| /************************************************* |
| * Perl-Compatible Regular Expressions * |
| * extended to UTF-16 for use in JavaScriptCore * |
| *************************************************/ |
| |
| /* |
| This is a library of functions to support regular expressions whose syntax |
| and semantics are as close as possible to those of the Perl 5 language. See |
| the file Tech.Notes for some information on the internals. |
| |
| Written by: Philip Hazel <ph10@cam.ac.uk> |
| |
| Copyright (c) 1997-2001 University of Cambridge |
| Copyright (C) 2004 Apple Computer, Inc. |
| |
| ----------------------------------------------------------------------------- |
| Permission is granted to anyone to use this software for any purpose on any |
| computer system, and to redistribute it freely, subject to the following |
| restrictions: |
| |
| 1. This software is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
| |
| 2. The origin of this software must not be misrepresented, either by |
| explicit claim or by omission. |
| |
| 3. Altered versions must be plainly marked as such, and must not be |
| misrepresented as being the original software. |
| |
| 4. If PCRE is embedded in any software that is released under the GNU |
| General Purpose Licence (GPL), then the terms of that licence shall |
| supersede any condition above with which it is incompatible. |
| ----------------------------------------------------------------------------- |
| */ |
| |
| |
| /* Define DEBUG to get debugging output on stdout. */ |
| |
| /* #define DEBUG */ |
| |
| /* Use a macro for debugging printing, 'cause that eliminates the use of #ifdef |
| inline, and there are *still* stupid compilers about that don't like indented |
| pre-processor statements. I suppose it's only been 10 years... */ |
| |
| #ifdef DEBUG |
| #define DPRINTF(p) printf p |
| #else |
| #define DPRINTF(p) /*nothing*/ |
| #endif |
| |
| /* Include the internals header, which itself includes Standard C headers plus |
| the external pcre header. */ |
| |
| #include "internal.h" |
| |
| |
| /* Allow compilation as C++ source code, should anybody want to do that. */ |
| |
| #ifdef __cplusplus |
| #define class pcre_class |
| #endif |
| |
| |
| /* Maximum number of items on the nested bracket stacks at compile time. This |
| applies to the nesting of all kinds of parentheses. It does not limit |
| un-nested, non-capturing parentheses. This number can be made bigger if |
| necessary - it is used to dimension one int and one unsigned char vector at |
| compile time. */ |
| |
| #define BRASTACK_SIZE 200 |
| |
| |
| /* The number of bytes in a literal character string above which we can't add |
| any more is different when UTF-8 characters may be encountered. */ |
| |
| #ifdef SUPPORT_UTF8 |
| #define MAXLIT 250 |
| #else |
| #define MAXLIT 255 |
| #endif |
| |
| |
| #define CHAR_CLASS_SIZE 32 |
| |
| |
| /* Min and max values for the common repeats; for the maxima, 0 => infinity */ |
| |
| static const char rep_min[] = { 0, 0, 1, 1, 0, 0 }; |
| static const char rep_max[] = { 0, 0, 0, 0, 1, 1 }; |
| |
| /* Text forms of OP_ values and things, for debugging (not all used) */ |
| |
| #ifdef DEBUG |
| static const char * const OP_names[] = { |
| "End", "\\A", "\\B", "\\b", "\\D", "\\d", |
| "\\S", "\\s", "\\W", "\\w", "\\Z", "\\z", |
| "Opt", "^", "$", "Any", "chars", "not", |
| "*", "*?", "+", "+?", "?", "??", "{", "{", "{", |
| "*", "*?", "+", "+?", "?", "??", "{", "{", "{", |
| "*", "*?", "+", "+?", "?", "??", "{", "{", "{", |
| "*", "*?", "+", "+?", "?", "??", "{", "{", |
| "class", "Ref", "Recurse", |
| "Alt", "Ket", "KetRmax", "KetRmin", "Assert", "Assert not", |
| "AssertB", "AssertB not", "Reverse", "Once", "Cond", "Cref", |
| "Brazero", "Braminzero", "Branumber", "Bra" |
| }; |
| #endif |
| |
| /* Table for handling escaped characters in the range '0'-'z'. Positive returns |
| are simple data values; negative values are for special things like \d and so |
| on. Zero means further processing is needed (for things like \x), or the escape |
| is invalid. */ |
| |
| static const short int escapes[] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, /* 0 - 7 */ |
| 0, 0, ':', ';', '<', '=', '>', '?', /* 8 - ? */ |
| '@', -ESC_A, -ESC_B, 0, -ESC_D, 0, 0, 0, /* @ - G */ |
| 0, 0, 0, 0, 0, 0, 0, 0, /* H - O */ |
| 0, 0, 0, -ESC_S, 0, 0, 0, -ESC_W, /* P - W */ |
| 0, 0, -ESC_Z, '[', '\\', ']', '^', '_', /* X - _ */ |
| '`', 7, -ESC_b, 0, -ESC_d, ESC_E, ESC_F, 0, /* ` - g */ |
| 0, 0, 0, 0, 0, 0, ESC_N, 0, /* h - o */ |
| 0, 0, ESC_R, -ESC_s, ESC_T, 0, 0, -ESC_w, /* p - w */ |
| 0, 0, -ESC_z /* x - z */ |
| }; |
| |
| /* Tables of names of POSIX character classes and their lengths. The list is |
| terminated by a zero length entry. The first three must be alpha, upper, lower, |
| as this is assumed for handling case independence. */ |
| |
| static const char * const posix_names[] = { |
| "alpha", "lower", "upper", |
| "alnum", "ascii", "cntrl", "digit", "graph", |
| "print", "punct", "space", "word", "xdigit" }; |
| |
| static const uschar posix_name_lengths[] = { |
| 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 0 }; |
| |
| /* Table of class bit maps for each POSIX class; up to three may be combined |
| to form the class. */ |
| |
| static const int posix_class_maps[] = { |
| cbit_lower, cbit_upper, -1, /* alpha */ |
| cbit_lower, -1, -1, /* lower */ |
| cbit_upper, -1, -1, /* upper */ |
| cbit_digit, cbit_lower, cbit_upper, /* alnum */ |
| cbit_print, cbit_cntrl, -1, /* ascii */ |
| cbit_cntrl, -1, -1, /* cntrl */ |
| cbit_digit, -1, -1, /* digit */ |
| cbit_graph, -1, -1, /* graph */ |
| cbit_print, -1, -1, /* print */ |
| cbit_punct, -1, -1, /* punct */ |
| cbit_space, -1, -1, /* space */ |
| cbit_word, -1, -1, /* word */ |
| cbit_xdigit,-1, -1 /* xdigit */ |
| }; |
| |
| |
| /* Definition to allow mutual recursion */ |
| |
| static BOOL |
| compile_regex(int, int, int *, uschar **, const ichar **, const char **, |
| BOOL, int, int *, int *, compile_data *); |
| |
| /* Structure for building a chain of data that actually lives on the |
| stack, for holding the values of the subject pointer at the start of each |
| subpattern, so as to detect when an empty string has been matched by a |
| subpattern - to break infinite loops. */ |
| |
| typedef struct eptrblock { |
| struct eptrblock *prev; |
| const ichar *saved_eptr; |
| } eptrblock; |
| |
| /* Flag bits for the match() function */ |
| |
| #define match_condassert 0x01 /* Called to check a condition assertion */ |
| #define match_isgroup 0x02 /* Set if start of bracketed group */ |
| |
| |
| |
| /************************************************* |
| * Global variables * |
| *************************************************/ |
| |
| /* PCRE is thread-clean and doesn't use any global variables in the normal |
| sense. However, it calls memory allocation and free functions via the two |
| indirections below, which are can be changed by the caller, but are shared |
| between all threads. */ |
| |
| void *(*pcre_malloc)(size_t) = malloc; |
| void (*pcre_free)(void *) = free; |
| |
| |
| |
| /************************************************* |
| * Macros and tables for character handling * |
| *************************************************/ |
| |
| /* When UTF-8 encoding is being used, a character is no longer just a single |
| byte. The macros for character handling generate simple sequences when used in |
| byte-mode, and more complicated ones for UTF-8 characters. */ |
| |
| #ifndef SUPPORT_UTF8 |
| #define GETCHARINC(c, eptr) c = *eptr++; |
| #define GETCHARLEN(c, eptr, len) c = *eptr; |
| #define BACKCHAR(eptr) |
| |
| #else /* SUPPORT_UTF8 */ |
| |
| #if PCRE_UTF16 |
| |
| /* Get the next UTF-16 character, advancing the pointer */ |
| |
| #define LEAD_OFFSET (0xd800 - (0x10000 >> 10)) |
| #define SURROGATE_OFFSET (0x10000 - (0xd800 << 10) - 0xdc00) |
| |
| #define IS_LEADING_SURROGATE(c) (((c) & ~0x3ff) == 0xd800) |
| #define IS_TRAILING_SURROGATE(c) (((c) & ~0x3ff) == 0xdc00) |
| |
| #define DECODE_SURROGATE_PAIR(l, t) (((l) << 10) + (t) + SURROGATE_OFFSET) |
| #define LEADING_SURROGATE(c) (LEAD_OFFSET + ((c) >> 10)) |
| #define TRAILING_SURROGATE(c) (0xdc00 + ((c) & 0x3FF)) |
| |
| #define GETCHARINC(c, eptr) \ |
| c = *eptr++; \ |
| if (IS_LEADING_SURROGATE(c)) \ |
| c = DECODE_SURROGATE_PAIR(c, *eptr++); |
| |
| /* Get the next UTF-16 character, not advancing the pointer, setting length */ |
| |
| #define GETCHARLEN(c, eptr, len) \ |
| c = *eptr; \ |
| if (!IS_LEADING_SURROGATE(c)) \ |
| len = 1; \ |
| else \ |
| { \ |
| c = DECODE_SURROGATE_PAIR(c, eptr[1]); \ |
| len = 2; \ |
| } |
| |
| /* Return 1 if not the start of a character. */ |
| |
| #define ISMIDCHAR(c) IS_TRAILING_SURROGATE(c) |
| |
| #else |
| |
| /* Get the next UTF-8 character, advancing the pointer */ |
| |
| #define GETCHARINC(c, eptr) \ |
| c = *eptr++; \ |
| if (md->utf8 && (c & 0xc0) == 0xc0) \ |
| { \ |
| int a = utf8_table4[c & 0x3f]; /* Number of additional bytes */ \ |
| int s = 6*a; \ |
| c = (c & utf8_table3[a]) << s; \ |
| while (a-- > 0) \ |
| { \ |
| s -= 6; \ |
| c |= (*eptr++ & 0x3f) << s; \ |
| } \ |
| } |
| |
| /* Get the next UTF-8 character, not advancing the pointer, setting length */ |
| |
| #define GETCHARLEN(c, eptr, len) \ |
| c = *eptr; \ |
| len = 1; \ |
| if (md->utf8 && (c & 0xc0) == 0xc0) \ |
| { \ |
| int i; \ |
| int a = utf8_table4[c & 0x3f]; /* Number of additional bytes */ \ |
| int s = 6*a; \ |
| c = (c & utf8_table3[a]) << s; \ |
| for (i = 1; i <= a; i++) \ |
| { \ |
| s -= 6; \ |
| c |= (eptr[i] & 0x3f) << s; \ |
| } \ |
| len += a; \ |
| } |
| |
| /* Return 1 if not the start of a character. */ |
| |
| #define ISMIDCHAR(c) (((c) & 0xc0) == 0x80) |
| |
| #endif |
| |
| /* If the pointer is not at the start of a character, move it back until |
| it is. */ |
| |
| #define BACKCHAR(eptr) while(ISMIDCHAR(*eptr)) eptr--; |
| |
| #endif |
| |
| |
| |
| /************************************************* |
| * Default character tables * |
| *************************************************/ |
| |
| /* A default set of character tables is included in the PCRE binary. Its source |
| is built by the maketables auxiliary program, which uses the default C ctypes |
| functions, and put in the file chartables.c. These tables are used by PCRE |
| whenever the caller of pcre_compile() does not provide an alternate set of |
| tables. */ |
| |
| #include "chartables.c" |
| |
| |
| |
| #if !PCRE_UTF16 |
| #ifdef SUPPORT_UTF8 |
| /************************************************* |
| * Tables for UTF-8 support * |
| *************************************************/ |
| |
| /* These are the breakpoints for different numbers of bytes in a UTF-8 |
| character. */ |
| |
| static int utf8_table1[] = { 0x7f, 0x7ff, 0xffff, 0x1fffff, 0x3ffffff, 0x7fffffff}; |
| |
| /* These are the indicator bits and the mask for the data bits to set in the |
| first byte of a character, indexed by the number of additional bytes. */ |
| |
| static int utf8_table2[] = { 0, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc}; |
| static int utf8_table3[] = { 0xff, 0x1f, 0x0f, 0x07, 0x03, 0x01}; |
| |
| /* Table of the number of extra characters, indexed by the first character |
| masked with 0x3f. The highest number for a valid UTF-8 character is in fact |
| 0x3d. */ |
| |
| static uschar utf8_table4[] = { |
| 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, |
| 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, |
| 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, |
| 3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5 }; |
| |
| |
| /************************************************* |
| * Convert character value to UTF-8 * |
| *************************************************/ |
| |
| /* This function takes an integer value in the range 0 - 0x7fffffff |
| and encodes it as a UTF-8 character in 0 to 6 bytes. |
| |
| Arguments: |
| cvalue the character value |
| buffer pointer to buffer for result - at least 6 bytes long |
| |
| Returns: number of characters placed in the buffer |
| */ |
| |
| static int |
| ord2utf8(int cvalue, uschar *buffer) |
| { |
| register int i, j; |
| for (i = 0; i < (int)(sizeof(utf8_table1)/sizeof(int)); i++) |
| if (cvalue <= utf8_table1[i]) break; |
| buffer += i; |
| for (j = i; j > 0; j--) |
| { |
| *buffer-- = 0x80 | (cvalue & 0x3f); |
| cvalue >>= 6; |
| } |
| *buffer = utf8_table2[i] | cvalue; |
| return i + 1; |
| } |
| #endif |
| #endif |
| |
| |
| |
| /************************************************* |
| * Return version string * |
| *************************************************/ |
| |
| #define STRING(a) # a |
| #define XSTRING(s) STRING(s) |
| |
| const char * |
| pcre_version(void) |
| { |
| return XSTRING(PCRE_MAJOR) "." XSTRING(PCRE_MINOR) " " XSTRING(PCRE_DATE); |
| } |
| |
| |
| |
| |
| /************************************************* |
| * (Obsolete) Return info about compiled pattern * |
| *************************************************/ |
| |
| /* This is the original "info" function. It picks potentially useful data out |
| of the private structure, but its interface was too rigid. It remains for |
| backwards compatibility. The public options are passed back in an int - though |
| the re->options field has been expanded to a long int, all the public options |
| at the low end of it, and so even on 16-bit systems this will still be OK. |
| Therefore, I haven't changed the API for pcre_info(). |
| |
| Arguments: |
| external_re points to compiled code |
| optptr where to pass back the options |
| first_char where to pass back the first character, |
| or -1 if multiline and all branches start ^, |
| or -2 otherwise |
| |
| Returns: number of capturing subpatterns |
| or negative values on error |
| */ |
| |
| int |
| pcre_info(const pcre *external_re, int *optptr, int *first_char) |
| { |
| const real_pcre *re = (const real_pcre *)external_re; |
| if (re == NULL) return PCRE_ERROR_NULL; |
| if (re->magic_number != MAGIC_NUMBER) return PCRE_ERROR_BADMAGIC; |
| if (optptr != NULL) *optptr = (int)(re->options & PUBLIC_OPTIONS); |
| if (first_char != NULL) |
| *first_char = ((re->options & PCRE_FIRSTSET) != 0)? re->first_char : |
| ((re->options & PCRE_STARTLINE) != 0)? -1 : -2; |
| return re->top_bracket; |
| } |
| |
| |
| |
| /************************************************* |
| * Return info about compiled pattern * |
| *************************************************/ |
| |
| /* This is a newer "info" function which has an extensible interface so |
| that additional items can be added compatibly. |
| |
| Arguments: |
| external_re points to compiled code |
| external_study points to study data, or NULL |
| what what information is required |
| where where to put the information |
| |
| Returns: 0 if data returned, negative on error |
| */ |
| |
| int |
| pcre_fullinfo(const pcre *external_re, const pcre_extra *study_data, int what, |
| void *where) |
| { |
| const real_pcre *re = (const real_pcre *)external_re; |
| const real_pcre_extra *study = (const real_pcre_extra *)study_data; |
| |
| if (re == NULL || where == NULL) return PCRE_ERROR_NULL; |
| if (re->magic_number != MAGIC_NUMBER) return PCRE_ERROR_BADMAGIC; |
| |
| switch (what) |
| { |
| case PCRE_INFO_OPTIONS: |
| *((unsigned long int *)where) = re->options & PUBLIC_OPTIONS; |
| break; |
| |
| case PCRE_INFO_SIZE: |
| *((size_t *)where) = re->size; |
| break; |
| |
| case PCRE_INFO_CAPTURECOUNT: |
| *((int *)where) = re->top_bracket; |
| break; |
| |
| case PCRE_INFO_BACKREFMAX: |
| *((int *)where) = re->top_backref; |
| break; |
| |
| case PCRE_INFO_FIRSTCHAR: |
| *((int *)where) = |
| ((re->options & PCRE_FIRSTSET) != 0)? re->first_char : |
| ((re->options & PCRE_STARTLINE) != 0)? -1 : -2; |
| break; |
| |
| case PCRE_INFO_FIRSTTABLE: |
| *((const uschar **)where) = |
| (study != NULL && (study->options & PCRE_STUDY_MAPPED) != 0)? |
| study->start_bits : NULL; |
| break; |
| |
| case PCRE_INFO_LASTLITERAL: |
| *((int *)where) = |
| ((re->options & PCRE_REQCHSET) != 0)? re->req_char : -1; |
| break; |
| |
| default: return PCRE_ERROR_BADOPTION; |
| } |
| |
| return 0; |
| } |
| |
| |
| |
| #ifdef DEBUG |
| /************************************************* |
| * Debugging function to print chars * |
| *************************************************/ |
| |
| /* Print a sequence of chars in printable format, stopping at the end of the |
| subject if the requested. |
| |
| Arguments: |
| p points to characters |
| length number to print |
| is_subject TRUE if printing from within md->start_subject |
| md pointer to matching data block, if is_subject is TRUE |
| |
| Returns: nothing |
| */ |
| |
| static void |
| pchars(const ichar *p, int length, BOOL is_subject, match_data *md) |
| { |
| int c; |
| if (is_subject && length > md->end_subject - p) length = md->end_subject - p; |
| while (length-- > 0) |
| if (isprint(c = *(p++))) printf("%c", c); |
| #if PCRE_UTF16 |
| else if (c < 256) printf("\\x%02x", c); |
| else printf("\\x{%x}", c); |
| #else |
| else printf("\\x%02x", c); |
| #endif |
| } |
| #endif |
| |
| |
| |
| |
| /************************************************* |
| * Handle escapes * |
| *************************************************/ |
| |
| /* This function is called when a \ has been encountered. It either returns a |
| positive value for a simple escape such as \n, or a negative value which |
| encodes one of the more complicated things such as \d. When UTF-8 is enabled, |
| a positive value greater than 255 may be returned. On entry, ptr is pointing at |
| the \. On exit, it is on the final character of the escape sequence. |
| |
| Arguments: |
| ptrptr points to the pattern position pointer |
| errorptr points to the pointer to the error message |
| bracount number of previous extracting brackets |
| options the options bits |
| isclass TRUE if inside a character class |
| cd pointer to char tables block |
| |
| Returns: zero or positive => a data character |
| negative => a special escape sequence |
| on error, errorptr is set |
| */ |
| |
| static int |
| check_escape(const ichar **ptrptr, const char **errorptr, int bracount, |
| int options, BOOL isclass, compile_data *cd) |
| { |
| const ichar *ptr = *ptrptr; |
| int c, i; |
| |
| /* If backslash is at the end of the pattern, it's an error. */ |
| |
| c = *(++ptr); |
| if (c == 0) *errorptr = ERR1; |
| |
| /* Digits or letters may have special meaning; all others are literals. */ |
| |
| else if (c < '0' || c > 'z') {} |
| |
| /* Do an initial lookup in a table. A non-zero result is something that can be |
| returned immediately. Otherwise further processing may be required. */ |
| |
| else if ((i = escapes[c - '0']) != 0) c = i; |
| |
| /* Escapes that need further processing, or are illegal. */ |
| |
| else |
| { |
| const ichar *oldptr; |
| switch (c) |
| { |
| /* The handling of escape sequences consisting of a string of digits |
| starting with one that is not zero is not straightforward. By experiment, |
| the way Perl works seems to be as follows: |
| |
| Outside a character class, the digits are read as a decimal number. If the |
| number is less than 10, or if there are that many previous extracting |
| left brackets, then it is a back reference. Otherwise, up to three octal |
| digits are read to form an escaped byte. Thus \123 is likely to be octal |
| 123 (cf \0123, which is octal 012 followed by the literal 3). If the octal |
| value is greater than 377, the least significant 8 bits are taken. Inside a |
| character class, \ followed by a digit is always an octal number. */ |
| |
| case '1': case '2': case '3': case '4': case '5': |
| case '6': case '7': case '8': case '9': |
| |
| if (!isclass) |
| { |
| oldptr = ptr; |
| c -= '0'; |
| while ((cd->ctypes[ptr[1]] & ctype_digit) != 0) |
| c = c * 10 + *(++ptr) - '0'; |
| if (c < 10 || c <= bracount) |
| { |
| c = -(ESC_REF + c); |
| break; |
| } |
| ptr = oldptr; /* Put the pointer back and fall through */ |
| } |
| |
| /* Handle an octal number following \. If the first digit is 8 or 9, Perl |
| generates a binary zero byte and treats the digit as a following literal. |
| Thus we have to pull back the pointer by one. */ |
| |
| if ((c = *ptr) >= '8') |
| { |
| ptr--; |
| c = 0; |
| break; |
| } |
| |
| /* \0 always starts an octal number, but we may drop through to here with a |
| larger first octal digit. */ |
| |
| case '0': |
| c -= '0'; |
| while(i++ < 2 && (cd->ctypes[ptr[1]] & ctype_digit) != 0 && |
| ptr[1] != '8' && ptr[1] != '9') |
| c = c * 8 + *(++ptr) - '0'; |
| c &= 255; /* Take least significant 8 bits */ |
| break; |
| |
| /* \x is complicated when UTF-8 is enabled. \x{ddd} is a character number |
| which can be greater than 0xff, but only if the ddd are hex digits. */ |
| |
| case 'x': |
| #ifdef SUPPORT_UTF8 |
| if (ptr[1] == '{' && (options & PCRE_UTF8) != 0) |
| { |
| const ichar *pt = ptr + 2; |
| register int count = 0; |
| c = 0; |
| while ((cd->ctypes[*pt] & ctype_xdigit) != 0) |
| { |
| count++; |
| c = c * 16 + MAPCHAR(cd->lcc, *pt) - |
| (((cd->ctypes[*pt] & ctype_digit) != 0)? '0' : ('a' - 10)); |
| pt++; |
| } |
| if (*pt == '}') |
| { |
| if (c < 0 || count > 8 || (c >= 0xd800 && c <= 0xdbff) || (c >= 0xfdd0 && c <= 0xfdef) || c == 0xfffe || c == 0xffff || c > 0x10FFFF) *errorptr = ERR34; |
| ptr = pt; |
| break; |
| } |
| /* If the sequence of hex digits does not end with '}', then we don't |
| recognize this construct; fall through to the normal \x handling. */ |
| } |
| #endif |
| |
| /* Read just a single hex char */ |
| |
| c = 0; |
| while (i++ < 2 && (cd->ctypes[ptr[1]] & ctype_xdigit) != 0) |
| { |
| ptr++; |
| c = c * 16 + MAPCHAR(cd->lcc, *ptr) - |
| (((cd->ctypes[*ptr] & ctype_digit) != 0)? '0' : ('a' - 10)); |
| } |
| break; |
| |
| /* Other special escapes not starting with a digit are straightforward */ |
| |
| case 'c': |
| c = *(++ptr); |
| if (c == 0) |
| { |
| *errorptr = ERR2; |
| return 0; |
| } |
| |
| /* A letter is upper-cased; then the 0x40 bit is flipped */ |
| |
| if (c >= 'a' && c <= 'z') c = MAPCHAR(cd->fcc, c); |
| c ^= 0x40; |
| break; |
| |
| /* PCRE_EXTRA enables extensions to Perl in the matter of escapes. Any |
| other alphameric following \ is an error if PCRE_EXTRA was set; otherwise, |
| for Perl compatibility, it is a literal. This code looks a bit odd, but |
| there used to be some cases other than the default, and there may be again |
| in future, so I haven't "optimized" it. */ |
| |
| default: |
| if ((options & PCRE_EXTRA) != 0) switch(c) |
| { |
| default: |
| *errorptr = ERR3; |
| break; |
| } |
| break; |
| } |
| } |
| |
| *ptrptr = ptr; |
| return c; |
| } |
| |
| |
| |
| /************************************************* |
| * Check for counted repeat * |
| *************************************************/ |
| |
| /* This function is called when a '{' is encountered in a place where it might |
| start a quantifier. It looks ahead to see if it really is a quantifier or not. |
| It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd} |
| where the ddds are digits. |
| |
| Arguments: |
| p pointer to the first char after '{' |
| cd pointer to char tables block |
| |
| Returns: TRUE or FALSE |
| */ |
| |
| static BOOL |
| is_counted_repeat(const ichar *p, compile_data *cd) |
| { |
| if ((cd->ctypes[*p++] & ctype_digit) == 0) return FALSE; |
| while ((cd->ctypes[*p] & ctype_digit) != 0) p++; |
| if (*p == '}') return TRUE; |
| |
| if (*p++ != ',') return FALSE; |
| if (*p == '}') return TRUE; |
| |
| if ((cd->ctypes[*p++] & ctype_digit) == 0) return FALSE; |
| while ((cd->ctypes[*p] & ctype_digit) != 0) p++; |
| return (*p == '}'); |
| } |
| |
| |
| |
| /************************************************* |
| * Read repeat counts * |
| *************************************************/ |
| |
| /* Read an item of the form {n,m} and return the values. This is called only |
| after is_counted_repeat() has confirmed that a repeat-count quantifier exists, |
| so the syntax is guaranteed to be correct, but we need to check the values. |
| |
| Arguments: |
| p pointer to first char after '{' |
| minp pointer to int for min |
| maxp pointer to int for max |
| returned as -1 if no max |
| errorptr points to pointer to error message |
| cd pointer to character tables clock |
| |
| Returns: pointer to '}' on success; |
| current ptr on error, with errorptr set |
| */ |
| |
| static const ichar * |
| read_repeat_counts(const ichar *p, int *minp, int *maxp, |
| const char **errorptr, compile_data *cd) |
| { |
| int min = 0; |
| int max = -1; |
| |
| while ((cd->ctypes[*p] & ctype_digit) != 0) min = min * 10 + *p++ - '0'; |
| |
| if (*p == '}') max = min; else |
| { |
| if (*(++p) != '}') |
| { |
| max = 0; |
| while((cd->ctypes[*p] & ctype_digit) != 0) max = max * 10 + *p++ - '0'; |
| if (max < min) |
| { |
| *errorptr = ERR4; |
| return p; |
| } |
| } |
| } |
| |
| /* Do paranoid checks, then fill in the required variables, and pass back the |
| pointer to the terminating '}'. */ |
| |
| if (min > 65535 || max > 65535) |
| *errorptr = ERR5; |
| else |
| { |
| *minp = min; |
| *maxp = max; |
| } |
| return p; |
| } |
| |
| |
| |
| /************************************************* |
| * Find the fixed length of a pattern * |
| *************************************************/ |
| |
| /* Scan a pattern and compute the fixed length of subject that will match it, |
| if the length is fixed. This is needed for dealing with backward assertions. |
| |
| Arguments: |
| code points to the start of the pattern (the bracket) |
| options the compiling options |
| |
| Returns: the fixed length, or -1 if there is no fixed length |
| */ |
| |
| static int |
| find_fixedlength(uschar *code, int options) |
| { |
| int length = -1; |
| |
| register int branchlength = 0; |
| register uschar *cc = code + 3; |
| |
| /* Scan along the opcodes for this branch. If we get to the end of the |
| branch, check the length against that of the other branches. */ |
| |
| for (;;) |
| { |
| int d; |
| register int op = *cc; |
| if (op >= OP_BRA) op = OP_BRA; |
| |
| switch (op) |
| { |
| case OP_BRA: |
| case OP_ONCE: |
| case OP_COND: |
| d = find_fixedlength(cc, options); |
| if (d < 0) return -1; |
| branchlength += d; |
| do cc += (cc[1] << 8) + cc[2]; while (*cc == OP_ALT); |
| cc += 3; |
| break; |
| |
| /* Reached end of a branch; if it's a ket it is the end of a nested |
| call. If it's ALT it is an alternation in a nested call. If it is |
| END it's the end of the outer call. All can be handled by the same code. */ |
| |
| case OP_ALT: |
| case OP_KET: |
| case OP_KETRMAX: |
| case OP_KETRMIN: |
| case OP_END: |
| if (length < 0) length = branchlength; |
| else if (length != branchlength) return -1; |
| if (*cc != OP_ALT) return length; |
| cc += 3; |
| branchlength = 0; |
| break; |
| |
| /* Skip over assertive subpatterns */ |
| |
| case OP_ASSERT: |
| case OP_ASSERT_NOT: |
| case OP_ASSERTBACK: |
| case OP_ASSERTBACK_NOT: |
| do cc += (cc[1] << 8) + cc[2]; while (*cc == OP_ALT); |
| cc += 3; |
| break; |
| |
| /* Skip over things that don't match chars */ |
| |
| case OP_REVERSE: |
| case OP_BRANUMBER: |
| case OP_CREF: |
| cc++; |
| /* Fall through */ |
| |
| case OP_OPT: |
| cc++; |
| /* Fall through */ |
| |
| case OP_SOD: |
| case OP_EOD: |
| case OP_EODN: |
| case OP_CIRC: |
| case OP_DOLL: |
| case OP_NOT_WORD_BOUNDARY: |
| case OP_WORD_BOUNDARY: |
| cc++; |
| break; |
| |
| /* Handle char strings. In UTF-8 mode we must count characters, not bytes. |
| This requires a scan of the string, unfortunately. We assume valid UTF-8 |
| strings, so all we do is reduce the length by one for byte whose bits are |
| 10xxxxxx. */ |
| |
| case OP_CHARS: |
| branchlength += *(++cc); |
| #ifdef SUPPORT_UTF8 |
| for (d = 1; d <= *cc; d++) |
| if (ISMIDCHAR(cc[d])) branchlength--; |
| #endif |
| cc += 1 + *cc * sizeof(ichar); |
| break; |
| |
| /* Handle exact repetitions */ |
| |
| case OP_EXACT: |
| case OP_TYPEEXACT: |
| branchlength += (cc[1] << 8) + cc[2]; |
| cc += 3 + sizeof(ichar); |
| break; |
| |
| /* Handle single-char matchers */ |
| |
| case OP_NOT_DIGIT: |
| case OP_DIGIT: |
| case OP_NOT_WHITESPACE: |
| case OP_WHITESPACE: |
| case OP_NOT_WORDCHAR: |
| case OP_WORDCHAR: |
| case OP_ANY: |
| branchlength++; |
| cc++; |
| break; |
| |
| |
| /* Check a class for variable quantification */ |
| |
| case OP_CLASS: |
| cc += 33; |
| |
| switch (*cc) |
| { |
| case OP_CRSTAR: |
| case OP_CRMINSTAR: |
| case OP_CRQUERY: |
| case OP_CRMINQUERY: |
| return -1; |
| |
| case OP_CRRANGE: |
| case OP_CRMINRANGE: |
| if ((cc[1] << 8) + cc[2] != (cc[3] << 8) + cc[4]) return -1; |
| branchlength += (cc[1] << 8) + cc[2]; |
| cc += 5; |
| break; |
| |
| default: |
| branchlength++; |
| } |
| break; |
| |
| /* Anything else is variable length */ |
| |
| default: |
| return -1; |
| } |
| } |
| /* Control never gets here */ |
| } |
| |
| |
| |
| |
| /************************************************* |
| * Check for POSIX class syntax * |
| *************************************************/ |
| |
| /* This function is called when the sequence "[:" or "[." or "[=" is |
| encountered in a character class. It checks whether this is followed by an |
| optional ^ and then a sequence of letters, terminated by a matching ":]" or |
| ".]" or "=]". |
| |
| Argument: |
| ptr pointer to the initial [ |
| endptr where to return the end pointer |
| cd pointer to compile data |
| |
| Returns: TRUE or FALSE |
| */ |
| |
| static BOOL |
| check_posix_syntax(const ichar *ptr, const ichar **endptr, compile_data *cd) |
| { |
| int terminator; /* Don't combine these lines; the Solaris cc */ |
| terminator = *(++ptr); /* compiler warns about "non-constant" initializer. */ |
| if (*(++ptr) == '^') ptr++; |
| while ((cd->ctypes[*ptr] & ctype_letter) != 0) ptr++; |
| if (*ptr == terminator && ptr[1] == ']') |
| { |
| *endptr = ptr; |
| return TRUE; |
| } |
| return FALSE; |
| } |
| |
| |
| |
| |
| /************************************************* |
| * Check POSIX class name * |
| *************************************************/ |
| |
| /* This function is called to check the name given in a POSIX-style class entry |
| such as [:alnum:]. |
| |
| Arguments: |
| ptr points to the first letter |
| len the length of the name |
| |
| Returns: a value representing the name, or -1 if unknown |
| */ |
| |
| static int |
| check_posix_name(const ichar *ptr, int len) |
| { |
| register int yield = 0; |
| while (posix_name_lengths[yield] != 0) |
| { |
| #if PCRE_UTF16 |
| if (len == posix_name_lengths[yield]) { |
| int i; |
| const char *n = posix_names[yield]; |
| for (i = 0; i < len; i++) |
| if (ptr[i] != n[i]) break; |
| if (i == len) return yield; |
| } |
| #else |
| if (len == posix_name_lengths[yield] && |
| strncmp((const char *)ptr, posix_names[yield], len) == 0) return yield; |
| #endif |
| yield++; |
| } |
| return -1; |
| } |
| |
| |
| |
| |
| /************************************************* |
| * Compile one branch * |
| *************************************************/ |
| |
| /* Scan the pattern, compiling it into the code vector. |
| |
| Arguments: |
| options the option bits |
| brackets points to number of extracting brackets used |
| code points to the pointer to the current code point |
| ptrptr points to the current pattern pointer |
| errorptr points to pointer to error message |
| optchanged set to the value of the last OP_OPT item compiled |
| reqchar set to the last literal character required, else -1 |
| countlits set to count of mandatory literal characters |
| cd contains pointers to tables |
| |
| Returns: TRUE on success |
| FALSE, with *errorptr set on error |
| */ |
| |
| static BOOL |
| compile_branch(int options, int *brackets, uschar **codeptr, |
| const ichar **ptrptr, const char **errorptr, int *optchanged, |
| int *reqchar, int *countlits, compile_data *cd) |
| { |
| int repeat_type, op_type; |
| int repeat_min, repeat_max; |
| int bravalue, length; |
| int greedy_default, greedy_non_default; |
| int prevreqchar; |
| int condcount = 0; |
| int subcountlits = 0; |
| register int c; |
| register uschar *code = *codeptr; |
| uschar *tempcode; |
| const ichar *ptr = *ptrptr; |
| const ichar *tempptr; |
| uschar *previous = NULL; |
| uschar class[CHAR_CLASS_SIZE]; |
| |
| /* Set up the default and non-default settings for greediness */ |
| |
| greedy_default = ((options & PCRE_UNGREEDY) != 0); |
| greedy_non_default = greedy_default ^ 1; |
| |
| /* Initialize no required char, and count of literals */ |
| |
| *reqchar = prevreqchar = -1; |
| *countlits = 0; |
| |
| /* Switch on next character until the end of the branch */ |
| |
| for (;; ptr++) |
| { |
| BOOL negate_class; |
| int class_charcount; |
| int class_lastchar; |
| int newoptions; |
| int skipbytes; |
| int subreqchar; |
| |
| c = *ptr; |
| if ((options & PCRE_EXTENDED) != 0) |
| { |
| if ((cd->ctypes[c] & ctype_space) != 0) continue; |
| if (c == '#') |
| { |
| /* The space before the ; is to avoid a warning on a silly compiler |
| on the Macintosh. */ |
| while ((c = *(++ptr)) != 0 && c != NEWLINE) ; |
| continue; |
| } |
| } |
| |
| switch(c) |
| { |
| /* The branch terminates at end of string, |, or ). */ |
| |
| case 0: |
| case '|': |
| case ')': |
| *codeptr = code; |
| *ptrptr = ptr; |
| return TRUE; |
| |
| /* Handle single-character metacharacters */ |
| |
| case '^': |
| previous = NULL; |
| *code++ = OP_CIRC; |
| break; |
| |
| case '$': |
| previous = NULL; |
| *code++ = OP_DOLL; |
| break; |
| |
| case '.': |
| previous = code; |
| *code++ = OP_ANY; |
| break; |
| |
| /* Character classes. These always build a bitmap of the permitted |
| characters, except in the special case where there is only one character. |
| For negated classes, we build the map as usual, then invert it at the end. |
| */ |
| |
| case '[': |
| previous = code; |
| *code++ = OP_CLASS; |
| |
| /* If the first character is '^', set the negation flag and skip it. */ |
| |
| if ((c = *(++ptr)) == '^') |
| { |
| negate_class = TRUE; |
| c = *(++ptr); |
| } |
| else negate_class = FALSE; |
| |
| /* Keep a count of chars so that we can optimize the case of just a single |
| character. */ |
| |
| class_charcount = 0; |
| class_lastchar = -1; |
| |
| /* Initialize the bit map to all zeros. We have to build the |
| map in a temporary bit of store, in case the class contains only 1 |
| character, because in that case the compiled code doesn't use the |
| bit map. */ |
| |
| memset(class, 0, sizeof(class)); |
| |
| /* Process characters until ] is reached. By writing this as a "do" it |
| means that an initial ] is taken as a data character. */ |
| |
| do |
| { |
| if (c == 0) |
| { |
| *errorptr = ERR6; |
| goto FAILED; |
| } |
| |
| /* Handle POSIX class names. Perl allows a negation extension of the |
| form [:^name]. A square bracket that doesn't match the syntax is |
| treated as a literal. We also recognize the POSIX constructions |
| [.ch.] and [=ch=] ("collating elements") and fault them, as Perl |
| 5.6 does. */ |
| |
| if (c == '[' && |
| (ptr[1] == ':' || ptr[1] == '.' || ptr[1] == '=') && |
| check_posix_syntax(ptr, &tempptr, cd)) |
| { |
| BOOL local_negate = FALSE; |
| int posix_class, i; |
| register const uschar *cbits = cd->cbits; |
| |
| if (ptr[1] != ':') |
| { |
| *errorptr = ERR31; |
| goto FAILED; |
| } |
| |
| ptr += 2; |
| if (*ptr == '^') |
| { |
| local_negate = TRUE; |
| ptr++; |
| } |
| |
| posix_class = check_posix_name(ptr, tempptr - ptr); |
| if (posix_class < 0) |
| { |
| *errorptr = ERR30; |
| goto FAILED; |
| } |
| |
| /* If matching is caseless, upper and lower are converted to |
| alpha. This relies on the fact that the class table starts with |
| alpha, lower, upper as the first 3 entries. */ |
| |
| if ((options & PCRE_CASELESS) != 0 && posix_class <= 2) |
| posix_class = 0; |
| |
| /* Or into the map we are building up to 3 of the static class |
| tables, or their negations. */ |
| |
| posix_class *= 3; |
| for (i = 0; i < 3; i++) |
| { |
| int taboffset = posix_class_maps[posix_class + i]; |
| if (taboffset < 0) break; |
| if (local_negate) |
| for (c = 0; c < CHAR_CLASS_SIZE; c++) class[c] |= ~cbits[c+taboffset]; |
| else |
| for (c = 0; c < CHAR_CLASS_SIZE; c++) class[c] |= cbits[c+taboffset]; |
| } |
| |
| ptr = tempptr + 1; |
| class_charcount = 10; /* Set > 1; assumes more than 1 per class */ |
| continue; |
| } |
| |
| /* Backslash may introduce a single character, or it may introduce one |
| of the specials, which just set a flag. Escaped items are checked for |
| validity in the pre-compiling pass. The sequence \b is a special case. |
| Inside a class (and only there) it is treated as backspace. Elsewhere |
| it marks a word boundary. Other escapes have preset maps ready to |
| or into the one we are building. We assume they have more than one |
| character in them, so set class_count bigger than one. */ |
| |
| if (c == '\\') |
| { |
| c = check_escape(&ptr, errorptr, *brackets, options, TRUE, cd); |
| if (-c == ESC_b) c = '\b'; |
| else if (c < 0) |
| { |
| register const uschar *cbits = cd->cbits; |
| class_charcount = 10; |
| switch (-c) |
| { |
| case ESC_d: |
| for (c = 0; c < CHAR_CLASS_SIZE; c++) class[c] |= cbits[c+cbit_digit]; |
| continue; |
| |
| case ESC_D: |
| for (c = 0; c < CHAR_CLASS_SIZE; c++) class[c] |= ~cbits[c+cbit_digit]; |
| continue; |
| |
| case ESC_w: |
| for (c = 0; c < CHAR_CLASS_SIZE; c++) class[c] |= cbits[c+cbit_word]; |
| continue; |
| |
| case ESC_W: |
| for (c = 0; c < CHAR_CLASS_SIZE; c++) class[c] |= ~cbits[c+cbit_word]; |
| continue; |
| |
| case ESC_s: |
| for (c = 0; c < CHAR_CLASS_SIZE; c++) class[c] |= cbits[c+cbit_space]; |
| continue; |
| |
| case ESC_S: |
| for (c = 0; c < CHAR_CLASS_SIZE; c++) class[c] |= ~cbits[c+cbit_space]; |
| continue; |
| |
| default: |
| *errorptr = ERR7; |
| goto FAILED; |
| } |
| } |
| |
| /* Fall through if single character, but don't at present allow |
| chars > 255 in UTF-8 mode. */ |
| |
| #ifdef SUPPORT_UTF8 |
| if (c > 255) |
| { |
| *errorptr = ERR33; |
| goto FAILED; |
| } |
| #endif |
| } |
| |
| /* A single character may be followed by '-' to form a range. However, |
| Perl does not permit ']' to be the end of the range. A '-' character |
| here is treated as a literal. */ |
| |
| if (ptr[1] == '-' && ptr[2] != ']') |
| { |
| int d; |
| ptr += 2; |
| d = *ptr; |
| |
| if (d == 0) |
| { |
| *errorptr = ERR6; |
| goto FAILED; |
| } |
| |
| /* The second part of a range can be a single-character escape, but |
| not any of the other escapes. Perl 5.6 treats a hyphen as a literal |
| in such circumstances. */ |
| |
| if (d == '\\') |
| { |
| const ichar *oldptr = ptr; |
| d = check_escape(&ptr, errorptr, *brackets, options, TRUE, cd); |
| |
| #ifdef SUPPORT_UTF8 |
| if (d > 255) |
| { |
| *errorptr = ERR33; |
| goto FAILED; |
| } |
| #endif |
| /* \b is backslash; any other special means the '-' was literal */ |
| |
| if (d < 0) |
| { |
| if (d == -ESC_b) d = '\b'; else |
| { |
| ptr = oldptr - 2; |
| goto SINGLE_CHARACTER; /* A few lines below */ |
| } |
| } |
| } |
| |
| if (d < c) |
| { |
| *errorptr = ERR8; |
| goto FAILED; |
| } |
| |
| for (; c <= d; c++) |
| { |
| class[c/8] |= (1 << (c&7)); |
| if ((options & PCRE_CASELESS) != 0) |
| { |
| int uc = MAPCHAR(cd->fcc, c); /* flip case */ |
| class[uc/8] |= (1 << (uc&7)); |
| } |
| class_charcount++; /* in case a one-char range */ |
| class_lastchar = c; |
| } |
| continue; /* Go get the next char in the class */ |
| } |
| |
| /* Handle a lone single character - we can get here for a normal |
| non-escape char, or after \ that introduces a single character. */ |
| |
| SINGLE_CHARACTER: |
| |
| class [c/8] |= (1 << (c&7)); |
| if ((options & PCRE_CASELESS) != 0) |
| { |
| c = MAPCHAR(cd->fcc, c); /* flip case */ |
| class[c/8] |= (1 << (c&7)); |
| } |
| class_charcount++; |
| class_lastchar = c; |
| } |
| |
| /* Loop until ']' reached; the check for end of string happens inside the |
| loop. This "while" is the end of the "do" above. */ |
| |
| while ((c = *(++ptr)) != ']'); |
| |
| /* If class_charcount is 1 and class_lastchar is not negative, we saw |
| precisely one character. This doesn't need the whole bit map. |
| We turn it into a 1-character OP_CHAR if it's positive, or OP_NOT if |
| it's negative. */ |
| |
| if (class_charcount == 1 && class_lastchar >= 0) |
| { |
| if (negate_class) |
| { |
| code[-1] = OP_NOT; |
| } |
| else |
| { |
| code[-1] = OP_CHARS; |
| *code++ = 1; |
| } |
| #if PCRE_UTF16 |
| *code++ = class_lastchar >> 8; |
| #endif |
| *code++ = class_lastchar; |
| } |
| |
| /* Otherwise, negate the map if necessary, and copy it into |
| the code vector. */ |
| |
| else |
| { |
| if (negate_class) |
| for (c = 0; c < CHAR_CLASS_SIZE; c++) code[c] = ~class[c]; |
| else |
| memcpy(code, class, CHAR_CLASS_SIZE); |
| code += CHAR_CLASS_SIZE; |
| } |
| break; |
| |
| /* Various kinds of repeat */ |
| |
| case '{': |
| if (!is_counted_repeat(ptr+1, cd)) goto NORMAL_CHAR; |
| ptr = read_repeat_counts(ptr+1, &repeat_min, &repeat_max, errorptr, cd); |
| if (*errorptr != NULL) goto FAILED; |
| goto REPEAT; |
| |
| case '*': |
| repeat_min = 0; |
| repeat_max = -1; |
| goto REPEAT; |
| |
| case '+': |
| repeat_min = 1; |
| repeat_max = -1; |
| goto REPEAT; |
| |
| case '?': |
| repeat_min = 0; |
| repeat_max = 1; |
| |
| REPEAT: |
| if (previous == NULL) |
| { |
| *errorptr = ERR9; |
| goto FAILED; |
| } |
| |
| /* If the next character is '?' this is a minimizing repeat, by default, |
| but if PCRE_UNGREEDY is set, it works the other way round. Advance to the |
| next character. */ |
| |
| if (ptr[1] == '?') |
| { repeat_type = greedy_non_default; ptr++; } |
| else repeat_type = greedy_default; |
| |
| /* If previous was a string of characters, chop off the last one and use it |
| as the subject of the repeat. If there was only one character, we can |
| abolish the previous item altogether. A repeat with a zero minimum wipes |
| out any reqchar setting, backing up to the previous value. We must also |
| adjust the countlits value. */ |
| |
| if (*previous == OP_CHARS) |
| { |
| int len = previous[1]; |
| |
| if (repeat_min == 0) *reqchar = prevreqchar; |
| *countlits += repeat_min - 1; |
| |
| if (len == 1) |
| { |
| #if PCRE_UTF16 |
| c = (previous[2] << 8) | previous[3]; |
| #else |
| c = previous[2]; |
| #endif |
| code = previous; |
| } |
| else |
| { |
| #if PCRE_UTF16 |
| c = (previous[len * 2] << 8) | previous[len * 2 + 1]; |
| #else |
| c = previous[len+1]; |
| #endif |
| previous[1]--; |
| code -= sizeof(ichar); |
| } |
| op_type = 0; /* Use single-char op codes */ |
| goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */ |
| } |
| |
| /* If previous was a single negated character ([^a] or similar), we use |
| one of the special opcodes, replacing it. The code is shared with single- |
| character repeats by adding a suitable offset into repeat_type. */ |
| |
| else if ((int)*previous == OP_NOT) |
| { |
| op_type = OP_NOTSTAR - OP_STAR; /* Use "not" opcodes */ |
| #if PCRE_UTF16 |
| c = (previous[1] << 8) | previous[2]; |
| #else |
| c = previous[1]; |
| #endif |
| code = previous; |
| goto OUTPUT_SINGLE_REPEAT; |
| } |
| |
| /* If previous was a character type match (\d or similar), abolish it and |
| create a suitable repeat item. The code is shared with single-character |
| repeats by adding a suitable offset into repeat_type. */ |
| |
| else if ((int)*previous < OP_EODN || *previous == OP_ANY) |
| { |
| op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */ |
| c = *previous; |
| code = previous; |
| |
| OUTPUT_SINGLE_REPEAT: |
| |
| /* If the maximum is zero then the minimum must also be zero; Perl allows |
| this case, so we do too - by simply omitting the item altogether. */ |
| |
| if (repeat_max == 0) goto END_REPEAT; |
| |
| /* Combine the op_type with the repeat_type */ |
| |
| repeat_type += op_type; |
| |
| /* A minimum of zero is handled either as the special case * or ?, or as |
| an UPTO, with the maximum given. */ |
| |
| if (repeat_min == 0) |
| { |
| if (repeat_max == -1) *code++ = OP_STAR + repeat_type; |
| else if (repeat_max == 1) *code++ = OP_QUERY + repeat_type; |
| else |
| { |
| *code++ = OP_UPTO + repeat_type; |
| *code++ = repeat_max >> 8; |
| *code++ = (repeat_max & 255); |
| } |
| } |
| |
| /* The case {1,} is handled as the special case + */ |
| |
| else if (repeat_min == 1 && repeat_max == -1) |
| *code++ = OP_PLUS + repeat_type; |
| |
| /* The case {n,n} is just an EXACT, while the general case {n,m} is |
| handled as an EXACT followed by an UPTO. An EXACT of 1 is optimized. */ |
| |
| else |
| { |
| if (repeat_min != 1) |
| { |
| *code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */ |
| *code++ = repeat_min >> 8; |
| *code++ = (repeat_min & 255); |
| } |
| |
| /* If the mininum is 1 and the previous item was a character string, |
| we either have to put back the item that got cancelled if the string |
| length was 1, or add the character back onto the end of a longer |
| string. For a character type nothing need be done; it will just get |
| put back naturally. Note that the final character is always going to |
| get added below. */ |
| |
| else if (*previous == OP_CHARS) |
| { |
| if (code == previous) code += 2; else previous[1]++; |
| } |
| |
| /* For a single negated character we also have to put back the |
| item that got cancelled. */ |
| |
| else if (*previous == OP_NOT) code += sizeof(ichar); |
| |
| /* If the maximum is unlimited, insert an OP_STAR. */ |
| |
| if (repeat_max < 0) |
| { |
| #if PCRE_UTF16 |
| if (op_type != OP_TYPESTAR - OP_STAR) *code++ = c >> 8; |
| #endif |
| *code++ = c; |
| *code++ = OP_STAR + repeat_type; |
| } |
| |
| /* Else insert an UPTO if the max is greater than the min. */ |
| |
| else if (repeat_max != repeat_min) |
| { |
| #if PCRE_UTF16 |
| if (op_type != OP_TYPESTAR - OP_STAR) *code++ = c >> 8; |
| #endif |
| *code++ = c; |
| repeat_max -= repeat_min; |
| *code++ = OP_UPTO + repeat_type; |
| *code++ = repeat_max >> 8; |
| *code++ = (repeat_max & 255); |
| } |
| } |
| |
| /* The character or character type itself comes last in all cases. */ |
| |
| #if PCRE_UTF16 |
| if (op_type != OP_TYPESTAR - OP_STAR) *code++ = c >> 8; |
| #endif |
| *code++ = c; |
| } |
| |
| /* If previous was a character class or a back reference, we put the repeat |
| stuff after it, but just skip the item if the repeat was {0,0}. */ |
| |
| else if (*previous == OP_CLASS || *previous == OP_REF) |
| { |
| if (repeat_max == 0) |
| { |
| code = previous; |
| goto END_REPEAT; |
| } |
| if (repeat_min == 0 && repeat_max == -1) |
| *code++ = OP_CRSTAR + repeat_type; |
| else if (repeat_min == 1 && repeat_max == -1) |
| *code++ = OP_CRPLUS + repeat_type; |
| else if (repeat_min == 0 && repeat_max == 1) |
| *code++ = OP_CRQUERY + repeat_type; |
| else |
| { |
| *code++ = OP_CRRANGE + repeat_type; |
| *code++ = repeat_min >> 8; |
| *code++ = repeat_min & 255; |
| if (repeat_max == -1) repeat_max = 0; /* 2-byte encoding for max */ |
| *code++ = repeat_max >> 8; |
| *code++ = repeat_max & 255; |
| } |
| } |
| |
| /* If previous was a bracket group, we may have to replicate it in certain |
| cases. */ |
| |
| else if ((int)*previous >= OP_BRA || (int)*previous == OP_ONCE || |
| (int)*previous == OP_COND) |
| { |
| register int i; |
| int ketoffset = 0; |
| int len = code - previous; |
| uschar *bralink = NULL; |
| |
| /* If the maximum repeat count is unlimited, find the end of the bracket |
| by scanning through from the start, and compute the offset back to it |
| from the current code pointer. There may be an OP_OPT setting following |
| the final KET, so we can't find the end just by going back from the code |
| pointer. */ |
| |
| if (repeat_max == -1) |
| { |
| register uschar *ket = previous; |
| do ket += (ket[1] << 8) + ket[2]; while (*ket != OP_KET); |
| ketoffset = code - ket; |
| } |
| |
| /* The case of a zero minimum is special because of the need to stick |
| OP_BRAZERO in front of it, and because the group appears once in the |
| data, whereas in other cases it appears the minimum number of times. For |
| this reason, it is simplest to treat this case separately, as otherwise |
| the code gets far too messy. There are several special subcases when the |
| minimum is zero. */ |
| |
| if (repeat_min == 0) |
| { |
| /* If we set up a required char from the bracket, we must back off |
| to the previous value and reset the countlits value too. */ |
| |
| if (subcountlits > 0) |
| { |
| *reqchar = prevreqchar; |
| *countlits -= subcountlits; |
| } |
| |
| /* If the maximum is also zero, we just omit the group from the output |
| altogether. */ |
| |
| if (repeat_max == 0) |
| { |
| code = previous; |
| goto END_REPEAT; |
| } |
| |
| /* If the maximum is 1 or unlimited, we just have to stick in the |
| BRAZERO and do no more at this point. */ |
| |
| if (repeat_max <= 1) |
| { |
| memmove(previous+1, previous, len); |
| code++; |
| *previous++ = OP_BRAZERO + repeat_type; |
| } |
| |
| /* If the maximum is greater than 1 and limited, we have to replicate |
| in a nested fashion, sticking OP_BRAZERO before each set of brackets. |
| The first one has to be handled carefully because it's the original |
| copy, which has to be moved up. The remainder can be handled by code |
| that is common with the non-zero minimum case below. We just have to |
| adjust the value or repeat_max, since one less copy is required. */ |
| |
| else |
| { |
| int offset; |
| memmove(previous+4, previous, len); |
| code += 4; |
| *previous++ = OP_BRAZERO + repeat_type; |
| *previous++ = OP_BRA; |
| |
| /* We chain together the bracket offset fields that have to be |
| filled in later when the ends of the brackets are reached. */ |
| |
| offset = (bralink == NULL)? 0 : previous - bralink; |
| bralink = previous; |
| *previous++ = offset >> 8; |
| *previous++ = offset & 255; |
| } |
| |
| repeat_max--; |
| } |
| |
| /* If the minimum is greater than zero, replicate the group as many |
| times as necessary, and adjust the maximum to the number of subsequent |
| copies that we need. */ |
| |
| else |
| { |
| for (i = 1; i < repeat_min; i++) |
| { |
| memcpy(code, previous, len); |
| code += len; |
| } |
| if (repeat_max > 0) repeat_max -= repeat_min; |
| } |
| |
| /* This code is common to both the zero and non-zero minimum cases. If |
| the maximum is limited, it replicates the group in a nested fashion, |
| remembering the bracket starts on a stack. In the case of a zero minimum, |
| the first one was set up above. In all cases the repeat_max now specifies |
| the number of additional copies needed. */ |
| |
| if (repeat_max >= 0) |
| { |
| for (i = repeat_max - 1; i >= 0; i--) |
| { |
| *code++ = OP_BRAZERO + repeat_type; |
| |
| /* All but the final copy start a new nesting, maintaining the |
| chain of brackets outstanding. */ |
| |
| if (i != 0) |
| { |
| int offset; |
| *code++ = OP_BRA; |
| offset = (bralink == NULL)? 0 : code - bralink; |
| bralink = code; |
| *code++ = offset >> 8; |
| *code++ = offset & 255; |
| } |
| |
| memcpy(code, previous, len); |
| code += len; |
| } |
| |
| /* Now chain through the pending brackets, and fill in their length |
| fields (which are holding the chain links pro tem). */ |
| |
| while (bralink != NULL) |
| { |
| int oldlinkoffset; |
| int offset = code - bralink + 1; |
| uschar *bra = code - offset; |
| oldlinkoffset = (bra[1] << 8) + bra[2]; |
| bralink = (oldlinkoffset == 0)? NULL : bralink - oldlinkoffset; |
| *code++ = OP_KET; |
| *code++ = bra[1] = offset >> 8; |
| *code++ = bra[2] = (offset & 255); |
| } |
| } |
| |
| /* If the maximum is unlimited, set a repeater in the final copy. We |
| can't just offset backwards from the current code point, because we |
| don't know if there's been an options resetting after the ket. The |
| correct offset was computed above. */ |
| |
| else code[-ketoffset] = OP_KETRMAX + repeat_type; |
| } |
| |
| /* Else there's some kind of shambles */ |
| |
| else |
| { |
| *errorptr = ERR11; |
| goto FAILED; |
| } |
| |
| /* In all case we no longer have a previous item. */ |
| |
| END_REPEAT: |
| previous = NULL; |
| break; |
| |
| |
| /* Start of nested bracket sub-expression, or comment or lookahead or |
| lookbehind or option setting or condition. First deal with special things |
| that can come after a bracket; all are introduced by ?, and the appearance |
| of any of them means that this is not a referencing group. They were |
| checked for validity in the first pass over the string, so we don't have to |
| check for syntax errors here. */ |
| |
| case '(': |
| newoptions = options; |
| skipbytes = 0; |
| |
| if (*(++ptr) == '?') |
| { |
| int set, unset; |
| int *optset; |
| |
| switch (*(++ptr)) |
| { |
| case '#': /* Comment; skip to ket */ |
| ptr++; |
| while (*ptr != ')') ptr++; |
| continue; |
| |
| case ':': /* Non-extracting bracket */ |
| bravalue = OP_BRA; |
| ptr++; |
| break; |
| |
| case '(': |
| bravalue = OP_COND; /* Conditional group */ |
| if ((cd->ctypes[*(++ptr)] & ctype_digit) != 0) |
| { |
| int condref = *ptr - '0'; |
| while (*(++ptr) != ')') condref = condref*10 + *ptr - '0'; |
| if (condref == 0) |
| { |
| *errorptr = ERR35; |
| goto FAILED; |
| } |
| ptr++; |
| code[3] = OP_CREF; |
| code[4] = condref >> 8; |
| code[5] = condref & 255; |
| skipbytes = 3; |
| } |
| else ptr--; |
| break; |
| |
| case '=': /* Positive lookahead */ |
| bravalue = OP_ASSERT; |
| ptr++; |
| break; |
| |
| case '!': /* Negative lookahead */ |
| bravalue = OP_ASSERT_NOT; |
| ptr++; |
| break; |
| |
| case '<': /* Lookbehinds */ |
| switch (*(++ptr)) |
| { |
| case '=': /* Positive lookbehind */ |
| bravalue = OP_ASSERTBACK; |
| ptr++; |
| break; |
| |
| case '!': /* Negative lookbehind */ |
| bravalue = OP_ASSERTBACK_NOT; |
| ptr++; |
| break; |
| |
| default: /* Syntax error */ |
| *errorptr = ERR24; |
| goto FAILED; |
| } |
| break; |
| |
| case '>': /* One-time brackets */ |
| bravalue = OP_ONCE; |
| ptr++; |
| break; |
| |
| case 'R': /* Pattern recursion */ |
| *code++ = OP_RECURSE; |
| ptr++; |
| continue; |
| |
| default: /* Option setting */ |
| set = unset = 0; |
| optset = &set; |
| |
| while (*ptr != ')' && *ptr != ':') |
| { |
| switch (*ptr++) |
| { |
| case '-': optset = &unset; break; |
| |
| case 'i': *optset |= PCRE_CASELESS; break; |
| case 'm': *optset |= PCRE_MULTILINE; break; |
| case 's': *optset |= PCRE_DOTALL; break; |
| case 'x': *optset |= PCRE_EXTENDED; break; |
| case 'U': *optset |= PCRE_UNGREEDY; break; |
| case 'X': *optset |= PCRE_EXTRA; break; |
| |
| default: |
| *errorptr = ERR12; |
| goto FAILED; |
| } |
| } |
| |
| /* Set up the changed option bits, but don't change anything yet. */ |
| |
| newoptions = (options | set) & (~unset); |
| |
| /* If the options ended with ')' this is not the start of a nested |
| group with option changes, so the options change at this level. At top |
| level there is nothing else to be done (the options will in fact have |
| been set from the start of compiling as a result of the first pass) but |
| at an inner level we must compile code to change the ims options if |
| necessary, and pass the new setting back so that it can be put at the |
| start of any following branches, and when this group ends, a resetting |
| item can be compiled. */ |
| |
| if (*ptr == ')') |
| { |
| if ((options & PCRE_INGROUP) != 0 && |
| (options & PCRE_IMS) != (newoptions & PCRE_IMS)) |
| { |
| *code++ = OP_OPT; |
| *code++ = *optchanged = newoptions & PCRE_IMS; |
| } |
| options = newoptions; /* Change options at this level */ |
| previous = NULL; /* This item can't be repeated */ |
| continue; /* It is complete */ |
| } |
| |
| /* If the options ended with ':' we are heading into a nested group |
| with possible change of options. Such groups are non-capturing and are |
| not assertions of any kind. All we need to do is skip over the ':'; |
| the newoptions value is handled below. */ |
| |
| bravalue = OP_BRA; |
| ptr++; |
| } |
| } |
| |
| /* Else we have a referencing group; adjust the opcode. If the bracket |
| number is greater than EXTRACT_BASIC_MAX, we set the opcode one higher, and |
| arrange for the true number to follow later, in an OP_BRANUMBER item. */ |
| |
| else |
| { |
| if (++(*brackets) > EXTRACT_BASIC_MAX) |
| { |
| bravalue = OP_BRA + EXTRACT_BASIC_MAX + 1; |
| code[3] = OP_BRANUMBER; |
| code[4] = *brackets >> 8; |
| code[5] = *brackets & 255; |
| skipbytes = 3; |
| } |
| else bravalue = OP_BRA + *brackets; |
| } |
| |
| /* Process nested bracketed re. Assertions may not be repeated, but other |
| kinds can be. We copy code into a non-register variable in order to be able |
| to pass its address because some compilers complain otherwise. Pass in a |
| new setting for the ims options if they have changed. */ |
| |
| previous = (bravalue >= OP_ONCE)? code : NULL; |
| *code = bravalue; |
| tempcode = code; |
| |
| if (!compile_regex( |
| options | PCRE_INGROUP, /* Set for all nested groups */ |
| ((options & PCRE_IMS) != (newoptions & PCRE_IMS))? |
| newoptions & PCRE_IMS : -1, /* Pass ims options if changed */ |
| brackets, /* Extracting bracket count */ |
| &tempcode, /* Where to put code (updated) */ |
| &ptr, /* Input pointer (updated) */ |
| errorptr, /* Where to put an error message */ |
| (bravalue == OP_ASSERTBACK || |
| bravalue == OP_ASSERTBACK_NOT), /* TRUE if back assert */ |
| skipbytes, /* Skip over OP_COND/OP_BRANUMBER */ |
| &subreqchar, /* For possible last char */ |
| &subcountlits, /* For literal count */ |
| cd)) /* Tables block */ |
| goto FAILED; |
| |
| /* At the end of compiling, code is still pointing to the start of the |
| group, while tempcode has been updated to point past the end of the group |
| and any option resetting that may follow it. The pattern pointer (ptr) |
| is on the bracket. */ |
| |
| /* If this is a conditional bracket, check that there are no more than |
| two branches in the group. */ |
| |
| else if (bravalue == OP_COND) |
| { |
| uschar *tc = code; |
| condcount = 0; |
| |
| do { |
| condcount++; |
| tc += (tc[1] << 8) | tc[2]; |
| } |
| while (*tc != OP_KET); |
| |
| if (condcount > 2) |
| { |
| *errorptr = ERR27; |
| goto FAILED; |
| } |
| } |
| |
| /* Handle updating of the required character. If the subpattern didn't |
| set one, leave it as it was. Otherwise, update it for normal brackets of |
| all kinds, forward assertions, and conditions with two branches. Don't |
| update the literal count for forward assertions, however. If the bracket |
| is followed by a quantifier with zero repeat, we have to back off. Hence |
| the definition of prevreqchar and subcountlits outside the main loop so |
| that they can be accessed for the back off. */ |
| |
| if (subreqchar > 0 && |
| (bravalue >= OP_BRA || bravalue == OP_ONCE || bravalue == OP_ASSERT || |
| (bravalue == OP_COND && condcount == 2))) |
| { |
| prevreqchar = *reqchar; |
| *reqchar = subreqchar; |
| if (bravalue != OP_ASSERT) *countlits += subcountlits; |
| } |
| |
| /* Now update the main code pointer to the end of the group. */ |
| |
| code = tempcode; |
| |
| /* Error if hit end of pattern */ |
| |
| if (*ptr != ')') |
| { |
| *errorptr = ERR14; |
| goto FAILED; |
| } |
| break; |
| |
| /* Check \ for being a real metacharacter; if not, fall through and handle |
| it as a data character at the start of a string. Escape items are checked |
| for validity in the pre-compiling pass. */ |
| |
| case '\\': |
| tempptr = ptr; |
| c = check_escape(&ptr, errorptr, *brackets, options, FALSE, cd); |
| |
| /* Handle metacharacters introduced by \. For ones like \d, the ESC_ values |
| are arranged to be the negation of the corresponding OP_values. For the |
| back references, the values are ESC_REF plus the reference number. Only |
| back references and those types that consume a character may be repeated. |
| We can test for values between ESC_b and ESC_Z for the latter; this may |
| have to change if any new ones are ever created. */ |
| |
| if (c < 0) |
| { |
| if (-c >= ESC_REF) |
| { |
| int number = -c - ESC_REF; |
| previous = code; |
| *code++ = OP_REF; |
| *code++ = number >> 8; |
| *code++ = number & 255; |
| } |
| else |
| { |
| previous = (-c > ESC_b && -c < ESC_Z)? code : NULL; |
| *code++ = -c; |
| } |
| continue; |
| } |
| |
| /* Data character: reset and fall through */ |
| |
| ptr = tempptr; |
| c = '\\'; |
| |
| /* Handle a run of data characters until a metacharacter is encountered. |
| The first character is guaranteed not to be whitespace or # when the |
| extended flag is set. */ |
| |
| NORMAL_CHAR: |
| default: |
| previous = code; |
| *code = OP_CHARS; |
| code += 2; |
| length = 0; |
| |
| do |
| { |
| if ((options & PCRE_EXTENDED) != 0) |
| { |
| if ((cd->ctypes[c] & ctype_space) != 0) continue; |
| if (c == '#') |
| { |
| /* The space before the ; is to avoid a warning on a silly compiler |
| on the Macintosh. */ |
| while ((c = *(++ptr)) != 0 && c != NEWLINE) ; |
| if (c == 0) break; |
| continue; |
| } |
| } |
| |
| /* Backslash may introduce a data char or a metacharacter. Escaped items |
| are checked for validity in the pre-compiling pass. Stop the string |
| before a metaitem. */ |
| |
| if (c == '\\') |
| { |
| tempptr = ptr; |
| c = check_escape(&ptr, errorptr, *brackets, options, FALSE, cd); |
| if (c < 0) { ptr = tempptr; break; } |
| |
| #if PCRE_UTF16 |
| /* If a character is > 65535, we have to turn it into a surrogate pair. */ |
| if (c > 65535) |
| { |
| int c0 = LEADING_SURROGATE(c); |
| int c1 = TRAILING_SURROGATE(c); |
| code[0] = c0 >> 8; |
| code[1] = c0; |
| code[2] = c1 >> 8; |
| code[3] = c1; |
| code += 4; |
| length += 2; |
| continue; |
| } |
| #else |
| /* If a character is > 127 in UTF-8 mode, we have to turn it into |
| two or more characters in the UTF-8 encoding. */ |
| |
| #ifdef SUPPORT_UTF8 |
| if (c > 127 && (options & PCRE_UTF8) != 0) |
| { |
| uschar buffer[8]; |
| int len = ord2utf8(c, buffer); |
| for (c = 0; c < len; c++) *code++ = buffer[c]; |
| length += len; |
| continue; |
| } |
| #endif |
| #endif |
| } |
| |
| /* Ordinary character or single-char escape */ |
| |
| #if PCRE_UTF16 |
| *code++ = c >> 8; |
| #endif |
| *code++ = c; |
| length++; |
| } |
| |
| /* This "while" is the end of the "do" above. */ |
| |
| while (length < MAXLIT && (cd->ctypes[c = *(++ptr)] & ctype_meta) == 0); |
| |
| /* Update the last character and the count of literals */ |
| |
| #if PCRE_UTF16 |
| if (length > 1) |
| prevreqchar = (code[-4] << 8) | code[-3]; |
| else |
| prevreqchar = *reqchar; |
| *reqchar = (code[-2] << 8) | code[-1]; |
| #else |
| prevreqchar = (length > 1)? code[-2] : *reqchar; |
| *reqchar = code[-1]; |
| #endif |
| *countlits += length; |
| |
| /* Compute the length and set it in the data vector, and advance to |
| the next state. */ |
| |
| previous[1] = length; |
| if (length < MAXLIT) ptr--; |
| break; |
| } |
| } /* end of big loop */ |
| |
| /* Control never reaches here by falling through, only by a goto for all the |
| error states. Pass back the position in the pattern so that it can be displayed |
| to the user for diagnosing the error. */ |
| |
| FAILED: |
| *ptrptr = ptr; |
| return FALSE; |
| } |
| |
| |
| |
| |
| /************************************************* |
| * Compile sequence of alternatives * |
| *************************************************/ |
| |
| /* On entry, ptr is pointing past the bracket character, but on return |
| it points to the closing bracket, or vertical bar, or end of string. |
| The code variable is pointing at the byte into which the BRA operator has been |
| stored. If the ims options are changed at the start (for a (?ims: group) or |
| during any branch, we need to insert an OP_OPT item at the start of every |
| following branch to ensure they get set correctly at run time, and also pass |
| the new options into every subsequent branch compile. |
| |
| Argument: |
| options the option bits |
| optchanged new ims options to set as if (?ims) were at the start, or -1 |
| for no change |
| brackets -> int containing the number of extracting brackets used |
| codeptr -> the address of the current code pointer |
| ptrptr -> the address of the current pattern pointer |
| errorptr -> pointer to error message |
| lookbehind TRUE if this is a lookbehind assertion |
| skipbytes skip this many bytes at start (for OP_COND, OP_BRANUMBER) |
| reqchar -> place to put the last required character, or a negative number |
| countlits -> place to put the shortest literal count of any branch |
| cd points to the data block with tables pointers |
| |
| Returns: TRUE on success |
| */ |
| |
| static BOOL |
| compile_regex(int options, int optchanged, int *brackets, uschar **codeptr, |
| const ichar **ptrptr, const char **errorptr, BOOL lookbehind, int skipbytes, |
| int *reqchar, int *countlits, compile_data *cd) |
| { |
| const ichar *ptr = *ptrptr; |
| uschar *code = *codeptr; |
| uschar *last_branch = code; |
| uschar *start_bracket = code; |
| uschar *reverse_count = NULL; |
| int oldoptions = options & PCRE_IMS; |
| int branchreqchar, branchcountlits; |
| |
| *reqchar = -1; |
| *countlits = INT_MAX; |
| code += 3 + skipbytes; |
| |
| /* Loop for each alternative branch */ |
| |
| for (;;) |
| { |
| int length; |
| |
| /* Handle change of options */ |
| |
| if (optchanged >= 0) |
| { |
| *code++ = OP_OPT; |
| *code++ = optchanged; |
| options = (options & ~PCRE_IMS) | optchanged; |
| } |
| |
| /* Set up dummy OP_REVERSE if lookbehind assertion */ |
| |
| if (lookbehind) |
| { |
| *code++ = OP_REVERSE; |
| reverse_count = code; |
| *code++ = 0; |
| *code++ = 0; |
| } |
| |
| /* Now compile the branch */ |
| |
| if (!compile_branch(options, brackets, &code, &ptr, errorptr, &optchanged, |
| &branchreqchar, &branchcountlits, cd)) |
| { |
| *ptrptr = ptr; |
| return FALSE; |
| } |
| |
| /* Fill in the length of the last branch */ |
| |
| length = code - last_branch; |
| last_branch[1] = length >> 8; |
| last_branch[2] = length & 255; |
| |
| /* Save the last required character if all branches have the same; a current |
| value of -1 means unset, while -2 means "previous branch had no last required |
| char". */ |
| |
| if (*reqchar != -2) |
| { |
| if (branchreqchar >= 0) |
| { |
| if (*reqchar == -1) *reqchar = branchreqchar; |
| else if (*reqchar != branchreqchar) *reqchar = -2; |
| } |
| else *reqchar = -2; |
| } |
| |
| /* Keep the shortest literal count */ |
| |
| if (branchcountlits < *countlits) *countlits = branchcountlits; |
| DPRINTF(("literal count = %d min=%d\n", branchcountlits, *countlits)); |
| |
| /* If lookbehind, check that this branch matches a fixed-length string, |
| and put the length into the OP_REVERSE item. Temporarily mark the end of |
| the branch with OP_END. */ |
| |
| if (lookbehind) |
| { |
| *code = OP_END; |
| length = find_fixedlength(last_branch, options); |
| DPRINTF(("fixed length = %d\n", length)); |
| if (length < 0) |
| { |
| *errorptr = ERR25; |
| *ptrptr = ptr; |
| return FALSE; |
| } |
| reverse_count[0] = (length >> 8); |
| reverse_count[1] = length & 255; |
| } |
| |
| /* Reached end of expression, either ')' or end of pattern. Insert a |
| terminating ket and the length of the whole bracketed item, and return, |
| leaving the pointer at the terminating char. If any of the ims options |
| were changed inside the group, compile a resetting op-code following. */ |
| |
| if (*ptr != '|') |
| { |
| length = code - start_bracket; |
| *code++ = OP_KET; |
| *code++ = length >> 8; |
| *code++ = length & 255; |
| if (optchanged >= 0) |
| { |
| *code++ = OP_OPT; |
| *code++ = oldoptions; |
| } |
| *codeptr = code; |
| *ptrptr = ptr; |
| return TRUE; |
| } |
| |
| /* Another branch follows; insert an "or" node and advance the pointer. */ |
| |
| *code = OP_ALT; |
| last_branch = code; |
| code += 3; |
| ptr++; |
| } |
| /* Control never reaches here */ |
| } |
| |
| |
| |
| |
| /************************************************* |
| * Find first significant op code * |
| *************************************************/ |
| |
| /* This is called by several functions that scan a compiled expression looking |
| for a fixed first character, or an anchoring op code etc. It skips over things |
| that do not influence this. For one application, a change of caseless option is |
| important. |
| |
| Arguments: |
| code pointer to the start of the group |
| options pointer to external options |
| optbit the option bit whose changing is significant, or |
| zero if none are |
| optstop TRUE to return on option change, otherwise change the options |
| value and continue |
| |
| Returns: pointer to the first significant opcode |
| */ |
| |
| static const uschar* |
| first_significant_code(const uschar *code, int *options, int optbit, |
| BOOL optstop) |
| { |
| for (;;) |
| { |
| switch ((int)*code) |
| { |
| case OP_OPT: |
| if (optbit > 0 && ((int)code[1] & optbit) != (*options & optbit)) |
| { |
| if (optstop) return code; |
| *options = (int)code[1]; |
| } |
| code += 2; |
| break; |
| |
| case OP_CREF: |
| case OP_BRANUMBER: |
| code += 3; |
| break; |
| |
| case OP_WORD_BOUNDARY: |
| case OP_NOT_WORD_BOUNDARY: |
| code++; |
| break; |
| |
| case OP_ASSERT_NOT: |
| case OP_ASSERTBACK: |
| case OP_ASSERTBACK_NOT: |
| do code += (code[1] << 8) + code[2]; while (*code == OP_ALT); |
| code += 3; |
| break; |
| |
| default: |
| return code; |
| } |
| } |
| /* Control never reaches here */ |
| } |
| |
| |
| |
| |
| /************************************************* |
| * Check for anchored expression * |
| *************************************************/ |
| |
| /* Try to find out if this is an anchored regular expression. Consider each |
| alternative branch. If they all start with OP_SOD or OP_CIRC, or with a bracket |
| all of whose alternatives start with OP_SOD or OP_CIRC (recurse ad lib), then |
| it's anchored. However, if this is a multiline pattern, then only OP_SOD |
| counts, since OP_CIRC can match in the middle. |
| |
| A branch is also implicitly anchored if it starts with .* and DOTALL is set, |
| because that will try the rest of the pattern at all possible matching points, |
| so there is no point trying them again. |
| |
| Arguments: |
| code points to start of expression (the bracket) |
| options points to the options setting |
| |
| Returns: TRUE or FALSE |
| */ |
| |
| static BOOL |
| is_anchored(register const uschar *code, int *options) |
| { |
| do { |
| const uschar *scode = first_significant_code(code + 3, options, |
| PCRE_MULTILINE, FALSE); |
| register int op = *scode; |
| if (op >= OP_BRA || op == OP_ASSERT || op == OP_ONCE || op == OP_COND) |
| { if (!is_anchored(scode, options)) return FALSE; } |
| else if ((op == OP_TYPESTAR || op == OP_TYPEMINSTAR) && |
| (*options & PCRE_DOTALL) != 0) |
| { if (scode[1] != OP_ANY) return FALSE; } |
| else if (op != OP_SOD && |
| ((*options & PCRE_MULTILINE) != 0 || op != OP_CIRC)) |
| return FALSE; |
| code += (code[1] << 8) + code[2]; |
| } |
| while (*code == OP_ALT); |
| return TRUE; |
| } |
| |
| |
| |
| /************************************************* |
| * Check for starting with ^ or .* * |
| *************************************************/ |
| |
| /* This is called to find out if every branch starts with ^ or .* so that |
| "first char" processing can be done to speed things up in multiline |
| matching and for non-DOTALL patterns that start with .* (which must start at |
| the beginning or after \n). |
| |
| Argument: points to start of expression (the bracket) |
| Returns: TRUE or FALSE |
| */ |
| |
| static BOOL |
| is_startline(const uschar *code) |
| { |
| do { |
| const uschar *scode = first_significant_code(code + 3, NULL, 0, FALSE); |
| register int op = *scode; |
| if (op >= OP_BRA || op == OP_ASSERT || op == OP_ONCE || op == OP_COND) |
| { if (!is_startline(scode)) return FALSE; } |
| else if (op == OP_TYPESTAR || op == OP_TYPEMINSTAR) |
| { if (scode[1] != OP_ANY) return FALSE; } |
| else if (op != OP_CIRC) return FALSE; |
| code += (code[1] << 8) + code[2]; |
| } |
| while (*code == OP_ALT); |
| return TRUE; |
| } |
| |
| |
| |
| /************************************************* |
| * Check for fixed first char * |
| *************************************************/ |
| |
| /* Try to find out if there is a fixed first character. This is called for |
| unanchored expressions, as it speeds up their processing quite considerably. |
| Consider each alternative branch. If they all start with the same char, or with |
| a bracket all of whose alternatives start with the same char (recurse ad lib), |
| then we return that char, otherwise -1. |
| |
| Arguments: |
| code points to start of expression (the bracket) |
| options pointer to the options (used to check casing changes) |
| |
| Returns: -1 or the fixed first char |
| */ |
| |
| static int |
| find_firstchar(const uschar *code, int *options) |
| { |
| register int c = -1; |
| do { |
| int d; |
| const uschar *scode = first_significant_code(code + 3, options, |
| PCRE_CASELESS, TRUE); |
| register int op = *scode; |
| |
| if (op >= OP_BRA) op = OP_BRA; |
| |
| switch(op) |
| { |
| default: |
| return -1; |
| |
| case OP_BRA: |
| case OP_ASSERT: |
| case OP_ONCE: |
| case OP_COND: |
| if ((d = find_firstchar(scode, options)) < 0) return -1; |
| if (c < 0) c = d; else if (c != d) return -1; |
| break; |
| |
| case OP_EXACT: /* Fall through */ |
| scode++; |
| |
| case OP_CHARS: /* Fall through */ |
| scode++; |
| |
| case OP_PLUS: |
| case OP_MINPLUS: |
| { |
| #if PCRE_UTF16 |
| int sc = (scode[1] << 8) | scode[2]; |
| #else |
| int sc = scode[1]; |
| #endif |
| if (c < 0) c = sc; else if (c != sc) return -1; |
| } |
| break; |
| } |
| |
| code += (code[1] << 8) + code[2]; |
| } |
| while (*code == OP_ALT); |
| return c; |
| } |
| |
| |
| |
| |
| |
| /************************************************* |
| * Compile a Regular Expression * |
| *************************************************/ |
| |
| /* This function takes a string and returns a pointer to a block of store |
| holding a compiled version of the expression. |
| |
| Arguments: |
| pattern the regular expression |
| options various option bits |
| errorptr pointer to pointer to error text |
| erroroffset ptr offset in pattern where error was detected |
| tables pointer to character tables or NULL |
| |
| Returns: pointer to compiled data block, or NULL on error, |
| with errorptr and erroroffset set |
| */ |
| |
| pcre * |
| pcre_compile(const ichar *pattern, int options, const char **errorptr, |
| int *erroroffset, const unsigned char *tables) |
| { |
| real_pcre *re; |
| int length = 3; /* For initial BRA plus length */ |
| int runlength; |
| int c, reqchar, countlits; |
| int bracount = 0; |
| int top_backref = 0; |
| int branch_extra = 0; |
| int branch_newextra; |
| unsigned int brastackptr = 0; |
| size_t size; |
| uschar *code; |
| const ichar *ptr; |
| compile_data compile_block; |
| int brastack[BRASTACK_SIZE]; |
| uschar bralenstack[BRASTACK_SIZE]; |
| |
| #ifdef DEBUG |
| uschar *code_base, *code_end; |
| #endif |
| |
| /* Can't support UTF8 unless PCRE has been compiled to include the code. */ |
| |
| #ifndef SUPPORT_UTF8 |
| if ((options & PCRE_UTF8) != 0) |
| { |
| *errorptr = ERR32; |
| return NULL; |
| } |
| #endif |
| |
| /* Always set the UTF-8 flag if we're compiled for UTF-16; saves on ifdefs. */ |
| |
| #if PCRE_UTF16 |
| options |= PCRE_UTF8; |
| #endif |
| |
| /* We can't pass back an error message if errorptr is NULL; I guess the best we |
| can do is just return NULL. */ |
| |
| if (errorptr == NULL) return NULL; |
| *errorptr = NULL; |
| |
| /* However, we can give a message for this error */ |
| |
| if (erroroffset == NULL) |
| { |
| *errorptr = ERR16; |
| return NULL; |
| } |
| *erroroffset = 0; |
| |
| if ((options & ~PUBLIC_OPTIONS) != 0) |
| { |
| *errorptr = ERR17; |
| return NULL; |
| } |
| |
| /* Set up pointers to the individual character tables */ |
| |
| if (tables == NULL) tables = pcre_default_tables; |
| compile_block.lcc = tables + lcc_offset; |
| compile_block.fcc = tables + fcc_offset; |
| compile_block.cbits = tables + cbits_offset; |
| compile_block.ctypes = tables + ctypes_offset; |
| |
| /* Reflect pattern for debugging output */ |
| |
| DPRINTF(("------------------------------------------------------------------\n")); |
| DPRINTF(("%s\n", pattern)); |
| |
| /* The first thing to do is to make a pass over the pattern to compute the |
| amount of store required to hold the compiled code. This does not have to be |
| perfect as long as errors are overestimates. At the same time we can detect any |
| internal flag settings. Make an attempt to correct for any counted white space |
| if an "extended" flag setting appears late in the pattern. We can't be so |
| clever for #-comments. */ |
| |
| ptr = (const ichar *)(pattern - 1); |
| while ((c = *(++ptr)) != 0) |
| { |
| int min, max; |
| int class_charcount; |
| int bracket_length; |
| |
| if ((options & PCRE_EXTENDED) != 0) |
| { |
| if ((compile_block.ctypes[c] & ctype_space) != 0) continue; |
| if (c == '#') |
| { |
| /* The space before the ; is to avoid a warning on a silly compiler |
| on the Macintosh. */ |
| while ((c = *(++ptr)) != 0 && c != NEWLINE) ; |
| continue; |
| } |
| } |
| |
| switch(c) |
| { |
| /* A backslashed item may be an escaped "normal" character or a |
| character type. For a "normal" character, put the pointers and |
| character back so that tests for whitespace etc. in the input |
| are done correctly. */ |
| |
| case '\\': |
| { |
| const ichar *save_ptr = ptr; |
| c = check_escape(&ptr, errorptr, bracount, options, FALSE, &compile_block); |
| if (*errorptr != NULL) goto PCRE_ERROR_RETURN; |
| if (c >= 0) |
| { |
| ptr = save_ptr; |
| c = '\\'; |
| goto NORMAL_CHAR; |
| } |
| } |
| length++; |
| |
| /* A back reference needs an additional 2 bytes, plus either one or 5 |
| bytes for a repeat. We also need to keep the value of the highest |
| back reference. */ |
| |
| if (c <= -ESC_REF) |
| { |
| int refnum = -c - ESC_REF; |
| if (refnum > top_backref) top_backref = refnum; |
| length += 2; /* For single back reference */ |
| if (ptr[1] == '{' && is_counted_repeat(ptr+2, &compile_block)) |
| { |
| ptr = read_repeat_counts(ptr+2, &min, &max, errorptr, &compile_block); |
| if (*errorptr != NULL) goto PCRE_ERROR_RETURN; |
| if ((min == 0 && (max == 1 || max == -1)) || |
| (min == 1 && max == -1)) |
| length++; |
| else length += 5; |
| if (ptr[1] == '?') ptr++; |
| } |
| } |
| continue; |
| |
| case '^': |
| case '.': |
| case '$': |
| case '*': /* These repeats won't be after brackets; */ |
| case '+': /* those are handled separately */ |
| case '?': |
| length++; |
| continue; |
| |
| /* This covers the cases of repeats after a single char, metachar, class, |
| or back reference. */ |
| |
| case '{': |
| if (!is_counted_repeat(ptr+1, &compile_block)) goto NORMAL_CHAR; |
| ptr = read_repeat_counts(ptr+1, &min, &max, errorptr, &compile_block); |
| if (*errorptr != NULL) goto PCRE_ERROR_RETURN; |
| if ((min == 0 && (max == 1 || max == -1)) || |
| (min == 1 && max == -1)) |
| length++; |
| else |
| { |
| length--; /* Uncount the original char or metachar */ |
| if (min == 1) length++; else if (min > 0) length += 4; |
| if (max > 0) length += 4; else length += 2; |
| } |
| if (ptr[1] == '?') ptr++; |
| continue; |
| |
| /* An alternation contains an offset to the next branch or ket. If any ims |
| options changed in the previous branch(es), and/or if we are in a |
| lookbehind assertion, extra space will be needed at the start of the |
| branch. This is handled by branch_extra. */ |
| |
| case '|': |
| length += 3 + branch_extra; |
| continue; |
| |
| /* A character class uses 33 characters. Don't worry about character types |
| that aren't allowed in classes - they'll get picked up during the compile. |
| A character class that contains only one character uses 2 or 3 bytes, |
| depending on whether it is negated or not. Notice this where we can. */ |
| |
| case '[': |
| class_charcount = 0; |
| if (*(++ptr) == '^') ptr++; |
| do |
| { |
| if (*ptr == '\\') |
| { |
| int ch = check_escape(&ptr, errorptr, bracount, options, TRUE, |
| &compile_block); |
| if (*errorptr != NULL) goto PCRE_ERROR_RETURN; |
| if (-ch == ESC_b) class_charcount++; else class_charcount = 10; |
| } |
| else class_charcount++; |
| ptr++; |
| } |
| while (*ptr != 0 && *ptr != ']'); |
| |
| /* Repeats for negated single chars are handled by the general code */ |
| |
| if (class_charcount == 1) length += sizeof(ichar) + 2; else |
| { |
| length += 33; |
| |
| /* A repeat needs either 1 or 5 bytes. */ |
| |
| if (*ptr != 0 && ptr[1] == '{' && is_counted_repeat(ptr+2, &compile_block)) |
| { |
| ptr = read_repeat_counts(ptr+2, &min, &max, errorptr, &compile_block); |
| if (*errorptr != NULL) goto PCRE_ERROR_RETURN; |
| if ((min == 0 && (max == 1 || max == -1)) || |
| (min == 1 && max == -1)) |
| length++; |
| else length += 5; |
| if (ptr[1] == '?') ptr++; |
| } |
| } |
| continue; |
| |
| /* Brackets may be genuine groups or special things */ |
| |
| case '(': |
| branch_newextra = 0; |
| bracket_length = 3; |
| |
| /* Handle special forms of bracket, which all start (? */ |
| |
| if (ptr[1] == '?') |
| { |
| int set, unset; |
| int *optset; |
| |
| switch (c = ptr[2]) |
| { |
| /* Skip over comments entirely */ |
| case '#': |
| ptr += 3; |
| while (*ptr != 0 && *ptr != ')') ptr++; |
| if (*ptr == 0) |
| { |
| *errorptr = ERR18; |
| goto PCRE_ERROR_RETURN; |
| } |
| continue; |
| |
| /* Non-referencing groups and lookaheads just move the pointer on, and |
| then behave like a non-special bracket, except that they don't increment |
| the count of extracting brackets. Ditto for the "once only" bracket, |
| which is in Perl from version 5.005. */ |
| |
| case ':': |
| case '=': |
| case '!': |
| case '>': |
| ptr += 2; |
| break; |
| |
| /* A recursive call to the regex is an extension, to provide the |
| facility which can be obtained by $(?p{perl-code}) in Perl 5.6. */ |
| |
| case 'R': |
| if (ptr[3] != ')') |
| { |
| *errorptr = ERR29; |
| goto PCRE_ERROR_RETURN; |
| } |
| ptr += 3; |
| length += 1; |
| break; |
| |
| /* Lookbehinds are in Perl from version 5.005 */ |
| |
| case '<': |
| if (ptr[3] == '=' || ptr[3] == '!') |
| { |
| ptr += 3; |
| branch_newextra = 3; |
| length += 3; /* For the first branch */ |
| break; |
| } |
| *errorptr = ERR24; |
| goto PCRE_ERROR_RETURN; |
| |
| /* Conditionals are in Perl from version 5.005. The bracket must either |
| be followed by a number (for bracket reference) or by an assertion |
| group. */ |
| |
| case '(': |
| if ((compile_block.ctypes[ptr[3]] & ctype_digit) != 0) |
| { |
| ptr += 4; |
| length += 3; |
| while ((compile_block.ctypes[*ptr] & ctype_digit) != 0) ptr++; |
| if (*ptr != ')') |
| { |
| *errorptr = ERR26; |
| goto PCRE_ERROR_RETURN; |
| } |
| } |
| else /* An assertion must follow */ |
| { |
| ptr++; /* Can treat like ':' as far as spacing is concerned */ |
| if (ptr[2] != '?' || |
| (ptr[3] != '=' && ptr[3] != '!' && ptr[3] != '<') ) |
| { |
| ptr += 2; /* To get right offset in message */ |
| *errorptr = ERR28; |
| goto PCRE_ERROR_RETURN; |
| } |
| } |
| break; |
| |
| /* Else loop checking valid options until ) is met. Anything else is an |
| error. If we are without any brackets, i.e. at top level, the settings |
| act as if specified in the options, so massage the options immediately. |
| This is for backward compatibility with Perl 5.004. */ |
| |
| default: |
| set = unset = 0; |
| optset = &set; |
| ptr += 2; |
| |
| for (;; ptr++) |
| { |
| c = *ptr; |
| switch (c) |
| { |
| case 'i': |
| *optset |= PCRE_CASELESS; |
| continue; |
| |
| case 'm': |
| *optset |= PCRE_MULTILINE; |
| continue; |
| |
| case 's': |
| *optset |= PCRE_DOTALL; |
| continue; |
| |
| case 'x': |
| *optset |= PCRE_EXTENDED; |
| continue; |
| |
| case 'X': |
| *optset |= PCRE_EXTRA; |
| continue; |
| |
| case 'U': |
| *optset |= PCRE_UNGREEDY; |
| continue; |
| |
| case '-': |
| optset = &unset; |
| continue; |
| |
| /* A termination by ')' indicates an options-setting-only item; |
| this is global at top level; otherwise nothing is done here and |
| it is handled during the compiling process on a per-bracket-group |
| basis. */ |
| |
| case ')': |
| if (brastackptr == 0) |
| { |
| options = (options | set) & (~unset); |
| set = unset = 0; /* To save length */ |
| } |
| /* Fall through */ |
| |
| /* A termination by ':' indicates the start of a nested group with |
| the given options set. This is again handled at compile time, but |
| we must allow for compiled space if any of the ims options are |
| set. We also have to allow for resetting space at the end of |
| the group, which is why 4 is added to the length and not just 2. |
| If there are several changes of options within the same group, this |
| will lead to an over-estimate on the length, but this shouldn't |
| matter very much. We also have to allow for resetting options at |
| the start of any alternations, which we do by setting |
| branch_newextra to 2. Finally, we record whether the case-dependent |
| flag ever changes within the regex. This is used by the "required |
| character" code. */ |
| |
| case ':': |
| if (((set|unset) & PCRE_IMS) != 0) |
| { |
| length += 4; |
| branch_newextra = 2; |
| if (((set|unset) & PCRE_CASELESS) != 0) options |= PCRE_ICHANGED; |
| } |
| goto END_OPTIONS; |
| |
| /* Unrecognized option character */ |
| |
| default: |
| *errorptr = ERR12; |
| goto PCRE_ERROR_RETURN; |
| } |
| } |
| |
| /* If we hit a closing bracket, that's it - this is a freestanding |
| option-setting. We need to ensure that branch_extra is updated if |
| necessary. The only values branch_newextra can have here are 0 or 2. |
| If the value is 2, then branch_extra must either be 2 or 5, depending |
| on whether this is a lookbehind group or not. */ |
| |
| END_OPTIONS: |
| if (c == ')') |
| { |
| if (branch_newextra == 2 && (branch_extra == 0 || branch_extra == 3)) |
| branch_extra += branch_newextra; |
| continue; |
| } |
| |
| /* If options were terminated by ':' control comes here. Fall through |
| to handle the group below. */ |
| } |
| } |
| |
| /* Extracting brackets must be counted so we can process escapes in a |
| Perlish way. If the number exceeds EXTRACT_BASIC_MAX we are going to |
| need an additional 3 bytes of store per extracting bracket. */ |
| |
| else |
| { |
| bracount++; |
| if (bracount > EXTRACT_BASIC_MAX) bracket_length += 3; |
| } |
| |
| /* Save length for computing whole length at end if there's a repeat that |
| requires duplication of the group. Also save the current value of |
| branch_extra, and start the new group with the new value. If non-zero, this |
| will either be 2 for a (?imsx: group, or 3 for a lookbehind assertion. */ |
| |
| if (brastackptr >= sizeof(brastack)/sizeof(int)) |
| { |
| *errorptr = ERR19; |
| goto PCRE_ERROR_RETURN; |
| } |
| |
| bralenstack[brastackptr] = branch_extra; |
| branch_extra = branch_newextra; |
| |
| brastack[brastackptr++] = length; |
| length += bracket_length; |
| continue; |
| |
| /* Handle ket. Look for subsequent max/min; for certain sets of values we |
| have to replicate this bracket up to that many times. If brastackptr is |
| 0 this is an unmatched bracket which will generate an error, but take care |
| not to try to access brastack[-1] when computing the length and restoring |
| the branch_extra value. */ |
| |
| case ')': |
| length += 3; |
| { |
| int minval = 1; |
| int maxval = 1; |
| int duplength; |
| |
| if (brastackptr > 0) |
| { |
| duplength = length - brastack[--brastackptr]; |
| branch_extra = bralenstack[brastackptr]; |
| } |
| else duplength = 0; |
| |
| /* Leave ptr at the final char; for read_repeat_counts this happens |
| automatically; for the others we need an increment. */ |
| |
| if ((c = ptr[1]) == '{' && is_counted_repeat(ptr+2, &compile_block)) |
| { |
| ptr = read_repeat_counts(ptr+2, &minval, &maxval, errorptr, |
| &compile_block); |
| if (*errorptr != NULL) goto PCRE_ERROR_RETURN; |
| } |
| else if (c == '*') { minval = 0; maxval = -1; ptr++; } |
| else if (c == '+') { maxval = -1; ptr++; } |
| else if (c == '?') { minval = 0; ptr++; } |
| |
| /* If the minimum is zero, we have to allow for an OP_BRAZERO before the |
| group, and if the maximum is greater than zero, we have to replicate |
| maxval-1 times; each replication acquires an OP_BRAZERO plus a nesting |
| bracket set - hence the 7. */ |
| |
| if (minval == 0) |
| { |
| length++; |
| if (maxval > 0) length += (maxval - 1) * (duplength + 7); |
| } |
| |
| /* When the minimum is greater than zero, 1 we have to replicate up to |
| minval-1 times, with no additions required in the copies. Then, if |
| there is a limited maximum we have to replicate up to maxval-1 times |
| allowing for a BRAZERO item before each optional copy and nesting |
| brackets for all but one of the optional copies. */ |
| |
| else |
| { |
| length += (minval - 1) * duplength; |
| if (maxval > minval) /* Need this test as maxval=-1 means no limit */ |
| length += (maxval - minval) * (duplength + 7) - 6; |
| } |
| } |
| continue; |
| |
| /* Non-special character. For a run of such characters the length required |
| is the number of characters + 2, except that the maximum run length is 255. |
| We won't get a skipped space or a non-data escape or the start of a # |
| comment as the first character, so the length can't be zero. */ |
| |
| NORMAL_CHAR: |
| default: |
| length += 2; |
| runlength = 0; |
| do |
| { |
| if ((options & PCRE_EXTENDED) != 0) |
| { |
| if ((compile_block.ctypes[c] & ctype_space) != 0) continue; |
| if (c == '#') |
| { |
| /* The space before the ; is to avoid a warning on a silly compiler |
| on the Macintosh. */ |
| while ((c = *(++ptr)) != 0 && c != NEWLINE) ; |
| continue; |
| } |
| } |
| |
| /* Backslash may introduce a data char or a metacharacter; stop the |
| string before the latter. */ |
| |
| if (c == '\\') |
| { |
| const ichar *saveptr = ptr; |
| c = check_escape(&ptr, errorptr, bracount, options, FALSE, |
| &compile_block); |
| if (*errorptr != NULL) goto PCRE_ERROR_RETURN; |
| if (c < 0) { ptr = saveptr; break; } |
| |
| #if PCRE_UTF16 |
| if (IS_LEADING_SURROGATE(c)) runlength++; |
| #else |
| #ifdef SUPPORT_UTF8 |
| if (c > 127 && (options & PCRE_UTF8) != 0) |
| { |
| int i; |
| for (i = 0; i < (int)(sizeof(utf8_table1)/sizeof(int)); i++) |
| if (c <= utf8_table1[i]) break; |
| runlength += i; |
| } |
| #endif |
| #endif |
| } |
| |
| /* Ordinary character or single-char escape */ |
| |
| runlength++; |
| } |
| |
| /* This "while" is the end of the "do" above. */ |
| |
| while (runlength < MAXLIT && |
| (compile_block.ctypes[c = *(++ptr)] & ctype_meta) == 0); |
| |
| ptr--; |
| length += runlength * sizeof(ichar); |
| continue; |
| } |
| } |
| |
| length += 4; /* For final KET and END */ |
| |
| if (length > 65539) |
| { |
| *errorptr = ERR20; |
| return NULL; |
| } |
| |
| /* Compute the size of data block needed and get it, either from malloc or |
| externally provided function. We specify "code[0]" in the offsetof() expression |
| rather than just "code", because it has been reported that one broken compiler |
| fails on "code" because it is also an independent variable. It should make no |
| difference to the value of the offsetof(). */ |
| |
| size = length + offsetof(real_pcre, code[0]); |
| re = (real_pcre *)(pcre_malloc)(size); |
| |
| if (re == NULL) |
| { |
| *errorptr = ERR21; |
| return NULL; |
| } |
| |
| /* Put in the magic number, and save the size, options, and table pointer */ |
| |
| re->magic_number = MAGIC_NUMBER; |
| re->size = size; |
| re->options = options; |
| re->tables = tables; |
| |
| /* Set up a starting, non-extracting bracket, then compile the expression. On |
| error, *errorptr will be set non-NULL, so we don't need to look at the result |
| of the function here. */ |
| |
| ptr = (const ichar *)pattern; |
| code = re->code; |
| *code = OP_BRA; |
| bracount = 0; |
| (void)compile_regex(options, -1, &bracount, &code, &ptr, errorptr, FALSE, 0, |
| &reqchar, &countlits, &compile_block); |
| re->top_bracket = bracount; |
| re->top_backref = top_backref; |
| |
| /* If not reached end of pattern on success, there's an excess bracket. */ |
| |
| if (*errorptr == NULL && *ptr != 0) *errorptr = ERR22; |
| |
| /* Fill in the terminating state and check for disastrous overflow, but |
| if debugging, leave the test till after things are printed out. */ |
| |
| *code++ = OP_END; |
| |
| #ifndef DEBUG |
| if (code - re->code > length) *errorptr = ERR23; |
| #endif |
| |
| /* Give an error if there's back reference to a non-existent capturing |
| subpattern. */ |
| |
| if (top_backref > re->top_bracket) *errorptr = ERR15; |
| |
| /* Failed to compile */ |
| |
| if (*errorptr != NULL) |
| { |
| (pcre_free)(re); |
| PCRE_ERROR_RETURN: |
| *erroroffset = ptr - (const ichar *)pattern; |
| return NULL; |
| } |
| |
| /* If the anchored option was not passed, set flag if we can determine that the |
| pattern is anchored by virtue of ^ characters or \A or anything else (such as |
| starting with .* when DOTALL is set). |
| |
| Otherwise, see if we can determine what the first character has to be, because |
| that speeds up unanchored matches no end. If not, see if we can set the |
| PCRE_STARTLINE flag. This is helpful for multiline matches when all branches |
| start with ^. and also when all branches start with .* for non-DOTALL matches. |
| */ |
| |
| if ((options & PCRE_ANCHORED) == 0) |
| { |
| int temp_options = options; |
| if (is_anchored(re->code, &temp_options)) |
| re->options |= PCRE_ANCHORED; |
| else |
| { |
| int ch = find_firstchar(re->code, &temp_options); |
| if (ch >= 0) |
| { |
| re->first_char = ch; |
| re->options |= PCRE_FIRSTSET; |
| } |
| else if (is_startline(re->code)) |
| re->options |= PCRE_STARTLINE; |
| } |
| } |
| |
| /* Save the last required character if there are at least two literal |
| characters on all paths, or if there is no first character setting. */ |
| |
| if (reqchar >= 0 && (countlits > 1 || (re->options & PCRE_FIRSTSET) == 0)) |
| { |
| re->req_char = reqchar; |
| re->options |= PCRE_REQCHSET; |
| } |
| |
| /* Print out the compiled data for debugging */ |
| |
| #ifdef DEBUG |
| |
| printf("Length = %d top_bracket = %d top_backref = %d\n", |
| length, re->top_bracket, re->top_backref); |
| |
| if (re->options != 0) |
| { |
| printf("%s%s%s%s%s%s%s%s%s\n", |
| ((re->options & PCRE_ANCHORED) != 0)? "anchored " : "", |
| ((re->options & PCRE_CASELESS) != 0)? "caseless " : "", |
| ((re->options & PCRE_ICHANGED) != 0)? "case state changed " : "", |
| ((re->options & PCRE_EXTENDED) != 0)? "extended " : "", |
| ((re->options & PCRE_MULTILINE) != 0)? "multiline " : "", |
| ((re->options & PCRE_DOTALL) != 0)? "dotall " : "", |
| ((re->options & PCRE_DOLLAR_ENDONLY) != 0)? "endonly " : "", |
| ((re->options & PCRE_EXTRA) != 0)? "extra " : "", |
| ((re->options & PCRE_UNGREEDY) != 0)? "ungreedy " : ""); |
| } |
| |
| if ((re->options & PCRE_FIRSTSET) != 0) |
| { |
| if (isprint(re->first_char)) printf("First char = %c\n", re->first_char); |
| else printf("First char = \\x%02x\n", re->first_char); |
| } |
| |
| if ((re->options & PCRE_REQCHSET) != 0) |
| { |
| if (isprint(re->req_char)) printf("Req char = %c\n", re->req_char); |
| else printf("Req char = \\x%02x\n", re->req_char); |
| } |
| |
| code_end = code; |
| code_base = code = re->code; |
| |
| while (code < code_end) |
| { |
| int charlength; |
| |
| printf("%3d ", code - code_base); |
| |
| if (*code >= OP_BRA) |
| { |
| if (*code - OP_BRA > EXTRACT_BASIC_MAX) |
| printf("%3d Bra extra", (code[1] << 8) + code[2]); |
| else |
| printf("%3d Bra %d", (code[1] << 8) + code[2], *code - OP_BRA); |
| code += 2; |
| } |
| |
| else switch(*code) |
| { |
| case OP_OPT: |
| printf(" %.2x %s", code[1], OP_names[*code]); |
| code++; |
| break; |
| |
| case OP_CHARS: |
| charlength = *(++code); |
| printf("%3d ", charlength); |
| while (charlength-- > 0) { |
| #if PCRE_UTF16 |
| c = (code[1] << 8) | code[2]; |
| code += 2; |
| if (isprint(c)) printf("%c", c); |
| else if (c < 256) printf("\\x%02x", c); |
| else printf("\\x{%x}", c); |
| #else |
| if (isprint(c = *(++code))) printf("%c", c); else printf("\\x%02x", c); |
| #endif |
| } |
| break; |
| |
| case OP_KETRMAX: |
| case OP_KETRMIN: |
| case OP_ALT: |
| case OP_KET: |
| case OP_ASSERT: |
| case OP_ASSERT_NOT: |
| case OP_ASSERTBACK: |
| case OP_ASSERTBACK_NOT: |
| case OP_ONCE: |
| case OP_REVERSE: |
| case OP_BRANUMBER: |
| case OP_COND: |
| case OP_CREF: |
| printf("%3d %s", (code[1] << 8) + code[2], OP_names[*code]); |
| code += 2; |
| break; |
| |
| case OP_STAR: |
| case OP_MINSTAR: |
| case OP_PLUS: |
| case OP_MINPLUS: |
| case OP_QUERY: |
| case OP_MINQUERY: |
| #if PCRE_UTF16 |
| c = (code[1] << 8) | code[2]; |
| if (isprint(c)) printf(" %c", c); |
| else if (c < 256) printf(" \\x%02x", c); |
| else printf(" \\x{%x}", c); |
| #else |
| if (isprint(c = code[1])) printf(" %c", c); |
| else printf(" \\x%02x", c); |
| #endif |
| printf("%s", OP_names[*code]); |
| code += sizeof(ichar); |
| break; |
| |
| case OP_TYPESTAR: |
| case OP_TYPEMINSTAR: |
| case OP_TYPEPLUS: |
| case OP_TYPEMINPLUS: |
| case OP_TYPEQUERY: |
| case OP_TYPEMINQUERY: |
| printf(" %s", OP_names[code[1]]); |
| printf("%s", OP_names[*code++]); |
| break; |
| |
| case OP_EXACT: |
| case OP_UPTO: |
| case OP_MINUPTO: |
| #if PCRE_UTF16 |
| c = (code[3] << 8) | code[4]; |
| if (isprint(c)) printf(" %c{", c); |
| else if (c < 256) printf(" \\x%02x{", c); |
| else printf(" \\x{%x}{", c); |
| #else |
| if (isprint(c = code[3])) printf(" %c{", c); |
| else printf(" \\x%02x{", c); |
| #endif |
| if (*code != OP_EXACT) printf("0,"); |
| printf("%d}", (code[1] << 8) + code[2]); |
| if (*code == OP_MINUPTO) printf("?"); |
| code += sizeof(ichar) + 2; |
| break; |
| |
| case OP_TYPEEXACT: |
| case OP_TYPEUPTO: |
| case OP_TYPEMINUPTO: |
| printf(" %s{", OP_names[code[3]]); |
| if (*code != OP_TYPEEXACT) printf(","); |
| printf("%d}", (code[1] << 8) + code[2]); |
| if (*code == OP_TYPEMINUPTO) printf("?"); |
| code += 3; |
| break; |
| |
| case OP_NOT: |
| #if PCRE_UTF16 |
| c = (code[1] << 8) | code[2]; |
| code += 2; |
| if (isprint(c)) printf(" [^%c]", c); |
| else if (c < 256) printf(" [^\\x%02x]", c); |
| else printf(" [^\\x{%x}]", c); |
| #else |
| if (isprint(c = *(++code))) printf(" [^%c]", c); |
| else printf(" [^\\x%02x]", c); |
| #endif |
| break; |
| |
| case OP_NOTSTAR: |
| case OP_NOTMINSTAR: |
| case OP_NOTPLUS: |
| case OP_NOTMINPLUS: |
| case OP_NOTQUERY: |
| case OP_NOTMINQUERY: |
| #if PCRE_UTF16 |
| c = (code[1] << 8) | code[2]; |
| if (isprint(c)) printf(" [^%c]", c); |
| else if (c < 256) printf(" [^\\x%02x]", c); |
| else printf(" [^\\x{%x}]", c); |
| #else |
| if (isprint(c = code[1])) printf(" [^%c]", c); |
| else printf(" [^\\x%02x]", c); |
| #endif |
| printf("%s", OP_names[*code]); |
| code += sizeof(ichar); |
| break; |
| |
| case OP_NOTEXACT: |
| case OP_NOTUPTO: |
| case OP_NOTMINUPTO: |
| #if PCRE_UTF16 |
| c = (code[3] << 8) | code[4]; |
| if (isprint(c)) printf(" [^%c]{", c); |
| else if (c < 256) printf(" [^\\x%02x]{", c); |
| else printf(" [^\\x{%x}]{", c); |
| #else |
| if (isprint(c = code[3])) printf(" [^%c]{", c); |
| else printf(" [^\\x%02x]{", c); |
| #endif |
| if (*code != OP_NOTEXACT) printf(","); |
| printf("%d}", (code[1] << 8) + code[2]); |
| if (*code == OP_NOTMINUPTO) printf("?"); |
| code += sizeof(ichar) + 2; |
| break; |
| |
| case OP_REF: |
| printf(" \\%d", (code[1] << 8) | code[2]); |
| code += 3; |
| goto CLASS_REF_REPEAT; |
| |
| case OP_CLASS: |
| { |
| int i, min, max; |
| code++; |
| printf(" ["); |
| |
| for (i = 0; i < ICHAR_LIMIT; i++) |
| { |
| if ((code[i/8] & (1 << (i&7))) != 0) |
| { |
| int j; |
| for (j = i+1; j < ICHAR_LIMIT; j++) |
| if ((code[j/8] & (1 << (j&7))) == 0) break; |
| if (i == '-' || i == ']') printf("\\"); |
| if (isprint(i)) printf("%c", i); else printf("\\x%02x", i); |
| if (--j > i) |
| { |
| printf("-"); |
| if (j == '-' || j == ']') printf("\\"); |
| if (isprint(j)) printf("%c", j); else printf("\\x%02x", j); |
| } |
| i = j; |
| } |
| } |
| printf("]"); |
| code += CHAR_CLASS_SIZE; |
| |
| CLASS_REF_REPEAT: |
| |
| switch(*code) |
| { |
| case OP_CRSTAR: |
| case OP_CRMINSTAR: |
| case OP_CRPLUS: |
| case OP_CRMINPLUS: |
| case OP_CRQUERY: |
| case OP_CRMINQUERY: |
| printf("%s", OP_names[*code]); |
| break; |
| |
| case OP_CRRANGE: |
| case OP_CRMINRANGE: |
| min = (code[1] << 8) + code[2]; |
| max = (code[3] << 8) + code[4]; |
| if (max == 0) printf("{%d,}", min); |
| else printf("{%d,%d}", min, max); |
| if (*code == OP_CRMINRANGE) printf("?"); |
| code += 4; |
| break; |
| |
| default: |
| code--; |
| } |
| } |
| break; |
| |
| /* Anything else is just a one-node item */ |
| |
| default: |
| printf(" %s", OP_names[*code]); |
| break; |
| } |
| |
| code++; |
| printf("\n"); |
| } |
| printf("------------------------------------------------------------------\n"); |
| |
| /* This check is done here in the debugging case so that the code that |
| was compiled can be seen. */ |
| |
| if (code - re->code > length) |
| { |
| *errorptr = ERR23; |
| (pcre_free)(re); |
| *erroroffset = ptr - (ichar *)pattern; |
| return NULL; |
| } |
| #endif |
| |
| return (pcre *)re; |
| } |
| |
| |
| |
| /************************************************* |
| * Match a back-reference * |
| *************************************************/ |
| |
| /* If a back reference hasn't been set, the length that is passed is greater |
| than the number of characters left in the string, so the match fails. |
| |
| Arguments: |
| offset index into the offset vector |
| eptr points into the subject |
| length length to be matched |
| md points to match data block |
| ims the ims flags |
| |
| Returns: TRUE if matched |
| */ |
| |
| static BOOL |
| match_ref(int offset, register const ichar *eptr, int length, match_data *md, |
| unsigned long int ims) |
| { |
| const ichar *p = md->start_subject + md->offset_vector[offset]; |
| |
| #ifdef DEBUG |
| if (eptr >= md->end_subject) |
| printf("matching subject <null>"); |
| else |
| { |
| printf("matching subject "); |
| pchars(eptr, length, TRUE, md); |
| } |
| printf(" against backref "); |
| pchars(p, length, FALSE, md); |
| printf("\n"); |
| #endif |
| |
| /* Always fail if not enough characters left */ |
| |
| if (length > md->end_subject - eptr) return FALSE; |
| |
| /* Separate the caselesss case for speed */ |
| |
| if ((ims & PCRE_CASELESS) != 0) |
| { |
| while (length-- > 0) |
| { |
| ichar c1 = *p++; |
| ichar c2 = *eptr++; |
| if (MAPCHAR(md->lcc, c1) != MAPCHAR(md->lcc, c2)) return FALSE; |
| } |
| } |
| else |
| { while (length-- > 0) if (*p++ != *eptr++) return FALSE; } |
| |
| return TRUE; |
| } |
| |
| |
| |
| /************************************************* |
| * Match from current position * |
| *************************************************/ |
| |
| /* On entry ecode points to the first opcode, and eptr to the first character |
| in the subject string, while eptrb holds the value of eptr at the start of the |
| last bracketed group - used for breaking infinite loops matching zero-length |
| strings. |
| |
| Arguments: |
| eptr pointer in subject |
| ecode position in code |
| offset_top current top pointer |
| md pointer to "static" info for the match |
| ims current /i, /m, and /s options |
| eptrb pointer to chain of blocks containing eptr at start of |
| brackets - for testing for empty matches |
| flags can contain |
| match_condassert - this is an assertion condition |
| match_isgroup - this is the start of a bracketed group |
| |
| Returns: TRUE if matched |
| */ |
| |
| static BOOL |
| match(register const ichar *eptr, register const uschar *ecode, |
| int offset_top, match_data *md, unsigned long int ims, eptrblock *eptrb, |
| int flags) |
| { |
| unsigned long int original_ims = ims; /* Save for resetting on ')' */ |
| eptrblock newptrb; |
| |
| /* At the start of a bracketed group, add the current subject pointer to the |
| stack of such pointers, to be re-instated at the end of the group when we hit |
| the closing ket. When match() is called in other circumstances, we don't add to |
| the stack. */ |
| |
| if ((flags & match_isgroup) != 0) |
| { |
| newptrb.prev = eptrb; |
| newptrb.saved_eptr = eptr; |
| eptrb = &newptrb; |
| } |
| |
| /* Now start processing the operations. */ |
| |
| for (;;) |
| { |
| int op = (int)*ecode; |
| int min, max, ctype; |
| register int i; |
| register int c; |
| BOOL minimize = FALSE; |
| |
| /* Opening capturing bracket. If there is space in the offset vector, save |
| the current subject position in the working slot at the top of the vector. We |
| mustn't change the current values of the data slot, because they may be set |
| from a previous iteration of this group, and be referred to by a reference |
| inside the group. |
| |
| If the bracket fails to match, we need to restore this value and also the |
| values of the final offsets, in case they were set by a previous iteration of |
| the same bracket. |
| |
| If there isn't enough space in the offset vector, treat this as if it were a |
| non-capturing bracket. Don't worry about setting the flag for the error case |
| here; that is handled in the code for KET. */ |
| |
| if (op > OP_BRA) |
| { |
| int offset; |
| int number = op - OP_BRA; |
| |
| /* For extended extraction brackets (large number), we have to fish out the |
| number from a dummy opcode at the start. */ |
| |
| if (number > EXTRACT_BASIC_MAX) number = (ecode[4] << 8) | ecode[5]; |
| offset = number << 1; |
| |
| #ifdef DEBUG |
| printf("start bracket %d subject=", number); |
| pchars(eptr, 16, TRUE, md); |
| printf("\n"); |
| #endif |
| |
| if (offset < md->offset_max) |
| { |
| int save_offset1 = md->offset_vector[offset]; |
| int save_offset2 = md->offset_vector[offset+1]; |
| int save_offset3 = md->offset_vector[md->offset_end - number]; |
| |
| DPRINTF(("saving %d %d %d\n", save_offset1, save_offset2, save_offset3)); |
| md->offset_vector[md->offset_end - number] = eptr - md->start_subject; |
| |
| do |
| { |
| if (match(eptr, ecode+3, offset_top, md, ims, eptrb, match_isgroup)) |
| return TRUE; |
| ecode += (ecode[1] << 8) + ecode[2]; |
| } |
| while (*ecode == OP_ALT); |
| |
| DPRINTF(("bracket %d failed\n", number)); |
| |
| md->offset_vector[offset] = save_offset1; |
| md->offset_vector[offset+1] = save_offset2; |
| md->offset_vector[md->offset_end - number] = save_offset3; |
| |
| return FALSE; |
| } |
| |
| /* Insufficient room for saving captured contents */ |
| |
| else op = OP_BRA; |
| } |
| |
| /* Other types of node can be handled by a switch */ |
| |
| switch(op) |
| { |
| case OP_BRA: /* Non-capturing bracket: optimized */ |
| DPRINTF(("start bracket 0\n")); |
| do |
| { |
| if (match(eptr, ecode+3, offset_top, md, ims, eptrb, match_isgroup)) |
| return TRUE; |
| ecode += (ecode[1] << 8) + ecode[2]; |
| } |
| while (*ecode == OP_ALT); |
| DPRINTF(("bracket 0 failed\n")); |
| return FALSE; |
| |
| /* Conditional group: compilation checked that there are no more than |
| two branches. If the condition is false, skipping the first branch takes us |
| past the end if there is only one branch, but that's OK because that is |
| exactly what going to the ket would do. */ |
| |
| case OP_COND: |
| if (ecode[3] == OP_CREF) /* Condition is extraction test */ |
| { |
| int offset = (ecode[4] << 9) | (ecode[5] << 1); /* Doubled ref number */ |
| return match(eptr, |
| ecode + ((offset < offset_top && md->offset_vector[offset] >= 0)? |
| 6 : 3 + (ecode[1] << 8) + ecode[2]), |
| offset_top, md, ims, eptrb, match_isgroup); |
| } |
| |
| /* The condition is an assertion. Call match() to evaluate it - setting |
| the final argument TRUE causes it to stop at the end of an assertion. */ |
| |
| else |
| { |
| if (match(eptr, ecode+3, offset_top, md, ims, NULL, |
| match_condassert | match_isgroup)) |
| { |
| ecode += 3 + (ecode[4] << 8) + ecode[5]; |
| while (*ecode == OP_ALT) ecode += (ecode[1] << 8) + ecode[2]; |
| } |
| else ecode += (ecode[1] << 8) + ecode[2]; |
| return match(eptr, ecode+3, offset_top, md, ims, eptrb, match_isgroup); |
| } |
| /* Control never reaches here */ |
| |
| /* Skip over conditional reference or large extraction number data if |
| encountered. */ |
| |
| case OP_CREF: |
| case OP_BRANUMBER: |
| ecode += 3; |
| break; |
| |
| /* End of the pattern. If PCRE_NOTEMPTY is set, fail if we have matched |
| an empty string - recursion will then try other alternatives, if any. */ |
| |
| case OP_END: |
| if (md->notempty && eptr == md->start_match) return FALSE; |
| md->end_match_ptr = eptr; /* Record where we ended */ |
| md->end_offset_top = offset_top; /* and how many extracts were taken */ |
| return TRUE; |
| |
| /* Change option settings */ |
| |
| case OP_OPT: |
| ims = ecode[1]; |
| ecode += 2; |
| DPRINTF(("ims set to %02lx\n", ims)); |
| break; |
| |
| /* Assertion brackets. Check the alternative branches in turn - the |
| matching won't pass the KET for an assertion. If any one branch matches, |
| the assertion is true. Lookbehind assertions have an OP_REVERSE item at the |
| start of each branch to move the current point backwards, so the code at |
| this level is identical to the lookahead case. */ |
| |
| case OP_ASSERT: |
| case OP_ASSERTBACK: |
| do |
| { |
| if (match(eptr, ecode+3, offset_top, md, ims, NULL, match_isgroup)) break; |
| ecode += (ecode[1] << 8) + ecode[2]; |
| } |
| while (*ecode == OP_ALT); |
| if (*ecode == OP_KET) return FALSE; |
| |
| /* If checking an assertion for a condition, return TRUE. */ |
| |
| if ((flags & match_condassert) != 0) return TRUE; |
| |
| /* Continue from after the assertion, updating the offsets high water |
| mark, since extracts may have been taken during the assertion. */ |
| |
| do ecode += (ecode[1] << 8) + ecode[2]; while (*ecode == OP_ALT); |
| ecode += 3; |
| offset_top = md->end_offset_top; |
| continue; |
| |
| /* Negative assertion: all branches must fail to match */ |
| |
| case OP_ASSERT_NOT: |
| case OP_ASSERTBACK_NOT: |
| do |
| { |
| if (match(eptr, ecode+3, offset_top, md, ims, NULL, match_isgroup)) |
| return FALSE; |
| ecode += (ecode[1] << 8) + ecode[2]; |
| } |
| while (*ecode == OP_ALT); |
| |
| if ((flags & match_condassert) != 0) return TRUE; |
| |
| ecode += 3; |
| continue; |
| |
| /* Move the subject pointer back. This occurs only at the start of |
| each branch of a lookbehind assertion. If we are too close to the start to |
| move back, this match function fails. When working with UTF-8 we move |
| back a number of characters, not bytes. */ |
| |
| case OP_REVERSE: |
| #ifdef SUPPORT_UTF8 |
| c = (ecode[1] << 8) + ecode[2]; |
| for (i = 0; i < c; i++) |
| { |
| eptr--; |
| BACKCHAR(eptr) |
| } |
| #else |
| eptr -= (ecode[1] << 8) + ecode[2]; |
| #endif |
| |
| if (eptr < md->start_subject) return FALSE; |
| ecode += 3; |
| break; |
| |
| /* Recursion matches the current regex, nested. If there are any capturing |
| brackets started but not finished, we have to save their starting points |
| and reinstate them after the recursion. However, we don't know how many |
| such there are (offset_top records the completed total) so we just have |
| to save all the potential data. There may be up to 99 such values, which |
| is a bit large to put on the stack, but using malloc for small numbers |
| seems expensive. As a compromise, the stack is used when there are fewer |
| than 16 values to store; otherwise malloc is used. A problem is what to do |
| if the malloc fails ... there is no way of returning to the top level with |
| an error. Save the top 15 values on the stack, and accept that the rest |
| may be wrong. */ |
| |
| case OP_RECURSE: |
| { |
| BOOL rc; |
| int *save; |
| int stacksave[15]; |
| |
| c = md->offset_max; |
| |
| if (c < 16) save = stacksave; else |
| { |
| save = (int *)(pcre_malloc)((c+1) * sizeof(int)); |
| if (save == NULL) |
| { |
| save = stacksave; |
| c = 15; |
| } |
| } |
| |
| for (i = 1; i <= c; i++) |
| save[i] = md->offset_vector[md->offset_end - i]; |
| rc = match(eptr, md->start_pattern, offset_top, md, ims, eptrb, |
| match_isgroup); |
| for (i = 1; i <= c; i++) |
| md->offset_vector[md->offset_end - i] = save[i]; |
| if (save != stacksave) (pcre_free)(save); |
| if (!rc) return FALSE; |
| |
| /* In case the recursion has set more capturing values, save the final |
| number, then move along the subject till after the recursive match, |
| and advance one byte in the pattern code. */ |
| |
| offset_top = md->end_offset_top; |
| eptr = md->end_match_ptr; |
| ecode++; |
| } |
| break; |
| |
| /* "Once" brackets are like assertion brackets except that after a match, |
| the point in the subject string is not moved back. Thus there can never be |
| a move back into the brackets. Check the alternative branches in turn - the |
| matching won't pass the KET for this kind of subpattern. If any one branch |
| matches, we carry on as at the end of a normal bracket, leaving the subject |
| pointer. */ |
| |
| case OP_ONCE: |
| { |
| const uschar *prev = ecode; |
| const ichar *saved_eptr = eptr; |
| |
| do |
| { |
| if (match(eptr, ecode+3, offset_top, md, ims, eptrb, match_isgroup)) |
| break; |
| ecode += (ecode[1] << 8) + ecode[2]; |
| } |
| while (*ecode == OP_ALT); |
| |
| /* If hit the end of the group (which could be repeated), fail */ |
| |
| if (*ecode != OP_ONCE && *ecode != OP_ALT) return FALSE; |
| |
| /* Continue as from after the assertion, updating the offsets high water |
| mark, since extracts may have been taken. */ |
| |
| do ecode += (ecode[1] << 8) + ecode[2]; while (*ecode == OP_ALT); |
| |
| offset_top = md->end_offset_top; |
| eptr = md->end_match_ptr; |
| |
| /* For a non-repeating ket, just continue at this level. This also |
| happens for a repeating ket if no characters were matched in the group. |
| This is the forcible breaking of infinite loops as implemented in Perl |
| 5.005. If there is an options reset, it will get obeyed in the normal |
| course of events. */ |
| |
| if (*ecode == OP_KET || eptr == saved_eptr) |
| { |
| ecode += 3; |
| break; |
| } |
| |
| /* The repeating kets try the rest of the pattern or restart from the |
| preceding bracket, in the appropriate order. We need to reset any options |
| that changed within the bracket before re-running it, so check the next |
| opcode. */ |
| |
| if (ecode[3] == OP_OPT) |
| { |
| ims = (ims & ~PCRE_IMS) | ecode[4]; |
| DPRINTF(("ims set to %02lx at group repeat\n", ims)); |
| } |
| |
| if (*ecode == OP_KETRMIN) |
| { |
| if (match(eptr, ecode+3, offset_top, md, ims, eptrb, 0) || |
| match(eptr, prev, offset_top, md, ims, eptrb, match_isgroup)) |
| return TRUE; |
| } |
| else /* OP_KETRMAX */ |
| { |
| if (match(eptr, prev, offset_top, md, ims, eptrb, match_isgroup) || |
| match(eptr, ecode+3, offset_top, md, ims, eptrb, 0)) return TRUE; |
| } |
| } |
| return FALSE; |
| |
| /* An alternation is the end of a branch; scan along to find the end of the |
| bracketed group and go to there. */ |
| |
| case OP_ALT: |
| do ecode += (ecode[1] << 8) + ecode[2]; while (*ecode == OP_ALT); |
| break; |
| |
| /* BRAZERO and BRAMINZERO occur just before a bracket group, indicating |
| that it may occur zero times. It may repeat infinitely, or not at all - |
| i.e. it could be ()* or ()? in the pattern. Brackets with fixed upper |
| repeat limits are compiled as a number of copies, with the optional ones |
| preceded by BRAZERO or BRAMINZERO. */ |
| |
| case OP_BRAZERO: |
| { |
| const uschar *next = ecode+1; |
| if (match(eptr, next, offset_top, md, ims, eptrb, match_isgroup)) |
| return TRUE; |
| do next += (next[1] << 8) + next[2]; while (*next == OP_ALT); |
| ecode = next + 3; |
| } |
| break; |
| |
| case OP_BRAMINZERO: |
| { |
| const uschar *next = ecode+1; |
| do next += (next[1] << 8) + next[2]; while (*next == OP_ALT); |
| if (match(eptr, next+3, offset_top, md, ims, eptrb, match_isgroup)) |
| return TRUE; |
| ecode++; |
| } |
| break; |
| |
| /* End of a group, repeated or non-repeating. If we are at the end of |
| an assertion "group", stop matching and return TRUE, but record the |
| current high water mark for use by positive assertions. Do this also |
| for the "once" (not-backup up) groups. */ |
| |
| case OP_KET: |
| case OP_KETRMIN: |
| case OP_KETRMAX: |
| { |
| const uschar *prev = ecode - (ecode[1] << 8) - ecode[2]; |
| const ichar *saved_eptr = eptrb->saved_eptr; |
| |
| eptrb = eptrb->prev; /* Back up the stack of bracket start pointers */ |
| |
| if (*prev == OP_ASSERT || *prev == OP_ASSERT_NOT || |
| *prev == OP_ASSERTBACK || *prev == OP_ASSERTBACK_NOT || |
| *prev == OP_ONCE) |
| { |
| md->end_match_ptr = eptr; /* For ONCE */ |
| md->end_offset_top = offset_top; |
| return TRUE; |
| } |
| |
| /* In all other cases except a conditional group we have to check the |
| group number back at the start and if necessary complete handling an |
| extraction by setting the offsets and bumping the high water mark. */ |
| |
| if (*prev != OP_COND) |
| { |
| int offset; |
| int number = *prev - OP_BRA; |
| |
| /* For extended extraction brackets (large number), we have to fish out |
| the number from a dummy opcode at the start. */ |
| |
| if (number > EXTRACT_BASIC_MAX) number = (prev[4] << 8) | prev[5]; |
| offset = number << 1; |
| |
| #ifdef DEBUG |
| printf("end bracket %d", number); |
| printf("\n"); |
| #endif |
| |
| if (number > 0) |
| { |
| if (offset >= md->offset_max) md->offset_overflow = TRUE; else |
| { |
| md->offset_vector[offset] = |
| md->offset_vector[md->offset_end - number]; |
| md->offset_vector[offset+1] = eptr - md->start_subject; |
| if (offset_top <= offset) offset_top = offset + 2; |
| } |
| } |
| } |
| |
| /* Reset the value of the ims flags, in case they got changed during |
| the group. */ |
| |
| ims = original_ims; |
| DPRINTF(("ims reset to %02lx\n", ims)); |
| |
| /* For a non-repeating ket, just continue at this level. This also |
| happens for a repeating ket if no characters were matched in the group. |
| This is the forcible breaking of infinite loops as implemented in Perl |
| 5.005. If there is an options reset, it will get obeyed in the normal |
| course of events. */ |
| |
| if (*ecode == OP_KET || eptr == saved_eptr) |
| { |
| ecode += 3; |
| break; |
| } |
| |
| /* The repeating kets try the rest of the pattern or restart from the |
| preceding bracket, in the appropriate order. */ |
| |
| if (*ecode == OP_KETRMIN) |
| { |
| if (match(eptr, ecode+3, offset_top, md, ims, eptrb, 0) || |
| match(eptr, prev, offset_top, md, ims, eptrb, match_isgroup)) |
| return TRUE; |
| } |
| else /* OP_KETRMAX */ |
| { |
| if (match(eptr, prev, offset_top, md, ims, eptrb, match_isgroup) || |
| match(eptr, ecode+3, offset_top, md, ims, eptrb, 0)) return TRUE; |
| } |
| } |
| return FALSE; |
| |
| /* Start of subject unless notbol, or after internal newline if multiline */ |
| |
| case OP_CIRC: |
| if (md->notbol && eptr == md->start_subject) return FALSE; |
| if ((ims & PCRE_MULTILINE) != 0) |
| { |
| if (eptr != md->start_subject && eptr[-1] != NEWLINE) return FALSE; |
| ecode++; |
| break; |
| } |
| /* ... else fall through */ |
| |
| /* Start of subject assertion */ |
| |
| case OP_SOD: |
| if (eptr != md->start_subject) return FALSE; |
| ecode++; |
| break; |
| |
| /* Assert before internal newline if multiline, or before a terminating |
| newline unless endonly is set, else end of subject unless noteol is set. */ |
| |
| case OP_DOLL: |
| if ((ims & PCRE_MULTILINE) != 0) |
| { |
| if (eptr < md->end_subject) { if (*eptr != NEWLINE) return FALSE; } |
| else { if (md->noteol) return FALSE; } |
| ecode++; |
| break; |
| } |
| else |
| { |
| if (md->noteol) return FALSE; |
| if (!md->endonly) |
| { |
| if (eptr < md->end_subject - 1 || |
| (eptr == md->end_subject - 1 && *eptr != NEWLINE)) return FALSE; |
| |
| ecode++; |
| break; |
| } |
| } |
| /* ... else fall through */ |
| |
| /* End of subject assertion (\z) */ |
| |
| case OP_EOD: |
| if (eptr < md->end_subject) return FALSE; |
| ecode++; |
| break; |
| |
| /* End of subject or ending \n assertion (\Z) */ |
| |
| case OP_EODN: |
| if (eptr < md->end_subject - 1 || |
| (eptr == md->end_subject - 1 && *eptr != NEWLINE)) return FALSE; |
| ecode++; |
| break; |
| |
| /* Word boundary assertions */ |
| |
| case OP_NOT_WORD_BOUNDARY: |
| case OP_WORD_BOUNDARY: |
| { |
| BOOL prev_is_word = (eptr != md->start_subject) && |
| ((md->ctypes[eptr[-1]] & ctype_word) != 0); |
| BOOL cur_is_word = (eptr < md->end_subject) && |
| ((md->ctypes[*eptr] & ctype_word) != 0); |
| if ((*ecode++ == OP_WORD_BOUNDARY)? |
| cur_is_word == prev_is_word : cur_is_word != prev_is_word) |
| return FALSE; |
| } |
| break; |
| |
| /* Match a single character type; inline for speed */ |
| |
| case OP_ANY: |
| if ((ims & PCRE_DOTALL) == 0 && eptr < md->end_subject && *eptr == NEWLINE) |
| return FALSE; |
| if (eptr++ >= md->end_subject) return FALSE; |
| #ifdef SUPPORT_UTF8 |
| if (md->utf8) |
| while (eptr < md->end_subject && ISMIDCHAR(*eptr)) eptr++; |
| #endif |
| ecode++; |
| break; |
| |
| case OP_NOT_DIGIT: |
| if (eptr >= md->end_subject || |
| (md->ctypes[*eptr++] & ctype_digit) != 0) |
| return FALSE; |
| ecode++; |
| break; |
| |
| case OP_DIGIT: |
| if (eptr >= md->end_subject || |
| (md->ctypes[*eptr++] & ctype_digit) == 0) |
| return FALSE; |
| ecode++; |
| break; |
| |
| case OP_NOT_WHITESPACE: |
| if (eptr >= md->end_subject || |
| (md->ctypes[*eptr++] & ctype_space) != 0) |
| return FALSE; |
| ecode++; |
| break; |
| |
| case OP_WHITESPACE: |
| if (eptr >= md->end_subject || |
| (md->ctypes[*eptr++] & ctype_space) == 0) |
| return FALSE; |
| ecode++; |
| break; |
| |
| case OP_NOT_WORDCHAR: |
| if (eptr >= md->end_subject || |
| (md->ctypes[*eptr++] & ctype_word) != 0) |
| return FALSE; |
| ecode++; |
| break; |
| |
| case OP_WORDCHAR: |
| if (eptr >= md->end_subject || |
| (md->ctypes[*eptr++] & ctype_word) == 0) |
| return FALSE; |
| ecode++; |
| break; |
| |
| /* Match a back reference, possibly repeatedly. Look past the end of the |
| item to see if there is repeat information following. The code is similar |
| to that for character classes, but repeated for efficiency. Then obey |
| similar code to character type repeats - written out again for speed. |
| However, if the referenced string is the empty string, always treat |
| it as matched, any number of times (otherwise there could be infinite |
| loops). */ |
| |
| case OP_REF: |
| { |
| int length; |
| int offset = (ecode[1] << 9) | (ecode[2] << 1); /* Doubled ref number */ |
| ecode += 3; /* Advance past item */ |
| |
| /* If the reference is unset, set the length to be longer than the amount |
| of subject left; this ensures that every attempt at a match fails. We |
| can't just fail here, because of the possibility of quantifiers with zero |
| minima. */ |
| |
| length = (offset >= offset_top || md->offset_vector[offset] < 0)? |
| md->end_subject - eptr + 1 : |
| md->offset_vector[offset+1] - md->offset_vector[offset]; |
| |
| /* Set up for repetition, or handle the non-repeated case */ |
| |
| switch (*ecode) |
| { |
| case OP_CRSTAR: |
| case OP_CRMINSTAR: |
| case OP_CRPLUS: |
| case OP_CRMINPLUS: |
| case OP_CRQUERY: |
| case OP_CRMINQUERY: |
| c = *ecode++ - OP_CRSTAR; |
| minimize = (c & 1) != 0; |
| min = rep_min[c]; /* Pick up values from tables; */ |
| max = rep_max[c]; /* zero for max => infinity */ |
| if (max == 0) max = INT_MAX; |
| break; |
| |
| case OP_CRRANGE: |
| case OP_CRMINRANGE: |
| minimize = (*ecode == OP_CRMINRANGE); |
| min = (ecode[1] << 8) + ecode[2]; |
| max = (ecode[3] << 8) + ecode[4]; |
| if (max == 0) max = INT_MAX; |
| ecode += 5; |
| break; |
| |
| default: /* No repeat follows */ |
| if (!match_ref(offset, eptr, length, md, ims)) return FALSE; |
| eptr += length; |
| continue; /* With the main loop */ |
| } |
| |
| /* If the length of the reference is zero, just continue with the |
| main loop. */ |
| |
| if (length == 0) continue; |
| |
| /* First, ensure the minimum number of matches are present. We get back |
| the length of the reference string explicitly rather than passing the |
| address of eptr, so that eptr can be a register variable. */ |
| |
| for (i = 1; i <= min; i++) |
| { |
| if (!match_ref(offset, eptr, length, md, ims)) return FALSE; |
| eptr += length; |
| } |
| |
| /* If min = max, continue at the same level without recursion. |
| They are not both allowed to be zero. */ |
| |
| if (min == max) continue; |
| |
| /* If minimizing, keep trying and advancing the pointer */ |
| |
| if (minimize) |
| { |
| for (i = min;; i++) |
| { |
| if (match(eptr, ecode, offset_top, md, ims, eptrb, 0)) |
| return TRUE; |
| if (i >= max || !match_ref(offset, eptr, length, md, ims)) |
| return FALSE; |
| eptr += length; |
| } |
| /* Control never gets here */ |
| } |
| |
| /* If maximizing, find the longest string and work backwards */ |
| |
| else |
| { |
| const ichar *pp = eptr; |
| for (i = min; i < max; i++) |
| { |
| if (!match_ref(offset, eptr, length, md, ims)) break; |
| eptr += length; |
| } |
| while (eptr >= pp) |
| { |
| if (match(eptr, ecode, offset_top, md, ims, eptrb, 0)) |
| return TRUE; |
| eptr -= length; |
| } |
| return FALSE; |
| } |
| } |
| /* Control never gets here */ |
| |
| |
| |
| /* Match a character class, possibly repeatedly. Look past the end of the |
| item to see if there is repeat information following. Then obey similar |
| code to character type repeats - written out again for speed. */ |
| |
| case OP_CLASS: |
| { |
| const uschar *data = ecode + 1; /* Save for matching */ |
| ecode += 33; /* Advance past the item */ |
| |
| switch (*ecode) |
| { |
| case OP_CRSTAR: |
| case OP_CRMINSTAR: |
| case OP_CRPLUS: |
| case OP_CRMINPLUS: |
| case OP_CRQUERY: |
| case OP_CRMINQUERY: |
| c = *ecode++ - OP_CRSTAR; |
| minimize = (c & 1) != 0; |
| min = rep_min[c]; /* Pick up values from tables; */ |
| max = rep_max[c]; /* zero for max => infinity */ |
| if (max == 0) max = INT_MAX; |
| break; |
| |
| case OP_CRRANGE: |
| case OP_CRMINRANGE: |
| minimize = (*ecode == OP_CRMINRANGE); |
| min = (ecode[1] << 8) + ecode[2]; |
| max = (ecode[3] << 8) + ecode[4]; |
| if (max == 0) max = INT_MAX; |
| ecode += 5; |
| break; |
| |
| default: /* No repeat follows */ |
| min = max = 1; |
| break; |
| } |
| |
| /* First, ensure the minimum number of matches are present. */ |
| |
| for (i = 1; i <= min; i++) |
| { |
| if (eptr >= md->end_subject) return FALSE; |
| GETCHARINC(c, eptr) /* Get character; increment eptr */ |
| |
| #ifdef SUPPORT_UTF8 |
| /* We do not yet support class members > 255 */ |
| if (c > 255) return FALSE; |
| #endif |
| |
| if ((data[c/8] & (1 << (c&7))) != 0) continue; |
| return FALSE; |
| } |
| |
| /* If max == min we can continue with the main loop without the |
| need to recurse. */ |
| |
| if (min == max) continue; |
| |
| /* If minimizing, keep testing the rest of the expression and advancing |
| the pointer while it matches the class. */ |
| |
| if (minimize) |
| { |
| for (i = min;; i++) |
| { |
| if (match(eptr, ecode, offset_top, md, ims, eptrb, 0)) |
| return TRUE; |
| if (i >= max || eptr >= md->end_subject) return FALSE; |
| GETCHARINC(c, eptr) /* Get character; increment eptr */ |
| |
| #ifdef SUPPORT_UTF8 |
| /* We do not yet support class members > 255 */ |
| if (c > 255) return FALSE; |
| #endif |
| if ((data[c/8] & (1 << (c&7))) != 0) continue; |
| return FALSE; |
| } |
| /* Control never gets here */ |
| } |
| |
| /* If maximizing, find the longest possible run, then work backwards. */ |
| |
| else |
| { |
| const ichar *pp = eptr; |
| int len = 1; |
| for (i = min; i < max; i++) |
| { |
| if (eptr >= md->end_subject) break; |
| GETCHARLEN(c, eptr, len) /* Get character, set length if UTF-8 */ |
| |
| #ifdef SUPPORT_UTF8 |
| /* We do not yet support class members > 255 */ |
| if (c > 255) break; |
| #endif |
| if ((data[c/8] & (1 << (c&7))) == 0) break; |
| eptr += len; |
| } |
| |
| while (eptr >= pp) |
| { |
| if (match(eptr--, ecode, offset_top, md, ims, eptrb, 0)) |
| return TRUE; |
| |
| #ifdef SUPPORT_UTF8 |
| BACKCHAR(eptr) |
| #endif |
| } |
| return FALSE; |
| } |
| } |
| /* Control never gets here */ |
| |
| /* Match a run of characters */ |
| |
| case OP_CHARS: |
| { |
| register int length = ecode[1]; |
| ecode += 2; |
| |
| #ifdef DEBUG /* Sigh. Some compilers never learn. */ |
| if (eptr >= md->end_subject) |
| printf("matching subject <null> against pattern "); |
| else |
| { |
| printf("matching subject "); |
| pchars(eptr, length, TRUE, md); |
| printf(" against pattern "); |
| } |
| pchars(ecode, length, FALSE, md); |
| printf("\n"); |
| #endif |
| |
| if (length > md->end_subject - eptr) return FALSE; |
| if ((ims & PCRE_CASELESS) != 0) |
| { |
| while (length-- > 0) |
| { |
| #if PCRE_UTF16 |
| ichar c1 = (ecode[0] << 8) | ecode[1]; |
| ecode += 2; |
| #else |
| ichar c1 = *ecode++; |
| #endif |
| ichar c2 = *eptr++; |
| if (MAPCHAR(md->lcc, c1) != MAPCHAR(md->lcc, c2)) |
| return FALSE; |
| } |
| } |
| else |
| { |
| while (length-- > 0) |
| { |
| #if PCRE_UTF16 |
| int c = (ecode[0] << 8) | ecode[1]; |
| ecode += 2; |
| #else |
| int c = *ecode++; |
| #endif |
| if (c != *eptr++) return FALSE; |
| } |
| } |
| } |
| break; |
| |
| /* Match a single character repeatedly; different opcodes share code. */ |
| |
| case OP_EXACT: |
| min = max = (ecode[1] << 8) + ecode[2]; |
| ecode += 3; |
| goto REPEATCHAR; |
| |
| case OP_UPTO: |
| case OP_MINUPTO: |
| min = 0; |
| max = (ecode[1] << 8) + ecode[2]; |
| minimize = *ecode == OP_MINUPTO; |
| ecode += 3; |
| goto REPEATCHAR; |
| |
| case OP_STAR: |
| case OP_MINSTAR: |
| case OP_PLUS: |
| case OP_MINPLUS: |
| case OP_QUERY: |
| case OP_MINQUERY: |
| c = *ecode++ - OP_STAR; |
| minimize = (c & 1) != 0; |
| min = rep_min[c]; /* Pick up values from tables; */ |
| max = rep_max[c]; /* zero for max => infinity */ |
| if (max == 0) max = INT_MAX; |
| |
| /* Common code for all repeated single-character matches. We can give |
| up quickly if there are fewer than the minimum number of characters left in |
| the subject. */ |
| |
| REPEATCHAR: |
| if (min > md->end_subject - eptr) return FALSE; |
| #if PCRE_UTF16 |
| c = (ecode[0] << 8) | ecode[1]; |
| ecode += 2; |
| #else |
| c = *ecode++; |
| #endif |
| |
| /* The code is duplicated for the caseless and caseful cases, for speed, |
| since matching characters is likely to be quite common. First, ensure the |
| minimum number of matches are present. If min = max, continue at the same |
| level without recursing. Otherwise, if minimizing, keep trying the rest of |
| the expression and advancing one matching character if failing, up to the |
| maximum. Alternatively, if maximizing, find the maximum number of |
| characters and work backwards. */ |
| |
| DPRINTF(("matching %c{%d,%d} against subject %.*s\n", c, min, max, |
| max, eptr)); |
| |
| if ((ims & PCRE_CASELESS) != 0) |
| { |
| c = MAPCHAR(md->lcc, c); |
| for (i = 1; i <= min; i++) |
| { |
| ichar c2 = *eptr++; |
| if (c != MAPCHAR(md->lcc, c2)) return FALSE; |
| } |
| if (min == max) continue; |
| if (minimize) |
| { |
| for (i = min;; i++) |
| { |
| if (match(eptr, ecode, offset_top, md, ims, eptrb, 0)) |
| return TRUE; |
| if (i >= max || eptr >= md->end_subject) |
| return FALSE; |
| ichar c2 = *eptr++; |
| if (c != MAPCHAR(md->lcc, c2)) |
| return FALSE; |
| } |
| /* Control never gets here */ |
| } |
| else |
| { |
| const ichar *pp = eptr; |
| for (i = min; i < max; i++) |
| { |
| if (eptr >= md->end_subject || c != MAPCHAR(md->lcc, *eptr)) break; |
| eptr++; |
| } |
| while (eptr >= pp) |
| if (match(eptr--, ecode, offset_top, md, ims, eptrb, 0)) |
| return TRUE; |
| return FALSE; |
| } |
| /* Control never gets here */ |
| } |
| |
| /* Caseful comparisons */ |
| |
| else |
| { |
| for (i = 1; i <= min; i++) if (c != *eptr++) return FALSE; |
| if (min == max) continue; |
| if (minimize) |
| { |
| for (i = min;; i++) |
| { |
| if (match(eptr, ecode, offset_top, md, ims, eptrb, 0)) |
| return TRUE; |
| if (i >= max || eptr >= md->end_subject || c != *eptr++) return FALSE; |
| } |
| /* Control never gets here */ |
| } |
| else |
| { |
| const ichar *pp = eptr; |
| for (i = min; i < max; i++) |
| { |
| if (eptr >= md->end_subject || c != *eptr) break; |
| eptr++; |
| } |
| while (eptr >= pp) |
| if (match(eptr--, ecode, offset_top, md, ims, eptrb, 0)) |
| return TRUE; |
| return FALSE; |
| } |
| } |
| /* Control never gets here */ |
| |
| /* Match a negated single character */ |
| |
| case OP_NOT: { |
| if (eptr >= md->end_subject) return FALSE; |
| #if PCRE_UTF16 |
| int c = (ecode[1] << 8) | ecode[2]; |
| ecode += 3; |
| #else |
| ecode++; |
| int c = *ecode++; |
| #endif |
| if ((ims & PCRE_CASELESS) != 0) |
| { |
| ichar c2 = *eptr++; |
| if (MAPCHAR(md->lcc, c) == MAPCHAR(md->lcc, c2)) return FALSE; |
| } |
| else |
| { |
| if (c == *eptr++) return FALSE; |
| } |
| } |
| break; |
| |
| /* Match a negated single character repeatedly. This is almost a repeat of |
| the code for a repeated single character, but I haven't found a nice way of |
| commoning these up that doesn't require a test of the positive/negative |
| option for each character match. Maybe that wouldn't add very much to the |
| time taken, but character matching *is* what this is all about... */ |
| |
| case OP_NOTEXACT: |
| min = max = (ecode[1] << 8) + ecode[2]; |
| ecode += 3; |
| goto REPEATNOTCHAR; |
| |
| case OP_NOTUPTO: |
| case OP_NOTMINUPTO: |
| min = 0; |
| max = (ecode[1] << 8) + ecode[2]; |
| minimize = *ecode == OP_NOTMINUPTO; |
| ecode += 3; |
| goto REPEATNOTCHAR; |
| |
| case OP_NOTSTAR: |
| case OP_NOTMINSTAR: |
| case OP_NOTPLUS: |
| case OP_NOTMINPLUS: |
| case OP_NOTQUERY: |
| case OP_NOTMINQUERY: |
| c = *ecode++ - OP_NOTSTAR; |
| minimize = (c & 1) != 0; |
| min = rep_min[c]; /* Pick up values from tables; */ |
| max = rep_max[c]; /* zero for max => infinity */ |
| if (max == 0) max = INT_MAX; |
| |
| /* Common code for all repeated single-character matches. We can give |
| up quickly if there are fewer than the minimum number of characters left in |
| the subject. */ |
| |
| REPEATNOTCHAR: |
| if (min > md->end_subject - eptr) return FALSE; |
| #if PCRE_UTF16 |
| c = (ecode[0] << 8) | ecode[1]; |
| ecode += 2; |
| #else |
| c = *ecode++; |
| #endif |
| |
| /* The code is duplicated for the caseless and caseful cases, for speed, |
| since matching characters is likely to be quite common. First, ensure the |
| minimum number of matches are present. If min = max, continue at the same |
| level without recursing. Otherwise, if minimizing, keep trying the rest of |
| the expression and advancing one matching character if failing, up to the |
| maximum. Alternatively, if maximizing, find the maximum number of |
| characters and work backwards. */ |
| |
| DPRINTF(("negative matching %c{%d,%d} against subject %.*s\n", c, min, max, |
| max, eptr)); |
| |
| if ((ims & PCRE_CASELESS) != 0) |
| { |
| c = MAPCHAR(md->lcc, c); |
| for (i = 1; i <= min; i++) |
| { |
| ichar c2 = *eptr++; |
| if (c == MAPCHAR(md->lcc, c2)) return FALSE; |
| } |
| if (min == max) continue; |
| if (minimize) |
| { |
| for (i = min;; i++) |
| { |
| if (match(eptr, ecode, offset_top, md, ims, eptrb, 0)) |
| return TRUE; |
| if (i >= max || eptr >= md->end_subject) |
| return FALSE; |
| ichar c2 = *eptr++; |
| if (c == MAPCHAR(md->lcc, c2)) |
| return FALSE; |
| } |
| /* Control never gets here */ |
| } |
| else |
| { |
| const ichar *pp = eptr; |
| for (i = min; i < max; i++) |
| { |
| if (eptr >= md->end_subject || c == MAPCHAR(md->lcc, *eptr)) break; |
| eptr++; |
| } |
| while (eptr >= pp) |
| if (match(eptr--, ecode, offset_top, md, ims, eptrb, 0)) |
| return TRUE; |
| return FALSE; |
| } |
| /* Control never gets here */ |
| } |
| |
| /* Caseful comparisons */ |
| |
| else |
| { |
| for (i = 1; i <= min; i++) if (c == *eptr++) return FALSE; |
| if (min == max) continue; |
| if (minimize) |
| { |
| for (i = min;; i++) |
| { |
| if (match(eptr, ecode, offset_top, md, ims, eptrb, 0)) |
| return TRUE; |
| if (i >= max || eptr >= md->end_subject || c == *eptr++) return FALSE; |
| } |
| /* Control never gets here */ |
| } |
| else |
| { |
| const ichar *pp = eptr; |
| for (i = min; i < max; i++) |
| { |
| if (eptr >= md->end_subject || c == *eptr) break; |
| eptr++; |
| } |
| while (eptr >= pp) |
| if (match(eptr--, ecode, offset_top, md, ims, eptrb, 0)) |
| return TRUE; |
| return FALSE; |
| } |
| } |
| /* Control never gets here */ |
| |
| /* Match a single character type repeatedly; several different opcodes |
| share code. This is very similar to the code for single characters, but we |
| repeat it in the interests of efficiency. */ |
| |
| case OP_TYPEEXACT: |
| min = max = (ecode[1] << 8) + ecode[2]; |
| minimize = TRUE; |
| ecode += 3; |
| goto REPEATTYPE; |
| |
| case OP_TYPEUPTO: |
| case OP_TYPEMINUPTO: |
| min = 0; |
| max = (ecode[1] << 8) + ecode[2]; |
| minimize = *ecode == OP_TYPEMINUPTO; |
| ecode += 3; |
| goto REPEATTYPE; |
| |
| case OP_TYPESTAR: |
| case OP_TYPEMINSTAR: |
| case OP_TYPEPLUS: |
| case OP_TYPEMINPLUS: |
| case OP_TYPEQUERY: |
| case OP_TYPEMINQUERY: |
| c = *ecode++ - OP_TYPESTAR; |
| minimize = (c & 1) != 0; |
| min = rep_min[c]; /* Pick up values from tables; */ |
| max = rep_max[c]; /* zero for max => infinity */ |
| if (max == 0) max = INT_MAX; |
| |
| /* Common code for all repeated single character type matches */ |
| |
| REPEATTYPE: |
| ctype = *ecode++; /* Code for the character type */ |
| |
| /* First, ensure the minimum number of matches are present. Use inline |
| code for maximizing the speed, and do the type test once at the start |
| (i.e. keep it out of the loop). Also we can test that there are at least |
| the minimum number of bytes before we start, except when doing '.' in |
| UTF8 mode. Leave the test in in all cases; in the special case we have |
| to test after each character. */ |
| |
| if (min > md->end_subject - eptr) return FALSE; |
| if (min > 0) switch(ctype) |
| { |
| case OP_ANY: |
| #ifdef SUPPORT_UTF8 |
| if (md->utf8) |
| { |
| for (i = 1; i <= min; i++) |
| { |
| if (eptr >= md->end_subject || |
| (*eptr++ == NEWLINE && (ims & PCRE_DOTALL) == 0)) |
| return FALSE; |
| while (eptr < md->end_subject && ISMIDCHAR(*eptr)) eptr++; |
| } |
| break; |
| } |
| #endif |
| /* Non-UTF8 can be faster */ |
| if ((ims & PCRE_DOTALL) == 0) |
| { for (i = 1; i <= min; i++) if (*eptr++ == NEWLINE) return FALSE; } |
| else eptr += min; |
| break; |
| |
| case OP_NOT_DIGIT: |
| for (i = 1; i <= min; i++) |
| if ((md->ctypes[*eptr++] & ctype_digit) != 0) return FALSE; |
| break; |
| |
| case OP_DIGIT: |
| for (i = 1; i <= min; i++) |
| if ((md->ctypes[*eptr++] & ctype_digit) == 0) return FALSE; |
| break; |
| |
| case OP_NOT_WHITESPACE: |
| for (i = 1; i <= min; i++) |
| if ((md->ctypes[*eptr++] & ctype_space) != 0) return FALSE; |
| break; |
| |
| case OP_WHITESPACE: |
| for (i = 1; i <= min; i++) |
| if ((md->ctypes[*eptr++] & ctype_space) == 0) return FALSE; |
| break; |
| |
| case OP_NOT_WORDCHAR: |
| for (i = 1; i <= min; i++) |
| if ((md->ctypes[*eptr++] & ctype_word) != 0) |
| return FALSE; |
| break; |
| |
| case OP_WORDCHAR: |
| for (i = 1; i <= min; i++) |
| if ((md->ctypes[*eptr++] & ctype_word) == 0) |
| return FALSE; |
| break; |
| } |
| |
| /* If min = max, continue at the same level without recursing */ |
| |
| if (min == max) continue; |
| |
| /* If minimizing, we have to test the rest of the pattern before each |
| subsequent match. */ |
| |
| if (minimize) |
| { |
| for (i = min;; i++) |
| { |
| if (match(eptr, ecode, offset_top, md, ims, eptrb, 0)) return TRUE; |
| if (i >= max || eptr >= md->end_subject) return FALSE; |
| |
| c = *eptr++; |
| switch(ctype) |
| { |
| case OP_ANY: |
| if ((ims & PCRE_DOTALL) == 0 && c == NEWLINE) return FALSE; |
| #ifdef SUPPORT_UTF8 |
| if (md->utf8) |
| while (eptr < md->end_subject && ISMIDCHAR(*eptr)) eptr++; |
| #endif |
| break; |
| |
| case OP_NOT_DIGIT: |
| if ((md->ctypes[c] & ctype_digit) != 0) return FALSE; |
| break; |
| |
| case OP_DIGIT: |
| if ((md->ctypes[c] & ctype_digit) == 0) return FALSE; |
| break; |
| |
| case OP_NOT_WHITESPACE: |
| if ((md->ctypes[c] & ctype_space) != 0) return FALSE; |
| break; |
| |
| case OP_WHITESPACE: |
| if ((md->ctypes[c] & ctype_space) == 0) return FALSE; |
| break; |
| |
| case OP_NOT_WORDCHAR: |
| if ((md->ctypes[c] & ctype_word) != 0) return FALSE; |
| break; |
| |
| case OP_WORDCHAR: |
| if ((md->ctypes[c] & ctype_word) == 0) return FALSE; |
| break; |
| } |
| } |
| /* Control never gets here */ |
| } |
| |
| /* If maximizing it is worth using inline code for speed, doing the type |
| test once at the start (i.e. keep it out of the loop). */ |
| |
| else |
| { |
| const ichar *pp = eptr; |
| switch(ctype) |
| { |
| case OP_ANY: |
| |
| /* Special code is required for UTF8, but when the maximum is unlimited |
| we don't need it. */ |
| |
| #ifdef SUPPORT_UTF8 |
| if (md->utf8 && max < INT_MAX) |
| { |
| if ((ims & PCRE_DOTALL) == 0) |
| { |
| for (i = min; i < max; i++) |
| { |
| if (eptr >= md->end_subject || *eptr++ == NEWLINE) break; |
| while (eptr < md->end_subject && ISMIDCHAR(*eptr)) eptr++; |
| } |
| } |
| else |
| { |
| for (i = min; i < max; i++) |
| { |
| eptr++; |
| while (eptr < md->end_subject && ISMIDCHAR(*eptr)) eptr++; |
| } |
| } |
| break; |
| } |
| #endif |
| /* Non-UTF8 can be faster */ |
| if ((ims & PCRE_DOTALL) == 0) |
| { |
| for (i = min; i < max; i++) |
| { |
| if (eptr >= md->end_subject || *eptr == NEWLINE) break; |
| eptr++; |
| } |
| } |
| else |
| { |
| c = max - min; |
| if (c > md->end_subject - eptr) c = md->end_subject - eptr; |
| eptr += c; |
| } |
| break; |
| |
| case OP_NOT_DIGIT: |
| for (i = min; i < max; i++) |
| { |
| if (eptr >= md->end_subject || (md->ctypes[*eptr] & ctype_digit) != 0) |
| break; |
| eptr++; |
| } |
| break; |
| |
| case OP_DIGIT: |
| for (i = min; i < max; i++) |
| { |
| if (eptr >= md->end_subject || (md->ctypes[*eptr] & ctype_digit) == 0) |
| break; |
| eptr++; |
| } |
| break; |
| |
| case OP_NOT_WHITESPACE: |
| for (i = min; i < max; i++) |
| { |
| if (eptr >= md->end_subject || (md->ctypes[*eptr] & ctype_space) != 0) |
| break; |
| eptr++; |
| } |
| break; |
| |
| case OP_WHITESPACE: |
| for (i = min; i < max; i++) |
| { |
| if (eptr >= md->end_subject || (md->ctypes[*eptr] & ctype_space) == 0) |
| break; |
| eptr++; |
| } |
| break; |
| |
| case OP_NOT_WORDCHAR: |
| for (i = min; i < max; i++) |
| { |
| if (eptr >= md->end_subject || (md->ctypes[*eptr] & ctype_word) != 0) |
| break; |
| eptr++; |
| } |
| break; |
| |
| case OP_WORDCHAR: |
| for (i = min; i < max; i++) |
| { |
| if (eptr >= md->end_subject || (md->ctypes[*eptr] & ctype_word) == 0) |
| break; |
| eptr++; |
| } |
| break; |
| } |
| |
| while (eptr >= pp) |
| { |
| if (match(eptr--, ecode, offset_top, md, ims, eptrb, 0)) |
| return TRUE; |
| #ifdef SUPPORT_UTF8 |
| if (md->utf8) |
| while (eptr > pp && ISMIDCHAR(*eptr)) eptr--; |
| #endif |
| } |
| return FALSE; |
| } |
| /* Control never gets here */ |
| |
| /* There's been some horrible disaster. */ |
| |
| default: |
| DPRINTF(("Unknown opcode %d\n", *ecode)); |
| md->errorcode = PCRE_ERROR_UNKNOWN_NODE; |
| return FALSE; |
| } |
| |
| /* Do not stick any code in here without much thought; it is assumed |
| that "continue" in the code above comes out to here to repeat the main |
| loop. */ |
| |
| } /* End of main loop */ |
| /* Control never reaches here */ |
| } |
| |
| |
| |
| |
| /************************************************* |
| * Execute a Regular Expression * |
| *************************************************/ |
| |
| /* This function applies a compiled re to a subject string and picks out |
| portions of the string if it matches. Two elements in the vector are set for |
| each substring: the offsets to the start and end of the substring. |
| |
| Arguments: |
| external_re points to the compiled expression |
| external_extra points to "hints" from pcre_study() or is NULL |
| subject points to the subject string |
| length length of subject string (may contain binary zeros) |
| start_offset where to start in the subject string |
| options option bits |
| offsets points to a vector of ints to be filled in with offsets |
| offsetcount the number of elements in the vector |
| |
| Returns: > 0 => success; value is the number of elements filled in |
| = 0 => success, but offsets is not big enough |
| -1 => failed to match |
| < -1 => some kind of unexpected problem |
| */ |
| |
| int |
| pcre_exec(const pcre *external_re, const pcre_extra *external_extra, |
| const pcre_char *subject, int length, int start_offset, int options, int *offsets, |
| int offsetcount) |
| { |
| int resetcount, ocount; |
| int first_char = -1; |
| int req_char = -1; |
| int req_char2 = -1; |
| unsigned long int ims = 0; |
| match_data match_block; |
| const uschar *start_bits = NULL; |
| const ichar *start_match = (const ichar *)subject + start_offset; |
| const ichar *end_subject; |
| const ichar *req_char_ptr = start_match - 1; |
| const real_pcre *re = (const real_pcre *)external_re; |
| const real_pcre_extra *extra = (const real_pcre_extra *)external_extra; |
| BOOL using_temporary_offsets = FALSE; |
| BOOL anchored; |
| BOOL startline; |
| |
| if ((options & ~PUBLIC_EXEC_OPTIONS) != 0) return PCRE_ERROR_BADOPTION; |
| |
| if (re == NULL || subject == NULL || |
| (offsets == NULL && offsetcount > 0)) return PCRE_ERROR_NULL; |
| if (re->magic_number != MAGIC_NUMBER) return PCRE_ERROR_BADMAGIC; |
| |
| anchored = ((re->options | options) & PCRE_ANCHORED) != 0; |
| startline = (re->options & PCRE_STARTLINE) != 0; |
| |
| match_block.start_pattern = re->code; |
| match_block.start_subject = (const ichar *)subject; |
| match_block.end_subject = match_block.start_subject + length; |
| end_subject = match_block.end_subject; |
| |
| match_block.endonly = (re->options & PCRE_DOLLAR_ENDONLY) != 0; |
| match_block.utf8 = (re->options & PCRE_UTF8) != 0; |
| |
| match_block.notbol = (options & PCRE_NOTBOL) != 0; |
| match_block.noteol = (options & PCRE_NOTEOL) != 0; |
| match_block.notempty = (options & PCRE_NOTEMPTY) != 0; |
| |
| match_block.errorcode = PCRE_ERROR_NOMATCH; /* Default error */ |
| |
| match_block.lcc = re->tables + lcc_offset; |
| match_block.ctypes = re->tables + ctypes_offset; |
| |
| /* The ims options can vary during the matching as a result of the presence |
| of (?ims) items in the pattern. They are kept in a local variable so that |
| restoring at the exit of a group is easy. */ |
| |
| ims = re->options & (PCRE_CASELESS|PCRE_MULTILINE|PCRE_DOTALL); |
| |
| /* If the expression has got more back references than the offsets supplied can |
| hold, we get a temporary bit of working store to use during the matching. |
| Otherwise, we can use the vector supplied, rounding down its size to a multiple |
| of 3. */ |
| |
| ocount = offsetcount - (offsetcount % 3); |
| |
| if (re->top_backref > 0 && re->top_backref >= ocount/3) |
| { |
| ocount = re->top_backref * 3 + 3; |
| match_block.offset_vector = (int *)(pcre_malloc)(ocount * sizeof(int)); |
| if (match_block.offset_vector == NULL) return PCRE_ERROR_NOMEMORY; |
| using_temporary_offsets = TRUE; |
| DPRINTF(("Got memory to hold back references\n")); |
| } |
| else match_block.offset_vector = offsets; |
| |
| match_block.offset_end = ocount; |
| match_block.offset_max = (2*ocount)/3; |
| match_block.offset_overflow = FALSE; |
| |
| /* Compute the minimum number of offsets that we need to reset each time. Doing |
| this makes a huge difference to execution time when there aren't many brackets |
| in the pattern. */ |
| |
| resetcount = 2 + re->top_bracket * 2; |
| if (resetcount > offsetcount) resetcount = ocount; |
| |
| /* Reset the working variable associated with each extraction. These should |
| never be used unless previously set, but they get saved and restored, and so we |
| initialize them to avoid reading uninitialized locations. */ |
| |
| if (match_block.offset_vector != NULL) |
| { |
| register int *iptr = match_block.offset_vector + ocount; |
| register int *iend = iptr - resetcount/2 + 1; |
| while (--iptr >= iend) *iptr = -1; |
| } |
| |
| /* Set up the first character to match, if available. The first_char value is |
| never set for an anchored regular expression, but the anchoring may be forced |
| at run time, so we have to test for anchoring. The first char may be unset for |
| an unanchored pattern, of course. If there's no first char and the pattern was |
| studied, there may be a bitmap of possible first characters. */ |
| |
| if (!anchored) |
| { |
| if ((re->options & PCRE_FIRSTSET) != 0) |
| { |
| first_char = re->first_char; |
| if ((ims & PCRE_CASELESS) != 0) first_char = MAPCHAR(match_block.lcc, first_char); |
| } |
| else |
| if (!startline && extra != NULL && |
| (extra->options & PCRE_STUDY_MAPPED) != 0) |
| start_bits = extra->start_bits; |
| } |
| |
| /* For anchored or unanchored matches, there may be a "last known required |
| character" set. If the PCRE_CASELESS is set, implying that the match starts |
| caselessly, or if there are any changes of this flag within the regex, set up |
| both cases of the character. Otherwise set the two values the same, which will |
| avoid duplicate testing (which takes significant time). This covers the vast |
| majority of cases. It will be suboptimal when the case flag changes in a regex |
| and the required character in fact is caseful. */ |
| |
| if ((re->options & PCRE_REQCHSET) != 0) |
| { |
| req_char = re->req_char; |
| req_char2 = ((re->options & (PCRE_CASELESS | PCRE_ICHANGED)) != 0)? |
| ((const ichar *)(re->tables + fcc_offset))[req_char] : req_char; |
| } |
| |
| /* Loop for handling unanchored repeated matching attempts; for anchored regexs |
| the loop runs just once. */ |
| |
| do |
| { |
| int rc; |
| register int *iptr = match_block.offset_vector; |
| register int *iend = iptr + resetcount; |
| |
| /* Reset the maximum number of extractions we might see. */ |
| |
| while (iptr < iend) *iptr++ = -1; |
| |
| /* Advance to a unique first char if possible */ |
| |
| if (first_char >= 0) |
| { |
| if ((ims & PCRE_CASELESS) != 0) |
| while (start_match < end_subject && |
| MAPCHAR(match_block.lcc, *start_match) != first_char) |
| start_match++; |
| else |
| while (start_match < end_subject && *start_match != first_char) |
| start_match++; |
| } |
| |
| /* Or to just after \n for a multiline match if possible */ |
| |
| else if (startline) |
| { |
| if (start_match > match_block.start_subject + start_offset) |
| { |
| while (start_match < end_subject && start_match[-1] != NEWLINE) |
| start_match++; |
| } |
| } |
| |
| /* Or to a non-unique first char after study */ |
| |
| else if (start_bits != NULL) |
| { |
| while (start_match < end_subject) |
| { |
| register int c = *start_match; |
| if ((start_bits[c/8] & (1 << (c&7))) == 0) start_match++; else break; |
| } |
| } |
| |
| #ifdef DEBUG /* Sigh. Some compilers never learn. */ |
| printf(">>>> Match against: "); |
| pchars(start_match, end_subject - start_match, TRUE, &match_block); |
| printf("\n"); |
| #endif |
| |
| /* If req_char is set, we know that that character must appear in the subject |
| for the match to succeed. If the first character is set, req_char must be |
| later in the subject; otherwise the test starts at the match point. This |
| optimization can save a huge amount of backtracking in patterns with nested |
| unlimited repeats that aren't going to match. We don't know what the state of |
| case matching may be when this character is hit, so test for it in both its |
| cases if necessary. However, the different cased versions will not be set up |
| unless PCRE_CASELESS was given or the casing state changes within the regex. |
| Writing separate code makes it go faster, as does using an autoincrement and |
| backing off on a match. */ |
| |
| if (req_char >= 0) |
| { |
| register const ichar *p = start_match + ((first_char >= 0)? 1 : 0); |
| |
| /* We don't need to repeat the search if we haven't yet reached the |
| place we found it at last time. */ |
| |
| if (p > req_char_ptr) |
| { |
| /* Do a single test if no case difference is set up */ |
| |
| if (req_char == req_char2) |
| { |
| while (p < end_subject) |
| { |
| if (*p++ == req_char) { p--; break; } |
| } |
| } |
| |
| /* Otherwise test for either case */ |
| |
| else |
| { |
| while (p < end_subject) |
| { |
| register int pp = *p++; |
| if (pp == req_char || pp == req_char2) { p--; break; } |
| } |
| } |
| |
| /* If we can't find the required character, break the matching loop */ |
| |
| if (p >= end_subject) break; |
| |
| /* If we have found the required character, save the point where we |
| found it, so that we don't search again next time round the loop if |
| the start hasn't passed this character yet. */ |
| |
| req_char_ptr = p; |
| } |
| } |
| |
| /* When a match occurs, substrings will be set for all internal extractions; |
| we just need to set up the whole thing as substring 0 before returning. If |
| there were too many extractions, set the return code to zero. In the case |
| where we had to get some local store to hold offsets for backreferences, copy |
| those back references that we can. In this case there need not be overflow |
| if certain parts of the pattern were not used. */ |
| |
| match_block.start_match = start_match; |
| if (!match(start_match, re->code, 2, &match_block, ims, NULL, match_isgroup)) |
| continue; |
| |
| /* Copy the offset information from temporary store if necessary */ |
| |
| if (using_temporary_offsets) |
| { |
| if (offsetcount >= 4) |
| { |
| memcpy(offsets + 2, match_block.offset_vector + 2, |
| (offsetcount - 2) * sizeof(int)); |
| DPRINTF(("Copied offsets from temporary memory\n")); |
| } |
| if (match_block.end_offset_top > offsetcount) |
| match_block.offset_overflow = TRUE; |
| |
| DPRINTF(("Freeing temporary memory\n")); |
| (pcre_free)(match_block.offset_vector); |
| } |
| |
| rc = match_block.offset_overflow? 0 : match_block.end_offset_top/2; |
| |
| if (offsetcount < 2) rc = 0; else |
| { |
| offsets[0] = start_match - match_block.start_subject; |
| offsets[1] = match_block.end_match_ptr - match_block.start_subject; |
| } |
| |
| DPRINTF((">>>> returning %d\n", rc)); |
| return rc; |
| } |
| |
| /* This "while" is the end of the "do" above */ |
| |
| while (!anchored && |
| match_block.errorcode == PCRE_ERROR_NOMATCH && |
| start_match++ < end_subject); |
| |
| if (using_temporary_offsets) |
| { |
| DPRINTF(("Freeing temporary memory\n")); |
| (pcre_free)(match_block.offset_vector); |
| } |
| |
| DPRINTF((">>>> returning %d\n", match_block.errorcode)); |
| |
| return match_block.errorcode; |
| } |
| |
| /* End of pcre.c */ |