| /* |
| * Copyright (C) 2008-2020 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "ExecutableAllocator.h" |
| |
| #if ENABLE(JIT) |
| |
| #include "ExecutableAllocationFuzz.h" |
| #include "IterationStatus.h" |
| #include "LinkBuffer.h" |
| #include <wtf/FastBitVector.h> |
| #include <wtf/FileSystem.h> |
| #include <wtf/MetaAllocator.h> |
| #include <wtf/PageReservation.h> |
| #include <wtf/ProcessID.h> |
| #include <wtf/SystemTracing.h> |
| #include <wtf/WorkQueue.h> |
| |
| #if HAVE(IOS_JIT_RESTRICTIONS) |
| #include <wtf/cocoa/Entitlements.h> |
| #endif |
| |
| #if OS(DARWIN) |
| #include <fcntl.h> |
| #include <mach/mach.h> |
| #include <mach/mach_time.h> |
| |
| extern "C" { |
| /* Routine mach_vm_remap */ |
| #ifdef mig_external |
| mig_external |
| #else |
| extern |
| #endif /* mig_external */ |
| kern_return_t mach_vm_remap |
| ( |
| vm_map_t target_task, |
| mach_vm_address_t *target_address, |
| mach_vm_size_t size, |
| mach_vm_offset_t mask, |
| int flags, |
| vm_map_t src_task, |
| mach_vm_address_t src_address, |
| boolean_t copy, |
| vm_prot_t *cur_protection, |
| vm_prot_t *max_protection, |
| vm_inherit_t inheritance |
| ); |
| } |
| #endif |
| |
| namespace JSC { |
| |
| using namespace WTF; |
| |
| #if defined(FIXED_EXECUTABLE_MEMORY_POOL_SIZE_IN_MB) && FIXED_EXECUTABLE_MEMORY_POOL_SIZE_IN_MB > 0 |
| static constexpr size_t fixedExecutableMemoryPoolSize = FIXED_EXECUTABLE_MEMORY_POOL_SIZE_IN_MB * MB; |
| #elif CPU(ARM) |
| static constexpr size_t fixedExecutableMemoryPoolSize = 16 * MB; |
| #elif CPU(ARM64) |
| #if USE(JUMP_ISLANDS) |
| static constexpr size_t fixedExecutableMemoryPoolSize = 1 * GB; |
| // These sizes guarantee that any jump within an island can jump forwards or backwards |
| // to the adjacent island in a single instruction. |
| static constexpr size_t regionSize = 112 * MB; |
| static constexpr size_t islandRegionSize = 16 * MB; |
| static constexpr size_t numberOfRegions = fixedExecutableMemoryPoolSize / regionSize; |
| static constexpr size_t islandSizeInBytes = 4; |
| static constexpr size_t maxIslandsPerRegion = islandRegionSize / islandSizeInBytes; |
| #else |
| static constexpr size_t fixedExecutableMemoryPoolSize = 128 * MB; |
| #endif |
| #elif CPU(X86_64) |
| static constexpr size_t fixedExecutableMemoryPoolSize = 1 * GB; |
| #else |
| static constexpr size_t fixedExecutableMemoryPoolSize = 32 * MB; |
| #endif |
| |
| #if CPU(ARM) |
| static constexpr double executablePoolReservationFraction = 0.15; |
| #else |
| static constexpr double executablePoolReservationFraction = 0.25; |
| #endif |
| |
| static bool isJITEnabled() |
| { |
| bool jitEnabled = !g_jscConfig.jitDisabled; |
| #if HAVE(IOS_JIT_RESTRICTIONS) |
| return processHasEntitlement("dynamic-codesigning") && jitEnabled; |
| #else |
| return jitEnabled; |
| #endif |
| } |
| |
| void ExecutableAllocator::setJITEnabled(bool enabled) |
| { |
| bool jitEnabled = !g_jscConfig.jitDisabled; |
| ASSERT(!g_jscConfig.fixedVMPoolExecutableAllocator); |
| if (jitEnabled == enabled) |
| return; |
| |
| g_jscConfig.jitDisabled = !enabled; |
| |
| #if HAVE(IOS_JIT_RESTRICTIONS) |
| if (!enabled) { |
| // Because of an OS quirk, even after the JIT region has been unmapped, |
| // the OS thinks that region is reserved, and as such, can cause Gigacage |
| // allocation to fail. We work around this by initializing the Gigacage |
| // first. |
| // Note: when called, setJITEnabled() is always called extra early in the |
| // process bootstrap. Under normal operation (when setJITEnabled() isn't |
| // called at all), we will naturally initialize the Gigacage before we |
| // allocate the JIT region. Hence, this workaround is merely ensuring the |
| // same behavior of allocation ordering. |
| Gigacage::ensureGigacage(); |
| |
| constexpr size_t size = 1; |
| constexpr int protection = PROT_READ | PROT_WRITE | PROT_EXEC; |
| constexpr int flags = MAP_PRIVATE | MAP_ANON | MAP_JIT; |
| constexpr int fd = OSAllocator::JSJITCodePages; |
| void* allocation = mmap(nullptr, size, protection, flags, fd, 0); |
| const void* executableMemoryAllocationFailure = reinterpret_cast<void*>(-1); |
| RELEASE_ASSERT_WITH_MESSAGE(allocation && allocation != executableMemoryAllocationFailure, "We should not have allocated executable memory before disabling the JIT."); |
| RELEASE_ASSERT_WITH_MESSAGE(!munmap(allocation, size), "Unmapping executable memory should succeed so we do not have any executable memory in the address space"); |
| RELEASE_ASSERT_WITH_MESSAGE(mmap(nullptr, size, protection, flags, fd, 0) == executableMemoryAllocationFailure, "Allocating executable memory should fail after setJITEnabled(false) is called."); |
| } |
| #endif |
| } |
| |
| #if OS(DARWIN) && HAVE(REMAP_JIT) |
| |
| #if USE(EXECUTE_ONLY_JIT_WRITE_FUNCTION) |
| static ALWAYS_INLINE MacroAssemblerCodeRef<JITThunkPtrTag> jitWriteThunkGenerator(void* writableAddr, void* stubBase, size_t stubSize) |
| { |
| using namespace ARM64Registers; |
| using TrustedImm32 = MacroAssembler::TrustedImm32; |
| |
| MacroAssembler jit; |
| |
| jit.tagReturnAddress(); |
| jit.move(MacroAssembler::TrustedImmPtr(writableAddr), x7); |
| jit.addPtr(x7, x0); |
| |
| jit.move(x0, x3); |
| MacroAssembler::Jump smallCopy = jit.branch64(MacroAssembler::Below, x2, MacroAssembler::TrustedImm64(64)); |
| |
| jit.add64(TrustedImm32(32), x3); |
| jit.and64(TrustedImm32(-32), x3); |
| jit.loadPair64(x1, x12, x13); |
| jit.loadPair64(x1, TrustedImm32(16), x14, x15); |
| jit.sub64(x3, x0, x5); |
| jit.addPtr(x5, x1); |
| |
| jit.loadPair64(x1, x8, x9); |
| jit.loadPair64(x1, TrustedImm32(16), x10, x11); |
| jit.add64(TrustedImm32(32), x1); |
| jit.sub64(x5, x2); |
| jit.storePair64(x12, x13, x0); |
| jit.storePair64(x14, x15, x0, TrustedImm32(16)); |
| MacroAssembler::Jump cleanup = jit.branchSub64(MacroAssembler::BelowOrEqual, TrustedImm32(64), x2); |
| |
| MacroAssembler::Label copyLoop = jit.label(); |
| jit.storePair64WithNonTemporalAccess(x8, x9, x3); |
| jit.storePair64WithNonTemporalAccess(x10, x11, x3, TrustedImm32(16)); |
| jit.add64(TrustedImm32(32), x3); |
| jit.loadPair64WithNonTemporalAccess(x1, x8, x9); |
| jit.loadPair64WithNonTemporalAccess(x1, TrustedImm32(16), x10, x11); |
| jit.add64(TrustedImm32(32), x1); |
| jit.branchSub64(MacroAssembler::Above, TrustedImm32(32), x2).linkTo(copyLoop, &jit); |
| |
| cleanup.link(&jit); |
| jit.add64(x2, x1); |
| jit.loadPair64(x1, x12, x13); |
| jit.loadPair64(x1, TrustedImm32(16), x14, x15); |
| jit.storePair64(x8, x9, x3); |
| jit.storePair64(x10, x11, x3, TrustedImm32(16)); |
| jit.addPtr(x2, x3); |
| jit.storePair64(x12, x13, x3, TrustedImm32(32)); |
| jit.storePair64(x14, x15, x3, TrustedImm32(48)); |
| jit.ret(); |
| |
| MacroAssembler::Label local0 = jit.label(); |
| jit.load64(x1, PostIndex(8), x6); |
| jit.store64(x6, x3, PostIndex(8)); |
| smallCopy.link(&jit); |
| jit.branchSub64(MacroAssembler::AboveOrEqual, TrustedImm32(8), x2).linkTo(local0, &jit); |
| MacroAssembler::Jump local2 = jit.branchAdd64(MacroAssembler::Equal, TrustedImm32(8), x2); |
| MacroAssembler::Label local1 = jit.label(); |
| jit.load8(x1, PostIndex(1), x6); |
| jit.store8(x6, x3, PostIndex(1)); |
| jit.branchSub64(MacroAssembler::NotEqual, TrustedImm32(1), x2).linkTo(local1, &jit); |
| local2.link(&jit); |
| jit.ret(); |
| |
| auto stubBaseCodePtr = MacroAssemblerCodePtr<LinkBufferPtrTag>(tagCodePtr<LinkBufferPtrTag>(stubBase)); |
| LinkBuffer linkBuffer(jit, stubBaseCodePtr, stubSize); |
| // We don't use FINALIZE_CODE() for two reasons. |
| // The first is that we don't want the writeable address, as disassembled instructions, |
| // to appear in the console or anywhere in memory, via the PrintStream buffer. |
| // The second is we can't guarantee that the code is readable when using the |
| // asyncDisassembly option as our caller will set our pages execute only. |
| return linkBuffer.finalizeCodeWithoutDisassembly<JITThunkPtrTag>(); |
| } |
| #else // not USE(EXECUTE_ONLY_JIT_WRITE_FUNCTION) |
| static void genericWriteToJITRegion(off_t offset, const void* data, size_t dataSize) |
| { |
| memcpy((void*)(g_jscConfig.startOfFixedWritableMemoryPool + offset), data, dataSize); |
| } |
| |
| static MacroAssemblerCodeRef<JITThunkPtrTag> ALWAYS_INLINE jitWriteThunkGenerator(void* address, void*, size_t) |
| { |
| g_jscConfig.startOfFixedWritableMemoryPool = reinterpret_cast<uintptr_t>(address); |
| void* function = reinterpret_cast<void*>(&genericWriteToJITRegion); |
| #if CPU(ARM_THUMB2) |
| // Handle thumb offset |
| uintptr_t functionAsInt = reinterpret_cast<uintptr_t>(function); |
| functionAsInt -= 1; |
| function = reinterpret_cast<void*>(functionAsInt); |
| #endif |
| auto codePtr = MacroAssemblerCodePtr<JITThunkPtrTag>(tagCFunctionPtr<JITThunkPtrTag>(function)); |
| return MacroAssemblerCodeRef<JITThunkPtrTag>::createSelfManagedCodeRef(codePtr); |
| } |
| #endif // USE(EXECUTE_ONLY_JIT_WRITE_FUNCTION) |
| |
| static ALWAYS_INLINE void initializeSeparatedWXHeaps(void* stubBase, size_t stubSize, void* jitBase, size_t jitSize) |
| { |
| mach_vm_address_t writableAddr = 0; |
| |
| // Create a second mapping of the JIT region at a random address. |
| vm_prot_t cur, max; |
| int remapFlags = VM_FLAGS_ANYWHERE; |
| #if defined(VM_FLAGS_RANDOM_ADDR) |
| remapFlags |= VM_FLAGS_RANDOM_ADDR; |
| #endif |
| kern_return_t ret = mach_vm_remap(mach_task_self(), &writableAddr, jitSize, 0, |
| remapFlags, |
| mach_task_self(), (mach_vm_address_t)jitBase, FALSE, |
| &cur, &max, VM_INHERIT_DEFAULT); |
| |
| bool remapSucceeded = (ret == KERN_SUCCESS); |
| if (!remapSucceeded) |
| return; |
| |
| // Assemble a thunk that will serve as the means for writing into the JIT region. |
| MacroAssemblerCodeRef<JITThunkPtrTag> writeThunk = jitWriteThunkGenerator(reinterpret_cast<void*>(writableAddr), stubBase, stubSize); |
| |
| int result = 0; |
| |
| #if USE(EXECUTE_ONLY_JIT_WRITE_FUNCTION) |
| // Prevent reading the write thunk code. |
| result = vm_protect(mach_task_self(), reinterpret_cast<vm_address_t>(stubBase), stubSize, true, VM_PROT_EXECUTE); |
| RELEASE_ASSERT(!result); |
| #endif |
| |
| // Prevent writing into the executable JIT mapping. |
| result = vm_protect(mach_task_self(), reinterpret_cast<vm_address_t>(jitBase), jitSize, true, VM_PROT_READ | VM_PROT_EXECUTE); |
| RELEASE_ASSERT(!result); |
| |
| // Prevent execution in the writable JIT mapping. |
| result = vm_protect(mach_task_self(), static_cast<vm_address_t>(writableAddr), jitSize, true, VM_PROT_READ | VM_PROT_WRITE); |
| RELEASE_ASSERT(!result); |
| |
| // Zero out writableAddr to avoid leaking the address of the writable mapping. |
| memset_s(&writableAddr, sizeof(writableAddr), 0, sizeof(writableAddr)); |
| |
| #if ENABLE(SEPARATED_WX_HEAP) |
| g_jscConfig.jitWriteSeparateHeaps = reinterpret_cast<JITWriteSeparateHeapsFunction>(writeThunk.code().executableAddress()); |
| #endif |
| } |
| |
| #else // OS(DARWIN) && HAVE(REMAP_JIT) |
| static ALWAYS_INLINE void initializeSeparatedWXHeaps(void*, size_t, void*, size_t) |
| { |
| } |
| #endif |
| |
| struct JITReservation { |
| PageReservation pageReservation; |
| void* base { nullptr }; |
| size_t size { 0 }; |
| }; |
| |
| static ALWAYS_INLINE JITReservation initializeJITPageReservation() |
| { |
| JITReservation reservation; |
| if (!isJITEnabled()) |
| return reservation; |
| |
| reservation.size = fixedExecutableMemoryPoolSize; |
| #if !USE(JUMP_ISLANDS) |
| // FIXME: Consider making jump islands work with Options::jitMemoryReservationSize |
| // https://bugs.webkit.org/show_bug.cgi?id=209037 |
| if (Options::jitMemoryReservationSize()) |
| reservation.size = Options::jitMemoryReservationSize(); |
| #endif |
| reservation.size = std::max(roundUpToMultipleOf(pageSize(), reservation.size), pageSize() * 2); |
| |
| auto tryCreatePageReservation = [] (size_t reservationSize) { |
| #if OS(LINUX) |
| // If we use uncommitted reservation, mmap operation is recorded with small page size in perf command's output. |
| // This makes the following JIT code logging broken and some of JIT code is not recorded correctly. |
| // To avoid this problem, we use committed reservation if we need perf JITDump logging. |
| if (Options::logJITCodeForPerf()) |
| return PageReservation::reserveAndCommitWithGuardPages(reservationSize, OSAllocator::JSJITCodePages, EXECUTABLE_POOL_WRITABLE, true); |
| #endif |
| return PageReservation::reserveWithGuardPages(reservationSize, OSAllocator::JSJITCodePages, EXECUTABLE_POOL_WRITABLE, true); |
| }; |
| |
| reservation.pageReservation = tryCreatePageReservation(reservation.size); |
| if (reservation.pageReservation) { |
| ASSERT(reservation.pageReservation.size() == reservation.size); |
| reservation.base = reservation.pageReservation.base(); |
| |
| bool fastJITPermissionsIsSupported = useFastJITPermissions(); |
| if (fastJITPermissionsIsSupported) |
| threadSelfRestrictRWXToRX(); |
| |
| #if ENABLE(SEPARATED_WX_HEAP) |
| if (!fastJITPermissionsIsSupported) { |
| // First page of our JIT allocation is reserved. |
| ASSERT(reservation.size >= pageSize() * 2); |
| reservation.base = (void*)((uintptr_t)(reservation.base) + pageSize()); |
| reservation.size -= pageSize(); |
| initializeSeparatedWXHeaps(reservation.pageReservation.base(), pageSize(), reservation.base, reservation.size); |
| } |
| #endif |
| |
| void* reservationEnd = reinterpret_cast<uint8_t*>(reservation.base) + reservation.size; |
| g_jscConfig.startExecutableMemory = tagCodePtr<ExecutableMemoryPtrTag>(reservation.base); |
| g_jscConfig.endExecutableMemory = tagCodePtr<ExecutableMemoryPtrTag>(reservationEnd); |
| } |
| |
| return reservation; |
| } |
| |
| class FixedVMPoolExecutableAllocator final { |
| WTF_MAKE_FAST_ALLOCATED; |
| |
| #if USE(JUMP_ISLANDS) |
| class Islands; |
| class RegionAllocator; |
| #endif |
| |
| public: |
| FixedVMPoolExecutableAllocator() |
| #if USE(JUMP_ISLANDS) |
| : m_allocators(constructFixedSizeArrayWithArguments<RegionAllocator, numberOfRegions>(*this)) |
| #else |
| : m_allocator(*this) |
| #endif |
| { |
| JITReservation reservation = initializeJITPageReservation(); |
| m_reservation = WTFMove(reservation.pageReservation); |
| if (m_reservation) { |
| #if USE(JUMP_ISLANDS) |
| uintptr_t start = bitwise_cast<uintptr_t>(memoryStart()); |
| uintptr_t reservationEnd = bitwise_cast<uintptr_t>(memoryEnd()); |
| for (size_t i = 0; i < numberOfRegions; ++i) { |
| RELEASE_ASSERT(start < reservationEnd); |
| m_allocators[i].m_start = tagCodePtr<ExecutableMemoryPtrTag>(bitwise_cast<void*>(start)); |
| m_allocators[i].m_end = tagCodePtr<ExecutableMemoryPtrTag>(bitwise_cast<void*>(start + regionSize)); |
| if (m_allocators[i].end() > reservationEnd) { |
| // We may have taken a page for the executable only copy thunk. |
| RELEASE_ASSERT(i == numberOfRegions - 1); |
| m_allocators[i].m_end = tagCodePtr<ExecutableMemoryPtrTag>(bitwise_cast<void*>(reservationEnd)); |
| } |
| |
| m_allocators[i].addFreshFreeSpace(bitwise_cast<void*>(m_allocators[i].start()), m_allocators[i].allocatorSize()); |
| |
| RELEASE_ASSERT(m_allocators[i].allocatorSize() < regionSize); |
| RELEASE_ASSERT(m_allocators[i].islandBegin() > m_allocators[i].start()); |
| RELEASE_ASSERT(m_allocators[i].islandBegin() < m_allocators[i].end()); |
| |
| start += regionSize; |
| } |
| #else |
| m_allocator.addFreshFreeSpace(reservation.base, reservation.size); |
| ASSERT(bytesReserved() == reservation.size); // Since our executable memory is fixed-sized, bytesReserved is never changed after initialization. |
| #endif |
| } |
| } |
| |
| ~FixedVMPoolExecutableAllocator() |
| { |
| m_reservation.deallocate(); |
| } |
| |
| void* memoryStart() { return untagCodePtr<ExecutableMemoryPtrTag>(g_jscConfig.startExecutableMemory); } |
| void* memoryEnd() { return untagCodePtr<ExecutableMemoryPtrTag>(g_jscConfig.endExecutableMemory); } |
| bool isJITPC(void* pc) { return memoryStart() <= pc && pc < memoryEnd(); } |
| bool isValid() { return !!m_reservation; } |
| |
| RefPtr<ExecutableMemoryHandle> allocate(size_t sizeInBytes) |
| { |
| #if USE(JUMP_ISLANDS) |
| auto locker = holdLock(getLock()); |
| |
| unsigned start = 0; |
| if (Options::useRandomizingExecutableIslandAllocation()) |
| start = cryptographicallyRandomNumber() % m_allocators.size(); |
| |
| unsigned i = start; |
| while (true) { |
| RegionAllocator& allocator = m_allocators[i]; |
| if (RefPtr<ExecutableMemoryHandle> result = allocator.allocate(locker, sizeInBytes)) |
| return result; |
| i = (i + 1) % m_allocators.size(); |
| if (i == start) |
| break; |
| } |
| return nullptr; |
| #else |
| return m_allocator.allocate(sizeInBytes); |
| #endif // USE(JUMP_ISLANDS) |
| } |
| |
| Lock& getLock() { return m_lock; } |
| |
| // Non atomic |
| size_t bytesAllocated() |
| { |
| size_t result = 0; |
| forEachAllocator([&] (Allocator& allocator) { |
| result += allocator.bytesAllocated(); |
| }); |
| return result; |
| } |
| size_t bytesReserved() |
| { |
| size_t result = 0; |
| forEachAllocator([&] (Allocator& allocator) { |
| result += allocator.bytesReserved(); |
| }); |
| return result; |
| } |
| size_t bytesCommitted() |
| { |
| size_t result = 0; |
| forEachAllocator([&] (Allocator& allocator) { |
| result += allocator.bytesCommitted(); |
| }); |
| return result; |
| } |
| |
| bool isInAllocatedMemory(const AbstractLocker& locker, void* address) |
| { |
| #if USE(JUMP_ISLANDS) |
| if (RegionAllocator* allocator = findRegion(bitwise_cast<uintptr_t>(address))) |
| return allocator->isInAllocatedMemory(locker, address); |
| return false; |
| #else |
| return m_allocator.isInAllocatedMemory(locker, address); |
| #endif |
| } |
| |
| #if ENABLE(META_ALLOCATOR_PROFILE) |
| void dumpProfile() |
| { |
| forEachAllocator([&] (Allocator& allocator) { |
| allocator.dumpProfile(); |
| }); |
| } |
| #endif |
| |
| MetaAllocator::Statistics currentStatistics() |
| { |
| auto locker = holdLock(getLock()); |
| MetaAllocator::Statistics result { 0, 0, 0 }; |
| forEachAllocator([&] (Allocator& allocator) { |
| auto allocatorStats = allocator.currentStatistics(locker); |
| result.bytesAllocated += allocatorStats.bytesAllocated; |
| result.bytesReserved += allocatorStats.bytesReserved; |
| result.bytesCommitted += allocatorStats.bytesCommitted; |
| }); |
| return result; |
| } |
| |
| #if USE(JUMP_ISLANDS) |
| void handleWillBeReleased(const LockHolder& locker, MetaAllocatorHandle& handle) |
| { |
| if (m_islandsForJumpSourceLocation.isEmpty()) |
| return; |
| |
| Vector<Islands*, 16> toRemove; |
| void* start = handle.start().untaggedPtr(); |
| void* end = handle.end().untaggedPtr(); |
| m_islandsForJumpSourceLocation.iterate([&] (Islands& islands, bool& visitLeft, bool& visitRight) { |
| if (start <= islands.key() && islands.key() < end) |
| toRemove.append(&islands); |
| if (islands.key() > start) |
| visitLeft = true; |
| if (islands.key() < end) |
| visitRight = true; |
| }); |
| |
| for (Islands* islands : toRemove) |
| freeIslands(locker, islands); |
| |
| if (ASSERT_ENABLED) { |
| m_islandsForJumpSourceLocation.iterate([&] (Islands& islands, bool& visitLeft, bool& visitRight) { |
| if (start <= islands.key() && islands.key() < end) { |
| dataLogLn("did not remove everything!"); |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| visitLeft = true; |
| visitRight = true; |
| }); |
| } |
| } |
| |
| void* makeIsland(uintptr_t jumpLocation, uintptr_t newTarget, bool concurrently) |
| { |
| auto locker = holdLock(getLock()); |
| return islandForJumpLocation(locker, jumpLocation, newTarget, concurrently); |
| } |
| |
| private: |
| RegionAllocator* findRegion(uintptr_t ptr) |
| { |
| RegionAllocator* result = nullptr; |
| forEachAllocator([&] (RegionAllocator& allocator) { |
| if (allocator.start() <= ptr && ptr < allocator.end()) { |
| result = &allocator; |
| return IterationStatus::Done; |
| } |
| return IterationStatus::Continue; |
| }); |
| return result; |
| } |
| |
| void freeJumpIslands(const LockHolder&, Islands* islands) |
| { |
| for (CodeLocationLabel<ExecutableMemoryPtrTag> jumpIsland : islands->jumpIslands) { |
| uintptr_t untaggedJumpIsland = bitwise_cast<uintptr_t>(jumpIsland.dataLocation()); |
| RegionAllocator* allocator = findRegion(untaggedJumpIsland); |
| RELEASE_ASSERT(allocator); |
| allocator->freeIsland(untaggedJumpIsland); |
| } |
| islands->jumpIslands.clear(); |
| } |
| |
| void freeIslands(const LockHolder& locker, Islands* islands) |
| { |
| freeJumpIslands(locker, islands); |
| m_islandsForJumpSourceLocation.remove(islands); |
| delete islands; |
| } |
| |
| void* islandForJumpLocation(const LockHolder& locker, uintptr_t jumpLocation, uintptr_t target, bool concurrently) |
| { |
| Islands* islands = m_islandsForJumpSourceLocation.findExact(bitwise_cast<void*>(jumpLocation)); |
| if (islands) { |
| // FIXME: We could create some method of reusing already allocated islands here, but it's |
| // unlikely to matter in practice. |
| if (!concurrently) |
| freeJumpIslands(locker, islands); |
| } else { |
| islands = new Islands; |
| islands->jumpSourceLocation = CodeLocationLabel<ExecutableMemoryPtrTag>(tagCodePtr<ExecutableMemoryPtrTag>(bitwise_cast<void*>(jumpLocation))); |
| m_islandsForJumpSourceLocation.insert(islands); |
| } |
| |
| RegionAllocator* allocator = findRegion(jumpLocation > target ? jumpLocation - regionSize : jumpLocation); |
| RELEASE_ASSERT(allocator); |
| void* result = allocator->allocateIsland(); |
| void* currentIsland = result; |
| jumpLocation = bitwise_cast<uintptr_t>(currentIsland); |
| while (true) { |
| islands->jumpIslands.append(CodeLocationLabel<ExecutableMemoryPtrTag>(tagCodePtr<ExecutableMemoryPtrTag>(currentIsland))); |
| |
| auto emitJumpTo = [&] (void* target) { |
| RELEASE_ASSERT(ARM64Assembler::canEmitJump(bitwise_cast<void*>(jumpLocation), target)); |
| |
| MacroAssembler jit; |
| auto jump = jit.jump(); |
| LinkBuffer linkBuffer(jit, MacroAssemblerCodePtr<NoPtrTag>(currentIsland), islandSizeInBytes, JITCompilationMustSucceed, false); |
| RELEASE_ASSERT(linkBuffer.isValid()); |
| |
| // We use this to appease the assertion that we're not finalizing on a compiler thread. In this situation, it's |
| // ok to do this on a compiler thread, since the compiler thread is linking a jump to this code (and no other live |
| // code can jump to these islands). It's ok because the CPU protocol for exposing code to other CPUs is: |
| // - Self modifying code fence (what FINALIZE_CODE does below). This does various memory flushes + instruction sync barrier (isb). |
| // - Any CPU that will run the code must run a crossModifyingCodeFence (isb) before running it. Since the code that |
| // has a jump linked to this island hasn't finalized yet, they're guaranteed to finalize there code and run an isb. |
| linkBuffer.setIsJumpIsland(); |
| |
| linkBuffer.link(jump, CodeLocationLabel<NoPtrTag>(target)); |
| FINALIZE_CODE(linkBuffer, NoPtrTag, "Jump Island: %lu", jumpLocation); |
| }; |
| |
| if (ARM64Assembler::canEmitJump(bitwise_cast<void*>(jumpLocation), bitwise_cast<void*>(target))) { |
| emitJumpTo(bitwise_cast<void*>(target)); |
| break; |
| } |
| |
| uintptr_t nextIslandRegion; |
| if (jumpLocation > target) |
| nextIslandRegion = jumpLocation - regionSize; |
| else |
| nextIslandRegion = jumpLocation + regionSize; |
| |
| RegionAllocator* allocator = findRegion(nextIslandRegion); |
| RELEASE_ASSERT(allocator); |
| void* nextIsland = allocator->allocateIsland(); |
| emitJumpTo(nextIsland); |
| jumpLocation = bitwise_cast<uintptr_t>(nextIsland); |
| currentIsland = nextIsland; |
| } |
| |
| return result; |
| } |
| #endif // USE(JUMP_ISLANDS) |
| |
| private: |
| class Allocator : public MetaAllocator { |
| using Base = MetaAllocator; |
| public: |
| Allocator(FixedVMPoolExecutableAllocator& allocator) |
| : Base(allocator.getLock(), jitAllocationGranule, pageSize()) // round up all allocations to 32 bytes |
| , m_fixedAllocator(allocator) |
| { |
| } |
| |
| FreeSpacePtr allocateNewSpace(size_t&) override |
| { |
| // We're operating in a fixed pool, so new allocation is always prohibited. |
| return nullptr; |
| } |
| |
| void notifyNeedPage(void* page, size_t count) override |
| { |
| m_fixedAllocator.m_reservation.commit(page, pageSize() * count); |
| } |
| |
| void notifyPageIsFree(void* page, size_t count) override |
| { |
| m_fixedAllocator.m_reservation.decommit(page, pageSize() * count); |
| } |
| |
| FixedVMPoolExecutableAllocator& m_fixedAllocator; |
| }; |
| |
| #if USE(JUMP_ISLANDS) |
| class RegionAllocator final : public Allocator { |
| using Base = Allocator; |
| public: |
| RegionAllocator(FixedVMPoolExecutableAllocator& allocator) |
| : Base(allocator) |
| { |
| } |
| |
| // ------------------------------------ |
| // | jit allocations --> <-- islands | |
| // ------------------------------------- |
| |
| uintptr_t start() { return bitwise_cast<uintptr_t>(untagCodePtr<ExecutableMemoryPtrTag>(m_start)); } |
| uintptr_t end() { return bitwise_cast<uintptr_t>(untagCodePtr<ExecutableMemoryPtrTag>(m_end)); } |
| |
| uintptr_t islandBegin() |
| { |
| // [start, allocatorEnd) |
| return end() - islandRegionSize; |
| } |
| |
| uintptr_t allocatorSize() |
| { |
| return islandBegin() - start(); |
| } |
| |
| size_t islandsPerPage() |
| { |
| size_t islandsPerPage = pageSize() / islandSizeInBytes; |
| ASSERT(islandsPerPage * islandSizeInBytes == pageSize()); |
| ASSERT(isPowerOfTwo(islandsPerPage)); |
| return islandsPerPage; |
| } |
| |
| void release(const LockHolder& locker, MetaAllocatorHandle& handle) final |
| { |
| m_fixedAllocator.handleWillBeReleased(locker, handle); |
| Base::release(locker, handle); |
| } |
| |
| void* allocateIsland() |
| { |
| uintptr_t end = this->end(); |
| auto findResult = [&] () -> void* { |
| size_t resultBit = islandBits.findClearBit(0); |
| if (resultBit == islandBits.size()) |
| return nullptr; |
| islandBits[resultBit] = true; |
| uintptr_t result = end - ((resultBit + 1) * islandSizeInBytes); |
| return bitwise_cast<void*>(result); |
| }; |
| |
| if (void* result = findResult()) |
| return result; |
| |
| islandBits.resize(islandBits.size() + islandsPerPage()); |
| if (UNLIKELY(islandBits.size() > maxIslandsPerRegion)) |
| crashOnJumpIslandExhaustion(); |
| |
| uintptr_t pageBegin = end - (islandBits.size() * islandSizeInBytes); // [islandBegin, end) |
| m_fixedAllocator.m_reservation.commit(bitwise_cast<void*>(pageBegin), pageSize()); |
| |
| void* result = findResult(); |
| RELEASE_ASSERT(result); |
| return result; |
| } |
| |
| NEVER_INLINE NO_RETURN_DUE_TO_CRASH void crashOnJumpIslandExhaustion() |
| { |
| CRASH(); |
| } |
| |
| Optional<size_t> islandBit(uintptr_t island) |
| { |
| uintptr_t end = this->end(); |
| if (islandBegin() <= island && island < end) |
| return ((end - island) / islandSizeInBytes) - 1; |
| return WTF::nullopt; |
| } |
| |
| void freeIsland(uintptr_t island) |
| { |
| RELEASE_ASSERT(islandBegin() <= island && island < end()); |
| size_t bit = islandBit(island).value(); |
| RELEASE_ASSERT(!!islandBits[bit]); |
| islandBits[bit] = false; |
| } |
| |
| bool isInAllocatedMemory(const AbstractLocker& locker, void* address) |
| { |
| if (Base::isInAllocatedMemory(locker, address)) |
| return true; |
| if (Optional<size_t> bit = islandBit(bitwise_cast<uintptr_t>(address))) { |
| if (bit.value() < islandBits.size()) |
| return !!islandBits[bit.value()]; |
| } |
| return false; |
| } |
| |
| // Range: [start, end) |
| void* m_start; |
| void* m_end; |
| FastBitVector islandBits; |
| }; |
| #endif // USE(JUMP_ISLANDS) |
| |
| template <typename Function> |
| void forEachAllocator(Function function) |
| { |
| #if USE(JUMP_ISLANDS) |
| for (RegionAllocator& allocator : m_allocators) { |
| using FunctionResultType = decltype(function(allocator)); |
| if constexpr (std::is_same<IterationStatus, FunctionResultType>::value) { |
| if (function(allocator) == IterationStatus::Done) |
| break; |
| } else { |
| static_assert(std::is_same<void, FunctionResultType>::value); |
| function(allocator); |
| } |
| } |
| #else |
| function(m_allocator); |
| #endif // USE(JUMP_ISLANDS) |
| } |
| |
| #if USE(JUMP_ISLANDS) |
| class Islands : public RedBlackTree<Islands, void*>::Node { |
| WTF_MAKE_FAST_ALLOCATED; |
| public: |
| void* key() { return jumpSourceLocation.dataLocation(); } |
| CodeLocationLabel<ExecutableMemoryPtrTag> jumpSourceLocation; |
| Vector<CodeLocationLabel<ExecutableMemoryPtrTag>> jumpIslands; |
| }; |
| #endif // USE(JUMP_ISLANDS) |
| |
| Lock m_lock; |
| PageReservation m_reservation; |
| #if USE(JUMP_ISLANDS) |
| std::array<RegionAllocator, numberOfRegions> m_allocators; |
| RedBlackTree<Islands, void*> m_islandsForJumpSourceLocation; |
| #else |
| Allocator m_allocator; |
| #endif // USE(JUMP_ISLANDS) |
| }; |
| |
| // Keep this pointer in a mutable global variable to help Leaks find it. |
| // But we do not use this pointer. |
| static FixedVMPoolExecutableAllocator* globalFixedVMPoolExecutableAllocatorToWorkAroundLeaks = nullptr; |
| void ExecutableAllocator::initializeUnderlyingAllocator() |
| { |
| RELEASE_ASSERT(!g_jscConfig.fixedVMPoolExecutableAllocator); |
| g_jscConfig.fixedVMPoolExecutableAllocator = new FixedVMPoolExecutableAllocator(); |
| globalFixedVMPoolExecutableAllocatorToWorkAroundLeaks = g_jscConfig.fixedVMPoolExecutableAllocator; |
| } |
| |
| bool ExecutableAllocator::isValid() const |
| { |
| FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator; |
| if (!allocator) |
| return Base::isValid(); |
| return allocator->isValid(); |
| } |
| |
| bool ExecutableAllocator::underMemoryPressure() |
| { |
| FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator; |
| if (!allocator) |
| return Base::underMemoryPressure(); |
| return allocator->bytesAllocated() > allocator->bytesReserved() / 2; |
| } |
| |
| double ExecutableAllocator::memoryPressureMultiplier(size_t addedMemoryUsage) |
| { |
| FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator; |
| if (!allocator) |
| return Base::memoryPressureMultiplier(addedMemoryUsage); |
| ASSERT(allocator->bytesAllocated() <= allocator->bytesReserved()); |
| size_t bytesAllocated = allocator->bytesAllocated() + addedMemoryUsage; |
| size_t bytesAvailable = static_cast<size_t>( |
| allocator->bytesReserved() * (1 - executablePoolReservationFraction)); |
| if (bytesAllocated >= bytesAvailable) |
| bytesAllocated = bytesAvailable; |
| double result = 1.0; |
| size_t divisor = bytesAvailable - bytesAllocated; |
| if (divisor) |
| result = static_cast<double>(bytesAvailable) / divisor; |
| if (result < 1.0) |
| result = 1.0; |
| return result; |
| } |
| |
| RefPtr<ExecutableMemoryHandle> ExecutableAllocator::allocate(size_t sizeInBytes, JITCompilationEffort effort) |
| { |
| FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator; |
| if (!allocator) |
| return Base::allocate(sizeInBytes, effort); |
| if (Options::logExecutableAllocation()) { |
| MetaAllocator::Statistics stats = allocator->currentStatistics(); |
| dataLog("Allocating ", sizeInBytes, " bytes of executable memory with ", stats.bytesAllocated, " bytes allocated, ", stats.bytesReserved, " bytes reserved, and ", stats.bytesCommitted, " committed.\n"); |
| } |
| |
| if (effort != JITCompilationCanFail && Options::reportMustSucceedExecutableAllocations()) { |
| dataLog("Allocating ", sizeInBytes, " bytes of executable memory with JITCompilationMustSucceed.\n"); |
| WTFReportBacktrace(); |
| } |
| |
| if (effort == JITCompilationCanFail |
| && doExecutableAllocationFuzzingIfEnabled() == PretendToFailExecutableAllocation) |
| return nullptr; |
| |
| if (effort == JITCompilationCanFail) { |
| // Don't allow allocations if we are down to reserve. |
| size_t bytesAllocated = allocator->bytesAllocated() + sizeInBytes; |
| size_t bytesAvailable = static_cast<size_t>( |
| allocator->bytesReserved() * (1 - executablePoolReservationFraction)); |
| if (bytesAllocated > bytesAvailable) { |
| if (Options::logExecutableAllocation()) |
| dataLog("Allocation failed because bytes allocated ", bytesAllocated, " > ", bytesAvailable, " bytes available.\n"); |
| return nullptr; |
| } |
| } |
| |
| RefPtr<ExecutableMemoryHandle> result = allocator->allocate(sizeInBytes); |
| if (!result) { |
| if (effort != JITCompilationCanFail) { |
| dataLog("Ran out of executable memory while allocating ", sizeInBytes, " bytes.\n"); |
| CRASH(); |
| } |
| return nullptr; |
| } |
| |
| void* start = allocator->memoryStart(); |
| void* end = allocator->memoryEnd(); |
| void* resultStart = result->start().untaggedPtr(); |
| void* resultEnd = result->end().untaggedPtr(); |
| RELEASE_ASSERT(start <= resultStart && resultStart < end); |
| RELEASE_ASSERT(start < resultEnd && resultEnd <= end); |
| return result; |
| } |
| |
| bool ExecutableAllocator::isValidExecutableMemory(const AbstractLocker& locker, void* address) |
| { |
| FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator; |
| if (!allocator) |
| return Base::isValidExecutableMemory(locker, address); |
| return allocator->isInAllocatedMemory(locker, address); |
| } |
| |
| Lock& ExecutableAllocator::getLock() const |
| { |
| FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator; |
| if (!allocator) |
| return Base::getLock(); |
| return allocator->getLock(); |
| } |
| |
| size_t ExecutableAllocator::committedByteCount() |
| { |
| FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator; |
| if (!allocator) |
| return Base::committedByteCount(); |
| return allocator->bytesCommitted(); |
| } |
| |
| #if ENABLE(META_ALLOCATOR_PROFILE) |
| void ExecutableAllocator::dumpProfile() |
| { |
| FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator; |
| if (!allocator) |
| return; |
| allocator->dumpProfile(); |
| } |
| #endif |
| |
| #if USE(JUMP_ISLANDS) |
| void* ExecutableAllocator::getJumpIslandTo(void* from, void* newDestination) |
| { |
| FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator; |
| if (!allocator) |
| RELEASE_ASSERT_NOT_REACHED(); |
| |
| return allocator->makeIsland(bitwise_cast<uintptr_t>(from), bitwise_cast<uintptr_t>(newDestination), false); |
| } |
| |
| void* ExecutableAllocator::getJumpIslandToConcurrently(void* from, void* newDestination) |
| { |
| FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator; |
| if (!allocator) |
| RELEASE_ASSERT_NOT_REACHED(); |
| |
| return allocator->makeIsland(bitwise_cast<uintptr_t>(from), bitwise_cast<uintptr_t>(newDestination), true); |
| } |
| #endif |
| |
| void* startOfFixedExecutableMemoryPoolImpl() |
| { |
| FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator; |
| if (!allocator) |
| return nullptr; |
| return allocator->memoryStart(); |
| } |
| |
| void* endOfFixedExecutableMemoryPoolImpl() |
| { |
| FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator; |
| if (!allocator) |
| return nullptr; |
| return allocator->memoryEnd(); |
| } |
| |
| bool isJITPC(void* pc) |
| { |
| FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator; |
| return allocator && allocator->isJITPC(pc); |
| } |
| |
| void dumpJITMemory(const void* dst, const void* src, size_t size) |
| { |
| RELEASE_ASSERT(Options::dumpJITMemoryPath()); |
| |
| #if OS(DARWIN) |
| static int fd = -1; |
| static uint8_t* buffer; |
| static constexpr size_t bufferSize = fixedExecutableMemoryPoolSize; |
| static size_t offset = 0; |
| static Lock dumpJITMemoryLock; |
| static bool needsToFlush = false; |
| static auto flush = [](const AbstractLocker&) { |
| if (fd == -1) { |
| String path = Options::dumpJITMemoryPath(); |
| path = path.replace("%pid", String::number(getCurrentProcessID())); |
| fd = open(FileSystem::fileSystemRepresentation(path).data(), O_CREAT | O_TRUNC | O_APPEND | O_WRONLY | O_EXLOCK | O_NONBLOCK, 0666); |
| RELEASE_ASSERT(fd != -1); |
| } |
| write(fd, buffer, offset); |
| offset = 0; |
| needsToFlush = false; |
| }; |
| |
| static std::once_flag once; |
| static LazyNeverDestroyed<Ref<WorkQueue>> flushQueue; |
| std::call_once(once, [] { |
| buffer = bitwise_cast<uint8_t*>(malloc(bufferSize)); |
| flushQueue.construct(WorkQueue::create("jsc.dumpJITMemory.queue", WorkQueue::Type::Serial, WorkQueue::QOS::Background)); |
| std::atexit([] { |
| LockHolder locker(dumpJITMemoryLock); |
| flush(locker); |
| close(fd); |
| fd = -1; |
| }); |
| }); |
| |
| static auto enqueueFlush = [](const AbstractLocker&) { |
| if (needsToFlush) |
| return; |
| |
| needsToFlush = true; |
| flushQueue.get()->dispatchAfter(Seconds(Options::dumpJITMemoryFlushInterval()), [] { |
| LockHolder locker(dumpJITMemoryLock); |
| if (!needsToFlush) |
| return; |
| flush(locker); |
| }); |
| }; |
| |
| static auto write = [](const AbstractLocker& locker, const void* src, size_t size) { |
| if (UNLIKELY(offset + size > bufferSize)) |
| flush(locker); |
| memcpy(buffer + offset, src, size); |
| offset += size; |
| enqueueFlush(locker); |
| }; |
| |
| LockHolder locker(dumpJITMemoryLock); |
| uint64_t time = mach_absolute_time(); |
| uint64_t dst64 = bitwise_cast<uintptr_t>(dst); |
| uint64_t size64 = size; |
| TraceScope(DumpJITMemoryStart, DumpJITMemoryStop, time, dst64, size64); |
| write(locker, &time, sizeof(time)); |
| write(locker, &dst64, sizeof(dst64)); |
| write(locker, &size64, sizeof(size64)); |
| write(locker, src, size); |
| #else |
| UNUSED_PARAM(dst); |
| UNUSED_PARAM(src); |
| UNUSED_PARAM(size); |
| RELEASE_ASSERT_NOT_REACHED(); |
| #endif |
| } |
| |
| } // namespace JSC |
| |
| #endif // ENABLE(JIT) |
| |
| namespace JSC { |
| |
| // Keep this pointer in a mutable global variable to help Leaks find it. |
| // But we do not use this pointer. |
| static ExecutableAllocator* globalExecutableAllocatorToWorkAroundLeaks = nullptr; |
| void ExecutableAllocator::initialize() |
| { |
| g_jscConfig.executableAllocator = new ExecutableAllocator; |
| globalExecutableAllocatorToWorkAroundLeaks = g_jscConfig.executableAllocator; |
| } |
| |
| ExecutableAllocator& ExecutableAllocator::singleton() |
| { |
| ASSERT(g_jscConfig.executableAllocator); |
| return *g_jscConfig.executableAllocator; |
| } |
| |
| } // namespace JSC |