blob: 915e2bdd235868b705820bddda5eeb1cdfdd4254 [file] [log] [blame]
/*
* Copyright (C) 2010-2019 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "ThunkGenerators.h"
#include "CodeBlock.h"
#include "DFGSpeculativeJIT.h"
#include "JITExceptions.h"
#include "JITOperations.h"
#include "JSArray.h"
#include "JSBoundFunction.h"
#include "JSCInlines.h"
#include "MathCommon.h"
#include "MaxFrameExtentForSlowPathCall.h"
#include "ProbeContext.h"
#include "SpecializedThunkJIT.h"
#include <wtf/InlineASM.h>
#include <wtf/StringPrintStream.h>
#include <wtf/text/StringImpl.h>
#if ENABLE(JIT)
namespace JSC {
template<typename TagType>
inline void emitPointerValidation(CCallHelpers& jit, GPRReg pointerGPR, TagType tag)
{
if (!ASSERT_ENABLED)
return;
CCallHelpers::Jump isNonZero = jit.branchTestPtr(CCallHelpers::NonZero, pointerGPR);
jit.abortWithReason(TGInvalidPointer);
isNonZero.link(&jit);
jit.pushToSave(pointerGPR);
jit.untagPtr(tag, pointerGPR);
jit.load8(pointerGPR, pointerGPR);
jit.popToRestore(pointerGPR);
}
// We will jump here if the JIT code tries to make a call, but the
// linking helper (C++ code) decides to throw an exception instead.
MacroAssemblerCodeRef<JITThunkPtrTag> throwExceptionFromCallSlowPathGenerator(VM& vm)
{
CCallHelpers jit;
// The call pushed a return address, so we need to pop it back off to re-align the stack,
// even though we won't use it.
jit.preserveReturnAddressAfterCall(GPRInfo::nonPreservedNonReturnGPR);
jit.copyCalleeSavesToEntryFrameCalleeSavesBuffer(vm.topEntryFrame);
jit.setupArguments<decltype(operationLookupExceptionHandler)>(CCallHelpers::TrustedImmPtr(&vm));
jit.prepareCallOperation(vm);
jit.move(CCallHelpers::TrustedImmPtr(tagCFunctionPtr<OperationPtrTag>(operationLookupExceptionHandler)), GPRInfo::nonArgGPR0);
emitPointerValidation(jit, GPRInfo::nonArgGPR0, OperationPtrTag);
jit.call(GPRInfo::nonArgGPR0, OperationPtrTag);
jit.jumpToExceptionHandler(vm);
LinkBuffer patchBuffer(jit, GLOBAL_THUNK_ID);
return FINALIZE_CODE(patchBuffer, JITThunkPtrTag, "Throw exception from call slow path thunk");
}
static void slowPathFor(CCallHelpers& jit, VM& vm, Sprt_JITOperation_EGCli slowPathFunction)
{
jit.sanitizeStackInline(vm, GPRInfo::nonArgGPR0);
jit.emitFunctionPrologue();
jit.storePtr(GPRInfo::callFrameRegister, &vm.topCallFrame);
#if OS(WINDOWS) && CPU(X86_64)
// Windows X86_64 needs some space pointed to by arg0 for return types larger than 64 bits.
// Other argument values are shift by 1. Use space on the stack for our two return values.
// Moving the stack down maxFrameExtentForSlowPathCall bytes gives us room for our 3 arguments
// and space for the 16 byte return area.
jit.addPtr(CCallHelpers::TrustedImm32(-static_cast<int32_t>(maxFrameExtentForSlowPathCall)), CCallHelpers::stackPointerRegister);
static_assert(GPRInfo::regT2 != GPRInfo::argumentGPR0);
static_assert(GPRInfo::regT3 != GPRInfo::argumentGPR0);
jit.move(GPRInfo::regT2, GPRInfo::argumentGPR0);
jit.move(GPRInfo::regT3, GPRInfo::argumentGPR2);
jit.move(GPRInfo::argumentGPR0, GPRInfo::argumentGPR3);
jit.addPtr(CCallHelpers::TrustedImm32(32), CCallHelpers::stackPointerRegister, GPRInfo::argumentGPR0);
jit.move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR1);
jit.move(CCallHelpers::TrustedImmPtr(tagCFunctionPtr<OperationPtrTag>(slowPathFunction)), GPRInfo::nonArgGPR0);
emitPointerValidation(jit, GPRInfo::nonArgGPR0, OperationPtrTag);
jit.call(GPRInfo::nonArgGPR0, OperationPtrTag);
jit.loadPtr(CCallHelpers::Address(GPRInfo::returnValueGPR, 8), GPRInfo::returnValueGPR2);
jit.loadPtr(CCallHelpers::Address(GPRInfo::returnValueGPR), GPRInfo::returnValueGPR);
jit.addPtr(CCallHelpers::TrustedImm32(maxFrameExtentForSlowPathCall), CCallHelpers::stackPointerRegister);
#else
if (maxFrameExtentForSlowPathCall)
jit.addPtr(CCallHelpers::TrustedImm32(-maxFrameExtentForSlowPathCall), CCallHelpers::stackPointerRegister);
jit.setupArguments<decltype(slowPathFunction)>(GPRInfo::regT3, GPRInfo::regT2);
jit.move(CCallHelpers::TrustedImmPtr(tagCFunctionPtr<OperationPtrTag>(slowPathFunction)), GPRInfo::nonArgGPR0);
emitPointerValidation(jit, GPRInfo::nonArgGPR0, OperationPtrTag);
jit.call(GPRInfo::nonArgGPR0, OperationPtrTag);
if (maxFrameExtentForSlowPathCall)
jit.addPtr(CCallHelpers::TrustedImm32(maxFrameExtentForSlowPathCall), CCallHelpers::stackPointerRegister);
#endif
// This slow call will return the address of one of the following:
// 1) Exception throwing thunk.
// 2) Host call return value returner thingy.
// 3) The function to call.
// The second return value GPR will hold a non-zero value for tail calls.
emitPointerValidation(jit, GPRInfo::returnValueGPR, JSEntryPtrTag);
jit.emitFunctionEpilogue();
jit.untagReturnAddress();
RELEASE_ASSERT(reinterpret_cast<void*>(KeepTheFrame) == reinterpret_cast<void*>(0));
CCallHelpers::Jump doNotTrash = jit.branchTestPtr(CCallHelpers::Zero, GPRInfo::returnValueGPR2);
jit.preserveReturnAddressAfterCall(GPRInfo::nonPreservedNonReturnGPR);
jit.prepareForTailCallSlow(GPRInfo::returnValueGPR);
doNotTrash.link(&jit);
jit.farJump(GPRInfo::returnValueGPR, JSEntryPtrTag);
}
MacroAssemblerCodeRef<JITThunkPtrTag> linkCallThunkGenerator(VM& vm)
{
// The return address is on the stack or in the link register. We will hence
// save the return address to the call frame while we make a C++ function call
// to perform linking and lazy compilation if necessary. We expect the callee
// to be in regT0/regT1 (payload/tag), the CallFrame to have already
// been adjusted, and all other registers to be available for use.
CCallHelpers jit;
slowPathFor(jit, vm, operationLinkCall);
LinkBuffer patchBuffer(jit, GLOBAL_THUNK_ID);
return FINALIZE_CODE(patchBuffer, JITThunkPtrTag, "Link call slow path thunk");
}
// For closure optimizations, we only include calls, since if you're using closures for
// object construction then you're going to lose big time anyway.
MacroAssemblerCodeRef<JITThunkPtrTag> linkPolymorphicCallThunkGenerator(VM& vm)
{
CCallHelpers jit;
slowPathFor(jit, vm, operationLinkPolymorphicCall);
LinkBuffer patchBuffer(jit, GLOBAL_THUNK_ID);
return FINALIZE_CODE(patchBuffer, JITThunkPtrTag, "Link polymorphic call slow path thunk");
}
// FIXME: We should distinguish between a megamorphic virtual call vs. a slow
// path virtual call so that we can enable fast tail calls for megamorphic
// virtual calls by using the shuffler.
// https://bugs.webkit.org/show_bug.cgi?id=148831
MacroAssemblerCodeRef<JITStubRoutinePtrTag> virtualThunkFor(VM& vm, CallLinkInfo& callLinkInfo)
{
// The callee is in regT0 (for JSVALUE32_64, the tag is in regT1).
// The return address is on the stack, or in the link register. We will hence
// jump to the callee, or save the return address to the call frame while we
// make a C++ function call to the appropriate JIT operation.
CCallHelpers jit;
CCallHelpers::JumpList slowCase;
// This is a slow path execution, and regT2 contains the CallLinkInfo. Count the
// slow path execution for the profiler.
jit.add32(
CCallHelpers::TrustedImm32(1),
CCallHelpers::Address(GPRInfo::regT2, CallLinkInfo::offsetOfSlowPathCount()));
// FIXME: we should have a story for eliminating these checks. In many cases,
// the DFG knows that the value is definitely a cell, or definitely a function.
#if USE(JSVALUE64)
if (callLinkInfo.isTailCall()) {
// Tail calls could have clobbered the GPRInfo::notCellMaskRegister because they
// restore callee saved registers before getthing here. So, let's materialize
// the NotCellMask in a temp register and use the temp instead.
slowCase.append(jit.branchIfNotCell(GPRInfo::regT0, DoNotHaveTagRegisters));
} else
slowCase.append(jit.branchIfNotCell(GPRInfo::regT0));
#else
slowCase.append(jit.branchIfNotCell(GPRInfo::regT1));
#endif
auto notJSFunction = jit.branchIfNotFunction(GPRInfo::regT0);
// Now we know we have a JSFunction.
jit.loadPtr(CCallHelpers::Address(GPRInfo::regT0, JSFunction::offsetOfExecutableOrRareData()), GPRInfo::regT4);
auto hasExecutable = jit.branchTestPtr(CCallHelpers::Zero, GPRInfo::regT4, CCallHelpers::TrustedImm32(JSFunction::rareDataTag));
jit.loadPtr(CCallHelpers::Address(GPRInfo::regT4, FunctionRareData::offsetOfExecutable() - JSFunction::rareDataTag), GPRInfo::regT4);
hasExecutable.link(&jit);
jit.loadPtr(
CCallHelpers::Address(
GPRInfo::regT4, ExecutableBase::offsetOfJITCodeWithArityCheckFor(
callLinkInfo.specializationKind())),
GPRInfo::regT4);
slowCase.append(jit.branchTestPtr(CCallHelpers::Zero, GPRInfo::regT4));
// Now we know that we have a CodeBlock, and we're committed to making a fast
// call.
// Make a tail call. This will return back to JIT code.
JSInterfaceJIT::Label callCode(jit.label());
emitPointerValidation(jit, GPRInfo::regT4, JSEntryPtrTag);
if (callLinkInfo.isTailCall()) {
jit.preserveReturnAddressAfterCall(GPRInfo::regT0);
jit.prepareForTailCallSlow(GPRInfo::regT4);
}
jit.farJump(GPRInfo::regT4, JSEntryPtrTag);
notJSFunction.link(&jit);
slowCase.append(jit.branchIfNotType(GPRInfo::regT0, InternalFunctionType));
void* executableAddress = vm.getCTIInternalFunctionTrampolineFor(callLinkInfo.specializationKind()).executableAddress();
jit.move(CCallHelpers::TrustedImmPtr(executableAddress), GPRInfo::regT4);
jit.jump().linkTo(callCode, &jit);
slowCase.link(&jit);
// Here we don't know anything, so revert to the full slow path.
slowPathFor(jit, vm, operationVirtualCall);
LinkBuffer patchBuffer(jit, GLOBAL_THUNK_ID);
return FINALIZE_CODE(
patchBuffer, JITStubRoutinePtrTag,
"Virtual %s slow path thunk",
callLinkInfo.callMode() == CallMode::Regular ? "call" : callLinkInfo.callMode() == CallMode::Tail ? "tail call" : "construct");
}
enum ThunkEntryType { EnterViaCall, EnterViaJumpWithSavedTags, EnterViaJumpWithoutSavedTags };
enum class ThunkFunctionType { JSFunction, InternalFunction };
static MacroAssemblerCodeRef<JITThunkPtrTag> nativeForGenerator(VM& vm, ThunkFunctionType thunkFunctionType, CodeSpecializationKind kind, ThunkEntryType entryType = EnterViaCall)
{
// FIXME: This should be able to log ShadowChicken prologue packets.
// https://bugs.webkit.org/show_bug.cgi?id=155689
int executableOffsetToFunction = NativeExecutable::offsetOfNativeFunctionFor(kind);
JSInterfaceJIT jit(&vm);
switch (entryType) {
case EnterViaCall:
jit.emitFunctionPrologue();
break;
case EnterViaJumpWithSavedTags:
#if USE(JSVALUE64)
// We're coming from a specialized thunk that has saved the prior tag registers' contents.
// Restore them now.
jit.popPair(JSInterfaceJIT::numberTagRegister, JSInterfaceJIT::notCellMaskRegister);
#endif
break;
case EnterViaJumpWithoutSavedTags:
jit.move(JSInterfaceJIT::framePointerRegister, JSInterfaceJIT::stackPointerRegister);
break;
}
jit.emitPutToCallFrameHeader(0, CallFrameSlot::codeBlock);
jit.storePtr(GPRInfo::callFrameRegister, &vm.topCallFrame);
// Host function signature: f(JSGlobalObject*, CallFrame*);
#if CPU(X86_64) && OS(WINDOWS)
// Leave space for the callee parameter home addresses.
// At this point the stack is aligned to 16 bytes, but if this changes at some point, we need to emit code to align it.
jit.subPtr(CCallHelpers::TrustedImm32(4 * sizeof(int64_t)), CCallHelpers::stackPointerRegister);
#elif CPU(MIPS)
// Allocate stack space for (unused) 16 bytes (8-byte aligned) for 4 arguments.
jit.subPtr(CCallHelpers::TrustedImm32(16), CCallHelpers::stackPointerRegister);
#endif
jit.move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR1);
jit.emitGetFromCallFrameHeaderPtr(CallFrameSlot::callee, GPRInfo::argumentGPR2);
if (thunkFunctionType == ThunkFunctionType::JSFunction) {
jit.loadPtr(CCallHelpers::Address(GPRInfo::argumentGPR2, JSFunction::offsetOfScopeChain()), GPRInfo::argumentGPR0);
jit.loadPtr(CCallHelpers::Address(GPRInfo::argumentGPR2, JSFunction::offsetOfExecutableOrRareData()), GPRInfo::argumentGPR2);
auto hasExecutable = jit.branchTestPtr(CCallHelpers::Zero, GPRInfo::argumentGPR2, CCallHelpers::TrustedImm32(JSFunction::rareDataTag));
jit.loadPtr(CCallHelpers::Address(GPRInfo::argumentGPR2, FunctionRareData::offsetOfExecutable() - JSFunction::rareDataTag), GPRInfo::argumentGPR2);
hasExecutable.link(&jit);
jit.call(CCallHelpers::Address(GPRInfo::argumentGPR2, executableOffsetToFunction), JSEntryPtrTag);
} else {
ASSERT(thunkFunctionType == ThunkFunctionType::InternalFunction);
jit.loadPtr(CCallHelpers::Address(GPRInfo::argumentGPR2, InternalFunction::offsetOfGlobalObject()), GPRInfo::argumentGPR0);
jit.call(CCallHelpers::Address(GPRInfo::argumentGPR2, InternalFunction::offsetOfNativeFunctionFor(kind)), JSEntryPtrTag);
}
#if CPU(X86_64) && OS(WINDOWS)
jit.addPtr(CCallHelpers::TrustedImm32(4 * sizeof(int64_t)), CCallHelpers::stackPointerRegister);
#elif CPU(MIPS)
jit.addPtr(CCallHelpers::TrustedImm32(16), CCallHelpers::stackPointerRegister);
#endif
// Check for an exception
#if USE(JSVALUE64)
jit.load64(vm.addressOfException(), JSInterfaceJIT::regT2);
JSInterfaceJIT::Jump exceptionHandler = jit.branchTest64(JSInterfaceJIT::NonZero, JSInterfaceJIT::regT2);
#else
JSInterfaceJIT::Jump exceptionHandler = jit.branch32(
JSInterfaceJIT::NotEqual,
JSInterfaceJIT::AbsoluteAddress(vm.addressOfException()),
JSInterfaceJIT::TrustedImm32(0));
#endif
jit.emitFunctionEpilogue();
// Return.
jit.ret();
// Handle an exception
exceptionHandler.link(&jit);
jit.copyCalleeSavesToEntryFrameCalleeSavesBuffer(vm.topEntryFrame);
jit.storePtr(JSInterfaceJIT::callFrameRegister, &vm.topCallFrame);
#if OS(WINDOWS)
// Allocate space on stack for the 4 parameter registers.
jit.subPtr(JSInterfaceJIT::TrustedImm32(4 * sizeof(int64_t)), JSInterfaceJIT::stackPointerRegister);
#elif CPU(MIPS)
// Allocate stack space for (unused) 16 bytes (8-byte aligned) for 4 arguments.
jit.subPtr(CCallHelpers::TrustedImm32(16), CCallHelpers::stackPointerRegister);
#endif
jit.move(CCallHelpers::TrustedImmPtr(&vm), JSInterfaceJIT::argumentGPR0);
jit.move(JSInterfaceJIT::TrustedImmPtr(tagCFunctionPtr<OperationPtrTag>(operationVMHandleException)), JSInterfaceJIT::regT3);
jit.call(JSInterfaceJIT::regT3, OperationPtrTag);
#if OS(WINDOWS)
jit.addPtr(JSInterfaceJIT::TrustedImm32(4 * sizeof(int64_t)), JSInterfaceJIT::stackPointerRegister);
#elif CPU(MIPS)
jit.addPtr(CCallHelpers::TrustedImm32(16), CCallHelpers::stackPointerRegister);
#endif
jit.jumpToExceptionHandler(vm);
LinkBuffer patchBuffer(jit, GLOBAL_THUNK_ID);
return FINALIZE_CODE(patchBuffer, JITThunkPtrTag, "%s %s%s trampoline", thunkFunctionType == ThunkFunctionType::JSFunction ? "native" : "internal", entryType == EnterViaJumpWithSavedTags ? "Tail With Saved Tags " : entryType == EnterViaJumpWithoutSavedTags ? "Tail Without Saved Tags " : "", toCString(kind).data());
}
MacroAssemblerCodeRef<JITThunkPtrTag> nativeCallGenerator(VM& vm)
{
return nativeForGenerator(vm, ThunkFunctionType::JSFunction, CodeForCall);
}
MacroAssemblerCodeRef<JITThunkPtrTag> nativeTailCallGenerator(VM& vm)
{
return nativeForGenerator(vm, ThunkFunctionType::JSFunction, CodeForCall, EnterViaJumpWithSavedTags);
}
MacroAssemblerCodeRef<JITThunkPtrTag> nativeTailCallWithoutSavedTagsGenerator(VM& vm)
{
return nativeForGenerator(vm, ThunkFunctionType::JSFunction, CodeForCall, EnterViaJumpWithoutSavedTags);
}
MacroAssemblerCodeRef<JITThunkPtrTag> nativeConstructGenerator(VM& vm)
{
return nativeForGenerator(vm, ThunkFunctionType::JSFunction, CodeForConstruct);
}
MacroAssemblerCodeRef<JITThunkPtrTag> internalFunctionCallGenerator(VM& vm)
{
return nativeForGenerator(vm, ThunkFunctionType::InternalFunction, CodeForCall);
}
MacroAssemblerCodeRef<JITThunkPtrTag> internalFunctionConstructGenerator(VM& vm)
{
return nativeForGenerator(vm, ThunkFunctionType::InternalFunction, CodeForConstruct);
}
MacroAssemblerCodeRef<JITThunkPtrTag> arityFixupGenerator(VM& vm)
{
JSInterfaceJIT jit(&vm);
// We enter with fixup count in argumentGPR0
// We have the guarantee that a0, a1, a2, t3, t4 and t5 (or t0 for Windows) are all distinct :-)
#if USE(JSVALUE64)
#if OS(WINDOWS)
const GPRReg extraTemp = JSInterfaceJIT::regT0;
#else
const GPRReg extraTemp = JSInterfaceJIT::regT5;
#endif
# if CPU(X86_64)
jit.pop(JSInterfaceJIT::regT4);
# endif
jit.tagReturnAddress();
#if CPU(ARM64E)
jit.loadPtr(JSInterfaceJIT::Address(GPRInfo::callFrameRegister, CallFrame::returnPCOffset()), GPRInfo::regT3);
jit.addPtr(JSInterfaceJIT::TrustedImm32(sizeof(CallerFrameAndPC)), GPRInfo::callFrameRegister, extraTemp);
jit.untagPtr(extraTemp, GPRInfo::regT3);
PtrTag tempReturnPCTag = static_cast<PtrTag>(random());
jit.move(JSInterfaceJIT::TrustedImmPtr(tempReturnPCTag), extraTemp);
jit.tagPtr(extraTemp, GPRInfo::regT3);
jit.storePtr(GPRInfo::regT3, JSInterfaceJIT::Address(GPRInfo::callFrameRegister, CallFrame::returnPCOffset()));
#endif
jit.move(JSInterfaceJIT::callFrameRegister, JSInterfaceJIT::regT3);
jit.load32(JSInterfaceJIT::addressFor(CallFrameSlot::argumentCountIncludingThis), JSInterfaceJIT::argumentGPR2);
jit.add32(JSInterfaceJIT::TrustedImm32(CallFrame::headerSizeInRegisters), JSInterfaceJIT::argumentGPR2);
// Check to see if we have extra slots we can use
jit.move(JSInterfaceJIT::argumentGPR0, JSInterfaceJIT::argumentGPR1);
jit.and32(JSInterfaceJIT::TrustedImm32(stackAlignmentRegisters() - 1), JSInterfaceJIT::argumentGPR1);
JSInterfaceJIT::Jump noExtraSlot = jit.branchTest32(MacroAssembler::Zero, JSInterfaceJIT::argumentGPR1);
jit.move(JSInterfaceJIT::TrustedImm64(JSValue::ValueUndefined), extraTemp);
JSInterfaceJIT::Label fillExtraSlots(jit.label());
jit.store64(extraTemp, MacroAssembler::BaseIndex(JSInterfaceJIT::callFrameRegister, JSInterfaceJIT::argumentGPR2, JSInterfaceJIT::TimesEight));
jit.add32(JSInterfaceJIT::TrustedImm32(1), JSInterfaceJIT::argumentGPR2);
jit.branchSub32(JSInterfaceJIT::NonZero, JSInterfaceJIT::TrustedImm32(1), JSInterfaceJIT::argumentGPR1).linkTo(fillExtraSlots, &jit);
jit.and32(JSInterfaceJIT::TrustedImm32(-stackAlignmentRegisters()), JSInterfaceJIT::argumentGPR0);
JSInterfaceJIT::Jump done = jit.branchTest32(MacroAssembler::Zero, JSInterfaceJIT::argumentGPR0);
noExtraSlot.link(&jit);
jit.neg64(JSInterfaceJIT::argumentGPR0);
// Adjust call frame register and stack pointer to account for missing args.
// We need to change the stack pointer first before performing copy/fill loops.
// This stack space below the stack pointer is considered unused by OS. Therefore,
// OS may corrupt this space when constructing a signal stack.
jit.move(JSInterfaceJIT::argumentGPR0, extraTemp);
jit.lshift64(JSInterfaceJIT::TrustedImm32(3), extraTemp);
jit.addPtr(extraTemp, JSInterfaceJIT::callFrameRegister);
jit.untagReturnAddress();
jit.addPtr(extraTemp, JSInterfaceJIT::stackPointerRegister);
jit.tagReturnAddress();
// Move current frame down argumentGPR0 number of slots
JSInterfaceJIT::Label copyLoop(jit.label());
jit.load64(JSInterfaceJIT::regT3, extraTemp);
jit.store64(extraTemp, MacroAssembler::BaseIndex(JSInterfaceJIT::regT3, JSInterfaceJIT::argumentGPR0, JSInterfaceJIT::TimesEight));
jit.addPtr(JSInterfaceJIT::TrustedImm32(8), JSInterfaceJIT::regT3);
jit.branchSub32(MacroAssembler::NonZero, JSInterfaceJIT::TrustedImm32(1), JSInterfaceJIT::argumentGPR2).linkTo(copyLoop, &jit);
// Fill in argumentGPR0 missing arg slots with undefined
jit.move(JSInterfaceJIT::argumentGPR0, JSInterfaceJIT::argumentGPR2);
jit.move(JSInterfaceJIT::TrustedImm64(JSValue::ValueUndefined), extraTemp);
JSInterfaceJIT::Label fillUndefinedLoop(jit.label());
jit.store64(extraTemp, MacroAssembler::BaseIndex(JSInterfaceJIT::regT3, JSInterfaceJIT::argumentGPR0, JSInterfaceJIT::TimesEight));
jit.addPtr(JSInterfaceJIT::TrustedImm32(8), JSInterfaceJIT::regT3);
jit.branchAdd32(MacroAssembler::NonZero, JSInterfaceJIT::TrustedImm32(1), JSInterfaceJIT::argumentGPR2).linkTo(fillUndefinedLoop, &jit);
done.link(&jit);
#if CPU(ARM64E)
jit.loadPtr(JSInterfaceJIT::Address(GPRInfo::callFrameRegister, CallFrame::returnPCOffset()), GPRInfo::regT3);
jit.move(JSInterfaceJIT::TrustedImmPtr(tempReturnPCTag), extraTemp);
jit.untagPtr(extraTemp, GPRInfo::regT3);
jit.addPtr(JSInterfaceJIT::TrustedImm32(sizeof(CallerFrameAndPC)), GPRInfo::callFrameRegister, extraTemp);
jit.tagPtr(extraTemp, GPRInfo::regT3);
jit.storePtr(GPRInfo::regT3, JSInterfaceJIT::Address(GPRInfo::callFrameRegister, CallFrame::returnPCOffset()));
#endif
# if CPU(X86_64)
jit.push(JSInterfaceJIT::regT4);
# endif
jit.ret();
#else // USE(JSVALUE64) section above, USE(JSVALUE32_64) section below.
jit.move(JSInterfaceJIT::callFrameRegister, JSInterfaceJIT::regT3);
jit.load32(JSInterfaceJIT::addressFor(CallFrameSlot::argumentCountIncludingThis), JSInterfaceJIT::argumentGPR2);
jit.add32(JSInterfaceJIT::TrustedImm32(CallFrame::headerSizeInRegisters), JSInterfaceJIT::argumentGPR2);
// Check to see if we have extra slots we can use
jit.move(JSInterfaceJIT::argumentGPR0, JSInterfaceJIT::argumentGPR1);
jit.and32(JSInterfaceJIT::TrustedImm32(stackAlignmentRegisters() - 1), JSInterfaceJIT::argumentGPR1);
JSInterfaceJIT::Jump noExtraSlot = jit.branchTest32(MacroAssembler::Zero, JSInterfaceJIT::argumentGPR1);
JSInterfaceJIT::Label fillExtraSlots(jit.label());
jit.move(JSInterfaceJIT::TrustedImm32(0), JSInterfaceJIT::regT5);
jit.store32(JSInterfaceJIT::regT5, MacroAssembler::BaseIndex(JSInterfaceJIT::callFrameRegister, JSInterfaceJIT::argumentGPR2, JSInterfaceJIT::TimesEight, PayloadOffset));
jit.move(JSInterfaceJIT::TrustedImm32(JSValue::UndefinedTag), JSInterfaceJIT::regT5);
jit.store32(JSInterfaceJIT::regT5, MacroAssembler::BaseIndex(JSInterfaceJIT::callFrameRegister, JSInterfaceJIT::argumentGPR2, JSInterfaceJIT::TimesEight, TagOffset));
jit.add32(JSInterfaceJIT::TrustedImm32(1), JSInterfaceJIT::argumentGPR2);
jit.branchSub32(JSInterfaceJIT::NonZero, JSInterfaceJIT::TrustedImm32(1), JSInterfaceJIT::argumentGPR1).linkTo(fillExtraSlots, &jit);
jit.and32(JSInterfaceJIT::TrustedImm32(-stackAlignmentRegisters()), JSInterfaceJIT::argumentGPR0);
JSInterfaceJIT::Jump done = jit.branchTest32(MacroAssembler::Zero, JSInterfaceJIT::argumentGPR0);
noExtraSlot.link(&jit);
jit.neg32(JSInterfaceJIT::argumentGPR0);
// Adjust call frame register and stack pointer to account for missing args.
// We need to change the stack pointer first before performing copy/fill loops.
// This stack space below the stack pointer is considered unused by OS. Therefore,
// OS may corrupt this space when constructing a signal stack.
jit.move(JSInterfaceJIT::argumentGPR0, JSInterfaceJIT::regT5);
jit.lshift32(JSInterfaceJIT::TrustedImm32(3), JSInterfaceJIT::regT5);
jit.addPtr(JSInterfaceJIT::regT5, JSInterfaceJIT::callFrameRegister);
jit.untagReturnAddress();
jit.addPtr(JSInterfaceJIT::regT5, JSInterfaceJIT::stackPointerRegister);
jit.tagReturnAddress();
// Move current frame down argumentGPR0 number of slots
JSInterfaceJIT::Label copyLoop(jit.label());
jit.load32(MacroAssembler::Address(JSInterfaceJIT::regT3, PayloadOffset), JSInterfaceJIT::regT5);
jit.store32(JSInterfaceJIT::regT5, MacroAssembler::BaseIndex(JSInterfaceJIT::regT3, JSInterfaceJIT::argumentGPR0, JSInterfaceJIT::TimesEight, PayloadOffset));
jit.load32(MacroAssembler::Address(JSInterfaceJIT::regT3, TagOffset), JSInterfaceJIT::regT5);
jit.store32(JSInterfaceJIT::regT5, MacroAssembler::BaseIndex(JSInterfaceJIT::regT3, JSInterfaceJIT::argumentGPR0, JSInterfaceJIT::TimesEight, TagOffset));
jit.addPtr(JSInterfaceJIT::TrustedImm32(8), JSInterfaceJIT::regT3);
jit.branchSub32(MacroAssembler::NonZero, JSInterfaceJIT::TrustedImm32(1), JSInterfaceJIT::argumentGPR2).linkTo(copyLoop, &jit);
// Fill in argumentGPR0 missing arg slots with undefined
jit.move(JSInterfaceJIT::argumentGPR0, JSInterfaceJIT::argumentGPR2);
JSInterfaceJIT::Label fillUndefinedLoop(jit.label());
jit.move(JSInterfaceJIT::TrustedImm32(0), JSInterfaceJIT::regT5);
jit.store32(JSInterfaceJIT::regT5, MacroAssembler::BaseIndex(JSInterfaceJIT::regT3, JSInterfaceJIT::argumentGPR0, JSInterfaceJIT::TimesEight, PayloadOffset));
jit.move(JSInterfaceJIT::TrustedImm32(JSValue::UndefinedTag), JSInterfaceJIT::regT5);
jit.store32(JSInterfaceJIT::regT5, MacroAssembler::BaseIndex(JSInterfaceJIT::regT3, JSInterfaceJIT::argumentGPR0, JSInterfaceJIT::TimesEight, TagOffset));
jit.addPtr(JSInterfaceJIT::TrustedImm32(8), JSInterfaceJIT::regT3);
jit.branchAdd32(MacroAssembler::NonZero, JSInterfaceJIT::TrustedImm32(1), JSInterfaceJIT::argumentGPR2).linkTo(fillUndefinedLoop, &jit);
done.link(&jit);
jit.ret();
#endif // End of USE(JSVALUE32_64) section.
LinkBuffer patchBuffer(jit, GLOBAL_THUNK_ID);
return FINALIZE_CODE(patchBuffer, JITThunkPtrTag, "fixup arity");
}
MacroAssemblerCodeRef<JITThunkPtrTag> unreachableGenerator(VM& vm)
{
JSInterfaceJIT jit(&vm);
jit.breakpoint();
LinkBuffer patchBuffer(jit, GLOBAL_THUNK_ID);
return FINALIZE_CODE(patchBuffer, JITThunkPtrTag, "unreachable thunk");
}
MacroAssemblerCodeRef<JITThunkPtrTag> stringGetByValGenerator(VM& vm)
{
// regT0 is JSString*, and regT1 (64bit) or regT2 (32bit) is int index.
// Return regT0 = result JSString* if succeeds. Otherwise, return regT0 = 0.
#if USE(JSVALUE64)
GPRReg stringGPR = GPRInfo::regT0;
GPRReg indexGPR = GPRInfo::regT1;
GPRReg scratchGPR = GPRInfo::regT2;
#else
GPRReg stringGPR = GPRInfo::regT0;
GPRReg indexGPR = GPRInfo::regT2;
GPRReg scratchGPR = GPRInfo::regT1;
#endif
JSInterfaceJIT jit(&vm);
JSInterfaceJIT::JumpList failures;
jit.tagReturnAddress();
// Load string length to regT2, and start the process of loading the data pointer into regT0
jit.loadPtr(JSInterfaceJIT::Address(stringGPR, JSString::offsetOfValue()), stringGPR);
failures.append(jit.branchIfRopeStringImpl(stringGPR));
jit.load32(JSInterfaceJIT::Address(stringGPR, StringImpl::lengthMemoryOffset()), scratchGPR);
// Do an unsigned compare to simultaneously filter negative indices as well as indices that are too large
failures.append(jit.branch32(JSInterfaceJIT::AboveOrEqual, indexGPR, scratchGPR));
// Load the character
JSInterfaceJIT::JumpList cont8Bit;
// Load the string flags
jit.load32(JSInterfaceJIT::Address(stringGPR, StringImpl::flagsOffset()), scratchGPR);
jit.loadPtr(JSInterfaceJIT::Address(stringGPR, StringImpl::dataOffset()), stringGPR);
auto is16Bit = jit.branchTest32(JSInterfaceJIT::Zero, scratchGPR, JSInterfaceJIT::TrustedImm32(StringImpl::flagIs8Bit()));
jit.load8(JSInterfaceJIT::BaseIndex(stringGPR, indexGPR, JSInterfaceJIT::TimesOne, 0), stringGPR);
cont8Bit.append(jit.jump());
is16Bit.link(&jit);
jit.load16(JSInterfaceJIT::BaseIndex(stringGPR, indexGPR, JSInterfaceJIT::TimesTwo, 0), stringGPR);
cont8Bit.link(&jit);
failures.append(jit.branch32(JSInterfaceJIT::Above, stringGPR, JSInterfaceJIT::TrustedImm32(maxSingleCharacterString)));
jit.move(JSInterfaceJIT::TrustedImmPtr(vm.smallStrings.singleCharacterStrings()), indexGPR);
jit.loadPtr(JSInterfaceJIT::BaseIndex(indexGPR, stringGPR, JSInterfaceJIT::ScalePtr, 0), stringGPR);
jit.ret();
failures.link(&jit);
jit.move(JSInterfaceJIT::TrustedImm32(0), stringGPR);
jit.ret();
LinkBuffer patchBuffer(jit, GLOBAL_THUNK_ID);
return FINALIZE_CODE(patchBuffer, JITThunkPtrTag, "String get_by_val stub");
}
static void stringCharLoad(SpecializedThunkJIT& jit)
{
// load string
jit.loadJSStringArgument(SpecializedThunkJIT::ThisArgument, SpecializedThunkJIT::regT0);
// Load string length to regT2, and start the process of loading the data pointer into regT0
jit.loadPtr(MacroAssembler::Address(SpecializedThunkJIT::regT0, JSString::offsetOfValue()), SpecializedThunkJIT::regT0);
jit.appendFailure(jit.branchIfRopeStringImpl(SpecializedThunkJIT::regT0));
jit.load32(MacroAssembler::Address(SpecializedThunkJIT::regT0, StringImpl::lengthMemoryOffset()), SpecializedThunkJIT::regT2);
// load index
jit.loadInt32Argument(0, SpecializedThunkJIT::regT1); // regT1 contains the index
// Do an unsigned compare to simultaneously filter negative indices as well as indices that are too large
jit.appendFailure(jit.branch32(MacroAssembler::AboveOrEqual, SpecializedThunkJIT::regT1, SpecializedThunkJIT::regT2));
// Load the character
SpecializedThunkJIT::JumpList is16Bit;
SpecializedThunkJIT::JumpList cont8Bit;
// Load the string flags
jit.load32(MacroAssembler::Address(SpecializedThunkJIT::regT0, StringImpl::flagsOffset()), SpecializedThunkJIT::regT2);
jit.loadPtr(MacroAssembler::Address(SpecializedThunkJIT::regT0, StringImpl::dataOffset()), SpecializedThunkJIT::regT0);
is16Bit.append(jit.branchTest32(MacroAssembler::Zero, SpecializedThunkJIT::regT2, MacroAssembler::TrustedImm32(StringImpl::flagIs8Bit())));
jit.load8(MacroAssembler::BaseIndex(SpecializedThunkJIT::regT0, SpecializedThunkJIT::regT1, MacroAssembler::TimesOne, 0), SpecializedThunkJIT::regT0);
cont8Bit.append(jit.jump());
is16Bit.link(&jit);
jit.load16(MacroAssembler::BaseIndex(SpecializedThunkJIT::regT0, SpecializedThunkJIT::regT1, MacroAssembler::TimesTwo, 0), SpecializedThunkJIT::regT0);
cont8Bit.link(&jit);
}
static void charToString(SpecializedThunkJIT& jit, VM& vm, MacroAssembler::RegisterID src, MacroAssembler::RegisterID dst, MacroAssembler::RegisterID scratch)
{
jit.appendFailure(jit.branch32(MacroAssembler::Above, src, MacroAssembler::TrustedImm32(maxSingleCharacterString)));
jit.move(MacroAssembler::TrustedImmPtr(vm.smallStrings.singleCharacterStrings()), scratch);
jit.loadPtr(MacroAssembler::BaseIndex(scratch, src, MacroAssembler::ScalePtr, 0), dst);
jit.appendFailure(jit.branchTestPtr(MacroAssembler::Zero, dst));
}
MacroAssemblerCodeRef<JITThunkPtrTag> charCodeAtThunkGenerator(VM& vm)
{
SpecializedThunkJIT jit(vm, 1);
stringCharLoad(jit);
jit.returnInt32(SpecializedThunkJIT::regT0);
return jit.finalize(vm.jitStubs->ctiNativeTailCall(vm), "charCodeAt");
}
MacroAssemblerCodeRef<JITThunkPtrTag> charAtThunkGenerator(VM& vm)
{
SpecializedThunkJIT jit(vm, 1);
stringCharLoad(jit);
charToString(jit, vm, SpecializedThunkJIT::regT0, SpecializedThunkJIT::regT0, SpecializedThunkJIT::regT1);
jit.returnJSCell(SpecializedThunkJIT::regT0);
return jit.finalize(vm.jitStubs->ctiNativeTailCall(vm), "charAt");
}
MacroAssemblerCodeRef<JITThunkPtrTag> fromCharCodeThunkGenerator(VM& vm)
{
SpecializedThunkJIT jit(vm, 1);
// load char code
jit.loadInt32Argument(0, SpecializedThunkJIT::regT0);
charToString(jit, vm, SpecializedThunkJIT::regT0, SpecializedThunkJIT::regT0, SpecializedThunkJIT::regT1);
jit.returnJSCell(SpecializedThunkJIT::regT0);
return jit.finalize(vm.jitStubs->ctiNativeTailCall(vm), "fromCharCode");
}
MacroAssemblerCodeRef<JITThunkPtrTag> stringPrototypeCodePointAtThunkGenerator(VM& vm)
{
SpecializedThunkJIT jit(vm, 1);
// load string
jit.loadJSStringArgument(SpecializedThunkJIT::ThisArgument, GPRInfo::regT0);
// Load string length to regT3, and start the process of loading the data pointer into regT2
jit.loadPtr(CCallHelpers::Address(GPRInfo::regT0, JSString::offsetOfValue()), GPRInfo::regT0);
jit.appendFailure(jit.branchIfRopeStringImpl(GPRInfo::regT0));
jit.load32(CCallHelpers::Address(GPRInfo::regT0, StringImpl::lengthMemoryOffset()), GPRInfo::regT3);
// load index
jit.loadInt32Argument(0, GPRInfo::regT1); // regT1 contains the index
// Do an unsigned compare to simultaneously filter negative indices as well as indices that are too large
jit.appendFailure(jit.branch32(CCallHelpers::AboveOrEqual, GPRInfo::regT1, GPRInfo::regT3));
// Load the character
CCallHelpers::JumpList done;
// Load the string flags
jit.loadPtr(CCallHelpers::Address(GPRInfo::regT0, StringImpl::dataOffset()), GPRInfo::regT2);
auto is16Bit = jit.branchTest32(CCallHelpers::Zero, CCallHelpers::Address(GPRInfo::regT0, StringImpl::flagsOffset()), CCallHelpers::TrustedImm32(StringImpl::flagIs8Bit()));
jit.load8(CCallHelpers::BaseIndex(GPRInfo::regT2, GPRInfo::regT1, CCallHelpers::TimesOne, 0), GPRInfo::regT0);
done.append(jit.jump());
is16Bit.link(&jit);
jit.load16(CCallHelpers::BaseIndex(GPRInfo::regT2, GPRInfo::regT1, CCallHelpers::TimesTwo, 0), GPRInfo::regT0);
// Original index is int32_t, and here, we ensure that it is positive. If we interpret it as uint32_t, adding 1 never overflows.
jit.add32(CCallHelpers::TrustedImm32(1), GPRInfo::regT1);
done.append(jit.branch32(CCallHelpers::AboveOrEqual, GPRInfo::regT1, GPRInfo::regT3));
jit.and32(CCallHelpers::TrustedImm32(0xfffffc00), GPRInfo::regT0, GPRInfo::regT3);
done.append(jit.branch32(CCallHelpers::NotEqual, GPRInfo::regT3, CCallHelpers::TrustedImm32(0xd800)));
jit.load16(CCallHelpers::BaseIndex(GPRInfo::regT2, GPRInfo::regT1, CCallHelpers::TimesTwo, 0), GPRInfo::regT2);
jit.and32(CCallHelpers::TrustedImm32(0xfffffc00), GPRInfo::regT2, GPRInfo::regT3);
done.append(jit.branch32(CCallHelpers::NotEqual, GPRInfo::regT3, CCallHelpers::TrustedImm32(0xdc00)));
jit.lshift32(CCallHelpers::TrustedImm32(10), GPRInfo::regT0);
jit.getEffectiveAddress(CCallHelpers::BaseIndex(GPRInfo::regT0, GPRInfo::regT2, CCallHelpers::TimesOne, -U16_SURROGATE_OFFSET), GPRInfo::regT0);
done.link(&jit);
jit.returnInt32(GPRInfo::regT0);
return jit.finalize(vm.jitStubs->ctiNativeTailCall(vm), "codePointAt");
}
MacroAssemblerCodeRef<JITThunkPtrTag> clz32ThunkGenerator(VM& vm)
{
SpecializedThunkJIT jit(vm, 1);
MacroAssembler::Jump nonIntArgJump;
jit.loadInt32Argument(0, SpecializedThunkJIT::regT0, nonIntArgJump);
SpecializedThunkJIT::Label convertedArgumentReentry(&jit);
jit.countLeadingZeros32(SpecializedThunkJIT::regT0, SpecializedThunkJIT::regT1);
jit.returnInt32(SpecializedThunkJIT::regT1);
if (jit.supportsFloatingPointTruncate()) {
nonIntArgJump.link(&jit);
jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0);
jit.branchTruncateDoubleToInt32(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0, SpecializedThunkJIT::BranchIfTruncateSuccessful).linkTo(convertedArgumentReentry, &jit);
jit.appendFailure(jit.jump());
} else
jit.appendFailure(nonIntArgJump);
return jit.finalize(vm.jitStubs->ctiNativeTailCall(vm), "clz32");
}
MacroAssemblerCodeRef<JITThunkPtrTag> sqrtThunkGenerator(VM& vm)
{
SpecializedThunkJIT jit(vm, 1);
if (!jit.supportsFloatingPointSqrt())
return MacroAssemblerCodeRef<JITThunkPtrTag>::createSelfManagedCodeRef(vm.jitStubs->ctiNativeCall(vm));
jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0);
jit.sqrtDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT0);
jit.returnDouble(SpecializedThunkJIT::fpRegT0);
return jit.finalize(vm.jitStubs->ctiNativeTailCall(vm), "sqrt");
}
#define UnaryDoubleOpWrapper(function) function##Wrapper
enum MathThunkCallingConvention { };
typedef MathThunkCallingConvention(*MathThunk)(MathThunkCallingConvention);
#if CPU(X86_64) && COMPILER(GCC_COMPATIBLE) && (OS(DARWIN) || OS(LINUX))
#define defineUnaryDoubleOpWrapper(function) \
asm( \
".text\n" \
".globl " SYMBOL_STRING(function##Thunk) "\n" \
HIDE_SYMBOL(function##Thunk) "\n" \
SYMBOL_STRING(function##Thunk) ":" "\n" \
"pushq %rax\n" \
"call " GLOBAL_REFERENCE(function) "\n" \
"popq %rcx\n" \
"ret\n" \
);\
extern "C" { \
MathThunkCallingConvention function##Thunk(MathThunkCallingConvention); \
} \
static MathThunk UnaryDoubleOpWrapper(function) = &function##Thunk;
#elif CPU(X86) && COMPILER(GCC_COMPATIBLE) && OS(LINUX) && defined(__PIC__)
#define defineUnaryDoubleOpWrapper(function) \
asm( \
".text\n" \
".globl " SYMBOL_STRING(function##Thunk) "\n" \
HIDE_SYMBOL(function##Thunk) "\n" \
SYMBOL_STRING(function##Thunk) ":" "\n" \
"pushl %ebx\n" \
"subl $20, %esp\n" \
"movsd %xmm0, (%esp) \n" \
"call __x86.get_pc_thunk.bx\n" \
"addl $_GLOBAL_OFFSET_TABLE_, %ebx\n" \
"call " GLOBAL_REFERENCE(function) "\n" \
"fstpl (%esp) \n" \
"movsd (%esp), %xmm0 \n" \
"addl $20, %esp\n" \
"popl %ebx\n" \
"ret\n" \
);\
extern "C" { \
MathThunkCallingConvention function##Thunk(MathThunkCallingConvention); \
} \
static MathThunk UnaryDoubleOpWrapper(function) = &function##Thunk;
#elif CPU(X86) && COMPILER(GCC_COMPATIBLE) && (OS(DARWIN) || OS(LINUX))
#define defineUnaryDoubleOpWrapper(function) \
asm( \
".text\n" \
".globl " SYMBOL_STRING(function##Thunk) "\n" \
HIDE_SYMBOL(function##Thunk) "\n" \
SYMBOL_STRING(function##Thunk) ":" "\n" \
"subl $20, %esp\n" \
"movsd %xmm0, (%esp) \n" \
"call " GLOBAL_REFERENCE(function) "\n" \
"fstpl (%esp) \n" \
"movsd (%esp), %xmm0 \n" \
"addl $20, %esp\n" \
"ret\n" \
);\
extern "C" { \
MathThunkCallingConvention function##Thunk(MathThunkCallingConvention); \
} \
static MathThunk UnaryDoubleOpWrapper(function) = &function##Thunk;
#elif CPU(ARM_THUMB2) && COMPILER(GCC_COMPATIBLE) && OS(DARWIN)
#define defineUnaryDoubleOpWrapper(function) \
asm( \
".text\n" \
".align 2\n" \
".globl " SYMBOL_STRING(function##Thunk) "\n" \
HIDE_SYMBOL(function##Thunk) "\n" \
".thumb\n" \
".thumb_func " THUMB_FUNC_PARAM(function##Thunk) "\n" \
SYMBOL_STRING(function##Thunk) ":" "\n" \
"push {lr}\n" \
"vmov r0, r1, d0\n" \
"blx " GLOBAL_REFERENCE(function) "\n" \
"vmov d0, r0, r1\n" \
"pop {lr}\n" \
"bx lr\n" \
); \
extern "C" { \
MathThunkCallingConvention function##Thunk(MathThunkCallingConvention); \
} \
static MathThunk UnaryDoubleOpWrapper(function) = &function##Thunk;
#elif CPU(ARM64)
#define defineUnaryDoubleOpWrapper(function) \
asm( \
".text\n" \
".align 2\n" \
".globl " SYMBOL_STRING(function##Thunk) "\n" \
HIDE_SYMBOL(function##Thunk) "\n" \
SYMBOL_STRING(function##Thunk) ":" "\n" \
"b " GLOBAL_REFERENCE(function) "\n" \
".previous" \
); \
extern "C" { \
MathThunkCallingConvention function##Thunk(MathThunkCallingConvention); \
} \
static MathThunk UnaryDoubleOpWrapper(function) = &function##Thunk;
#elif CPU(X86) && COMPILER(MSVC) && OS(WINDOWS)
// MSVC does not accept floor, etc, to be called directly from inline assembly, so we need to wrap these functions.
static double (_cdecl *floorFunction)(double) = floor;
static double (_cdecl *ceilFunction)(double) = ceil;
static double (_cdecl *truncFunction)(double) = trunc;
static double (_cdecl *expFunction)(double) = exp;
static double (_cdecl *logFunction)(double) = log;
static double (_cdecl *jsRoundFunction)(double) = jsRound;
#define defineUnaryDoubleOpWrapper(function) \
extern "C" __declspec(naked) MathThunkCallingConvention function##Thunk(MathThunkCallingConvention) \
{ \
__asm \
{ \
__asm sub esp, 20 \
__asm movsd mmword ptr [esp], xmm0 \
__asm call function##Function \
__asm fstp qword ptr [esp] \
__asm movsd xmm0, mmword ptr [esp] \
__asm add esp, 20 \
__asm ret \
} \
} \
static MathThunk UnaryDoubleOpWrapper(function) = &function##Thunk;
#else
#define defineUnaryDoubleOpWrapper(function) \
static MathThunk UnaryDoubleOpWrapper(function) = 0
#endif
defineUnaryDoubleOpWrapper(jsRound);
defineUnaryDoubleOpWrapper(exp);
defineUnaryDoubleOpWrapper(log);
defineUnaryDoubleOpWrapper(floor);
defineUnaryDoubleOpWrapper(ceil);
defineUnaryDoubleOpWrapper(trunc);
MacroAssemblerCodeRef<JITThunkPtrTag> floorThunkGenerator(VM& vm)
{
SpecializedThunkJIT jit(vm, 1);
MacroAssembler::Jump nonIntJump;
if (!UnaryDoubleOpWrapper(floor) || !jit.supportsFloatingPoint())
return MacroAssemblerCodeRef<JITThunkPtrTag>::createSelfManagedCodeRef(vm.jitStubs->ctiNativeCall(vm));
jit.loadInt32Argument(0, SpecializedThunkJIT::regT0, nonIntJump);
jit.returnInt32(SpecializedThunkJIT::regT0);
nonIntJump.link(&jit);
jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0);
if (jit.supportsFloatingPointRounding()) {
SpecializedThunkJIT::JumpList doubleResult;
jit.floorDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT0);
jit.branchConvertDoubleToInt32(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0, doubleResult, SpecializedThunkJIT::fpRegT1);
jit.returnInt32(SpecializedThunkJIT::regT0);
doubleResult.link(&jit);
jit.returnDouble(SpecializedThunkJIT::fpRegT0);
return jit.finalize(vm.jitStubs->ctiNativeTailCall(vm), "floor");
}
SpecializedThunkJIT::Jump intResult;
SpecializedThunkJIT::JumpList doubleResult;
if (jit.supportsFloatingPointTruncate()) {
jit.moveZeroToDouble(SpecializedThunkJIT::fpRegT1);
doubleResult.append(jit.branchDouble(MacroAssembler::DoubleEqual, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1));
SpecializedThunkJIT::JumpList slowPath;
// Handle the negative doubles in the slow path for now.
slowPath.append(jit.branchDouble(MacroAssembler::DoubleLessThanOrUnordered, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1));
slowPath.append(jit.branchTruncateDoubleToInt32(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0));
intResult = jit.jump();
slowPath.link(&jit);
}
jit.callDoubleToDoublePreservingReturn(UnaryDoubleOpWrapper(floor));
jit.branchConvertDoubleToInt32(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0, doubleResult, SpecializedThunkJIT::fpRegT1);
if (jit.supportsFloatingPointTruncate())
intResult.link(&jit);
jit.returnInt32(SpecializedThunkJIT::regT0);
doubleResult.link(&jit);
jit.returnDouble(SpecializedThunkJIT::fpRegT0);
return jit.finalize(vm.jitStubs->ctiNativeTailCall(vm), "floor");
}
MacroAssemblerCodeRef<JITThunkPtrTag> ceilThunkGenerator(VM& vm)
{
SpecializedThunkJIT jit(vm, 1);
if (!UnaryDoubleOpWrapper(ceil) || !jit.supportsFloatingPoint())
return MacroAssemblerCodeRef<JITThunkPtrTag>::createSelfManagedCodeRef(vm.jitStubs->ctiNativeCall(vm));
MacroAssembler::Jump nonIntJump;
jit.loadInt32Argument(0, SpecializedThunkJIT::regT0, nonIntJump);
jit.returnInt32(SpecializedThunkJIT::regT0);
nonIntJump.link(&jit);
jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0);
if (jit.supportsFloatingPointRounding())
jit.ceilDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT0);
else
jit.callDoubleToDoublePreservingReturn(UnaryDoubleOpWrapper(ceil));
SpecializedThunkJIT::JumpList doubleResult;
jit.branchConvertDoubleToInt32(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0, doubleResult, SpecializedThunkJIT::fpRegT1);
jit.returnInt32(SpecializedThunkJIT::regT0);
doubleResult.link(&jit);
jit.returnDouble(SpecializedThunkJIT::fpRegT0);
return jit.finalize(vm.jitStubs->ctiNativeTailCall(vm), "ceil");
}
MacroAssemblerCodeRef<JITThunkPtrTag> truncThunkGenerator(VM& vm)
{
SpecializedThunkJIT jit(vm, 1);
if (!UnaryDoubleOpWrapper(trunc) || !jit.supportsFloatingPoint())
return MacroAssemblerCodeRef<JITThunkPtrTag>::createSelfManagedCodeRef(vm.jitStubs->ctiNativeCall(vm));
MacroAssembler::Jump nonIntJump;
jit.loadInt32Argument(0, SpecializedThunkJIT::regT0, nonIntJump);
jit.returnInt32(SpecializedThunkJIT::regT0);
nonIntJump.link(&jit);
jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0);
if (jit.supportsFloatingPointRounding())
jit.roundTowardZeroDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT0);
else
jit.callDoubleToDoublePreservingReturn(UnaryDoubleOpWrapper(trunc));
SpecializedThunkJIT::JumpList doubleResult;
jit.branchConvertDoubleToInt32(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0, doubleResult, SpecializedThunkJIT::fpRegT1);
jit.returnInt32(SpecializedThunkJIT::regT0);
doubleResult.link(&jit);
jit.returnDouble(SpecializedThunkJIT::fpRegT0);
return jit.finalize(vm.jitStubs->ctiNativeTailCall(vm), "trunc");
}
MacroAssemblerCodeRef<JITThunkPtrTag> roundThunkGenerator(VM& vm)
{
SpecializedThunkJIT jit(vm, 1);
if (!UnaryDoubleOpWrapper(jsRound) || !jit.supportsFloatingPoint())
return MacroAssemblerCodeRef<JITThunkPtrTag>::createSelfManagedCodeRef(vm.jitStubs->ctiNativeCall(vm));
MacroAssembler::Jump nonIntJump;
jit.loadInt32Argument(0, SpecializedThunkJIT::regT0, nonIntJump);
jit.returnInt32(SpecializedThunkJIT::regT0);
nonIntJump.link(&jit);
jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0);
SpecializedThunkJIT::JumpList doubleResult;
if (jit.supportsFloatingPointRounding()) {
jit.moveZeroToDouble(SpecializedThunkJIT::fpRegT1);
doubleResult.append(jit.branchDouble(MacroAssembler::DoubleEqual, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1));
jit.ceilDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1);
static constexpr double halfConstant = -0.5;
jit.loadDouble(MacroAssembler::TrustedImmPtr(&halfConstant), SpecializedThunkJIT::fpRegT2);
jit.addDouble(SpecializedThunkJIT::fpRegT1, SpecializedThunkJIT::fpRegT2);
MacroAssembler::Jump shouldRoundDown = jit.branchDouble(MacroAssembler::DoubleGreaterThan, SpecializedThunkJIT::fpRegT2, SpecializedThunkJIT::fpRegT0);
jit.moveDouble(SpecializedThunkJIT::fpRegT1, SpecializedThunkJIT::fpRegT0);
MacroAssembler::Jump continuation = jit.jump();
shouldRoundDown.link(&jit);
static constexpr double oneConstant = 1.0;
jit.loadDouble(MacroAssembler::TrustedImmPtr(&oneConstant), SpecializedThunkJIT::fpRegT2);
jit.subDouble(SpecializedThunkJIT::fpRegT1, SpecializedThunkJIT::fpRegT2, SpecializedThunkJIT::fpRegT0);
continuation.link(&jit);
} else
jit.callDoubleToDoublePreservingReturn(UnaryDoubleOpWrapper(jsRound));
jit.branchConvertDoubleToInt32(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0, doubleResult, SpecializedThunkJIT::fpRegT1);
jit.returnInt32(SpecializedThunkJIT::regT0);
doubleResult.link(&jit);
jit.returnDouble(SpecializedThunkJIT::fpRegT0);
return jit.finalize(vm.jitStubs->ctiNativeTailCall(vm), "round");
}
MacroAssemblerCodeRef<JITThunkPtrTag> expThunkGenerator(VM& vm)
{
if (!UnaryDoubleOpWrapper(exp))
return MacroAssemblerCodeRef<JITThunkPtrTag>::createSelfManagedCodeRef(vm.jitStubs->ctiNativeCall(vm));
SpecializedThunkJIT jit(vm, 1);
if (!jit.supportsFloatingPoint())
return MacroAssemblerCodeRef<JITThunkPtrTag>::createSelfManagedCodeRef(vm.jitStubs->ctiNativeCall(vm));
jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0);
jit.callDoubleToDoublePreservingReturn(UnaryDoubleOpWrapper(exp));
jit.returnDouble(SpecializedThunkJIT::fpRegT0);
return jit.finalize(vm.jitStubs->ctiNativeTailCall(vm), "exp");
}
MacroAssemblerCodeRef<JITThunkPtrTag> logThunkGenerator(VM& vm)
{
if (!UnaryDoubleOpWrapper(log))
return MacroAssemblerCodeRef<JITThunkPtrTag>::createSelfManagedCodeRef(vm.jitStubs->ctiNativeCall(vm));
SpecializedThunkJIT jit(vm, 1);
if (!jit.supportsFloatingPoint())
return MacroAssemblerCodeRef<JITThunkPtrTag>::createSelfManagedCodeRef(vm.jitStubs->ctiNativeCall(vm));
jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0);
jit.callDoubleToDoublePreservingReturn(UnaryDoubleOpWrapper(log));
jit.returnDouble(SpecializedThunkJIT::fpRegT0);
return jit.finalize(vm.jitStubs->ctiNativeTailCall(vm), "log");
}
MacroAssemblerCodeRef<JITThunkPtrTag> absThunkGenerator(VM& vm)
{
SpecializedThunkJIT jit(vm, 1);
if (!jit.supportsFloatingPointAbs())
return MacroAssemblerCodeRef<JITThunkPtrTag>::createSelfManagedCodeRef(vm.jitStubs->ctiNativeCall(vm));
#if USE(JSVALUE64)
VirtualRegister virtualRegister = CallFrameSlot::firstArgument;
jit.load64(AssemblyHelpers::addressFor(virtualRegister), GPRInfo::regT0);
auto notInteger = jit.branchIfNotInt32(GPRInfo::regT0);
// Abs Int32.
jit.rshift32(GPRInfo::regT0, MacroAssembler::TrustedImm32(31), GPRInfo::regT1);
jit.add32(GPRInfo::regT1, GPRInfo::regT0);
jit.xor32(GPRInfo::regT1, GPRInfo::regT0);
// IntMin cannot be inverted.
MacroAssembler::Jump integerIsIntMin = jit.branchTest32(MacroAssembler::Signed, GPRInfo::regT0);
// Box and finish.
jit.or64(GPRInfo::numberTagRegister, GPRInfo::regT0);
MacroAssembler::Jump doneWithIntegers = jit.jump();
// Handle Doubles.
notInteger.link(&jit);
jit.appendFailure(jit.branchIfNotNumber(GPRInfo::regT0));
jit.unboxDoubleWithoutAssertions(GPRInfo::regT0, GPRInfo::regT0, FPRInfo::fpRegT0);
MacroAssembler::Label absFPR0Label = jit.label();
jit.absDouble(FPRInfo::fpRegT0, FPRInfo::fpRegT1);
jit.boxDouble(FPRInfo::fpRegT1, GPRInfo::regT0);
// Tail.
doneWithIntegers.link(&jit);
jit.returnJSValue(GPRInfo::regT0);
// We know the value of regT0 is IntMin. We could load that value from memory but
// it is simpler to just convert it.
integerIsIntMin.link(&jit);
jit.convertInt32ToDouble(GPRInfo::regT0, FPRInfo::fpRegT0);
jit.jump().linkTo(absFPR0Label, &jit);
#else
MacroAssembler::Jump nonIntJump;
jit.loadInt32Argument(0, SpecializedThunkJIT::regT0, nonIntJump);
jit.rshift32(SpecializedThunkJIT::regT0, MacroAssembler::TrustedImm32(31), SpecializedThunkJIT::regT1);
jit.add32(SpecializedThunkJIT::regT1, SpecializedThunkJIT::regT0);
jit.xor32(SpecializedThunkJIT::regT1, SpecializedThunkJIT::regT0);
jit.appendFailure(jit.branchTest32(MacroAssembler::Signed, SpecializedThunkJIT::regT0));
jit.returnInt32(SpecializedThunkJIT::regT0);
nonIntJump.link(&jit);
// Shame about the double int conversion here.
jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0);
jit.absDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1);
jit.returnDouble(SpecializedThunkJIT::fpRegT1);
#endif
return jit.finalize(vm.jitStubs->ctiNativeTailCall(vm), "abs");
}
MacroAssemblerCodeRef<JITThunkPtrTag> imulThunkGenerator(VM& vm)
{
SpecializedThunkJIT jit(vm, 2);
MacroAssembler::Jump nonIntArg0Jump;
jit.loadInt32Argument(0, SpecializedThunkJIT::regT0, nonIntArg0Jump);
SpecializedThunkJIT::Label doneLoadingArg0(&jit);
MacroAssembler::Jump nonIntArg1Jump;
jit.loadInt32Argument(1, SpecializedThunkJIT::regT1, nonIntArg1Jump);
SpecializedThunkJIT::Label doneLoadingArg1(&jit);
jit.mul32(SpecializedThunkJIT::regT1, SpecializedThunkJIT::regT0);
jit.returnInt32(SpecializedThunkJIT::regT0);
if (jit.supportsFloatingPointTruncate()) {
nonIntArg0Jump.link(&jit);
jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0);
jit.branchTruncateDoubleToInt32(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0, SpecializedThunkJIT::BranchIfTruncateSuccessful).linkTo(doneLoadingArg0, &jit);
jit.appendFailure(jit.jump());
} else
jit.appendFailure(nonIntArg0Jump);
if (jit.supportsFloatingPointTruncate()) {
nonIntArg1Jump.link(&jit);
jit.loadDoubleArgument(1, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT1);
jit.branchTruncateDoubleToInt32(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT1, SpecializedThunkJIT::BranchIfTruncateSuccessful).linkTo(doneLoadingArg1, &jit);
jit.appendFailure(jit.jump());
} else
jit.appendFailure(nonIntArg1Jump);
return jit.finalize(vm.jitStubs->ctiNativeTailCall(vm), "imul");
}
MacroAssemblerCodeRef<JITThunkPtrTag> randomThunkGenerator(VM& vm)
{
SpecializedThunkJIT jit(vm, 0);
if (!jit.supportsFloatingPoint())
return MacroAssemblerCodeRef<JITThunkPtrTag>::createSelfManagedCodeRef(vm.jitStubs->ctiNativeCall(vm));
#if USE(JSVALUE64)
jit.emitRandomThunk(vm, SpecializedThunkJIT::regT0, SpecializedThunkJIT::regT1, SpecializedThunkJIT::regT2, SpecializedThunkJIT::regT3, SpecializedThunkJIT::fpRegT0);
jit.returnDouble(SpecializedThunkJIT::fpRegT0);
return jit.finalize(vm.jitStubs->ctiNativeTailCall(vm), "random");
#else
return MacroAssemblerCodeRef<JITThunkPtrTag>::createSelfManagedCodeRef(vm.jitStubs->ctiNativeCall(vm));
#endif
}
MacroAssemblerCodeRef<JITThunkPtrTag> boundFunctionCallGenerator(VM& vm)
{
CCallHelpers jit;
jit.emitFunctionPrologue();
// Set up our call frame.
jit.storePtr(CCallHelpers::TrustedImmPtr(nullptr), CCallHelpers::addressFor(CallFrameSlot::codeBlock));
jit.store32(CCallHelpers::TrustedImm32(0), CCallHelpers::tagFor(CallFrameSlot::argumentCountIncludingThis));
unsigned extraStackNeeded = 0;
if (unsigned stackMisalignment = sizeof(CallerFrameAndPC) % stackAlignmentBytes())
extraStackNeeded = stackAlignmentBytes() - stackMisalignment;
// We need to forward all of the arguments that we were passed. We aren't allowed to do a tail
// call here as far as I can tell. At least not so long as the generic path doesn't do a tail
// call, since that would be way too weird.
// The formula for the number of stack bytes needed given some number of parameters (including
// this) is:
//
// stackAlign((numParams + CallFrameHeaderSize) * sizeof(Register) - sizeof(CallerFrameAndPC))
//
// Probably we want to write this as:
//
// stackAlign((numParams + (CallFrameHeaderSize - CallerFrameAndPCSize)) * sizeof(Register))
//
// That's really all there is to this. We have all the registers we need to do it.
jit.loadCell(CCallHelpers::addressFor(CallFrameSlot::callee), GPRInfo::regT0);
jit.loadPtr(CCallHelpers::Address(GPRInfo::regT0, JSBoundFunction::offsetOfBoundArgs()), GPRInfo::regT2);
jit.load32(CCallHelpers::payloadFor(CallFrameSlot::argumentCountIncludingThis), GPRInfo::regT1);
jit.move(GPRInfo::regT1, GPRInfo::regT3);
auto noArgs = jit.branchTestPtr(CCallHelpers::Zero, GPRInfo::regT2);
jit.load32(CCallHelpers::Address(GPRInfo::regT2, JSImmutableButterfly::offsetOfPublicLength()), GPRInfo::regT2);
jit.add32(GPRInfo::regT2, GPRInfo::regT1);
jit.sub32(CCallHelpers::TrustedImm32(1), GPRInfo::regT1);
noArgs.link(&jit);
jit.add32(CCallHelpers::TrustedImm32(CallFrame::headerSizeInRegisters - CallerFrameAndPC::sizeInRegisters), GPRInfo::regT1, GPRInfo::regT2);
jit.lshift32(CCallHelpers::TrustedImm32(3), GPRInfo::regT2);
jit.add32(CCallHelpers::TrustedImm32(stackAlignmentBytes() - 1), GPRInfo::regT2);
jit.and32(CCallHelpers::TrustedImm32(-stackAlignmentBytes()), GPRInfo::regT2);
if (extraStackNeeded)
jit.add32(CCallHelpers::TrustedImm32(extraStackNeeded), GPRInfo::regT2);
// At this point regT1 has the actual argument count, regT2 has the amount of stack we will need, and regT3 has the passed argument count.
// Check to see if we have enough stack space.
jit.negPtr(GPRInfo::regT2);
jit.addPtr(CCallHelpers::stackPointerRegister, GPRInfo::regT2);
CCallHelpers::Jump haveStackSpace = jit.branchPtr(CCallHelpers::BelowOrEqual, CCallHelpers::AbsoluteAddress(vm.addressOfSoftStackLimit()), GPRInfo::regT2);
// Throw Stack Overflow exception
jit.copyCalleeSavesToEntryFrameCalleeSavesBuffer(vm.topEntryFrame);
jit.loadPtr(CCallHelpers::Address(GPRInfo::regT0, JSBoundFunction::offsetOfScopeChain()), GPRInfo::regT3);
jit.setupArguments<decltype(operationThrowStackOverflowErrorFromThunk)>(GPRInfo::regT3);
jit.prepareCallOperation(vm);
jit.move(CCallHelpers::TrustedImmPtr(tagCFunctionPtr<OperationPtrTag>(operationThrowStackOverflowErrorFromThunk)), GPRInfo::nonArgGPR0);
emitPointerValidation(jit, GPRInfo::nonArgGPR0, OperationPtrTag);
jit.call(GPRInfo::nonArgGPR0, OperationPtrTag);
jit.jumpToExceptionHandler(vm);
haveStackSpace.link(&jit);
jit.move(GPRInfo::regT2, CCallHelpers::stackPointerRegister);
// Do basic callee frame setup, including 'this'.
jit.store32(GPRInfo::regT1, CCallHelpers::calleeFramePayloadSlot(CallFrameSlot::argumentCountIncludingThis));
JSValueRegs valueRegs = JSValueRegs::withTwoAvailableRegs(GPRInfo::regT4, GPRInfo::regT2);
jit.loadValue(CCallHelpers::Address(GPRInfo::regT0, JSBoundFunction::offsetOfBoundThis()), valueRegs);
jit.storeValue(valueRegs, CCallHelpers::calleeArgumentSlot(0));
// OK, now we can start copying. This is a simple matter of copying parameters from the caller's
// frame to the callee's frame. Note that we know that regT3 (the argument count) must be at
// least 1.
jit.sub32(CCallHelpers::TrustedImm32(1), GPRInfo::regT3);
jit.sub32(CCallHelpers::TrustedImm32(1), GPRInfo::regT1);
CCallHelpers::Jump done = jit.branchTest32(CCallHelpers::Zero, GPRInfo::regT3);
CCallHelpers::Label loop = jit.label();
jit.sub32(CCallHelpers::TrustedImm32(1), GPRInfo::regT3);
jit.sub32(CCallHelpers::TrustedImm32(1), GPRInfo::regT1);
jit.loadValue(CCallHelpers::addressFor(virtualRegisterForArgumentIncludingThis(1)).indexedBy(GPRInfo::regT3, CCallHelpers::TimesEight), valueRegs);
jit.storeValue(valueRegs, CCallHelpers::calleeArgumentSlot(1).indexedBy(GPRInfo::regT1, CCallHelpers::TimesEight));
jit.branchTest32(CCallHelpers::NonZero, GPRInfo::regT3).linkTo(loop, &jit);
done.link(&jit);
auto noArgs2 = jit.branchTest32(CCallHelpers::Zero, GPRInfo::regT1);
jit.loadPtr(CCallHelpers::Address(GPRInfo::regT0, JSBoundFunction::offsetOfBoundArgs()), GPRInfo::regT3);
CCallHelpers::Label loopBound = jit.label();
jit.sub32(CCallHelpers::TrustedImm32(1), GPRInfo::regT1);
jit.loadValue(CCallHelpers::BaseIndex(GPRInfo::regT3, GPRInfo::regT1, CCallHelpers::TimesEight, JSImmutableButterfly::offsetOfData() + sizeof(WriteBarrier<Unknown>)), valueRegs);
jit.storeValue(valueRegs, CCallHelpers::calleeArgumentSlot(1).indexedBy(GPRInfo::regT1, CCallHelpers::TimesEight));
jit.branchTest32(CCallHelpers::NonZero, GPRInfo::regT1).linkTo(loopBound, &jit);
noArgs2.link(&jit);
jit.loadPtr(CCallHelpers::Address(GPRInfo::regT0, JSBoundFunction::offsetOfTargetFunction()), GPRInfo::regT2);
jit.storeCell(GPRInfo::regT2, CCallHelpers::calleeFrameSlot(CallFrameSlot::callee));
jit.loadPtr(CCallHelpers::Address(GPRInfo::regT2, JSFunction::offsetOfExecutableOrRareData()), GPRInfo::regT0);
auto hasExecutable = jit.branchTestPtr(CCallHelpers::Zero, GPRInfo::regT0, CCallHelpers::TrustedImm32(JSFunction::rareDataTag));
jit.loadPtr(CCallHelpers::Address(GPRInfo::regT0, FunctionRareData::offsetOfExecutable() - JSFunction::rareDataTag), GPRInfo::regT0);
hasExecutable.link(&jit);
jit.loadPtr(
CCallHelpers::Address(
GPRInfo::regT0, ExecutableBase::offsetOfJITCodeWithArityCheckFor(CodeForCall)),
GPRInfo::regT0);
CCallHelpers::Jump noCode = jit.branchTestPtr(CCallHelpers::Zero, GPRInfo::regT0);
emitPointerValidation(jit, GPRInfo::regT0, JSEntryPtrTag);
jit.call(GPRInfo::regT0, JSEntryPtrTag);
jit.emitFunctionEpilogue();
jit.ret();
LinkBuffer linkBuffer(jit, GLOBAL_THUNK_ID);
linkBuffer.link(noCode, CodeLocationLabel<JITThunkPtrTag>(vm.jitStubs->ctiNativeTailCallWithoutSavedTags(vm)));
return FINALIZE_CODE(
linkBuffer, JITThunkPtrTag, "Specialized thunk for bound function calls with no arguments");
}
} // namespace JSC
#endif // ENABLE(JIT)