blob: 55080f215cc3d8acc7ed7e6afc5095d337a0c9d7 [file] [log] [blame]
// The original file was copied from sqlite, and was in the public domain.
// Modifications Copyright 2006 Google Inc. All Rights Reserved
/*
* Copyright (C) 2010 Google Inc. All rights reserved.
* Copyright (C) 2015 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This code implements the MD5 message-digest algorithm.
* The algorithm is due to Ron Rivest. This code was
* written by Colin Plumb in 1993, no copyright is claimed.
* This code is in the public domain; do with it what you wish.
*
* Equivalent code is available from RSA Data Security, Inc.
* This code has been tested against that, and is equivalent,
* except that you don't need to include two pages of legalese
* with every copy.
*
* To compute the message digest of a chunk of bytes, construct an
* MD5 instance, call addBytes as needed on buffers full of bytes,
* and then call checksum, which will fill a supplied 16-byte array
* with the digest.
*/
#include "config.h"
#include "MD5.h"
#include "Assertions.h"
#ifndef NDEBUG
#include "StringExtras.h"
#include "text/CString.h"
#endif
#include <wtf/StdLibExtras.h>
namespace WTF {
#if PLATFORM(COCOA)
MD5::MD5()
{
CC_MD5_Init(&m_context);
}
void MD5::addBytes(const uint8_t* input, size_t length)
{
CC_MD5_Update(&m_context, input, length);
}
void MD5::checksum(Digest& hash)
{
CC_MD5_Final(hash.data(), &m_context);
}
#else
// Note: this code is harmless on little-endian machines.
static void toLittleEndian(uint8_t* buf, unsigned longs)
{
ASSERT(longs > 0);
do {
uint32_t t = static_cast<uint32_t>(buf[3] << 8 | buf[2]) << 16 | buf[1] << 8 | buf[0];
ASSERT_WITH_MESSAGE(!(reinterpret_cast<uintptr_t>(buf) % sizeof(t)), "alignment error of buf");
memcpy(buf, &t, sizeof(t));
buf += sizeof(t);
} while (--longs);
}
// The four core functions.
// F1 is originally defined as (x & y | ~x & z), but optimized somewhat: 4 bit ops -> 3 bit ops.
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
// This is the central step in the MD5 algorithm.
#define MD5STEP(f, w, x, y, z, data, s) \
(w += f(x, y, z) + data, w = w << s | w >> (32 - s), w += x)
static void MD5Transform(uint32_t buf[4], const uint32_t in[16])
{
uint32_t a = buf[0];
uint32_t b = buf[1];
uint32_t c = buf[2];
uint32_t d = buf[3];
MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478, 7);
MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12);
MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17);
MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22);
MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf, 7);
MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12);
MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17);
MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22);
MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8, 7);
MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12);
MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17);
MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22);
MD5STEP(F1, a, b, c, d, in[12]+0x6b901122, 7);
MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12);
MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17);
MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22);
MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562, 5);
MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340, 9);
MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14);
MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20);
MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d, 5);
MD5STEP(F2, d, a, b, c, in[10]+0x02441453, 9);
MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14);
MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20);
MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6, 5);
MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6, 9);
MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14);
MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20);
MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905, 5);
MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8, 9);
MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14);
MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20);
MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942, 4);
MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11);
MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16);
MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23);
MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44, 4);
MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11);
MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16);
MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23);
MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6, 4);
MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11);
MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16);
MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23);
MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039, 4);
MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11);
MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16);
MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23);
MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244, 6);
MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10);
MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15);
MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21);
MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3, 6);
MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10);
MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15);
MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21);
MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f, 6);
MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10);
MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15);
MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21);
MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82, 6);
MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10);
MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15);
MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21);
buf[0] += a;
buf[1] += b;
buf[2] += c;
buf[3] += d;
}
MD5::MD5()
{
m_buf[0] = 0x67452301;
m_buf[1] = 0xefcdab89;
m_buf[2] = 0x98badcfe;
m_buf[3] = 0x10325476;
m_bits[0] = 0;
m_bits[1] = 0;
memset(m_in, 0, sizeof(m_in));
ASSERT_WITH_MESSAGE(!(reinterpret_cast<uintptr_t>(m_in) % sizeof(uint32_t)), "alignment error of m_in");
}
void MD5::addBytes(const uint8_t* input, size_t length)
{
const uint8_t* buf = input;
// Update bitcount
uint32_t t = m_bits[0];
m_bits[0] = t + (length << 3);
if (m_bits[0] < t)
m_bits[1]++; // Carry from low to high
m_bits[1] += length >> 29;
t = (t >> 3) & 0x3f; // Bytes already in shsInfo->data
// Handle any leading odd-sized chunks
if (t) {
uint8_t* p = m_in + t;
t = 64 - t;
if (length < t) {
memcpy(p, buf, length);
return;
}
memcpy(p, buf, t);
toLittleEndian(m_in, 16);
MD5Transform(m_buf, reinterpret_cast_ptr<uint32_t*>(m_in)); // m_in is 4-byte aligned.
buf += t;
length -= t;
}
// Process data in 64-byte chunks
while (length >= 64) {
memcpy(m_in, buf, 64);
toLittleEndian(m_in, 16);
MD5Transform(m_buf, reinterpret_cast_ptr<uint32_t*>(m_in)); // m_in is 4-byte aligned.
buf += 64;
length -= 64;
}
// Handle any remaining bytes of data.
memcpy(m_in, buf, length);
}
void MD5::checksum(Digest& digest)
{
// Compute number of bytes mod 64
unsigned count = (m_bits[0] >> 3) & 0x3F;
// Set the first char of padding to 0x80. This is safe since there is
// always at least one byte free
uint8_t* p = m_in + count;
*p++ = 0x80;
// Bytes of padding needed to make 64 bytes
count = 64 - 1 - count;
// Pad out to 56 mod 64
if (count < 8) {
// Two lots of padding: Pad the first block to 64 bytes
memset(p, 0, count);
toLittleEndian(m_in, 16);
MD5Transform(m_buf, reinterpret_cast_ptr<uint32_t *>(m_in)); // m_in is 4-byte aligned.
// Now fill the next block with 56 bytes
memset(m_in, 0, 56);
} else {
// Pad block to 56 bytes
memset(p, 0, count - 8);
}
toLittleEndian(m_in, 14);
// Append length in bits and transform
memcpy(m_in + 56, m_bits, sizeof(m_bits));
MD5Transform(m_buf, reinterpret_cast_ptr<uint32_t*>(m_in));
toLittleEndian(reinterpret_cast<uint8_t*>(m_buf), 4);
// Now, m_buf contains checksum result.
uint8_t* mBufUInt8 = reinterpret_cast<uint8_t*>(m_buf);
for (size_t i = 0; i < hashSize; ++i)
digest[i] = mBufUInt8[i];
// In case it's sensitive
memset(m_buf, 0, sizeof(m_buf));
memset(m_bits, 0, sizeof(m_bits));
memset(m_in, 0, sizeof(m_in));
}
#endif
} // namespace WTF