blob: 55834a68b6725bcb3cf9d748185bbdc01365bb52 [file] [log] [blame]
//
// Copyright 2016 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// FramebufferVk.cpp:
// Implements the class methods for FramebufferVk.
//
#include "libANGLE/renderer/vulkan/FramebufferVk.h"
#include <vulkan/vulkan.h>
#include <array>
#include "common/debug.h"
#include "libANGLE/Context.h"
#include "libANGLE/Display.h"
#include "libANGLE/formatutils.h"
#include "libANGLE/renderer/renderer_utils.h"
#include "libANGLE/renderer/vulkan/CommandGraph.h"
#include "libANGLE/renderer/vulkan/ContextVk.h"
#include "libANGLE/renderer/vulkan/DisplayVk.h"
#include "libANGLE/renderer/vulkan/RenderTargetVk.h"
#include "libANGLE/renderer/vulkan/RendererVk.h"
#include "libANGLE/renderer/vulkan/SurfaceVk.h"
#include "libANGLE/renderer/vulkan/vk_format_utils.h"
#include "libANGLE/trace.h"
namespace rx
{
namespace
{
// The value to assign an alpha channel that's emulated. The type is unsigned int, though it will
// automatically convert to the actual data type.
constexpr unsigned int kEmulatedAlphaValue = 1;
constexpr size_t kMinReadPixelsBufferSize = 128000;
// Alignment value to accommodate the largest known, for now, uncompressed Vulkan format
// VK_FORMAT_R64G64B64A64_SFLOAT, while supporting 3-component types such as
// VK_FORMAT_R16G16B16_SFLOAT.
constexpr size_t kReadPixelsBufferAlignment = 32 * 3;
// Clear values are only used when loadOp=Clear is set in clearWithRenderPassOp. When starting a
// new render pass, the clear value is set to an unlikely value (bright pink) to stand out better
// in case of a bug.
constexpr VkClearValue kUninitializedClearValue = {{{0.95, 0.05, 0.95, 0.95}}};
const gl::InternalFormat &GetReadAttachmentInfo(const gl::Context *context,
RenderTargetVk *renderTarget)
{
GLenum implFormat =
renderTarget->getImageFormat().actualImageFormat().fboImplementationInternalFormat;
return gl::GetSizedInternalFormatInfo(implFormat);
}
bool HasSrcBlitFeature(RendererVk *renderer, RenderTargetVk *srcRenderTarget)
{
const VkFormat srcFormat = srcRenderTarget->getImageFormat().vkImageFormat;
return renderer->hasImageFormatFeatureBits(srcFormat, VK_FORMAT_FEATURE_BLIT_SRC_BIT);
}
bool HasDstBlitFeature(RendererVk *renderer, RenderTargetVk *dstRenderTarget)
{
const VkFormat dstFormat = dstRenderTarget->getImageFormat().vkImageFormat;
return renderer->hasImageFormatFeatureBits(dstFormat, VK_FORMAT_FEATURE_BLIT_DST_BIT);
}
// Returns false if destination has any channel the source doesn't. This means that channel was
// emulated and using the Vulkan blit command would overwrite that emulated channel.
bool areSrcAndDstColorChannelsBlitCompatible(RenderTargetVk *srcRenderTarget,
RenderTargetVk *dstRenderTarget)
{
const angle::Format &srcFormat = srcRenderTarget->getImageFormat().intendedFormat();
const angle::Format &dstFormat = dstRenderTarget->getImageFormat().intendedFormat();
// Luminance/alpha formats are not renderable, so they can't have ended up in a framebuffer to
// participate in a blit.
ASSERT(!dstFormat.isLUMA() && !srcFormat.isLUMA());
// All color formats have the red channel.
ASSERT(dstFormat.redBits > 0 && srcFormat.redBits > 0);
return (dstFormat.greenBits > 0 || srcFormat.greenBits == 0) &&
(dstFormat.blueBits > 0 || srcFormat.blueBits == 0) &&
(dstFormat.alphaBits > 0 || srcFormat.alphaBits == 0);
}
bool areSrcAndDstDepthStencilChannelsBlitCompatible(RenderTargetVk *srcRenderTarget,
RenderTargetVk *dstRenderTarget)
{
const angle::Format &srcFormat = srcRenderTarget->getImageFormat().intendedFormat();
const angle::Format &dstFormat = dstRenderTarget->getImageFormat().intendedFormat();
return (dstFormat.depthBits > 0 || srcFormat.depthBits == 0) &&
(dstFormat.stencilBits > 0 || srcFormat.stencilBits == 0);
}
void SetEmulatedAlphaValue(const vk::Format &format, VkClearColorValue *value)
{
if (format.vkFormatIsInt)
{
if (format.vkFormatIsUnsigned)
{
value->uint32[3] = kEmulatedAlphaValue;
}
else
{
value->int32[3] = kEmulatedAlphaValue;
}
}
else
{
value->float32[3] = kEmulatedAlphaValue;
}
}
} // anonymous namespace
// static
FramebufferVk *FramebufferVk::CreateUserFBO(RendererVk *renderer, const gl::FramebufferState &state)
{
return new FramebufferVk(renderer, state, nullptr);
}
// static
FramebufferVk *FramebufferVk::CreateDefaultFBO(RendererVk *renderer,
const gl::FramebufferState &state,
WindowSurfaceVk *backbuffer)
{
return new FramebufferVk(renderer, state, backbuffer);
}
FramebufferVk::FramebufferVk(RendererVk *renderer,
const gl::FramebufferState &state,
WindowSurfaceVk *backbuffer)
: FramebufferImpl(state), mBackbuffer(backbuffer), mActiveColorComponents(0)
{
mReadPixelBuffer.init(renderer, VK_BUFFER_USAGE_TRANSFER_DST_BIT, kReadPixelsBufferAlignment,
kMinReadPixelsBufferSize, true);
}
FramebufferVk::~FramebufferVk() = default;
void FramebufferVk::destroy(const gl::Context *context)
{
ContextVk *contextVk = vk::GetImpl(context);
mFramebuffer.release(contextVk);
mReadPixelBuffer.release(contextVk->getRenderer());
}
angle::Result FramebufferVk::discard(const gl::Context *context,
size_t count,
const GLenum *attachments)
{
return invalidate(context, count, attachments);
}
angle::Result FramebufferVk::invalidate(const gl::Context *context,
size_t count,
const GLenum *attachments)
{
ContextVk *contextVk = vk::GetImpl(context);
mFramebuffer.onGraphAccess(contextVk->getCommandGraph());
if (mFramebuffer.valid() && mFramebuffer.hasStartedRenderPass())
{
invalidateImpl(contextVk, count, attachments);
}
return angle::Result::Continue;
}
angle::Result FramebufferVk::invalidateSub(const gl::Context *context,
size_t count,
const GLenum *attachments,
const gl::Rectangle &area)
{
ContextVk *contextVk = vk::GetImpl(context);
mFramebuffer.onGraphAccess(contextVk->getCommandGraph());
// RenderPass' storeOp cannot be made conditional to a specific region, so we only apply this
// hint if the requested area encompasses the render area.
if (mFramebuffer.valid() && mFramebuffer.hasStartedRenderPass() &&
area.encloses(mFramebuffer.getRenderPassRenderArea()))
{
invalidateImpl(contextVk, count, attachments);
}
return angle::Result::Continue;
}
angle::Result FramebufferVk::clear(const gl::Context *context, GLbitfield mask)
{
ContextVk *contextVk = vk::GetImpl(context);
bool clearColor = IsMaskFlagSet(mask, static_cast<GLbitfield>(GL_COLOR_BUFFER_BIT));
bool clearDepth = IsMaskFlagSet(mask, static_cast<GLbitfield>(GL_DEPTH_BUFFER_BIT));
bool clearStencil = IsMaskFlagSet(mask, static_cast<GLbitfield>(GL_STENCIL_BUFFER_BIT));
gl::DrawBufferMask clearColorBuffers;
if (clearColor)
{
clearColorBuffers = mState.getEnabledDrawBuffers();
}
const VkClearColorValue &clearColorValue = contextVk->getClearColorValue().color;
const VkClearDepthStencilValue &clearDepthStencilValue =
contextVk->getClearDepthStencilValue().depthStencil;
return clearImpl(context, clearColorBuffers, clearDepth, clearStencil, clearColorValue,
clearDepthStencilValue);
}
angle::Result FramebufferVk::clearImpl(const gl::Context *context,
gl::DrawBufferMask clearColorBuffers,
bool clearDepth,
bool clearStencil,
const VkClearColorValue &clearColorValue,
const VkClearDepthStencilValue &clearDepthStencilValue)
{
ContextVk *contextVk = vk::GetImpl(context);
const gl::Rectangle scissoredRenderArea = getScissoredRenderArea(contextVk);
// Discard clear altogether if scissor has 0 width or height.
if (scissoredRenderArea.width == 0 || scissoredRenderArea.height == 0)
{
return angle::Result::Continue;
}
mFramebuffer.updateCurrentAccessNodes();
// This function assumes that only enabled attachments are asked to be cleared.
ASSERT((clearColorBuffers & mState.getEnabledDrawBuffers()) == clearColorBuffers);
// Adjust clear behavior based on whether the respective attachments are present; if asked to
// clear a non-existent attachment, don't attempt to clear it.
VkColorComponentFlags colorMaskFlags = contextVk->getClearColorMask();
bool clearColor = clearColorBuffers.any();
const gl::FramebufferAttachment *depthAttachment = mState.getDepthAttachment();
clearDepth = clearDepth && depthAttachment;
ASSERT(!clearDepth || depthAttachment->isAttached());
const gl::FramebufferAttachment *stencilAttachment = mState.getStencilAttachment();
clearStencil = clearStencil && stencilAttachment;
ASSERT(!clearStencil || stencilAttachment->isAttached());
uint8_t stencilMask =
static_cast<uint8_t>(contextVk->getState().getDepthStencilState().stencilWritemask);
// The front-end should ensure we don't attempt to clear color if all channels are masked.
ASSERT(!clearColor || colorMaskFlags != 0);
// The front-end should ensure we don't attempt to clear depth if depth write is disabled.
ASSERT(!clearDepth || contextVk->getState().getDepthStencilState().depthMask);
// The front-end should ensure we don't attempt to clear stencil if all bits are masked.
ASSERT(!clearStencil || stencilMask != 0);
// If there is nothing to clear, return right away (for example, if asked to clear depth, but
// there is no depth attachment).
if (!clearColor && !clearDepth && !clearStencil)
{
return angle::Result::Continue;
}
VkClearDepthStencilValue modifiedDepthStencilValue = clearDepthStencilValue;
// We can use render pass load ops if clearing depth, unmasked color or unmasked stencil. If
// there's a depth mask, depth clearing is already disabled.
bool maskedClearColor =
clearColor && (mActiveColorComponents & colorMaskFlags) != mActiveColorComponents;
bool maskedClearStencil = stencilMask != 0xFF;
bool clearColorWithRenderPassLoadOp = clearColor && !maskedClearColor;
bool clearStencilWithRenderPassLoadOp = clearStencil && !maskedClearStencil;
// At least one of color, depth or stencil should be clearable with render pass loadOp for us
// to use this clear path.
bool clearAnyWithRenderPassLoadOp =
clearColorWithRenderPassLoadOp || clearDepth || clearStencilWithRenderPassLoadOp;
if (clearAnyWithRenderPassLoadOp)
{
// Clearing color is indicated by the set bits in this mask. If not clearing colors with
// render pass loadOp, the default value of all-zeros means the clear is not done in
// clearWithRenderPassOp below. In that case, only clear depth/stencil with render pass
// loadOp.
gl::DrawBufferMask clearBuffersWithRenderPassLoadOp;
if (clearColorWithRenderPassLoadOp)
{
clearBuffersWithRenderPassLoadOp = clearColorBuffers;
}
ANGLE_TRY(clearWithRenderPassOp(
contextVk, scissoredRenderArea, clearBuffersWithRenderPassLoadOp, clearDepth,
clearStencilWithRenderPassLoadOp, clearColorValue, modifiedDepthStencilValue));
// On some hardware, having inline commands at this point results in corrupted output. In
// that case, end the render pass immediately. http://anglebug.com/2361
if (contextVk->getRenderer()->getFeatures().restartRenderPassAfterLoadOpClear.enabled)
{
mFramebuffer.finishCurrentCommands(contextVk);
}
// Fallback to other methods for whatever isn't cleared here.
clearDepth = false;
if (clearColorWithRenderPassLoadOp)
{
clearColorBuffers.reset();
clearColor = false;
}
if (clearStencilWithRenderPassLoadOp)
{
clearStencil = false;
}
// If nothing left to clear, early out.
if (!clearColor && !clearStencil)
{
return angle::Result::Continue;
}
}
// Note: depth clear is always done through render pass loadOp.
ASSERT(clearDepth == false);
// The most costly clear mode is when we need to mask out specific color channels or stencil
// bits. This can only be done with a draw call.
return clearWithDraw(contextVk, scissoredRenderArea, clearColorBuffers, clearStencil,
colorMaskFlags, stencilMask, clearColorValue,
static_cast<uint8_t>(modifiedDepthStencilValue.stencil));
}
angle::Result FramebufferVk::clearBufferfv(const gl::Context *context,
GLenum buffer,
GLint drawbuffer,
const GLfloat *values)
{
VkClearValue clearValue = {};
bool clearDepth = false;
gl::DrawBufferMask clearColorBuffers;
if (buffer == GL_DEPTH)
{
clearDepth = true;
clearValue.depthStencil.depth = values[0];
}
else
{
clearColorBuffers.set(drawbuffer);
clearValue.color.float32[0] = values[0];
clearValue.color.float32[1] = values[1];
clearValue.color.float32[2] = values[2];
clearValue.color.float32[3] = values[3];
}
return clearImpl(context, clearColorBuffers, clearDepth, false, clearValue.color,
clearValue.depthStencil);
}
angle::Result FramebufferVk::clearBufferuiv(const gl::Context *context,
GLenum buffer,
GLint drawbuffer,
const GLuint *values)
{
VkClearValue clearValue = {};
gl::DrawBufferMask clearColorBuffers;
clearColorBuffers.set(drawbuffer);
clearValue.color.uint32[0] = values[0];
clearValue.color.uint32[1] = values[1];
clearValue.color.uint32[2] = values[2];
clearValue.color.uint32[3] = values[3];
return clearImpl(context, clearColorBuffers, false, false, clearValue.color,
clearValue.depthStencil);
}
angle::Result FramebufferVk::clearBufferiv(const gl::Context *context,
GLenum buffer,
GLint drawbuffer,
const GLint *values)
{
VkClearValue clearValue = {};
bool clearStencil = false;
gl::DrawBufferMask clearColorBuffers;
if (buffer == GL_STENCIL)
{
clearStencil = true;
clearValue.depthStencil.stencil =
gl::clamp(values[0], 0, std::numeric_limits<uint8_t>::max());
}
else
{
clearColorBuffers.set(drawbuffer);
clearValue.color.int32[0] = values[0];
clearValue.color.int32[1] = values[1];
clearValue.color.int32[2] = values[2];
clearValue.color.int32[3] = values[3];
}
return clearImpl(context, clearColorBuffers, false, clearStencil, clearValue.color,
clearValue.depthStencil);
}
angle::Result FramebufferVk::clearBufferfi(const gl::Context *context,
GLenum buffer,
GLint drawbuffer,
GLfloat depth,
GLint stencil)
{
VkClearValue clearValue = {};
clearValue.depthStencil.depth = depth;
clearValue.depthStencil.stencil = gl::clamp(stencil, 0, std::numeric_limits<uint8_t>::max());
return clearImpl(context, gl::DrawBufferMask(), true, true, clearValue.color,
clearValue.depthStencil);
}
GLenum FramebufferVk::getImplementationColorReadFormat(const gl::Context *context) const
{
return GetReadAttachmentInfo(context, mRenderTargetCache.getColorRead(mState)).format;
}
GLenum FramebufferVk::getImplementationColorReadType(const gl::Context *context) const
{
GLenum readType = GetReadAttachmentInfo(context, mRenderTargetCache.getColorRead(mState)).type;
if (context->getClientMajorVersion() < 3 && readType == GL_HALF_FLOAT)
{
// GL_HALF_FLOAT was not introduced until GLES 3.0, and has a different value from
// GL_HALF_FLOAT_OES
readType = GL_HALF_FLOAT_OES;
}
return readType;
}
angle::Result FramebufferVk::readPixels(const gl::Context *context,
const gl::Rectangle &area,
GLenum format,
GLenum type,
void *pixels)
{
// Clip read area to framebuffer.
const gl::Extents &fbSize = getState().getReadAttachment()->getSize();
const gl::Rectangle fbRect(0, 0, fbSize.width, fbSize.height);
ContextVk *contextVk = vk::GetImpl(context);
gl::Rectangle clippedArea;
if (!ClipRectangle(area, fbRect, &clippedArea))
{
// nothing to read
return angle::Result::Continue;
}
const gl::State &glState = contextVk->getState();
gl::Buffer *packBuffer = glState.getTargetBuffer(gl::BufferBinding::PixelPack);
GLuint outputSkipBytes = 0;
PackPixelsParams params;
ANGLE_TRY(vk::ImageHelper::GetReadPixelsParams(contextVk, glState.getPackState(), packBuffer,
format, type, area, clippedArea, &params,
&outputSkipBytes));
if (contextVk->isViewportFlipEnabledForReadFBO())
{
params.area.y = fbRect.height - clippedArea.y - clippedArea.height;
params.reverseRowOrder = !params.reverseRowOrder;
}
ANGLE_TRY(readPixelsImpl(contextVk, params.area, params, VK_IMAGE_ASPECT_COLOR_BIT,
getColorReadRenderTarget(),
static_cast<uint8_t *>(pixels) + outputSkipBytes));
mReadPixelBuffer.releaseInFlightBuffers(contextVk);
return angle::Result::Continue;
}
RenderTargetVk *FramebufferVk::getDepthStencilRenderTarget() const
{
return mRenderTargetCache.getDepthStencil();
}
RenderTargetVk *FramebufferVk::getColorDrawRenderTarget(size_t colorIndex) const
{
RenderTargetVk *renderTarget = mRenderTargetCache.getColorDraw(mState, colorIndex);
ASSERT(renderTarget && renderTarget->getImage().valid());
return renderTarget;
}
RenderTargetVk *FramebufferVk::getColorReadRenderTarget() const
{
RenderTargetVk *renderTarget = mRenderTargetCache.getColorRead(mState);
ASSERT(renderTarget && renderTarget->getImage().valid());
return renderTarget;
}
angle::Result FramebufferVk::blitWithCommand(ContextVk *contextVk,
const gl::Rectangle &sourceArea,
const gl::Rectangle &destArea,
RenderTargetVk *readRenderTarget,
RenderTargetVk *drawRenderTarget,
GLenum filter,
bool colorBlit,
bool depthBlit,
bool stencilBlit,
bool flipX,
bool flipY)
{
// Since blitRenderbufferRect is called for each render buffer that needs to be blitted,
// it should never be the case that both color and depth/stencil need to be blitted at
// at the same time.
ASSERT(colorBlit != (depthBlit || stencilBlit));
vk::ImageHelper *srcImage = &readRenderTarget->getImage();
vk::ImageHelper *dstImage = drawRenderTarget->getImageForWrite(contextVk, &mFramebuffer);
VkImageAspectFlags imageAspectMask = srcImage->getAspectFlags();
VkImageAspectFlags blitAspectMask = imageAspectMask;
// Remove depth or stencil aspects if they are not requested to be blitted.
if (!depthBlit)
{
blitAspectMask &= ~VK_IMAGE_ASPECT_DEPTH_BIT;
}
if (!stencilBlit)
{
blitAspectMask &= ~VK_IMAGE_ASPECT_STENCIL_BIT;
}
if (srcImage->isLayoutChangeNecessary(vk::ImageLayout::TransferSrc))
{
vk::CommandBuffer *srcLayoutChange;
ANGLE_TRY(srcImage->recordCommands(contextVk, &srcLayoutChange));
srcImage->changeLayout(imageAspectMask, vk::ImageLayout::TransferSrc, srcLayoutChange);
}
vk::CommandBuffer *commandBuffer = nullptr;
ANGLE_TRY(mFramebuffer.recordCommands(contextVk, &commandBuffer));
srcImage->addReadDependency(contextVk, &mFramebuffer);
VkImageBlit blit = {};
blit.srcSubresource.aspectMask = blitAspectMask;
blit.srcSubresource.mipLevel = readRenderTarget->getLevelIndex();
blit.srcSubresource.baseArrayLayer = readRenderTarget->getLayerIndex();
blit.srcSubresource.layerCount = 1;
blit.srcOffsets[0] = {sourceArea.x0(), sourceArea.y0(), 0};
blit.srcOffsets[1] = {sourceArea.x1(), sourceArea.y1(), 1};
blit.dstSubresource.aspectMask = blitAspectMask;
blit.dstSubresource.mipLevel = drawRenderTarget->getLevelIndex();
blit.dstSubresource.baseArrayLayer = drawRenderTarget->getLayerIndex();
blit.dstSubresource.layerCount = 1;
blit.dstOffsets[0] = {destArea.x0(), destArea.y0(), 0};
blit.dstOffsets[1] = {destArea.x1(), destArea.y1(), 1};
// Requirement of the copyImageToBuffer, the dst image must be in
// VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL layout.
dstImage->changeLayout(imageAspectMask, vk::ImageLayout::TransferDst, commandBuffer);
commandBuffer->blitImage(srcImage->getImage(), VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
dstImage->getImage(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &blit,
gl_vk::GetFilter(filter));
return angle::Result::Continue;
}
angle::Result FramebufferVk::blit(const gl::Context *context,
const gl::Rectangle &sourceAreaIn,
const gl::Rectangle &destAreaIn,
GLbitfield mask,
GLenum filter)
{
ContextVk *contextVk = vk::GetImpl(context);
RendererVk *renderer = contextVk->getRenderer();
UtilsVk &utilsVk = contextVk->getUtils();
const gl::State &glState = contextVk->getState();
const gl::Framebuffer *srcFramebuffer = glState.getReadFramebuffer();
const bool blitColorBuffer = (mask & GL_COLOR_BUFFER_BIT) != 0;
const bool blitDepthBuffer = (mask & GL_DEPTH_BUFFER_BIT) != 0;
const bool blitStencilBuffer = (mask & GL_STENCIL_BUFFER_BIT) != 0;
const bool isResolve =
srcFramebuffer->getCachedSamples(context, gl::AttachmentSampleType::Resource) > 1;
FramebufferVk *srcFramebufferVk = vk::GetImpl(srcFramebuffer);
const bool srcFramebufferFlippedY = contextVk->isViewportFlipEnabledForReadFBO();
const bool destFramebufferFlippedY = contextVk->isViewportFlipEnabledForDrawFBO();
gl::Rectangle sourceArea = sourceAreaIn;
gl::Rectangle destArea = destAreaIn;
// Note: GLES (all 3.x versions) require source and dest area to be identical when
// resolving.
ASSERT(!isResolve ||
(sourceArea.x == destArea.x && sourceArea.y == destArea.y &&
sourceArea.width == destArea.width && sourceArea.height == destArea.height));
const gl::Rectangle srcFramebufferDimensions =
srcFramebufferVk->mState.getDimensions().toRect();
// If the destination is flipped in either direction, we will flip the source instead so that
// the destination area is always unflipped.
sourceArea = sourceArea.flip(destArea.isReversedX(), destArea.isReversedY());
destArea = destArea.removeReversal();
// Calculate the stretch factor prior to any clipping, as it needs to remain constant.
const float stretch[2] = {
std::abs(sourceArea.width / static_cast<float>(destArea.width)),
std::abs(sourceArea.height / static_cast<float>(destArea.height)),
};
// First, clip the source area to framebuffer. That requires transforming the dest area to
// match the clipped source.
gl::Rectangle absSourceArea = sourceArea.removeReversal();
gl::Rectangle clippedSourceArea;
if (!gl::ClipRectangle(srcFramebufferDimensions, absSourceArea, &clippedSourceArea))
{
return angle::Result::Continue;
}
// Resize the destination area based on the new size of source. Note again that stretch is
// calculated as SrcDimension/DestDimension.
gl::Rectangle srcClippedDestArea;
if (isResolve)
{
// Source and dest areas are identical in resolve.
srcClippedDestArea = clippedSourceArea;
}
else if (clippedSourceArea == absSourceArea)
{
// If there was no clipping, keep dest area as is.
srcClippedDestArea = destArea;
}
else
{
// Shift dest area's x0,y0,x1,y1 by as much as the source area's got shifted (taking
// stretching into account)
float x0Shift = std::round((clippedSourceArea.x - absSourceArea.x) / stretch[0]);
float y0Shift = std::round((clippedSourceArea.y - absSourceArea.y) / stretch[1]);
float x1Shift = std::round((absSourceArea.x1() - clippedSourceArea.x1()) / stretch[0]);
float y1Shift = std::round((absSourceArea.y1() - clippedSourceArea.y1()) / stretch[1]);
// If the source area was reversed in any direction, the shift should be applied in the
// opposite direction as well.
if (sourceArea.isReversedX())
{
std::swap(x0Shift, x1Shift);
}
if (sourceArea.isReversedY())
{
std::swap(y0Shift, y1Shift);
}
srcClippedDestArea.x = destArea.x0() + static_cast<int>(x0Shift);
srcClippedDestArea.y = destArea.y0() + static_cast<int>(y0Shift);
int x1 = destArea.x1() - static_cast<int>(x1Shift);
int y1 = destArea.y1() - static_cast<int>(y1Shift);
srcClippedDestArea.width = x1 - srcClippedDestArea.x;
srcClippedDestArea.height = y1 - srcClippedDestArea.y;
}
// If framebuffers are flipped in Y, flip the source and dest area (which define the
// transformation regardless of clipping), as well as the blit area (which is the clipped
// dest area).
if (srcFramebufferFlippedY)
{
sourceArea.y = srcFramebufferDimensions.height - sourceArea.y;
sourceArea.height = -sourceArea.height;
}
if (destFramebufferFlippedY)
{
destArea.y = mState.getDimensions().height - destArea.y;
destArea.height = -destArea.height;
srcClippedDestArea.y =
mState.getDimensions().height - srcClippedDestArea.y - srcClippedDestArea.height;
}
const bool flipX = sourceArea.isReversedX() != destArea.isReversedX();
const bool flipY = sourceArea.isReversedY() != destArea.isReversedY();
// GLES doesn't allow flipping the parameters of glBlitFramebuffer if performing a resolve.
ASSERT(!isResolve ||
(flipX == false && flipY == (srcFramebufferFlippedY != destFramebufferFlippedY)));
// Again, transfer the destination flip to source, so dest is unflipped. Note that destArea
// was not reversed until the final possible Y-flip.
ASSERT(!destArea.isReversedX());
sourceArea = sourceArea.flip(false, destArea.isReversedY());
destArea = destArea.removeReversal();
// Clip the destination area to the framebuffer size and scissor. Note that we don't care
// about the source area anymore. The offset translation is done based on the original source
// and destination rectangles. The stretch factor is already calculated as well.
gl::Rectangle blitArea;
if (!gl::ClipRectangle(getScissoredRenderArea(contextVk), srcClippedDestArea, &blitArea))
{
return angle::Result::Continue;
}
bool noClip = blitArea == destArea && stretch[0] == 1.0f && stretch[1] == 1.0f;
bool noFlip = !flipX && !flipY;
bool disableFlippingBlitWithCommand =
contextVk->getRenderer()->getFeatures().disableFlippingBlitWithCommand.enabled;
UtilsVk::BlitResolveParameters params;
params.srcOffset[0] = sourceArea.x;
params.srcOffset[1] = sourceArea.y;
params.destOffset[0] = destArea.x;
params.destOffset[1] = destArea.y;
params.stretch[0] = stretch[0];
params.stretch[1] = stretch[1];
params.srcExtents[0] = srcFramebufferDimensions.width;
params.srcExtents[1] = srcFramebufferDimensions.height;
params.blitArea = blitArea;
params.linear = filter == GL_LINEAR;
params.flipX = flipX;
params.flipY = flipY;
if (blitColorBuffer)
{
RenderTargetVk *readRenderTarget = srcFramebufferVk->getColorReadRenderTarget();
params.srcLayer = readRenderTarget->getLayerIndex();
// Multisampled images are not allowed to have mips.
ASSERT(!isResolve || readRenderTarget->getLevelIndex() == 0);
// If there was no clipping and the format capabilities allow us, use Vulkan's builtin blit.
// The reason clipping is prohibited in this path is that due to rounding errors, it would
// be hard to guarantee the image stretching remains perfect. That also allows us not to
// have to transform back the dest clipping to source.
//
// For simplicity, we either blit all render targets with a Vulkan command, or none.
bool canBlitWithCommand = !isResolve && noClip &&
(noFlip || !disableFlippingBlitWithCommand) &&
HasSrcBlitFeature(renderer, readRenderTarget);
bool areChannelsBlitCompatible = true;
for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
{
RenderTargetVk *drawRenderTarget = mRenderTargetCache.getColors()[colorIndexGL];
canBlitWithCommand =
canBlitWithCommand && HasDstBlitFeature(renderer, drawRenderTarget);
areChannelsBlitCompatible =
areChannelsBlitCompatible &&
areSrcAndDstColorChannelsBlitCompatible(readRenderTarget, drawRenderTarget);
}
if (canBlitWithCommand && areChannelsBlitCompatible)
{
for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
{
RenderTargetVk *drawRenderTarget = mRenderTargetCache.getColors()[colorIndexGL];
ANGLE_TRY(blitWithCommand(contextVk, sourceArea, destArea, readRenderTarget,
drawRenderTarget, filter, true, false, false, flipX,
flipY));
}
}
// If we're not flipping, use Vulkan's builtin resolve.
else if (isResolve && !flipX && !flipY && areChannelsBlitCompatible)
{
ANGLE_TRY(resolveColorWithCommand(contextVk, params, &readRenderTarget->getImage()));
}
// Otherwise use a shader to do blit or resolve.
else
{
const vk::ImageView *readImageView = nullptr;
ANGLE_TRY(readRenderTarget->getImageView(contextVk, &readImageView));
readRenderTarget->onImageViewGraphAccess(contextVk);
ANGLE_TRY(utilsVk.colorBlitResolve(contextVk, this, &readRenderTarget->getImage(),
readImageView, params));
}
}
if (blitDepthBuffer || blitStencilBuffer)
{
RenderTargetVk *readRenderTarget = srcFramebufferVk->getDepthStencilRenderTarget();
RenderTargetVk *drawRenderTarget = mRenderTargetCache.getDepthStencil();
params.srcLayer = readRenderTarget->getLayerIndex();
// Multisampled images are not allowed to have mips.
ASSERT(!isResolve || readRenderTarget->getLevelIndex() == 0);
// Similarly, only blit if there's been no clipping.
bool canBlitWithCommand = !isResolve && noClip &&
(noFlip || !disableFlippingBlitWithCommand) &&
HasSrcBlitFeature(renderer, readRenderTarget) &&
HasDstBlitFeature(renderer, drawRenderTarget);
bool areChannelsBlitCompatible =
areSrcAndDstDepthStencilChannelsBlitCompatible(readRenderTarget, drawRenderTarget);
if (canBlitWithCommand && areChannelsBlitCompatible)
{
ANGLE_TRY(blitWithCommand(contextVk, sourceArea, destArea, readRenderTarget,
drawRenderTarget, filter, false, blitDepthBuffer,
blitStencilBuffer, flipX, flipY));
}
else
{
// Create depth- and stencil-only views for reading.
vk::DeviceScoped<vk::ImageView> depthView(contextVk->getDevice());
vk::DeviceScoped<vk::ImageView> stencilView(contextVk->getDevice());
vk::ImageHelper *depthStencilImage = &readRenderTarget->getImage();
uint32_t levelIndex = readRenderTarget->getLevelIndex();
uint32_t layerIndex = readRenderTarget->getLayerIndex();
gl::TextureType textureType = vk::Get2DTextureType(depthStencilImage->getLayerCount(),
depthStencilImage->getSamples());
if (blitDepthBuffer)
{
ANGLE_TRY(depthStencilImage->initLayerImageView(
contextVk, textureType, VK_IMAGE_ASPECT_DEPTH_BIT, gl::SwizzleState(),
&depthView.get(), levelIndex, 1, layerIndex, 1));
}
if (blitStencilBuffer)
{
ANGLE_TRY(depthStencilImage->initLayerImageView(
contextVk, textureType, VK_IMAGE_ASPECT_STENCIL_BIT, gl::SwizzleState(),
&stencilView.get(), levelIndex, 1, layerIndex, 1));
}
// If shader stencil export is not possible, defer stencil blit/stencil to another pass.
bool hasShaderStencilExport =
contextVk->getRenderer()->getFeatures().supportsShaderStencilExport.enabled;
// Blit depth. If shader stencil export is present, blit stencil as well.
if (blitDepthBuffer || (blitStencilBuffer && hasShaderStencilExport))
{
const vk::ImageView *depth = blitDepthBuffer ? &depthView.get() : nullptr;
const vk::ImageView *stencil =
blitStencilBuffer && hasShaderStencilExport ? &stencilView.get() : nullptr;
ANGLE_TRY(utilsVk.depthStencilBlitResolve(contextVk, this, depthStencilImage, depth,
stencil, params));
}
// If shader stencil export is not present, blit stencil through a different path.
if (blitStencilBuffer && !hasShaderStencilExport)
{
ANGLE_TRY(utilsVk.stencilBlitResolveNoShaderExport(
contextVk, this, depthStencilImage, &stencilView.get(), params));
}
vk::ImageView depthViewObject = depthView.release();
vk::ImageView stencilViewObject = stencilView.release();
contextVk->addGarbage(&depthViewObject);
contextVk->addGarbage(&stencilViewObject);
}
}
return angle::Result::Continue;
} // namespace rx
angle::Result FramebufferVk::resolveColorWithCommand(ContextVk *contextVk,
const UtilsVk::BlitResolveParameters &params,
vk::ImageHelper *srcImage)
{
if (srcImage->isLayoutChangeNecessary(vk::ImageLayout::TransferSrc))
{
vk::CommandBuffer *srcLayoutChange;
ANGLE_TRY(srcImage->recordCommands(contextVk, &srcLayoutChange));
srcImage->changeLayout(VK_IMAGE_ASPECT_COLOR_BIT, vk::ImageLayout::TransferSrc,
srcLayoutChange);
}
vk::CommandBuffer *commandBuffer = nullptr;
ANGLE_TRY(mFramebuffer.recordCommands(contextVk, &commandBuffer));
// Source's layout change should happen before rendering
srcImage->addReadDependency(contextVk, &mFramebuffer);
VkImageResolve resolveRegion = {};
resolveRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
resolveRegion.srcSubresource.mipLevel = 0;
resolveRegion.srcSubresource.baseArrayLayer = params.srcLayer;
resolveRegion.srcSubresource.layerCount = 1;
resolveRegion.srcOffset.x = params.srcOffset[0];
resolveRegion.srcOffset.y = params.srcOffset[1];
resolveRegion.srcOffset.z = 0;
resolveRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
resolveRegion.dstSubresource.layerCount = 1;
resolveRegion.dstOffset.x = params.destOffset[0];
resolveRegion.dstOffset.y = params.destOffset[1];
resolveRegion.dstOffset.z = 0;
resolveRegion.extent.width = params.srcExtents[0];
resolveRegion.extent.height = params.srcExtents[1];
resolveRegion.extent.depth = 1;
for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
{
RenderTargetVk *drawRenderTarget = mRenderTargetCache.getColors()[colorIndexGL];
vk::ImageHelper *drawImage = drawRenderTarget->getImageForWrite(contextVk, &mFramebuffer);
drawImage->changeLayout(VK_IMAGE_ASPECT_COLOR_BIT, vk::ImageLayout::TransferDst,
commandBuffer);
resolveRegion.dstSubresource.mipLevel = drawRenderTarget->getLevelIndex();
resolveRegion.dstSubresource.baseArrayLayer = drawRenderTarget->getLayerIndex();
srcImage->resolve(&drawRenderTarget->getImage(), resolveRegion, commandBuffer);
}
return angle::Result::Continue;
}
bool FramebufferVk::checkStatus(const gl::Context *context) const
{
// if we have both a depth and stencil buffer, they must refer to the same object
// since we only support packed_depth_stencil and not separate depth and stencil
if (mState.hasSeparateDepthAndStencilAttachments())
{
return false;
}
return true;
}
angle::Result FramebufferVk::updateColorAttachment(const gl::Context *context, size_t colorIndexGL)
{
ContextVk *contextVk = vk::GetImpl(context);
ANGLE_TRY(mRenderTargetCache.updateColorRenderTarget(context, mState, colorIndexGL));
// Update cached masks for masked clears.
RenderTargetVk *renderTarget = mRenderTargetCache.getColors()[colorIndexGL];
if (renderTarget)
{
const angle::Format &actualFormat = renderTarget->getImageFormat().actualImageFormat();
updateActiveColorMasks(colorIndexGL, actualFormat.redBits > 0, actualFormat.greenBits > 0,
actualFormat.blueBits > 0, actualFormat.alphaBits > 0);
const angle::Format &sourceFormat = renderTarget->getImageFormat().intendedFormat();
mEmulatedAlphaAttachmentMask.set(colorIndexGL,
sourceFormat.alphaBits == 0 && actualFormat.alphaBits > 0);
contextVk->updateColorMask(context->getState().getBlendState());
}
else
{
updateActiveColorMasks(colorIndexGL, false, false, false, false);
}
return angle::Result::Continue;
}
void FramebufferVk::invalidateImpl(ContextVk *contextVk, size_t count, const GLenum *attachments)
{
ASSERT(mFramebuffer.hasStartedRenderPass());
gl::DrawBufferMask invalidateColorBuffers;
bool invalidateDepthBuffer = false;
bool invalidateStencilBuffer = false;
for (size_t i = 0; i < count; ++i)
{
const GLenum attachment = attachments[i];
switch (attachment)
{
case GL_DEPTH:
case GL_DEPTH_ATTACHMENT:
invalidateDepthBuffer = true;
break;
case GL_STENCIL:
case GL_STENCIL_ATTACHMENT:
invalidateStencilBuffer = true;
break;
case GL_DEPTH_STENCIL_ATTACHMENT:
invalidateDepthBuffer = true;
invalidateStencilBuffer = true;
break;
default:
ASSERT(
(attachment >= GL_COLOR_ATTACHMENT0 && attachment <= GL_COLOR_ATTACHMENT15) ||
(attachment == GL_COLOR));
invalidateColorBuffers.set(
attachment == GL_COLOR ? 0u : (attachment - GL_COLOR_ATTACHMENT0));
}
}
// Set the appropriate storeOp for attachments.
size_t attachmentIndexVk = 0;
for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
{
if (invalidateColorBuffers.test(colorIndexGL))
{
mFramebuffer.invalidateRenderPassColorAttachment(attachmentIndexVk);
}
++attachmentIndexVk;
}
RenderTargetVk *depthStencilRenderTarget = mRenderTargetCache.getDepthStencil();
if (depthStencilRenderTarget)
{
if (invalidateDepthBuffer)
{
mFramebuffer.invalidateRenderPassDepthAttachment(attachmentIndexVk);
}
if (invalidateStencilBuffer)
{
mFramebuffer.invalidateRenderPassStencilAttachment(attachmentIndexVk);
}
}
// NOTE: Possible future optimization is to delay setting the storeOp and only do so if the
// render pass is closed by itself before another draw call. Otherwise, in a situation like
// this:
//
// draw()
// invalidate()
// draw()
//
// We would be discarding the attachments only to load them for the next draw (which is less
// efficient than keeping the render pass open and not do the discard at all). While dEQP tests
// this pattern, this optimization may not be necessary if no application does this. It is
// expected that an application would invalidate() when it's done with the framebuffer, so the
// render pass would have closed either way.
mFramebuffer.finishCurrentCommands(contextVk);
}
angle::Result FramebufferVk::syncState(const gl::Context *context,
const gl::Framebuffer::DirtyBits &dirtyBits)
{
ContextVk *contextVk = vk::GetImpl(context);
ASSERT(dirtyBits.any());
for (size_t dirtyBit : dirtyBits)
{
switch (dirtyBit)
{
case gl::Framebuffer::DIRTY_BIT_DEPTH_ATTACHMENT:
case gl::Framebuffer::DIRTY_BIT_STENCIL_ATTACHMENT:
ANGLE_TRY(mRenderTargetCache.updateDepthStencilRenderTarget(context, mState));
break;
case gl::Framebuffer::DIRTY_BIT_DEPTH_BUFFER_CONTENTS:
case gl::Framebuffer::DIRTY_BIT_STENCIL_BUFFER_CONTENTS:
ANGLE_TRY(mRenderTargetCache.getDepthStencil()->flushStagedUpdates(contextVk));
break;
case gl::Framebuffer::DIRTY_BIT_READ_BUFFER:
ANGLE_TRY(mRenderTargetCache.update(context, mState, dirtyBits));
break;
case gl::Framebuffer::DIRTY_BIT_DRAW_BUFFERS:
case gl::Framebuffer::DIRTY_BIT_DEFAULT_WIDTH:
case gl::Framebuffer::DIRTY_BIT_DEFAULT_HEIGHT:
case gl::Framebuffer::DIRTY_BIT_DEFAULT_SAMPLES:
case gl::Framebuffer::DIRTY_BIT_DEFAULT_FIXED_SAMPLE_LOCATIONS:
break;
default:
{
static_assert(gl::Framebuffer::DIRTY_BIT_COLOR_ATTACHMENT_0 == 0, "FB dirty bits");
if (dirtyBit < gl::Framebuffer::DIRTY_BIT_COLOR_ATTACHMENT_MAX)
{
size_t colorIndexGL = static_cast<size_t>(
dirtyBit - gl::Framebuffer::DIRTY_BIT_COLOR_ATTACHMENT_0);
ANGLE_TRY(updateColorAttachment(context, colorIndexGL));
}
else
{
ASSERT(dirtyBit >= gl::Framebuffer::DIRTY_BIT_COLOR_BUFFER_CONTENTS_0 &&
dirtyBit < gl::Framebuffer::DIRTY_BIT_COLOR_BUFFER_CONTENTS_MAX);
size_t colorIndexGL = static_cast<size_t>(
dirtyBit - gl::Framebuffer::DIRTY_BIT_COLOR_BUFFER_CONTENTS_0);
ANGLE_TRY(mRenderTargetCache.getColors()[colorIndexGL]->flushStagedUpdates(
contextVk));
}
}
}
}
// The FBOs new attachment may have changed the renderable area
const gl::State &glState = context->getState();
contextVk->updateScissor(glState);
mActiveColorComponents = gl_vk::GetColorComponentFlags(
mActiveColorComponentMasksForClear[0].any(), mActiveColorComponentMasksForClear[1].any(),
mActiveColorComponentMasksForClear[2].any(), mActiveColorComponentMasksForClear[3].any());
mFramebuffer.release(contextVk);
// Will freeze the current set of dependencies on this FBO. The next time we render we will
// create a new entry in the command graph.
mFramebuffer.finishCurrentCommands(contextVk);
// Notify the ContextVk to update the pipeline desc.
updateRenderPassDesc();
FramebufferVk *currentDrawFramebuffer = vk::GetImpl(context->getState().getDrawFramebuffer());
if (currentDrawFramebuffer == this)
{
contextVk->onDrawFramebufferChange(this);
}
return angle::Result::Continue;
}
void FramebufferVk::updateRenderPassDesc()
{
mRenderPassDesc = {};
mRenderPassDesc.setSamples(getSamples());
const auto &colorRenderTargets = mRenderTargetCache.getColors();
const gl::DrawBufferMask enabledDrawBuffers = mState.getEnabledDrawBuffers();
for (size_t colorIndexGL = 0; colorIndexGL < enabledDrawBuffers.size(); ++colorIndexGL)
{
if (enabledDrawBuffers[colorIndexGL])
{
RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL];
ASSERT(colorRenderTarget);
mRenderPassDesc.packColorAttachment(
colorIndexGL, colorRenderTarget->getImage().getFormat().intendedFormatID);
}
else
{
mRenderPassDesc.packColorAttachmentGap(colorIndexGL);
}
}
RenderTargetVk *depthStencilRenderTarget = mRenderTargetCache.getDepthStencil();
if (depthStencilRenderTarget)
{
mRenderPassDesc.packDepthStencilAttachment(
depthStencilRenderTarget->getImage().getFormat().intendedFormatID);
}
}
angle::Result FramebufferVk::getFramebuffer(ContextVk *contextVk, vk::Framebuffer **framebufferOut)
{
// If we've already created our cached Framebuffer, return it.
if (mFramebuffer.valid())
{
*framebufferOut = &mFramebuffer.getFramebuffer();
return angle::Result::Continue;
}
vk::RenderPass *compatibleRenderPass = nullptr;
ANGLE_TRY(contextVk->getCompatibleRenderPass(mRenderPassDesc, &compatibleRenderPass));
// If we've a Framebuffer provided by a Surface (default FBO/backbuffer), query it.
if (mBackbuffer)
{
return mBackbuffer->getCurrentFramebuffer(contextVk, *compatibleRenderPass, framebufferOut);
}
// Gather VkImageViews over all FBO attachments, also size of attached region.
std::vector<VkImageView> attachments;
gl::Extents attachmentsSize;
const auto &colorRenderTargets = mRenderTargetCache.getColors();
for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
{
RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL];
ASSERT(colorRenderTarget);
const vk::ImageView *imageView = nullptr;
ANGLE_TRY(colorRenderTarget->getImageView(contextVk, &imageView));
attachments.push_back(imageView->getHandle());
ASSERT(attachmentsSize.empty() || attachmentsSize == colorRenderTarget->getExtents());
attachmentsSize = colorRenderTarget->getExtents();
}
RenderTargetVk *depthStencilRenderTarget = mRenderTargetCache.getDepthStencil();
if (depthStencilRenderTarget)
{
const vk::ImageView *imageView = nullptr;
ANGLE_TRY(depthStencilRenderTarget->getImageView(contextVk, &imageView));
attachments.push_back(imageView->getHandle());
ASSERT(attachmentsSize.empty() ||
attachmentsSize == depthStencilRenderTarget->getExtents());
attachmentsSize = depthStencilRenderTarget->getExtents();
}
if (attachmentsSize.empty())
{
// No attachments, so use the default values.
attachmentsSize.height = mState.getDefaultHeight();
attachmentsSize.width = mState.getDefaultWidth();
attachmentsSize.depth = 0;
}
VkFramebufferCreateInfo framebufferInfo = {};
framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
framebufferInfo.flags = 0;
framebufferInfo.renderPass = compatibleRenderPass->getHandle();
framebufferInfo.attachmentCount = static_cast<uint32_t>(attachments.size());
framebufferInfo.pAttachments = attachments.data();
framebufferInfo.width = static_cast<uint32_t>(attachmentsSize.width);
framebufferInfo.height = static_cast<uint32_t>(attachmentsSize.height);
framebufferInfo.layers = 1;
ANGLE_TRY(mFramebuffer.init(contextVk, framebufferInfo));
*framebufferOut = &mFramebuffer.getFramebuffer();
return angle::Result::Continue;
}
angle::Result FramebufferVk::clearWithRenderPassOp(
ContextVk *contextVk,
const gl::Rectangle &clearArea,
gl::DrawBufferMask clearColorBuffers,
bool clearDepth,
bool clearStencil,
const VkClearColorValue &clearColorValue,
const VkClearDepthStencilValue &clearDepthStencilValue)
{
// Start a new render pass if:
//
// - no render pass has started,
// - there is a render pass started but it contains commands; we cannot modify its ops, so new
// render pass is needed,
// - the current render area doesn't match the clear area. We need the render area to be
// exactly as specified by the scissor for the loadOp to clear only that area. See
// onScissorChange for more information.
if (!mFramebuffer.valid() || !mFramebuffer.renderPassStartedButEmpty() ||
mFramebuffer.getRenderPassRenderArea() != clearArea)
{
vk::CommandBuffer *commandBuffer;
ANGLE_TRY(startNewRenderPass(contextVk, clearArea, &commandBuffer));
}
size_t attachmentIndexVk = 0;
// Go through clearColorBuffers and set the appropriate loadOp and clear values.
for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
{
if (clearColorBuffers.test(colorIndexGL))
{
RenderTargetVk *renderTarget = getColorDrawRenderTarget(colorIndexGL);
// If the render target doesn't have alpha, but its emulated format has it, clear the
// alpha to 1.
VkClearColorValue value = clearColorValue;
if (mEmulatedAlphaAttachmentMask[colorIndexGL])
{
SetEmulatedAlphaValue(renderTarget->getImageFormat(), &value);
}
mFramebuffer.clearRenderPassColorAttachment(attachmentIndexVk, value);
}
++attachmentIndexVk;
}
// Set the appropriate loadOp and clear values for depth and stencil.
RenderTargetVk *depthStencilRenderTarget = mRenderTargetCache.getDepthStencil();
if (depthStencilRenderTarget)
{
if (clearDepth)
{
mFramebuffer.clearRenderPassDepthAttachment(attachmentIndexVk,
clearDepthStencilValue.depth);
}
if (clearStencil)
{
mFramebuffer.clearRenderPassStencilAttachment(attachmentIndexVk,
clearDepthStencilValue.stencil);
}
}
return angle::Result::Continue;
}
angle::Result FramebufferVk::clearWithDraw(ContextVk *contextVk,
const gl::Rectangle &clearArea,
gl::DrawBufferMask clearColorBuffers,
bool clearStencil,
VkColorComponentFlags colorMaskFlags,
uint8_t stencilMask,
const VkClearColorValue &clearColorValue,
uint8_t clearStencilValue)
{
UtilsVk::ClearFramebufferParameters params = {};
params.clearArea = clearArea;
params.colorClearValue = clearColorValue;
params.stencilClearValue = clearStencilValue;
params.stencilMask = stencilMask;
params.clearColor = true;
params.clearStencil = clearStencil;
const auto &colorRenderTargets = mRenderTargetCache.getColors();
for (size_t colorIndexGL : clearColorBuffers)
{
const RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL];
ASSERT(colorRenderTarget);
params.colorFormat = &colorRenderTarget->getImage().getFormat().actualImageFormat();
params.colorAttachmentIndexGL = static_cast<uint32_t>(colorIndexGL);
params.colorMaskFlags = colorMaskFlags;
if (mEmulatedAlphaAttachmentMask[colorIndexGL])
{
params.colorMaskFlags &= ~VK_COLOR_COMPONENT_A_BIT;
}
ANGLE_TRY(contextVk->getUtils().clearFramebuffer(contextVk, this, params));
// Clear stencil only once!
params.clearStencil = false;
}
// If there was no color clear, clear stencil alone.
if (params.clearStencil)
{
params.clearColor = false;
ANGLE_TRY(contextVk->getUtils().clearFramebuffer(contextVk, this, params));
}
return angle::Result::Continue;
}
angle::Result FramebufferVk::getSamplePosition(const gl::Context *context,
size_t index,
GLfloat *xy) const
{
ANGLE_VK_UNREACHABLE(vk::GetImpl(context));
return angle::Result::Stop;
}
angle::Result FramebufferVk::startNewRenderPass(ContextVk *contextVk,
const gl::Rectangle &renderArea,
vk::CommandBuffer **commandBufferOut)
{
vk::Framebuffer *framebuffer = nullptr;
ANGLE_TRY(getFramebuffer(contextVk, &framebuffer));
vk::AttachmentOpsArray renderPassAttachmentOps;
std::vector<VkClearValue> attachmentClearValues;
vk::CommandBuffer *writeCommands = nullptr;
ANGLE_TRY(mFramebuffer.recordCommands(contextVk, &writeCommands));
// Initialize RenderPass info.
const auto &colorRenderTargets = mRenderTargetCache.getColors();
for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
{
RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL];
ASSERT(colorRenderTarget);
ANGLE_TRY(colorRenderTarget->onColorDraw(contextVk, &mFramebuffer, writeCommands));
renderPassAttachmentOps.initWithLoadStore(attachmentClearValues.size(),
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
attachmentClearValues.emplace_back(kUninitializedClearValue);
}
RenderTargetVk *depthStencilRenderTarget = mRenderTargetCache.getDepthStencil();
if (depthStencilRenderTarget)
{
ANGLE_TRY(
depthStencilRenderTarget->onDepthStencilDraw(contextVk, &mFramebuffer, writeCommands));
renderPassAttachmentOps.initWithLoadStore(attachmentClearValues.size(),
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
attachmentClearValues.emplace_back(kUninitializedClearValue);
}
return mFramebuffer.beginRenderPass(contextVk, *framebuffer, renderArea, mRenderPassDesc,
renderPassAttachmentOps, attachmentClearValues,
commandBufferOut);
}
void FramebufferVk::updateActiveColorMasks(size_t colorIndexGL, bool r, bool g, bool b, bool a)
{
mActiveColorComponentMasksForClear[0].set(colorIndexGL, r);
mActiveColorComponentMasksForClear[1].set(colorIndexGL, g);
mActiveColorComponentMasksForClear[2].set(colorIndexGL, b);
mActiveColorComponentMasksForClear[3].set(colorIndexGL, a);
}
const gl::DrawBufferMask &FramebufferVk::getEmulatedAlphaAttachmentMask() const
{
return mEmulatedAlphaAttachmentMask;
}
angle::Result FramebufferVk::readPixelsImpl(ContextVk *contextVk,
const gl::Rectangle &area,
const PackPixelsParams &packPixelsParams,
VkImageAspectFlagBits copyAspectFlags,
RenderTargetVk *renderTarget,
void *pixels)
{
ANGLE_TRACE_EVENT0("gpu.angle", "FramebufferVk::readPixelsImpl");
uint32_t level = renderTarget->getLevelIndex();
uint32_t layer = renderTarget->getLayerIndex();
return renderTarget->getImage().readPixels(contextVk, area, packPixelsParams, copyAspectFlags,
level, layer, pixels, &mReadPixelBuffer);
}
gl::Extents FramebufferVk::getReadImageExtents() const
{
RenderTargetVk *readRenderTarget = mRenderTargetCache.getColorRead(mState);
ASSERT(readRenderTarget->getExtents().width == mState.getDimensions().width);
ASSERT(readRenderTarget->getExtents().height == mState.getDimensions().height);
return readRenderTarget->getExtents();
}
gl::Rectangle FramebufferVk::getCompleteRenderArea() const
{
const gl::Box &dimensions = mState.getDimensions();
return gl::Rectangle(0, 0, dimensions.width, dimensions.height);
}
gl::Rectangle FramebufferVk::getScissoredRenderArea(ContextVk *contextVk) const
{
const gl::Box &dimensions = mState.getDimensions();
const gl::Rectangle renderArea(0, 0, dimensions.width, dimensions.height);
bool invertViewport = contextVk->isViewportFlipEnabledForDrawFBO();
return ClipRectToScissor(contextVk->getState(), renderArea, invertViewport);
}
void FramebufferVk::onScissorChange(ContextVk *contextVk)
{
gl::Rectangle scissoredRenderArea = getScissoredRenderArea(contextVk);
// If the scissor has grown beyond the previous scissoredRenderArea, make sure the render pass
// is restarted. Otherwise, we can continue using the same renderpass area.
//
// Without a scissor, the render pass area covers the whole of the framebuffer. With a
// scissored clear, the render pass area could be smaller than the framebuffer size. When the
// scissor changes, if the scissor area is completely encompassed by the render pass area, it's
// possible to continue using the same render pass. However, if the current render pass area
// is too small, we need to start a new one. The latter can happen if a scissored clear starts
// a render pass, the scissor is disabled and a draw call is issued to affect the whole
// framebuffer.
mFramebuffer.updateCurrentAccessNodes();
if (mFramebuffer.hasStartedRenderPass() &&
!mFramebuffer.getRenderPassRenderArea().encloses(scissoredRenderArea))
{
mFramebuffer.finishCurrentCommands(contextVk);
}
}
RenderTargetVk *FramebufferVk::getFirstRenderTarget() const
{
for (auto *renderTarget : mRenderTargetCache.getColors())
{
if (renderTarget)
{
return renderTarget;
}
}
return mRenderTargetCache.getDepthStencil();
}
GLint FramebufferVk::getSamples() const
{
RenderTargetVk *firstRT = getFirstRenderTarget();
return firstRT ? firstRT->getImage().getSamples() : 0;
}
} // namespace rx