWidth));
m_bottomRight.setHeight(std::max<LayoutUnit>(0, m_bottomRight.height() + bottomWidth));
}
}
void RoundedRect::inflateWithRadii(const LayoutUnit& size)
{
LayoutRect old = m_rect;
m_rect.inflate(size);
// Considering the inflation factor of shorter size to scale the radii seems appropriate here
float factor;
if (m_rect.width() < m_rect.height())
factor = old.width() ? (float)m_rect.width() / old.width() : int(0);
else
factor = old.height() ? (float)m_rect.height() / old.height() : int(0);
m_radii.scale(factor);
}
void RoundedRect::Radii::includeLogicalEdges(const RoundedRect::Radii& edges, bool isHorizontal, bool includeLogicalLeftEdge, bool includeLogicalRightEdge)
{
if (includeLogicalLeftEdge) {
if (isHorizontal)
m_bottomLeft = edges.bottomLeft();
else
m_topRight = edges.topRight();
m_topLeft = edges.topLeft();
}
if (includeLogicalRightEdge) {
if (isHorizontal)
m_topRight = edges.topRight();
else
m_bottomLeft = edges.bottomLeft();
m_bottomRight = edges.bottomRight();
}
}
void RoundedRect::Radii::excludeLogicalEdges(bool isHorizontal, bool excludeLogicalLeftEdge, bool excludeLogicalRightEdge)
{
if (excludeLogicalLeftEdge) {
if (isHorizontal)
m_bottomLeft = IntSize();
else
m_topRight = IntSize();
m_topLeft = IntSize();
}
if (excludeLogicalRightEdge) {
if (isHorizontal)
m_topRight = IntSize();
else
m_bottomLeft = IntSize();
m_bottomRight = IntSize();
}
}
RoundedRect::RoundedRect(const LayoutUnit& x, const LayoutUnit& y, const LayoutUnit& width, const LayoutUnit& height)
: m_rect(x, y, width, height)
{
}
RoundedRect::RoundedRect(const LayoutRect& rect, const Radii& radii)
: m_rect(rect)
, m_radii(radii)
{
}
RoundedRect::RoundedRect(const LayoutRect& rect, const LayoutSize& topLeft, const LayoutSize& topRight, const LayoutSize& bottomLeft, const LayoutSize& bottomRight)
: m_rect(rect)
, m_radii(topLeft, topRight, bottomLeft, bottomRight)
{
}
void RoundedRect::includeLogicalEdges(const Radii& edges, bool isHorizontal, bool includeLogicalLeftEdge, bool includeLogicalRightEdge)
{
m_radii.includeLogicalEdges(edges, isHorizontal, includeLogicalLeftEdge, includeLogicalRightEdge);
}
void RoundedRect::excludeLogicalEdges(bool isHorizontal, bool excludeLogicalLeftEdge, bool excludeLogicalRightEdge)
{
m_radii.excludeLogicalEdges(isHorizontal, excludeLogicalLeftEdge, excludeLogicalRightEdge);
}
bool RoundedRect::isRenderable() const
{
return m_radii.topLeft().width() >= 0 && m_radii.topLeft().height() >= 0
&& m_radii.bottomLeft().width() >= 0 && m_radii.bottomLeft().height() >= 0
&& m_radii.topRight().width() >= 0 && m_radii.topRight().height() >= 0
&& m_radii.bottomRight().width() >= 0 && m_radii.bottomRight().height() >= 0
&& m_radii.topLeft().width() + m_radii.topRight().width() <= m_rect.width()
&& m_radii.bottomLeft().width() + m_radii.bottomRight().width() <= m_rect.width()
&& m_radii.topLeft().height() + m_radii.bottomLeft().height() <= m_rect.height()
&& m_radii.topRight().height() + m_radii.bottomRight().height() <= m_rect.height();
}
void RoundedRect::adjustRadii()
{
int maxRadiusWidth = std::max(m_radii.topLeft().width() + m_radii.topRight().width(), m_radii.bottomLeft().width() + m_radii.bottomRight().width());
int maxRadiusHeight = std::max(m_radii.topLeft().height() + m_radii.bottomLeft().height(), m_radii.topRight().height() + m_radii.bottomRight().height());
if (maxRadiusWidth <= 0 || maxRadiusHeight <= 0) {
m_radii.scale(0.0f);
return;
}
float widthRatio = static_cast<float>(m_rect.width()) / maxRadiusWidth;
float heightRatio = static_cast<float>(m_rect.height()) / maxRadiusHeight;
m_radii.scale(widthRatio < heightRatio ? widthRatio : heightRatio);
}
bool RoundedRect::intersectsQuad(const FloatQuad& quad) const
{
FloatRect rect(m_rect);
if (!quad.intersectsRect(rect))
return false;
const LayoutSize& topLeft = m_radii.topLeft();
if (!topLeft.isEmpty()) {
FloatRect rect(m_rect.x(), m_rect.y(), topLeft.width(), topLeft.height());
if (quad.intersectsRect(rect)) {
FloatPoint center(m_rect.x() + topLeft.width(), m_rect.y() + topLeft.height());
FloatSize size(topLeft.width(), topLeft.height());
if (!quad.intersectsEllipse(center, size))
return false;
}
}
const LayoutSize& topRight = m_radii.topRight();
if (!topRight.isEmpty()) {
FloatRect rect(m_rect.maxX() - topRight.width(), m_rect.y(), topRight.width(), topRight.height());
if (quad.intersectsRect(rect)) {
FloatPoint center(m_rect.maxX() - topRight.width(), m_rect.y() + topRight.height());
FloatSize size(topRight.width(), topRight.height());
if (!quad.intersectsEllipse(center, size))
return false;
}
}
const LayoutSize& bottomLeft = m_radii.bottomLeft();
if (!bottomLeft.isEmpty()) {
FloatRect rect(m_rect.x(), m_rect.maxY() - bottomLeft.height(), bottomLeft.width(), bottomLeft.height());
if (quad.intersectsRect(rect)) {
FloatPoint center(m_rect.x() + bottomLeft.width(), m_rect.maxY() - bottomLeft.height());
FloatSize size(bottomLeft.width(), bottomLeft.height());
if (!quad.intersectsEllipse(center, size))
return false;
}
}
const LayoutSize& bottomRight = m_radii.bottomRight();
if (!bottomRight.isEmpty()) {
FloatRect rect(m_rect.maxX() - bottomRight.width(), m_rect.maxY() - bottomRight.height(), bottomRight.width(), bottomRight.height());
if (quad.intersectsRect(rect)) {
FloatPoint center(m_rect.maxX() - bottomRight.width(), m_rect.maxY() - bottomRight.height());
FloatSize size(bottomRight.width(), bottomRight.height());
if (!quad.intersectsEllipse(center, size))
return false;
}
}
return true;
}
bool RoundedRect::contains(const LayoutRect& otherRect) const
{
if (!rect().contains(otherRect) || !isRenderable())
return false;
const LayoutSize& topLeft = m_radii.topLeft();
if (!topLeft.isEmpty()) {
FloatPoint center = { m_rect.x() + topLeft.width(), m_rect.y() + topLeft.height() };
if (otherRect.x() <= center.x() && otherRect.y() <= center.y()) {
if (!ellipseContainsPoint(center, topLeft, otherRect.minXMinYCorner()))
return false;
}
}
const LayoutSize& topRight = m_radii.topRight();
if (!topRight.isEmpty()) {
FloatPoint center = { m_rect.maxX() - topRight.width(), m_rect.y() + topRight.height() };
if (otherRect.maxX() >= center.x() && otherRect.y() <= center.y()) {
if (!ellipseContainsPoint(center, topRight, otherRect.maxXMinYCorner()))
return false;
}
}
const LayoutSize& bottomLeft = m_radii.bottomLeft();
if (!bottomLeft.isEmpty()) {
FloatPoint center = { m_rect.x() + bottomLeft.width(), m_rect.maxY() - bottomLeft.height() };
if (otherRect.x() <= center.x() && otherRect.maxY() >= center.y()) {
if (!ellipseContainsPoint(center, bottomLeft, otherRect.minXMaxYCorner()))
return false;
}
}
const LayoutSize& bottomRight = m_radii.bottomRight();
if (!bottomRight.isEmpty()) {
FloatPoint center = { m_rect.maxX() - bottomRight.width(), m_rect.maxY() - bottomRight.height() };
if (otherRect.maxX() >= center.x() && otherRect.maxY() >= center.y()) {
if (!ellipseContainsPoint(center, bottomRight, otherRect.maxXMaxYCorner()))
return false;
}
}
return true;
}
FloatRoundedRect RoundedRect::pixelSnappedRoundedRectForPainting(float deviceScaleFactor) const
{
LayoutRect originalRect = rect();
if (originalRect.isEmpty())
return FloatRoundedRect(originalRect, radii());
FloatRect pixelSnappedRect = snapRectToDevicePixels(originalRect, deviceScaleFactor);
if (!isRenderable())
return FloatRoundedRect(pixelSnappedRect, radii());
// Snapping usually does not alter size, but when it does, we need to make sure that the final rect is still renderable by distributing the size delta proportionally.
FloatRoundedRect::Radii adjustedRadii = radii();
adjustedRadii.scale(pixelSnappedRect.width() / originalRect.width().toFloat(), pixelSnappedRect.height() / originalRect.height().toFloat());
FloatRoundedRect snappedRoundedRect = FloatRoundedRect(pixelSnappedRect, adjustedRadii);
if (!snappedRoundedRect.isRenderable()) {
// Floating point mantissa overflow can produce a non-renderable rounded rect.
adjustedRadii.shrink(1 / deviceScaleFactor);
snappedRoundedRect.setRadii(adjustedRadii);
}
ASSERT(snappedRoundedRect.isRenderable());
return snappedRoundedRect;
}
Region approximateAsRegion(const RoundedRect& roundedRect, unsigned stepLength)
{
Region region;
if (roundedRect.isEmpty())
return region;
auto& rect = roundedRect.rect();
region.unite(enclosingIntRect(rect));
if (!roundedRect.isRounded())
return region;
auto& radii = roundedRect.radii();
auto makeIntRect = [] (LayoutPoint a, LayoutPoint b) {
return enclosingIntRect(LayoutRect {
LayoutPoint { std::min(a.x(), b.x()), std::min(a.y(), b.y()) },
LayoutPoint { std::max(a.x(), b.x()), std::max(a.y(), b.y()) }
});
};
auto subtractCornerRects = [&] (LayoutPoint corner, LayoutPoint ellipsisCenter, LayoutSize axes, double fromAngle) {
double toAngle = fromAngle + piDouble / 2;
// Substract more rects for longer, more rounded arcs.
auto arcLengthFactor = roundToInt(std::min(axes.width(), axes.height()));
auto count = (arcLengthFactor + (stepLength / 2)) / stepLength;
constexpr auto maximumCount = 20u;
count = std::min(maximumCount, count);
for (auto i = 0u; i < count; ++i) {
auto angle = fromAngle + (i + 1) * (toAngle - fromAngle) / (count + 1);
auto ellipsisPoint = LayoutPoint { axes.width() * cos(angle), axes.height() * sin(angle) };
auto cornerRect = makeIntRect(corner, ellipsisCenter + ellipsisPoint);
region.subtract(cornerRect);
}
};
{
auto corner = rect.maxXMaxYCorner();
auto axes = radii.bottomRight();
auto ellipsisCenter = LayoutPoint(corner.x() - axes.width(), corner.y() - axes.height());
subtractCornerRects(corner, ellipsisCenter, axes, 0);
}
{
auto corner = rect.minXMaxYCorner();
auto axes = radii.bottomLeft();
auto ellipsisCenter = LayoutPoint(corner.x() + axes.width(), corner.y() - axes.height());
subtractCornerRects(corner, ellipsisCenter, axes, piDouble / 2);
}
{
auto corner = rect.minXMinYCorner();
auto axes = radii.topLeft();
auto ellipsisCenter = LayoutPoint(corner.x() + axes.width(), corner.y() + axes.height());
subtractCornerRects(corner, ellipsisCenter, axes, piDouble);
}
{
auto corner = rect.maxXMinYCorner();
auto axes = radii.topRight();
auto ellipsisCenter = LayoutPoint(corner.x() - axes.width(), corner.y() + axes.height());
subtractCornerRects(corner, ellipsisCenter, axes, piDouble * 3 / 2);
}
return region;
}
} // namespace WebCore