blob: 7d366d6d524fc4bffdb41218c4ad66da57ae838d [file] [log] [blame]
/*
* Copyright (C) 2008-2018 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "VM.h"
#include "ArgList.h"
#include "ArrayBufferNeuteringWatchpoint.h"
#include "BuiltinExecutables.h"
#include "BytecodeIntrinsicRegistry.h"
#include "CodeBlock.h"
#include "CodeCache.h"
#include "CommonIdentifiers.h"
#include "CommonSlowPaths.h"
#include "CustomGetterSetter.h"
#include "DFGWorklist.h"
#include "DirectEvalExecutable.h"
#include "Disassembler.h"
#include "Error.h"
#include "ErrorConstructor.h"
#include "ErrorInstance.h"
#include "EvalCodeBlock.h"
#include "Exception.h"
#include "ExecutableToCodeBlockEdge.h"
#include "FTLThunks.h"
#include "FastMallocAlignedMemoryAllocator.h"
#include "FunctionCodeBlock.h"
#include "FunctionConstructor.h"
#include "FunctionExecutable.h"
#include "GCActivityCallback.h"
#include "GetterSetter.h"
#include "GigacageAlignedMemoryAllocator.h"
#include "HasOwnPropertyCache.h"
#include "Heap.h"
#include "HeapIterationScope.h"
#include "HeapProfiler.h"
#include "HostCallReturnValue.h"
#include "Identifier.h"
#include "IncrementalSweeper.h"
#include "IndirectEvalExecutable.h"
#include "InferredTypeTable.h"
#include "InferredValue.h"
#include "Interpreter.h"
#include "IntlCollatorConstructor.h"
#include "IntlDateTimeFormatConstructor.h"
#include "IntlNumberFormatConstructor.h"
#include "IntlPluralRulesConstructor.h"
#include "JITCode.h"
#include "JITWorklist.h"
#include "JSAPIValueWrapper.h"
#include "JSArray.h"
#include "JSArrayBufferConstructor.h"
#include "JSAsyncFunction.h"
#include "JSBigInt.h"
#include "JSBoundFunction.h"
#include "JSCInlines.h"
#include "JSCallbackFunction.h"
#include "JSCustomGetterSetterFunction.h"
#include "JSDestructibleObjectHeapCellType.h"
#include "JSFixedArray.h"
#include "JSFunction.h"
#include "JSGlobalObjectFunctions.h"
#include "JSInternalPromiseDeferred.h"
#include "JSLock.h"
#include "JSMap.h"
#include "JSMapIterator.h"
#include "JSPromiseDeferred.h"
#include "JSPropertyNameEnumerator.h"
#include "JSSegmentedVariableObjectHeapCellType.h"
#include "JSScriptFetchParameters.h"
#include "JSScriptFetcher.h"
#include "JSSet.h"
#include "JSSetIterator.h"
#include "JSSourceCode.h"
#include "JSStringHeapCellType.h"
#include "JSTemplateObjectDescriptor.h"
#include "JSWeakMap.h"
#include "JSWeakSet.h"
#include "JSWebAssembly.h"
#include "JSWebAssemblyCodeBlock.h"
#include "JSWebAssemblyCodeBlockHeapCellType.h"
#include "JSWithScope.h"
#include "LLIntData.h"
#include "Lexer.h"
#include "Lookup.h"
#include "MinimumReservedZoneSize.h"
#include "ModuleProgramCodeBlock.h"
#include "ModuleProgramExecutable.h"
#include "NativeErrorConstructor.h"
#include "NativeExecutable.h"
#include "NativeStdFunctionCell.h"
#include "Nodes.h"
#include "ObjCCallbackFunction.h"
#include "Parser.h"
#include "ProfilerDatabase.h"
#include "ProgramCodeBlock.h"
#include "ProgramExecutable.h"
#include "PromiseDeferredTimer.h"
#include "PropertyMapHashTable.h"
#include "ProxyRevoke.h"
#include "RegExpCache.h"
#include "RegExpConstructor.h"
#include "RegExpObject.h"
#include "RegisterAtOffsetList.h"
#include "RuntimeType.h"
#include "SamplingProfiler.h"
#include "ShadowChicken.h"
#include "SimpleTypedArrayController.h"
#include "SourceProviderCache.h"
#include "StackVisitor.h"
#include "StrictEvalActivation.h"
#include "StrongInlines.h"
#include "StructureInlines.h"
#include "TestRunnerUtils.h"
#include "ThreadLocalCacheInlines.h"
#include "ThunkGenerators.h"
#include "TypeProfiler.h"
#include "TypeProfilerLog.h"
#include "UnlinkedCodeBlock.h"
#include "VMEntryScope.h"
#include "VMInspector.h"
#include "WasmWorklist.h"
#include "Watchdog.h"
#include "WeakGCMapInlines.h"
#include "WebAssemblyFunction.h"
#include "WebAssemblyWrapperFunction.h"
#include <wtf/ProcessID.h>
#include <wtf/ReadWriteLock.h>
#include <wtf/SimpleStats.h>
#include <wtf/StringPrintStream.h>
#include <wtf/Threading.h>
#include <wtf/text/AtomicStringTable.h>
#include <wtf/text/SymbolRegistry.h>
#if !ENABLE(JIT)
#include "CLoopStack.h"
#include "CLoopStackInlines.h"
#endif
#if ENABLE(DFG_JIT)
#include "ConservativeRoots.h"
#endif
#if ENABLE(REGEXP_TRACING)
#include "RegExp.h"
#endif
using namespace WTF;
namespace JSC {
// Note: Platform.h will enforce that ENABLE(ASSEMBLER) is true if either
// ENABLE(JIT) or ENABLE(YARR_JIT) or both are enabled. The code below
// just checks for ENABLE(JIT) or ENABLE(YARR_JIT) with this premise in mind.
#if ENABLE(ASSEMBLER)
static bool enableAssembler(ExecutableAllocator& executableAllocator)
{
if (!Options::useJIT() && !Options::useRegExpJIT())
return false;
if (!executableAllocator.isValid()) {
if (Options::crashIfCantAllocateJITMemory())
CRASH();
return false;
}
char* canUseJITString = getenv("JavaScriptCoreUseJIT");
return !canUseJITString || atoi(canUseJITString);
}
#endif // ENABLE(!ASSEMBLER)
bool VM::canUseAssembler()
{
#if ENABLE(ASSEMBLER)
static std::once_flag onceKey;
static bool enabled = false;
std::call_once(onceKey, [] {
enabled = enableAssembler(ExecutableAllocator::singleton());
});
return enabled;
#else
return false; // interpreter only
#endif
}
bool VM::canUseJIT()
{
#if ENABLE(JIT)
static std::once_flag onceKey;
static bool enabled = false;
std::call_once(onceKey, [] {
enabled = VM::canUseAssembler() && Options::useJIT();
});
return enabled;
#else
return false; // interpreter only
#endif
}
bool VM::canUseRegExpJIT()
{
#if ENABLE(YARR_JIT)
static std::once_flag onceKey;
static bool enabled = false;
std::call_once(onceKey, [] {
enabled = VM::canUseAssembler() && Options::useRegExpJIT();
});
return enabled;
#else
return false; // interpreter only
#endif
}
VM::VM(VMType vmType, HeapType heapType)
: m_apiLock(adoptRef(new JSLock(this)))
#if USE(CF)
, m_runLoop(CFRunLoopGetCurrent())
#endif // USE(CF)
, heap(this, heapType)
, fastMallocAllocator(std::make_unique<FastMallocAlignedMemoryAllocator>())
, primitiveGigacageAllocator(std::make_unique<GigacageAlignedMemoryAllocator>(Gigacage::Primitive))
, jsValueGigacageAllocator(std::make_unique<GigacageAlignedMemoryAllocator>(Gigacage::JSValue))
, auxiliaryHeapCellType(std::make_unique<HeapCellType>(CellAttributes(DoesNotNeedDestruction, HeapCell::Auxiliary)))
, cellJSValueOOBHeapCellType(std::make_unique<HeapCellType>(CellAttributes(DoesNotNeedDestruction, HeapCell::JSCell)))
, cellDangerousBitsHeapCellType(std::make_unique<HeapCellType>(CellAttributes(DoesNotNeedDestruction, HeapCell::JSCell)))
, destructibleCellHeapCellType(std::make_unique<HeapCellType>(CellAttributes(NeedsDestruction, HeapCell::JSCell)))
, stringHeapCellType(std::make_unique<JSStringHeapCellType>())
, destructibleObjectHeapCellType(std::make_unique<JSDestructibleObjectHeapCellType>())
, segmentedVariableObjectHeapCellType(std::make_unique<JSSegmentedVariableObjectHeapCellType>())
#if ENABLE(WEBASSEMBLY)
, webAssemblyCodeBlockHeapCellType(std::make_unique<JSWebAssemblyCodeBlockHeapCellType>())
#endif
, primitiveGigacageAuxiliarySpace("Primitive Gigacage Auxiliary", heap, auxiliaryHeapCellType.get(), primitiveGigacageAllocator.get())
, jsValueGigacageAuxiliarySpace("JSValue Gigacage Auxiliary", heap, auxiliaryHeapCellType.get(), jsValueGigacageAllocator.get())
, cellJSValueOOBSpace("JSCell JSValueOOB", heap, cellJSValueOOBHeapCellType.get(), fastMallocAllocator.get())
, cellDangerousBitsSpace("JSCell DangerousBits", heap, cellDangerousBitsHeapCellType.get(), fastMallocAllocator.get())
, jsValueGigacageCellSpace("JSValue Gigacage JSCell", heap, cellJSValueOOBHeapCellType.get(), jsValueGigacageAllocator.get())
, destructibleCellSpace("Destructible JSCell", heap, destructibleCellHeapCellType.get(), fastMallocAllocator.get())
, stringSpace("JSString", heap, stringHeapCellType.get(), fastMallocAllocator.get())
, destructibleObjectSpace("JSDestructibleObject", heap, destructibleObjectHeapCellType.get(), fastMallocAllocator.get())
, eagerlySweptDestructibleObjectSpace("Eagerly Swept JSDestructibleObject", heap, destructibleObjectHeapCellType.get(), fastMallocAllocator.get())
, segmentedVariableObjectSpace("JSSegmentedVariableObjectSpace", heap, segmentedVariableObjectHeapCellType.get(), fastMallocAllocator.get())
, arrayBufferConstructorSpace ISO_SUBSPACE_INIT(heap, destructibleObjectHeapCellType.get(), JSArrayBufferConstructor)
, asyncFunctionSpace ISO_SUBSPACE_INIT(heap, cellJSValueOOBHeapCellType.get(), JSAsyncFunction)
, asyncGeneratorFunctionSpace ISO_SUBSPACE_INIT(heap, cellJSValueOOBHeapCellType.get(), JSAsyncGeneratorFunction)
, boundFunctionSpace ISO_SUBSPACE_INIT(heap, cellJSValueOOBHeapCellType.get(), JSBoundFunction)
, callbackFunctionSpace ISO_SUBSPACE_INIT(heap, destructibleObjectHeapCellType.get(), JSCallbackFunction)
, customGetterSetterFunctionSpace ISO_SUBSPACE_INIT(heap, cellJSValueOOBHeapCellType.get(), JSCustomGetterSetterFunction)
, directEvalExecutableSpace ISO_SUBSPACE_INIT(heap, destructibleCellHeapCellType.get(), DirectEvalExecutable)
, errorConstructorSpace ISO_SUBSPACE_INIT(heap, destructibleObjectHeapCellType.get(), ErrorConstructor)
, executableToCodeBlockEdgeSpace ISO_SUBSPACE_INIT(heap, cellDangerousBitsHeapCellType.get(), ExecutableToCodeBlockEdge)
, functionExecutableSpace ISO_SUBSPACE_INIT(heap, destructibleCellHeapCellType.get(), FunctionExecutable)
, functionSpace ISO_SUBSPACE_INIT(heap, cellJSValueOOBHeapCellType.get(), JSFunction)
, generatorFunctionSpace ISO_SUBSPACE_INIT(heap, cellJSValueOOBHeapCellType.get(), JSGeneratorFunction)
, indirectEvalExecutableSpace ISO_SUBSPACE_INIT(heap, destructibleCellHeapCellType.get(), IndirectEvalExecutable)
, inferredTypeSpace ISO_SUBSPACE_INIT(heap, destructibleCellHeapCellType.get(), InferredType)
, inferredValueSpace ISO_SUBSPACE_INIT(heap, destructibleCellHeapCellType.get(), InferredValue)
, internalFunctionSpace ISO_SUBSPACE_INIT(heap, destructibleObjectHeapCellType.get(), InternalFunction)
#if ENABLE(INTL)
, intlCollatorConstructorSpace ISO_SUBSPACE_INIT(heap, destructibleObjectHeapCellType.get(), IntlCollatorConstructor)
, intlDateTimeFormatConstructorSpace ISO_SUBSPACE_INIT(heap, destructibleObjectHeapCellType.get(), IntlDateTimeFormatConstructor)
, intlNumberFormatConstructorSpace ISO_SUBSPACE_INIT(heap, destructibleObjectHeapCellType.get(), IntlNumberFormatConstructor)
, intlPluralRulesConstructorSpace ISO_SUBSPACE_INIT(heap, destructibleObjectHeapCellType.get(), IntlPluralRulesConstructor)
#endif
, moduleProgramExecutableSpace ISO_SUBSPACE_INIT(heap, destructibleCellHeapCellType.get(), ModuleProgramExecutable)
, nativeErrorConstructorSpace ISO_SUBSPACE_INIT(heap, destructibleObjectHeapCellType.get(), NativeErrorConstructor)
, nativeExecutableSpace ISO_SUBSPACE_INIT(heap, destructibleCellHeapCellType.get(), NativeExecutable)
, nativeStdFunctionSpace ISO_SUBSPACE_INIT(heap, cellJSValueOOBHeapCellType.get(), JSNativeStdFunction)
#if JSC_OBJC_API_ENABLED
, objCCallbackFunctionSpace ISO_SUBSPACE_INIT(heap, destructibleObjectHeapCellType.get(), ObjCCallbackFunction)
#endif
, programExecutableSpace ISO_SUBSPACE_INIT(heap, destructibleCellHeapCellType.get(), ProgramExecutable)
, propertyTableSpace ISO_SUBSPACE_INIT(heap, destructibleCellHeapCellType.get(), PropertyTable)
, proxyRevokeSpace ISO_SUBSPACE_INIT(heap, destructibleObjectHeapCellType.get(), ProxyRevoke)
, regExpConstructorSpace ISO_SUBSPACE_INIT(heap, destructibleObjectHeapCellType.get(), RegExpConstructor)
, strictModeTypeErrorFunctionSpace ISO_SUBSPACE_INIT(heap, destructibleObjectHeapCellType.get(), StrictModeTypeErrorFunction)
, structureRareDataSpace ISO_SUBSPACE_INIT(heap, destructibleCellHeapCellType.get(), StructureRareData)
, structureSpace ISO_SUBSPACE_INIT(heap, destructibleCellHeapCellType.get(), Structure)
, weakSetSpace ISO_SUBSPACE_INIT(heap, destructibleObjectHeapCellType.get(), JSWeakSet)
, weakMapSpace ISO_SUBSPACE_INIT(heap, destructibleObjectHeapCellType.get(), JSWeakMap)
#if ENABLE(WEBASSEMBLY)
, webAssemblyCodeBlockSpace ISO_SUBSPACE_INIT(heap, webAssemblyCodeBlockHeapCellType.get(), JSWebAssemblyCodeBlock)
, webAssemblyFunctionSpace ISO_SUBSPACE_INIT(heap, cellJSValueOOBHeapCellType.get(), WebAssemblyFunction)
, webAssemblyWrapperFunctionSpace ISO_SUBSPACE_INIT(heap, cellJSValueOOBHeapCellType.get(), WebAssemblyWrapperFunction)
#endif
, executableToCodeBlockEdgesWithConstraints(executableToCodeBlockEdgeSpace)
, executableToCodeBlockEdgesWithFinalizers(executableToCodeBlockEdgeSpace)
, inferredTypesWithFinalizers(inferredTypeSpace)
, inferredValuesWithFinalizers(inferredValueSpace)
, evalCodeBlockSpace ISO_SUBSPACE_INIT(heap, destructibleCellHeapCellType.get(), EvalCodeBlock)
, functionCodeBlockSpace ISO_SUBSPACE_INIT(heap, destructibleCellHeapCellType.get(), FunctionCodeBlock)
, moduleProgramCodeBlockSpace ISO_SUBSPACE_INIT(heap, destructibleCellHeapCellType.get(), ModuleProgramCodeBlock)
, programCodeBlockSpace ISO_SUBSPACE_INIT(heap, destructibleCellHeapCellType.get(), ProgramCodeBlock)
, vmType(vmType)
, clientData(0)
, topEntryFrame(nullptr)
, topCallFrame(CallFrame::noCaller())
, promiseDeferredTimer(std::make_unique<PromiseDeferredTimer>(*this))
, m_atomicStringTable(vmType == Default ? Thread::current().atomicStringTable() : new AtomicStringTable)
, propertyNames(nullptr)
, emptyList(new ArgList)
, machineCodeBytesPerBytecodeWordForBaselineJIT(std::make_unique<SimpleStats>())
, customGetterSetterFunctionMap(*this)
, stringCache(*this)
, symbolImplToSymbolMap(*this)
, structureCache(*this)
, interpreter(0)
, entryScope(0)
, m_regExpCache(new RegExpCache(this))
#if ENABLE(REGEXP_TRACING)
, m_rtTraceList(new RTTraceList())
#endif
#if ENABLE(GC_VALIDATION)
, m_initializingObjectClass(0)
#endif
, m_stackPointerAtVMEntry(0)
, m_codeCache(std::make_unique<CodeCache>())
, m_builtinExecutables(std::make_unique<BuiltinExecutables>(*this))
, m_typeProfilerEnabledCount(0)
, m_primitiveGigacageEnabled(IsWatched)
, m_controlFlowProfilerEnabledCount(0)
, m_shadowChicken(std::make_unique<ShadowChicken>())
{
interpreter = new Interpreter(*this);
StackBounds stack = Thread::current().stack();
updateSoftReservedZoneSize(Options::softReservedZoneSize());
setLastStackTop(stack.origin());
defaultThreadLocalCache = ThreadLocalCache::create(heap);
defaultThreadLocalCache->install(*this);
// Need to be careful to keep everything consistent here
JSLockHolder lock(this);
AtomicStringTable* existingEntryAtomicStringTable = Thread::current().setCurrentAtomicStringTable(m_atomicStringTable);
propertyNames = new CommonIdentifiers(this);
structureStructure.set(*this, Structure::createStructure(*this));
structureRareDataStructure.set(*this, StructureRareData::createStructure(*this, 0, jsNull()));
terminatedExecutionErrorStructure.set(*this, TerminatedExecutionError::createStructure(*this, 0, jsNull()));
stringStructure.set(*this, JSString::createStructure(*this, 0, jsNull()));
propertyNameEnumeratorStructure.set(*this, JSPropertyNameEnumerator::createStructure(*this, 0, jsNull()));
customGetterSetterStructure.set(*this, CustomGetterSetter::createStructure(*this, 0, jsNull()));
domAttributeGetterSetterStructure.set(*this, DOMAttributeGetterSetter::createStructure(*this, 0, jsNull()));
scopedArgumentsTableStructure.set(*this, ScopedArgumentsTable::createStructure(*this, 0, jsNull()));
apiWrapperStructure.set(*this, JSAPIValueWrapper::createStructure(*this, 0, jsNull()));
nativeExecutableStructure.set(*this, NativeExecutable::createStructure(*this, 0, jsNull()));
evalExecutableStructure.set(*this, EvalExecutable::createStructure(*this, 0, jsNull()));
programExecutableStructure.set(*this, ProgramExecutable::createStructure(*this, 0, jsNull()));
functionExecutableStructure.set(*this, FunctionExecutable::createStructure(*this, 0, jsNull()));
#if ENABLE(WEBASSEMBLY)
webAssemblyCodeBlockStructure.set(*this, JSWebAssemblyCodeBlock::createStructure(*this, 0, jsNull()));
#endif
moduleProgramExecutableStructure.set(*this, ModuleProgramExecutable::createStructure(*this, 0, jsNull()));
regExpStructure.set(*this, RegExp::createStructure(*this, 0, jsNull()));
symbolStructure.set(*this, Symbol::createStructure(*this, 0, jsNull()));
symbolTableStructure.set(*this, SymbolTable::createStructure(*this, 0, jsNull()));
fixedArrayStructure.set(*this, JSFixedArray::createStructure(*this, 0, jsNull()));
sourceCodeStructure.set(*this, JSSourceCode::createStructure(*this, 0, jsNull()));
scriptFetcherStructure.set(*this, JSScriptFetcher::createStructure(*this, 0, jsNull()));
scriptFetchParametersStructure.set(*this, JSScriptFetchParameters::createStructure(*this, 0, jsNull()));
structureChainStructure.set(*this, StructureChain::createStructure(*this, 0, jsNull()));
sparseArrayValueMapStructure.set(*this, SparseArrayValueMap::createStructure(*this, 0, jsNull()));
templateObjectDescriptorStructure.set(*this, JSTemplateObjectDescriptor::createStructure(*this, 0, jsNull()));
arrayBufferNeuteringWatchpointStructure.set(*this, ArrayBufferNeuteringWatchpoint::createStructure(*this));
unlinkedFunctionExecutableStructure.set(*this, UnlinkedFunctionExecutable::createStructure(*this, 0, jsNull()));
unlinkedProgramCodeBlockStructure.set(*this, UnlinkedProgramCodeBlock::createStructure(*this, 0, jsNull()));
unlinkedEvalCodeBlockStructure.set(*this, UnlinkedEvalCodeBlock::createStructure(*this, 0, jsNull()));
unlinkedFunctionCodeBlockStructure.set(*this, UnlinkedFunctionCodeBlock::createStructure(*this, 0, jsNull()));
unlinkedModuleProgramCodeBlockStructure.set(*this, UnlinkedModuleProgramCodeBlock::createStructure(*this, 0, jsNull()));
propertyTableStructure.set(*this, PropertyTable::createStructure(*this, 0, jsNull()));
inferredTypeStructure.set(*this, InferredType::createStructure(*this, 0, jsNull()));
inferredTypeTableStructure.set(*this, InferredTypeTable::createStructure(*this, 0, jsNull()));
inferredValueStructure.set(*this, InferredValue::createStructure(*this, 0, jsNull()));
functionRareDataStructure.set(*this, FunctionRareData::createStructure(*this, 0, jsNull()));
exceptionStructure.set(*this, Exception::createStructure(*this, 0, jsNull()));
promiseDeferredStructure.set(*this, JSPromiseDeferred::createStructure(*this, 0, jsNull()));
internalPromiseDeferredStructure.set(*this, JSInternalPromiseDeferred::createStructure(*this, 0, jsNull()));
programCodeBlockStructure.set(*this, ProgramCodeBlock::createStructure(*this, 0, jsNull()));
moduleProgramCodeBlockStructure.set(*this, ModuleProgramCodeBlock::createStructure(*this, 0, jsNull()));
evalCodeBlockStructure.set(*this, EvalCodeBlock::createStructure(*this, 0, jsNull()));
functionCodeBlockStructure.set(*this, FunctionCodeBlock::createStructure(*this, 0, jsNull()));
hashMapBucketSetStructure.set(*this, HashMapBucket<HashMapBucketDataKey>::createStructure(*this, 0, jsNull()));
hashMapBucketMapStructure.set(*this, HashMapBucket<HashMapBucketDataKeyValue>::createStructure(*this, 0, jsNull()));
setIteratorStructure.set(*this, JSSetIterator::createStructure(*this, 0, jsNull()));
mapIteratorStructure.set(*this, JSMapIterator::createStructure(*this, 0, jsNull()));
bigIntStructure.set(*this, JSBigInt::createStructure(*this, 0, jsNull()));
executableToCodeBlockEdgeStructure.set(*this, ExecutableToCodeBlockEdge::createStructure(*this, nullptr, jsNull()));
sentinelSetBucket.set(*this, JSSet::BucketType::createSentinel(*this));
sentinelMapBucket.set(*this, JSMap::BucketType::createSentinel(*this));
nativeStdFunctionCellStructure.set(*this, NativeStdFunctionCell::createStructure(*this, 0, jsNull()));
smallStrings.initializeCommonStrings(*this);
Thread::current().setCurrentAtomicStringTable(existingEntryAtomicStringTable);
#if ENABLE(JIT)
jitStubs = std::make_unique<JITThunks>();
#endif
#if ENABLE(FTL_JIT)
ftlThunks = std::make_unique<FTL::Thunks>();
#endif // ENABLE(FTL_JIT)
#if ENABLE(JIT)
initializeHostCallReturnValue(); // This is needed to convince the linker not to drop host call return support.
#endif
Gigacage::addPrimitiveDisableCallback(primitiveGigacageDisabledCallback, this);
heap.notifyIsSafeToCollect();
LLInt::Data::performAssertions(*this);
if (UNLIKELY(Options::useProfiler())) {
m_perBytecodeProfiler = std::make_unique<Profiler::Database>(*this);
StringPrintStream pathOut;
const char* profilerPath = getenv("JSC_PROFILER_PATH");
if (profilerPath)
pathOut.print(profilerPath, "/");
pathOut.print("JSCProfile-", getCurrentProcessID(), "-", m_perBytecodeProfiler->databaseID(), ".json");
m_perBytecodeProfiler->registerToSaveAtExit(pathOut.toCString().data());
}
callFrameForCatch = nullptr;
// Initialize this last, as a free way of asserting that VM initialization itself
// won't use this.
m_typedArrayController = adoptRef(new SimpleTypedArrayController());
m_bytecodeIntrinsicRegistry = std::make_unique<BytecodeIntrinsicRegistry>(*this);
if (Options::useTypeProfiler())
enableTypeProfiler();
if (Options::useControlFlowProfiler())
enableControlFlowProfiler();
#if ENABLE(SAMPLING_PROFILER)
if (Options::useSamplingProfiler()) {
setShouldBuildPCToCodeOriginMapping();
Ref<Stopwatch> stopwatch = Stopwatch::create();
stopwatch->start();
m_samplingProfiler = adoptRef(new SamplingProfiler(*this, WTFMove(stopwatch)));
if (Options::samplingProfilerPath())
m_samplingProfiler->registerForReportAtExit();
m_samplingProfiler->start();
}
#endif // ENABLE(SAMPLING_PROFILER)
if (Options::alwaysGeneratePCToCodeOriginMap())
setShouldBuildPCToCodeOriginMapping();
if (Options::watchdog()) {
Watchdog& watchdog = ensureWatchdog();
watchdog.setTimeLimit(Seconds::fromMilliseconds(Options::watchdog()));
}
#if ENABLE(JIT)
// Make sure that any stubs that the JIT is going to use are initialized in non-compilation threads.
if (canUseJIT()) {
getCTIInternalFunctionTrampolineFor(CodeForCall);
getCTIInternalFunctionTrampolineFor(CodeForConstruct);
}
#endif
VMInspector::instance().add(this);
}
static ReadWriteLock s_destructionLock;
void waitForVMDestruction()
{
auto locker = holdLock(s_destructionLock.write());
}
VM::~VM()
{
auto destructionLocker = holdLock(s_destructionLock.read());
Gigacage::removePrimitiveDisableCallback(primitiveGigacageDisabledCallback, this);
promiseDeferredTimer->stopRunningTasks();
#if ENABLE(WEBASSEMBLY)
if (Wasm::existingWorklistOrNull())
Wasm::ensureWorklist().stopAllPlansForContext(wasmContext);
#endif
if (UNLIKELY(m_watchdog))
m_watchdog->willDestroyVM(this);
m_traps.willDestroyVM();
VMInspector::instance().remove(this);
// Never GC, ever again.
heap.incrementDeferralDepth();
#if ENABLE(SAMPLING_PROFILER)
if (m_samplingProfiler) {
m_samplingProfiler->reportDataToOptionFile();
m_samplingProfiler->shutdown();
}
#endif // ENABLE(SAMPLING_PROFILER)
#if ENABLE(JIT)
JITWorklist::instance()->completeAllForVM(*this);
#endif // ENABLE(JIT)
#if ENABLE(DFG_JIT)
// Make sure concurrent compilations are done, but don't install them, since there is
// no point to doing so.
for (unsigned i = DFG::numberOfWorklists(); i--;) {
if (DFG::Worklist* worklist = DFG::existingWorklistForIndexOrNull(i)) {
worklist->removeNonCompilingPlansForVM(*this);
worklist->waitUntilAllPlansForVMAreReady(*this);
worklist->removeAllReadyPlansForVM(*this);
}
}
#endif // ENABLE(DFG_JIT)
waitForAsynchronousDisassembly();
// Clear this first to ensure that nobody tries to remove themselves from it.
m_perBytecodeProfiler = nullptr;
ASSERT(currentThreadIsHoldingAPILock());
m_apiLock->willDestroyVM(this);
heap.lastChanceToFinalize();
#if !USE(FAST_TLS_FOR_TLC)
ThreadLocalCache::destructor(threadLocalCacheData);
#endif
delete interpreter;
#ifndef NDEBUG
interpreter = reinterpret_cast<Interpreter*>(0xbbadbeef);
#endif
delete emptyList;
delete propertyNames;
if (vmType != Default)
delete m_atomicStringTable;
delete clientData;
delete m_regExpCache;
#if ENABLE(REGEXP_TRACING)
delete m_rtTraceList;
#endif
#if ENABLE(DFG_JIT)
for (unsigned i = 0; i < m_scratchBuffers.size(); ++i)
fastFree(m_scratchBuffers[i]);
#endif
}
void VM::primitiveGigacageDisabledCallback(void* argument)
{
static_cast<VM*>(argument)->primitiveGigacageDisabled();
}
void VM::primitiveGigacageDisabled()
{
if (m_apiLock->currentThreadIsHoldingLock()) {
m_primitiveGigacageEnabled.fireAll(*this, "Primitive gigacage disabled");
return;
}
// This is totally racy, and that's OK. The point is, it's up to the user to ensure that they pass the
// uncaged buffer in a nicely synchronized manner.
m_needToFirePrimitiveGigacageEnabled = true;
}
void VM::setLastStackTop(void* lastStackTop)
{
m_lastStackTop = lastStackTop;
}
Ref<VM> VM::createContextGroup(HeapType heapType)
{
return adoptRef(*new VM(APIContextGroup, heapType));
}
Ref<VM> VM::create(HeapType heapType)
{
return adoptRef(*new VM(Default, heapType));
}
bool VM::sharedInstanceExists()
{
return sharedInstanceInternal();
}
VM& VM::sharedInstance()
{
GlobalJSLock globalLock;
VM*& instance = sharedInstanceInternal();
if (!instance)
instance = adoptRef(new VM(APIShared, SmallHeap)).leakRef();
return *instance;
}
VM*& VM::sharedInstanceInternal()
{
static VM* sharedInstance;
return sharedInstance;
}
Watchdog& VM::ensureWatchdog()
{
if (!m_watchdog)
m_watchdog = adoptRef(new Watchdog(this));
return *m_watchdog;
}
HeapProfiler& VM::ensureHeapProfiler()
{
if (!m_heapProfiler)
m_heapProfiler = std::make_unique<HeapProfiler>(*this);
return *m_heapProfiler;
}
#if ENABLE(SAMPLING_PROFILER)
SamplingProfiler& VM::ensureSamplingProfiler(RefPtr<Stopwatch>&& stopwatch)
{
if (!m_samplingProfiler)
m_samplingProfiler = adoptRef(new SamplingProfiler(*this, WTFMove(stopwatch)));
return *m_samplingProfiler;
}
#endif // ENABLE(SAMPLING_PROFILER)
#if ENABLE(JIT)
static ThunkGenerator thunkGeneratorForIntrinsic(Intrinsic intrinsic)
{
switch (intrinsic) {
case CharCodeAtIntrinsic:
return charCodeAtThunkGenerator;
case CharAtIntrinsic:
return charAtThunkGenerator;
case Clz32Intrinsic:
return clz32ThunkGenerator;
case FromCharCodeIntrinsic:
return fromCharCodeThunkGenerator;
case SqrtIntrinsic:
return sqrtThunkGenerator;
case AbsIntrinsic:
return absThunkGenerator;
case FloorIntrinsic:
return floorThunkGenerator;
case CeilIntrinsic:
return ceilThunkGenerator;
case TruncIntrinsic:
return truncThunkGenerator;
case RoundIntrinsic:
return roundThunkGenerator;
case ExpIntrinsic:
return expThunkGenerator;
case LogIntrinsic:
return logThunkGenerator;
case IMulIntrinsic:
return imulThunkGenerator;
case RandomIntrinsic:
return randomThunkGenerator;
case BoundThisNoArgsFunctionCallIntrinsic:
return boundThisNoArgsFunctionCallGenerator;
default:
return nullptr;
}
}
#endif // ENABLE(JIT)
NativeExecutable* VM::getHostFunction(NativeFunction function, NativeFunction constructor, const String& name)
{
return getHostFunction(function, NoIntrinsic, constructor, nullptr, name);
}
NativeExecutable* VM::getHostFunction(NativeFunction function, Intrinsic intrinsic, NativeFunction constructor, const DOMJIT::Signature* signature, const String& name)
{
#if ENABLE(JIT)
if (canUseJIT()) {
return jitStubs->hostFunctionStub(
this, function, constructor,
intrinsic != NoIntrinsic ? thunkGeneratorForIntrinsic(intrinsic) : 0,
intrinsic, signature, name);
}
#else // ENABLE(JIT)
UNUSED_PARAM(intrinsic);
#endif // ENABLE(JIT)
return NativeExecutable::create(*this,
adoptRef(*new NativeJITCode(LLInt::getCodeRef<JSEntryPtrTag>(llint_native_call_trampoline), JITCode::HostCallThunk)), function,
adoptRef(*new NativeJITCode(LLInt::getCodeRef<JSEntryPtrTag>(llint_native_construct_trampoline), JITCode::HostCallThunk)), constructor,
NoIntrinsic, signature, name);
}
MacroAssemblerCodePtr<JSEntryPtrTag> VM::getCTIInternalFunctionTrampolineFor(CodeSpecializationKind kind)
{
#if ENABLE(JIT)
if (canUseJIT()) {
if (kind == CodeForCall)
return jitStubs->ctiInternalFunctionCall(this).retagged<JSEntryPtrTag>();
return jitStubs->ctiInternalFunctionConstruct(this).retagged<JSEntryPtrTag>();
}
#endif
if (kind == CodeForCall)
return LLInt::getCodePtr<JSEntryPtrTag>(llint_internal_function_call_trampoline);
return LLInt::getCodePtr<JSEntryPtrTag>(llint_internal_function_construct_trampoline);
}
VM::ClientData::~ClientData()
{
}
void VM::resetDateCache()
{
localTimeOffsetCache.reset();
cachedDateString = String();
cachedDateStringValue = std::numeric_limits<double>::quiet_NaN();
dateInstanceCache.reset();
}
void VM::whenIdle(std::function<void()> callback)
{
if (!entryScope) {
callback();
return;
}
entryScope->addDidPopListener(callback);
}
void VM::deleteAllLinkedCode(DeleteAllCodeEffort effort)
{
whenIdle([=] () {
heap.deleteAllCodeBlocks(effort);
});
}
void VM::deleteAllCode(DeleteAllCodeEffort effort)
{
whenIdle([=] () {
m_codeCache->clear();
m_regExpCache->deleteAllCode();
heap.deleteAllCodeBlocks(effort);
heap.deleteAllUnlinkedCodeBlocks(effort);
heap.reportAbandonedObjectGraph();
});
}
SourceProviderCache* VM::addSourceProviderCache(SourceProvider* sourceProvider)
{
auto addResult = sourceProviderCacheMap.add(sourceProvider, nullptr);
if (addResult.isNewEntry)
addResult.iterator->value = adoptRef(new SourceProviderCache);
return addResult.iterator->value.get();
}
void VM::clearSourceProviderCaches()
{
sourceProviderCacheMap.clear();
}
void VM::throwException(ExecState* exec, Exception* exception)
{
if (Options::breakOnThrow()) {
CodeBlock* codeBlock = exec->codeBlock();
dataLog("Throwing exception in call frame ", RawPointer(exec), " for code block ", codeBlock, "\n");
CRASH();
}
ASSERT(exec == topCallFrame || exec == exec->lexicalGlobalObject()->globalExec() || exec == exec->vmEntryGlobalObject()->globalExec());
interpreter->notifyDebuggerOfExceptionToBeThrown(*this, exec, exception);
setException(exception);
#if ENABLE(EXCEPTION_SCOPE_VERIFICATION)
m_nativeStackTraceOfLastThrow = StackTrace::captureStackTrace(Options::unexpectedExceptionStackTraceLimit());
m_throwingThread = &Thread::current();
#endif
}
JSValue VM::throwException(ExecState* exec, JSValue thrownValue)
{
VM& vm = *this;
Exception* exception = jsDynamicCast<Exception*>(vm, thrownValue);
if (!exception)
exception = Exception::create(*this, thrownValue);
throwException(exec, exception);
return JSValue(exception);
}
JSObject* VM::throwException(ExecState* exec, JSObject* error)
{
return asObject(throwException(exec, JSValue(error)));
}
void VM::setStackPointerAtVMEntry(void* sp)
{
m_stackPointerAtVMEntry = sp;
updateStackLimits();
}
size_t VM::updateSoftReservedZoneSize(size_t softReservedZoneSize)
{
size_t oldSoftReservedZoneSize = m_currentSoftReservedZoneSize;
m_currentSoftReservedZoneSize = softReservedZoneSize;
#if !ENABLE(JIT)
interpreter->cloopStack().setSoftReservedZoneSize(softReservedZoneSize);
#endif
updateStackLimits();
return oldSoftReservedZoneSize;
}
#if OS(WINDOWS)
// On Windows the reserved stack space consists of committed memory, a guard page, and uncommitted memory,
// where the guard page is a barrier between committed and uncommitted memory.
// When data from the guard page is read or written, the guard page is moved, and memory is committed.
// This is how the system grows the stack.
// When using the C stack on Windows we need to precommit the needed stack space.
// Otherwise we might crash later if we access uncommitted stack memory.
// This can happen if we allocate stack space larger than the page guard size (4K).
// The system does not get the chance to move the guard page, and commit more memory,
// and we crash if uncommitted memory is accessed.
// The MSVC compiler fixes this by inserting a call to the _chkstk() function,
// when needed, see http://support.microsoft.com/kb/100775.
// By touching every page up to the stack limit with a dummy operation,
// we force the system to move the guard page, and commit memory.
static void preCommitStackMemory(void* stackLimit)
{
const int pageSize = 4096;
for (volatile char* p = reinterpret_cast<char*>(&stackLimit); p > stackLimit; p -= pageSize) {
char ch = *p;
*p = ch;
}
}
#endif
inline void VM::updateStackLimits()
{
#if OS(WINDOWS)
void* lastSoftStackLimit = m_softStackLimit;
#endif
const StackBounds& stack = Thread::current().stack();
size_t reservedZoneSize = Options::reservedZoneSize();
// We should have already ensured that Options::reservedZoneSize() >= minimumReserveZoneSize at
// options initialization time, and the option value should not have been changed thereafter.
// We don't have the ability to assert here that it hasn't changed, but we can at least assert
// that the value is sane.
RELEASE_ASSERT(reservedZoneSize >= minimumReservedZoneSize);
if (m_stackPointerAtVMEntry) {
ASSERT(stack.isGrowingDownward());
char* startOfStack = reinterpret_cast<char*>(m_stackPointerAtVMEntry);
m_softStackLimit = stack.recursionLimit(startOfStack, Options::maxPerThreadStackUsage(), m_currentSoftReservedZoneSize);
m_stackLimit = stack.recursionLimit(startOfStack, Options::maxPerThreadStackUsage(), reservedZoneSize);
} else {
m_softStackLimit = stack.recursionLimit(m_currentSoftReservedZoneSize);
m_stackLimit = stack.recursionLimit(reservedZoneSize);
}
#if OS(WINDOWS)
// We only need to precommit stack memory dictated by the VM::m_softStackLimit limit.
// This is because VM::m_softStackLimit applies to stack usage by LLINT asm or JIT
// generated code which can allocate stack space that the C++ compiler does not know
// about. As such, we have to precommit that stack memory manually.
//
// In contrast, we do not need to worry about VM::m_stackLimit because that limit is
// used exclusively by C++ code, and the C++ compiler will automatically commit the
// needed stack pages.
if (lastSoftStackLimit != m_softStackLimit)
preCommitStackMemory(m_softStackLimit);
#endif
}
#if ENABLE(DFG_JIT)
void VM::gatherConservativeRoots(ConservativeRoots& conservativeRoots)
{
auto lock = holdLock(m_scratchBufferLock);
for (auto* scratchBuffer : m_scratchBuffers) {
if (scratchBuffer->activeLength()) {
void* bufferStart = scratchBuffer->dataBuffer();
conservativeRoots.add(bufferStart, static_cast<void*>(static_cast<char*>(bufferStart) + scratchBuffer->activeLength()));
}
}
}
#endif
void logSanitizeStack(VM* vm)
{
if (Options::verboseSanitizeStack() && vm->topCallFrame) {
int dummy;
auto& stackBounds = Thread::current().stack();
dataLog(
"Sanitizing stack for VM = ", RawPointer(vm), " with top call frame at ", RawPointer(vm->topCallFrame),
", current stack pointer at ", RawPointer(&dummy), ", in ",
pointerDump(vm->topCallFrame->codeBlock()), ", last code origin = ",
vm->topCallFrame->codeOrigin(), ", last stack top = ", RawPointer(vm->lastStackTop()), ", in stack range [", RawPointer(stackBounds.origin()), ", ", RawPointer(stackBounds.end()), "]\n");
}
}
#if ENABLE(YARR_JIT_ALL_PARENS_EXPRESSIONS)
char* VM::acquireRegExpPatternContexBuffer()
{
m_regExpPatternContextLock.lock();
ASSERT(m_regExpPatternContextLock.isLocked());
if (!m_regExpPatternContexBuffer)
m_regExpPatternContexBuffer = makeUniqueArray<char>(VM::patternContextBufferSize);
return m_regExpPatternContexBuffer.get();
}
void VM::releaseRegExpPatternContexBuffer()
{
ASSERT(m_regExpPatternContextLock.isLocked());
m_regExpPatternContextLock.unlock();
}
#endif
#if ENABLE(REGEXP_TRACING)
void VM::addRegExpToTrace(RegExp* regExp)
{
gcProtect(regExp);
m_rtTraceList->add(regExp);
}
void VM::dumpRegExpTrace()
{
// The first RegExp object is ignored. It is create by the RegExpPrototype ctor and not used.
RTTraceList::iterator iter = ++m_rtTraceList->begin();
if (iter != m_rtTraceList->end()) {
dataLogF("\nRegExp Tracing\n");
dataLogF("Regular Expression 8 Bit 16 Bit match() Matches Average\n");
dataLogF(" <Match only / Match> JIT Addr JIT Address calls found String len\n");
dataLogF("----------------------------------------+----------------+----------------+----------+----------+-----------\n");
unsigned reCount = 0;
for (; iter != m_rtTraceList->end(); ++iter, ++reCount) {
(*iter)->printTraceData();
gcUnprotect(*iter);
}
dataLogF("%d Regular Expressions\n", reCount);
}
m_rtTraceList->clear();
}
#else
void VM::dumpRegExpTrace()
{
}
#endif
WatchpointSet* VM::ensureWatchpointSetForImpureProperty(const Identifier& propertyName)
{
auto result = m_impurePropertyWatchpointSets.add(propertyName.string(), nullptr);
if (result.isNewEntry)
result.iterator->value = adoptRef(new WatchpointSet(IsWatched));
return result.iterator->value.get();
}
void VM::registerWatchpointForImpureProperty(const Identifier& propertyName, Watchpoint* watchpoint)
{
ensureWatchpointSetForImpureProperty(propertyName)->add(watchpoint);
}
void VM::addImpureProperty(const String& propertyName)
{
if (RefPtr<WatchpointSet> watchpointSet = m_impurePropertyWatchpointSets.take(propertyName))
watchpointSet->fireAll(*this, "Impure property added");
}
static bool enableProfilerWithRespectToCount(unsigned& counter, std::function<void()> doEnableWork)
{
bool needsToRecompile = false;
if (!counter) {
doEnableWork();
needsToRecompile = true;
}
counter++;
return needsToRecompile;
}
static bool disableProfilerWithRespectToCount(unsigned& counter, std::function<void()> doDisableWork)
{
RELEASE_ASSERT(counter > 0);
bool needsToRecompile = false;
counter--;
if (!counter) {
doDisableWork();
needsToRecompile = true;
}
return needsToRecompile;
}
bool VM::enableTypeProfiler()
{
auto enableTypeProfiler = [this] () {
this->m_typeProfiler = std::make_unique<TypeProfiler>();
this->m_typeProfilerLog = std::make_unique<TypeProfilerLog>();
};
return enableProfilerWithRespectToCount(m_typeProfilerEnabledCount, enableTypeProfiler);
}
bool VM::disableTypeProfiler()
{
auto disableTypeProfiler = [this] () {
this->m_typeProfiler.reset(nullptr);
this->m_typeProfilerLog.reset(nullptr);
};
return disableProfilerWithRespectToCount(m_typeProfilerEnabledCount, disableTypeProfiler);
}
bool VM::enableControlFlowProfiler()
{
auto enableControlFlowProfiler = [this] () {
this->m_controlFlowProfiler = std::make_unique<ControlFlowProfiler>();
};
return enableProfilerWithRespectToCount(m_controlFlowProfilerEnabledCount, enableControlFlowProfiler);
}
bool VM::disableControlFlowProfiler()
{
auto disableControlFlowProfiler = [this] () {
this->m_controlFlowProfiler.reset(nullptr);
};
return disableProfilerWithRespectToCount(m_controlFlowProfilerEnabledCount, disableControlFlowProfiler);
}
void VM::dumpTypeProfilerData()
{
if (!typeProfiler())
return;
typeProfilerLog()->processLogEntries(ASCIILiteral("VM Dump Types"));
typeProfiler()->dumpTypeProfilerData(*this);
}
void VM::queueMicrotask(JSGlobalObject& globalObject, Ref<Microtask>&& task)
{
m_microtaskQueue.append(std::make_unique<QueuedTask>(*this, &globalObject, WTFMove(task)));
}
void VM::drainMicrotasks()
{
while (!m_microtaskQueue.isEmpty())
m_microtaskQueue.takeFirst()->run();
}
void QueuedTask::run()
{
m_microtask->run(m_globalObject->globalExec());
}
void sanitizeStackForVM(VM* vm)
{
logSanitizeStack(vm);
if (vm->topCallFrame) {
auto& stackBounds = Thread::current().stack();
ASSERT(vm->currentThreadIsHoldingAPILock());
ASSERT_UNUSED(stackBounds, stackBounds.contains(vm->lastStackTop()));
}
#if !ENABLE(JIT)
vm->interpreter->cloopStack().sanitizeStack();
#else
sanitizeStackForVMImpl(vm);
#endif
}
size_t VM::committedStackByteCount()
{
#if ENABLE(JIT)
// When using the C stack, we don't know how many stack pages are actually
// committed. So, we use the current stack usage as an estimate.
ASSERT(Thread::current().stack().isGrowingDownward());
int8_t* current = reinterpret_cast<int8_t*>(&current);
int8_t* high = reinterpret_cast<int8_t*>(Thread::current().stack().origin());
return high - current;
#else
return CLoopStack::committedByteCount();
#endif
}
#if !ENABLE(JIT)
bool VM::ensureStackCapacityForCLoop(Register* newTopOfStack)
{
return interpreter->cloopStack().ensureCapacityFor(newTopOfStack);
}
bool VM::isSafeToRecurseSoftCLoop() const
{
return interpreter->cloopStack().isSafeToRecurse();
}
#endif // !ENABLE(JIT)
#if ENABLE(EXCEPTION_SCOPE_VERIFICATION)
void VM::verifyExceptionCheckNeedIsSatisfied(unsigned recursionDepth, ExceptionEventLocation& location)
{
if (!Options::validateExceptionChecks())
return;
if (UNLIKELY(m_needExceptionCheck)) {
auto throwDepth = m_simulatedThrowPointRecursionDepth;
auto& throwLocation = m_simulatedThrowPointLocation;
dataLog(
"ERROR: Unchecked JS exception:\n"
" This scope can throw a JS exception: ", throwLocation, "\n"
" (ExceptionScope::m_recursionDepth was ", throwDepth, ")\n"
" But the exception was unchecked as of this scope: ", location, "\n"
" (ExceptionScope::m_recursionDepth was ", recursionDepth, ")\n"
"\n");
StringPrintStream out;
std::unique_ptr<StackTrace> currentTrace = StackTrace::captureStackTrace(Options::unexpectedExceptionStackTraceLimit());
if (Options::dumpSimulatedThrows()) {
out.println("The simulated exception was thrown at:");
m_nativeStackTraceOfLastSimulatedThrow->dump(out, " ");
out.println();
}
out.println("Unchecked exception detected at:");
currentTrace->dump(out, " ");
out.println();
dataLog(out.toCString());
RELEASE_ASSERT(!m_needExceptionCheck);
}
}
#endif
#if USE(CF)
void VM::registerRunLoopTimer(JSRunLoopTimer* timer)
{
ASSERT(runLoop());
ASSERT(!m_runLoopTimers.contains(timer));
m_runLoopTimers.add(timer);
timer->setRunLoop(runLoop());
}
void VM::unregisterRunLoopTimer(JSRunLoopTimer* timer)
{
ASSERT(m_runLoopTimers.contains(timer));
m_runLoopTimers.remove(timer);
timer->setRunLoop(nullptr);
}
void VM::setRunLoop(CFRunLoopRef runLoop)
{
ASSERT(runLoop);
m_runLoop = runLoop;
for (auto timer : m_runLoopTimers)
timer->setRunLoop(runLoop);
}
#endif // USE(CF)
ScratchBuffer* VM::scratchBufferForSize(size_t size)
{
if (!size)
return nullptr;
auto locker = holdLock(m_scratchBufferLock);
if (size > m_sizeOfLastScratchBuffer) {
// Protect against a N^2 memory usage pathology by ensuring
// that at worst, we get a geometric series, meaning that the
// total memory usage is somewhere around
// max(scratch buffer size) * 4.
m_sizeOfLastScratchBuffer = size * 2;
ScratchBuffer* newBuffer = ScratchBuffer::create(m_sizeOfLastScratchBuffer);
RELEASE_ASSERT(newBuffer);
m_scratchBuffers.append(newBuffer);
}
ScratchBuffer* result = m_scratchBuffers.last();
return result;
}
} // namespace JSC