blob: 733236c9781660831dd39fe0381918a0494f2687 [file] [log] [blame]
/*
* This file is part of the KDE libraries
* Copyright (C) 2003-2006 Apple Computer, Inc
* Copyright (C) 2006 Alexey Proskuryakov (ap@webkit.org)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef KJS_JS_IMMEDIATE_H
#define KJS_JS_IMMEDIATE_H
#include "JSType.h"
#include <wtf/Assertions.h>
#include <stdint.h>
#include <stdlib.h>
namespace KJS {
class ExecState;
class JSObject;
class JSValue;
class UString;
/*
* A JSValue* is either a pointer to a cell (a heap-allocated object) or an immediate (a type-tagged
* IEEE floating point bit pattern masquerading as a pointer). The low two bits in a JSValue* are available
* for type tagging because allocator alignment guarantees they will be 00 in cell pointers.
*
* For example, on a 32 bit system:
*
* JSCell*: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 00
* [ high 30 bits: pointer address ] [ low 2 bits -- always 0 ]
*
* JSImmediate: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX TT
* [ high 30 bits: IEEE encoded float ] [ low 2 bits -- type tag ]
*
* The bit "payload" (the hight 30 bits) of a non-numeric immediate is its numeric equivalent. For example,
* the payload of null is 0.0. This makes JSValue::toNumber() a simple bitmask for all immediates.
*
* Notice that the JSType value of NullType is 4, which requires 3 bits to encode. Since we only have 2 bits
* available for type tagging, we tag the null immediate with UndefinedType, and JSImmediate::type() has
* to sort them out. Null and Undefined don't otherwise get confused because the numeric value of Undefined is
* NaN, not 0.0.
*/
class JSImmediate {
public:
static bool isImmediate(const JSValue* v)
{
return getTag(v) != 0;
}
static bool isNumber(const JSValue* v)
{
return (getTag(v) == NumberType);
}
static bool isBoolean(const JSValue* v)
{
return (getTag(v) == BooleanType);
}
// Since we have room for only 3 unique tags, null and undefined have to share.
static bool isUndefinedOrNull(const JSValue* v)
{
return (getTag(v) == UndefinedType);
}
static JSValue* fromDouble(double d);
static double toDouble(const JSValue* v);
static bool toBoolean(const JSValue* v);
static JSObject* toObject(const JSValue*, ExecState*);
static UString toString(const JSValue*);
static JSType type(const JSValue*);
// It would nice just to use fromDouble() to create these values, but that would prevent them from
// turning into compile-time constants.
static JSValue* trueImmediate();
static JSValue* falseImmediate();
static JSValue* NaNImmediate();
static JSValue* undefinedImmediate();
static JSValue* nullImmediate();
private:
static const uintptr_t TagMask = 3; // type tags are 2 bits long
static JSValue* tag(uintptr_t bits, uintptr_t tag)
{
return reinterpret_cast<JSValue*>(bits | tag);
}
static uintptr_t unTag(const JSValue* v)
{
return reinterpret_cast<uintptr_t>(v) & ~TagMask;
}
static uintptr_t getTag(const JSValue* v)
{
return reinterpret_cast<uintptr_t>(v) & TagMask;
}
// NOTE: With f-strict-aliasing enabled, unions are the only safe way to do type masquerading.
union FloatUnion {
uint32_t asBits;
float asFloat;
};
union DoubleUnion {
uint64_t asBits;
double asDouble;
};
// we support 32-bit platforms with sizes like this
static const bool is32bit =
sizeof(float) == sizeof(uint32_t) && sizeof(double) == sizeof(uint64_t) && sizeof(uintptr_t) == sizeof(uint32_t);
// we support 64-bit platforms with sizes like this
static const bool is64bit =
sizeof(float) == sizeof(uint32_t) && sizeof(double) == sizeof(uint64_t) && sizeof(uintptr_t) == sizeof(uint64_t);
template<bool for32bit, bool for64bit> struct FPBitValues {};
};
template<> struct JSImmediate::FPBitValues<true, false> {
static const uint32_t nanAsBits = 0x7fc00000;
static const uint32_t oneAsBits = 0x3f800000;
static const uint32_t zeroAsBits = 0x0;
static JSValue* fromDouble(double d)
{
FloatUnion floatUnion;
floatUnion.asFloat = static_cast<float>(d);
// check for data loss from tagging
if ((floatUnion.asBits & TagMask) != 0)
return 0;
// check for data loss from conversion to float
DoubleUnion doubleUnion1, doubleUnion2;
doubleUnion1.asDouble = floatUnion.asFloat;
doubleUnion2.asDouble = d;
if (doubleUnion1.asBits != doubleUnion2.asBits)
return 0;
return tag(floatUnion.asBits, NumberType);
}
static double toDouble(const JSValue* v)
{
ASSERT(isImmediate(v));
FloatUnion floatUnion;
floatUnion.asBits = static_cast<uint32_t>(unTag(v));
return floatUnion.asFloat;
}
};
template<> struct JSImmediate::FPBitValues<false, true> {
static const uint64_t nanAsBits = 0x7ff80000ULL << 32;
static const uint64_t oneAsBits = 0x3ff00000ULL << 32;
static const uint64_t zeroAsBits = 0x0;
static JSValue* fromDouble(double d)
{
DoubleUnion doubleUnion;
doubleUnion.asDouble = d;
// check for data loss from tagging
if ((doubleUnion.asBits & TagMask) != 0)
return 0;
return tag(static_cast<uintptr_t>(doubleUnion.asBits), NumberType);
}
static double toDouble(const JSValue* v)
{
ASSERT(isImmediate(v));
DoubleUnion doubleUnion;
doubleUnion.asBits = unTag(v);
return doubleUnion.asDouble;
}
};
inline JSValue* JSImmediate::trueImmediate() { return tag(FPBitValues<is32bit, is64bit>::oneAsBits, BooleanType); }
inline JSValue* JSImmediate::falseImmediate() { return tag(FPBitValues<is32bit, is64bit>::zeroAsBits, BooleanType); }
inline JSValue* JSImmediate::NaNImmediate() { return tag(FPBitValues<is32bit, is64bit>::nanAsBits, NumberType); }
inline JSValue* JSImmediate::undefinedImmediate() { return tag(FPBitValues<is32bit, is64bit>::nanAsBits, UndefinedType); }
inline JSValue* JSImmediate::nullImmediate() { return tag(FPBitValues<is32bit, is64bit>::zeroAsBits, UndefinedType); }
inline bool JSImmediate::toBoolean(const JSValue* v)
{
ASSERT(isImmediate(v));
uintptr_t bits = unTag(v);
if ((bits << 1) == 0) // -0.0 has the sign bit set
return false;
return bits != FPBitValues<is32bit, is64bit>::nanAsBits;
}
inline JSValue* JSImmediate::fromDouble(double d)
{
return FPBitValues<is32bit, is64bit>::fromDouble(d);
}
inline double JSImmediate::toDouble(const JSValue* v)
{
return FPBitValues<is32bit, is64bit>::toDouble(v);
}
} // namespace KJS
#endif