| /* |
| * Copyright (C) 2003, 2006, 2009 Apple Inc. All rights reserved. |
| * Copyright (C) 2010 Google Inc. All rights reserved. |
| * Copyright (C) 2013 Xidorn Quan (quanxunzhen@gmail.com) |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "RoundedRect.h" |
| |
| #include "FloatRoundedRect.h" |
| #include "GeometryUtilities.h" |
| #include "LayoutRect.h" |
| #include "LayoutUnit.h" |
| #include "Region.h" |
| #include <algorithm> |
| #include <wtf/MathExtras.h> |
| |
| namespace WebCore { |
| |
| bool RoundedRect::Radii::isZero() const |
| { |
| return m_topLeft.isZero() && m_topRight.isZero() && m_bottomLeft.isZero() && m_bottomRight.isZero(); |
| } |
| |
| void RoundedRect::Radii::scale(float factor) |
| { |
| if (factor == 1) |
| return; |
| |
| // If either radius on a corner becomes zero, reset both radii on that corner. |
| m_topLeft.scale(factor); |
| if (!m_topLeft.width() || !m_topLeft.height()) |
| m_topLeft = LayoutSize(); |
| m_topRight.scale(factor); |
| if (!m_topRight.width() || !m_topRight.height()) |
| m_topRight = LayoutSize(); |
| m_bottomLeft.scale(factor); |
| if (!m_bottomLeft.width() || !m_bottomLeft.height()) |
| m_bottomLeft = LayoutSize(); |
| m_bottomRight.scale(factor); |
| if (!m_bottomRight.width() || !m_bottomRight.height()) |
| m_bottomRight = LayoutSize(); |
| } |
| |
| void RoundedRect::Radii::expand(const LayoutUnit& topWidth, const LayoutUnit& bottomWidth, const LayoutUnit& leftWidth, const LayoutUnit& rightWidth) |
| { |
| if (m_topLeft.width() > 0 && m_topLeft.height() > 0) { |
| m_topLeft.setWidth(std::max<LayoutUnit>(0, m_topLeft.width() + leftWidth)); |
| m_topLeft.setHeight(std::max<LayoutUnit>(0, m_topLeft.height() + topWidth)); |
| } |
| if (m_topRight.width() > 0 && m_topRight.height() > 0) { |
| m_topRight.setWidth(std::max<LayoutUnit>(0, m_topRight.width() + rightWidth)); |
| m_topRight.setHeight(std::max<LayoutUnit>(0, m_topRight.height() + topWidth)); |
| } |
| if (m_bottomLeft.width() > 0 && m_bottomLeft.height() > 0) { |
| m_bottomLeft.setWidth(std::max<LayoutUnit>(0, m_bottomLeft.width() + leftWidth)); |
| m_bottomLeft.setHeight(std::max<LayoutUnit>(0, m_bottomLeft.height() + bottomWidth)); |
| } |
| if (m_bottomRight.width() > 0 && m_bottomRight.height() > 0) { |
| m_bottomRight.setWidth(std::max<LayoutUnit>(0, m_bottomRight.width() + rightWidth)); |
| m_bottomRight.setHeight(std::max<LayoutUnit>(0, m_bottomRight.height() + bottomWidth)); |
| } |
| } |
| |
| void RoundedRect::inflateWithRadii(const LayoutUnit& size) |
| { |
| LayoutRect old = m_rect; |
| |
| m_rect.inflate(size); |
| // Considering the inflation factor of shorter size to scale the radii seems appropriate here |
| float factor; |
| if (m_rect.width() < m_rect.height()) |
| factor = old.width() ? (float)m_rect.width() / old.width() : int(0); |
| else |
| factor = old.height() ? (float)m_rect.height() / old.height() : int(0); |
| |
| m_radii.scale(factor); |
| } |
| |
| void RoundedRect::Radii::includeLogicalEdges(const RoundedRect::Radii& edges, bool isHorizontal, bool includeLogicalLeftEdge, bool includeLogicalRightEdge) |
| { |
| if (includeLogicalLeftEdge) { |
| if (isHorizontal) |
| m_bottomLeft = edges.bottomLeft(); |
| else |
| m_topRight = edges.topRight(); |
| m_topLeft = edges.topLeft(); |
| } |
| |
| if (includeLogicalRightEdge) { |
| if (isHorizontal) |
| m_topRight = edges.topRight(); |
| else |
| m_bottomLeft = edges.bottomLeft(); |
| m_bottomRight = edges.bottomRight(); |
| } |
| } |
| |
| void RoundedRect::Radii::excludeLogicalEdges(bool isHorizontal, bool excludeLogicalLeftEdge, bool excludeLogicalRightEdge) |
| { |
| if (excludeLogicalLeftEdge) { |
| if (isHorizontal) |
| m_bottomLeft = IntSize(); |
| else |
| m_topRight = IntSize(); |
| m_topLeft = IntSize(); |
| } |
| |
| if (excludeLogicalRightEdge) { |
| if (isHorizontal) |
| m_topRight = IntSize(); |
| else |
| m_bottomLeft = IntSize(); |
| m_bottomRight = IntSize(); |
| } |
| } |
| |
| RoundedRect::RoundedRect(const LayoutUnit& x, const LayoutUnit& y, const LayoutUnit& width, const LayoutUnit& height) |
| : m_rect(x, y, width, height) |
| { |
| } |
| |
| RoundedRect::RoundedRect(const LayoutRect& rect, const Radii& radii) |
| : m_rect(rect) |
| , m_radii(radii) |
| { |
| } |
| |
| RoundedRect::RoundedRect(const LayoutRect& rect, const LayoutSize& topLeft, const LayoutSize& topRight, const LayoutSize& bottomLeft, const LayoutSize& bottomRight) |
| : m_rect(rect) |
| , m_radii(topLeft, topRight, bottomLeft, bottomRight) |
| { |
| } |
| |
| void RoundedRect::includeLogicalEdges(const Radii& edges, bool isHorizontal, bool includeLogicalLeftEdge, bool includeLogicalRightEdge) |
| { |
| m_radii.includeLogicalEdges(edges, isHorizontal, includeLogicalLeftEdge, includeLogicalRightEdge); |
| } |
| |
| void RoundedRect::excludeLogicalEdges(bool isHorizontal, bool excludeLogicalLeftEdge, bool excludeLogicalRightEdge) |
| { |
| m_radii.excludeLogicalEdges(isHorizontal, excludeLogicalLeftEdge, excludeLogicalRightEdge); |
| } |
| |
| bool RoundedRect::isRenderable() const |
| { |
| return m_radii.topLeft().width() >= 0 && m_radii.topLeft().height() >= 0 |
| && m_radii.bottomLeft().width() >= 0 && m_radii.bottomLeft().height() >= 0 |
| && m_radii.topRight().width() >= 0 && m_radii.topRight().height() >= 0 |
| && m_radii.bottomRight().width() >= 0 && m_radii.bottomRight().height() >= 0 |
| && m_radii.topLeft().width() + m_radii.topRight().width() <= m_rect.width() |
| && m_radii.bottomLeft().width() + m_radii.bottomRight().width() <= m_rect.width() |
| && m_radii.topLeft().height() + m_radii.bottomLeft().height() <= m_rect.height() |
| && m_radii.topRight().height() + m_radii.bottomRight().height() <= m_rect.height(); |
| } |
| |
| void RoundedRect::adjustRadii() |
| { |
| int maxRadiusWidth = std::max(m_radii.topLeft().width() + m_radii.topRight().width(), m_radii.bottomLeft().width() + m_radii.bottomRight().width()); |
| int maxRadiusHeight = std::max(m_radii.topLeft().height() + m_radii.bottomLeft().height(), m_radii.topRight().height() + m_radii.bottomRight().height()); |
| |
| if (maxRadiusWidth <= 0 || maxRadiusHeight <= 0) { |
| m_radii.scale(0.0f); |
| return; |
| } |
| float widthRatio = static_cast<float>(m_rect.width()) / maxRadiusWidth; |
| float heightRatio = static_cast<float>(m_rect.height()) / maxRadiusHeight; |
| m_radii.scale(widthRatio < heightRatio ? widthRatio : heightRatio); |
| } |
| |
| bool RoundedRect::intersectsQuad(const FloatQuad& quad) const |
| { |
| FloatRect rect(m_rect); |
| if (!quad.intersectsRect(rect)) |
| return false; |
| |
| const LayoutSize& topLeft = m_radii.topLeft(); |
| if (!topLeft.isEmpty()) { |
| FloatRect rect(m_rect.x(), m_rect.y(), topLeft.width(), topLeft.height()); |
| if (quad.intersectsRect(rect)) { |
| FloatPoint center(m_rect.x() + topLeft.width(), m_rect.y() + topLeft.height()); |
| FloatSize size(topLeft.width(), topLeft.height()); |
| if (!quad.intersectsEllipse(center, size)) |
| return false; |
| } |
| } |
| |
| const LayoutSize& topRight = m_radii.topRight(); |
| if (!topRight.isEmpty()) { |
| FloatRect rect(m_rect.maxX() - topRight.width(), m_rect.y(), topRight.width(), topRight.height()); |
| if (quad.intersectsRect(rect)) { |
| FloatPoint center(m_rect.maxX() - topRight.width(), m_rect.y() + topRight.height()); |
| FloatSize size(topRight.width(), topRight.height()); |
| if (!quad.intersectsEllipse(center, size)) |
| return false; |
| } |
| } |
| |
| const LayoutSize& bottomLeft = m_radii.bottomLeft(); |
| if (!bottomLeft.isEmpty()) { |
| FloatRect rect(m_rect.x(), m_rect.maxY() - bottomLeft.height(), bottomLeft.width(), bottomLeft.height()); |
| if (quad.intersectsRect(rect)) { |
| FloatPoint center(m_rect.x() + bottomLeft.width(), m_rect.maxY() - bottomLeft.height()); |
| FloatSize size(bottomLeft.width(), bottomLeft.height()); |
| if (!quad.intersectsEllipse(center, size)) |
| return false; |
| } |
| } |
| |
| const LayoutSize& bottomRight = m_radii.bottomRight(); |
| if (!bottomRight.isEmpty()) { |
| FloatRect rect(m_rect.maxX() - bottomRight.width(), m_rect.maxY() - bottomRight.height(), bottomRight.width(), bottomRight.height()); |
| if (quad.intersectsRect(rect)) { |
| FloatPoint center(m_rect.maxX() - bottomRight.width(), m_rect.maxY() - bottomRight.height()); |
| FloatSize size(bottomRight.width(), bottomRight.height()); |
| if (!quad.intersectsEllipse(center, size)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool RoundedRect::contains(const LayoutRect& otherRect) const |
| { |
| if (!rect().contains(otherRect) || !isRenderable()) |
| return false; |
| |
| const LayoutSize& topLeft = m_radii.topLeft(); |
| if (!topLeft.isEmpty()) { |
| FloatPoint center = { m_rect.x() + topLeft.width(), m_rect.y() + topLeft.height() }; |
| if (otherRect.x() <= center.x() && otherRect.y() <= center.y()) { |
| if (!ellipseContainsPoint(center, topLeft, otherRect.minXMinYCorner())) |
| return false; |
| } |
| } |
| |
| const LayoutSize& topRight = m_radii.topRight(); |
| if (!topRight.isEmpty()) { |
| FloatPoint center = { m_rect.maxX() - topRight.width(), m_rect.y() + topRight.height() }; |
| if (otherRect.maxX() >= center.x() && otherRect.y() <= center.y()) { |
| if (!ellipseContainsPoint(center, topRight, otherRect.maxXMinYCorner())) |
| return false; |
| } |
| } |
| |
| const LayoutSize& bottomLeft = m_radii.bottomLeft(); |
| if (!bottomLeft.isEmpty()) { |
| FloatPoint center = { m_rect.x() + bottomLeft.width(), m_rect.maxY() - bottomLeft.height() }; |
| if (otherRect.x() <= center.x() && otherRect.maxY() >= center.y()) { |
| if (!ellipseContainsPoint(center, bottomLeft, otherRect.minXMaxYCorner())) |
| return false; |
| } |
| } |
| |
| const LayoutSize& bottomRight = m_radii.bottomRight(); |
| if (!bottomRight.isEmpty()) { |
| FloatPoint center = { m_rect.maxX() - bottomRight.width(), m_rect.maxY() - bottomRight.height() }; |
| if (otherRect.maxX() >= center.x() && otherRect.maxY() >= center.y()) { |
| if (!ellipseContainsPoint(center, bottomRight, otherRect.maxXMaxYCorner())) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| FloatRoundedRect RoundedRect::pixelSnappedRoundedRectForPainting(float deviceScaleFactor) const |
| { |
| LayoutRect originalRect = rect(); |
| if (originalRect.isEmpty()) |
| return FloatRoundedRect(originalRect, radii()); |
| |
| FloatRect pixelSnappedRect = snapRectToDevicePixels(originalRect, deviceScaleFactor); |
| |
| if (!isRenderable()) |
| return FloatRoundedRect(pixelSnappedRect, radii()); |
| |
| // Snapping usually does not alter size, but when it does, we need to make sure that the final rect is still renderable by distributing the size delta proportionally. |
| FloatRoundedRect::Radii adjustedRadii = radii(); |
| adjustedRadii.scale(pixelSnappedRect.width() / originalRect.width().toFloat(), pixelSnappedRect.height() / originalRect.height().toFloat()); |
| FloatRoundedRect snappedRoundedRect = FloatRoundedRect(pixelSnappedRect, adjustedRadii); |
| if (!snappedRoundedRect.isRenderable()) { |
| // Floating point mantissa overflow can produce a non-renderable rounded rect. |
| adjustedRadii.shrink(1 / deviceScaleFactor); |
| snappedRoundedRect.setRadii(adjustedRadii); |
| } |
| ASSERT(snappedRoundedRect.isRenderable()); |
| return snappedRoundedRect; |
| } |
| |
| Region approximateAsRegion(const RoundedRect& roundedRect, unsigned stepLength) |
| { |
| Region region; |
| |
| if (roundedRect.isEmpty()) |
| return region; |
| |
| auto& rect = roundedRect.rect(); |
| region.unite(enclosingIntRect(rect)); |
| |
| if (!roundedRect.isRounded()) |
| return region; |
| |
| auto& radii = roundedRect.radii(); |
| |
| auto makeIntRect = [] (LayoutPoint a, LayoutPoint b) { |
| return enclosingIntRect(LayoutRect { |
| LayoutPoint { std::min(a.x(), b.x()), std::min(a.y(), b.y()) }, |
| LayoutPoint { std::max(a.x(), b.x()), std::max(a.y(), b.y()) } |
| }); |
| }; |
| |
| auto subtractCornerRects = [&] (LayoutPoint corner, LayoutPoint ellipsisCenter, LayoutSize axes, double fromAngle) { |
| double toAngle = fromAngle + piDouble / 2; |
| |
| // Substract more rects for longer, more rounded arcs. |
| auto arcLengthFactor = roundToInt(std::min(axes.width(), axes.height())); |
| auto count = (arcLengthFactor + (stepLength / 2)) / stepLength; |
| |
| constexpr auto maximumCount = 20u; |
| count = std::min(maximumCount, count); |
| |
| for (auto i = 0u; i < count; ++i) { |
| auto angle = fromAngle + (i + 1) * (toAngle - fromAngle) / (count + 1); |
| auto ellipsisPoint = LayoutPoint { axes.width() * cos(angle), axes.height() * sin(angle) }; |
| auto cornerRect = makeIntRect(corner, ellipsisCenter + ellipsisPoint); |
| region.subtract(cornerRect); |
| } |
| }; |
| |
| { |
| auto corner = rect.maxXMaxYCorner(); |
| auto axes = radii.bottomRight(); |
| auto ellipsisCenter = LayoutPoint(corner.x() - axes.width(), corner.y() - axes.height()); |
| subtractCornerRects(corner, ellipsisCenter, axes, 0); |
| } |
| |
| { |
| auto corner = rect.minXMaxYCorner(); |
| auto axes = radii.bottomLeft(); |
| auto ellipsisCenter = LayoutPoint(corner.x() + axes.width(), corner.y() - axes.height()); |
| subtractCornerRects(corner, ellipsisCenter, axes, piDouble / 2); |
| } |
| |
| { |
| auto corner = rect.minXMinYCorner(); |
| auto axes = radii.topLeft(); |
| auto ellipsisCenter = LayoutPoint(corner.x() + axes.width(), corner.y() + axes.height()); |
| subtractCornerRects(corner, ellipsisCenter, axes, piDouble); |
| } |
| |
| { |
| auto corner = rect.maxXMinYCorner(); |
| auto axes = radii.topRight(); |
| auto ellipsisCenter = LayoutPoint(corner.x() - axes.width(), corner.y() + axes.height()); |
| subtractCornerRects(corner, ellipsisCenter, axes, piDouble * 3 / 2); |
| } |
| |
| return region; |
| } |
| |
| } // namespace WebCore |