blob: 93f8c559f2d1ee5b4ef667187309da6d2b478b13 [file] [log] [blame]
/*
* Copyright (C) 2011, 2013 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGGraph.h"
#include "CodeBlock.h"
#include "CodeBlockWithJITType.h"
#include "DFGVariableAccessDataDump.h"
#include "FunctionExecutableDump.h"
#include "Operations.h"
#include <wtf/CommaPrinter.h>
#if ENABLE(DFG_JIT)
namespace JSC { namespace DFG {
// Creates an array of stringized names.
static const char* dfgOpNames[] = {
#define STRINGIZE_DFG_OP_ENUM(opcode, flags) #opcode ,
FOR_EACH_DFG_OP(STRINGIZE_DFG_OP_ENUM)
#undef STRINGIZE_DFG_OP_ENUM
};
Graph::Graph(VM& vm, Plan& plan, LongLivedState& longLivedState)
: m_vm(vm)
, m_plan(plan)
, m_codeBlock(m_plan.codeBlock.get())
, m_profiledBlock(m_codeBlock->alternative())
, m_allocator(longLivedState.m_allocator)
, m_hasArguments(false)
, m_fixpointState(BeforeFixpoint)
, m_form(LoadStore)
, m_unificationState(LocallyUnified)
, m_refCountState(EverythingIsLive)
{
ASSERT(m_profiledBlock);
}
Graph::~Graph()
{
m_allocator.freeAll();
}
const char *Graph::opName(NodeType op)
{
return dfgOpNames[op];
}
static void printWhiteSpace(PrintStream& out, unsigned amount)
{
while (amount-- > 0)
out.print(" ");
}
bool Graph::dumpCodeOrigin(PrintStream& out, const char* prefix, Node* previousNode, Node* currentNode)
{
if (!previousNode)
return false;
if (previousNode->codeOrigin.inlineCallFrame == currentNode->codeOrigin.inlineCallFrame)
return false;
Vector<CodeOrigin> previousInlineStack = previousNode->codeOrigin.inlineStack();
Vector<CodeOrigin> currentInlineStack = currentNode->codeOrigin.inlineStack();
unsigned commonSize = std::min(previousInlineStack.size(), currentInlineStack.size());
unsigned indexOfDivergence = commonSize;
for (unsigned i = 0; i < commonSize; ++i) {
if (previousInlineStack[i].inlineCallFrame != currentInlineStack[i].inlineCallFrame) {
indexOfDivergence = i;
break;
}
}
bool hasPrinted = false;
// Print the pops.
for (unsigned i = previousInlineStack.size(); i-- > indexOfDivergence;) {
out.print(prefix);
printWhiteSpace(out, i * 2);
out.print("<-- ", *previousInlineStack[i].inlineCallFrame, "\n");
hasPrinted = true;
}
// Print the pushes.
for (unsigned i = indexOfDivergence; i < currentInlineStack.size(); ++i) {
out.print(prefix);
printWhiteSpace(out, i * 2);
out.print("--> ", *currentInlineStack[i].inlineCallFrame, "\n");
hasPrinted = true;
}
return hasPrinted;
}
int Graph::amountOfNodeWhiteSpace(Node* node)
{
return (node->codeOrigin.inlineDepth() - 1) * 2;
}
void Graph::printNodeWhiteSpace(PrintStream& out, Node* node)
{
printWhiteSpace(out, amountOfNodeWhiteSpace(node));
}
void Graph::dump(PrintStream& out, const char* prefix, Node* node)
{
NodeType op = node->op();
unsigned refCount = node->refCount();
bool skipped = !refCount;
bool mustGenerate = node->mustGenerate();
if (mustGenerate)
--refCount;
out.print(prefix);
printNodeWhiteSpace(out, node);
// Example/explanation of dataflow dump output
//
// 14: <!2:7> GetByVal(@3, @13)
// ^1 ^2 ^3 ^4 ^5
//
// (1) The nodeIndex of this operation.
// (2) The reference count. The number printed is the 'real' count,
// not including the 'mustGenerate' ref. If the node is
// 'mustGenerate' then the count it prefixed with '!'.
// (3) The virtual register slot assigned to this node.
// (4) The name of the operation.
// (5) The arguments to the operation. The may be of the form:
// @# - a NodeIndex referencing a prior node in the graph.
// arg# - an argument number.
// $# - the index in the CodeBlock of a constant { for numeric constants the value is displayed | for integers, in both decimal and hex }.
// id# - the index in the CodeBlock of an identifier { if codeBlock is passed to dump(), the string representation is displayed }.
// var# - the index of a var on the global object, used by GetGlobalVar/PutGlobalVar operations.
out.printf("% 4d:%s<%c%u:", (int)node->index(), skipped ? " skipped " : " ", mustGenerate ? '!' : ' ', refCount);
if (node->hasResult() && !skipped && node->hasVirtualRegister())
out.print(node->virtualRegister());
else
out.print("-");
out.print(">\t", opName(op), "(");
CommaPrinter comma;
if (node->flags() & NodeHasVarArgs) {
for (unsigned childIdx = node->firstChild(); childIdx < node->firstChild() + node->numChildren(); childIdx++) {
if (!m_varArgChildren[childIdx])
continue;
out.print(comma, m_varArgChildren[childIdx]);
}
} else {
if (!!node->child1() || !!node->child2() || !!node->child3())
out.print(comma, node->child1());
if (!!node->child2() || !!node->child3())
out.print(comma, node->child2());
if (!!node->child3())
out.print(comma, node->child3());
}
if (toCString(NodeFlagsDump(node->flags())) != "<empty>")
out.print(comma, NodeFlagsDump(node->flags()));
if (node->hasArrayMode())
out.print(comma, node->arrayMode());
if (node->hasVarNumber())
out.print(comma, node->varNumber());
if (node->hasRegisterPointer())
out.print(comma, "global", globalObjectFor(node->codeOrigin)->findRegisterIndex(node->registerPointer()), "(", RawPointer(node->registerPointer()), ")");
if (node->hasIdentifier())
out.print(comma, "id", node->identifierNumber(), "{", identifiers()[node->identifierNumber()], "}");
if (node->hasStructureSet())
out.print(comma, node->structureSet());
if (node->hasStructure())
out.print(comma, *node->structure());
if (node->hasStructureTransitionData())
out.print(comma, *node->structureTransitionData().previousStructure, " -> ", *node->structureTransitionData().newStructure);
if (node->hasFunction()) {
out.print(comma, "function(", RawPointer(node->function()), ", ");
if (node->function()->inherits(&JSFunction::s_info)) {
JSFunction* function = jsCast<JSFunction*>(node->function());
if (function->isHostFunction())
out.print("<host function>");
else
out.print(FunctionExecutableDump(function->jsExecutable()));
} else
out.print("<not JSFunction>");
out.print(")");
}
if (node->hasExecutable()) {
if (node->executable()->inherits(&FunctionExecutable::s_info))
out.print(comma, "executable(", FunctionExecutableDump(jsCast<FunctionExecutable*>(node->executable())), ")");
else
out.print(comma, "executable(not function: ", RawPointer(node->executable()), ")");
}
if (node->hasFunctionDeclIndex()) {
FunctionExecutable* executable = m_codeBlock->functionDecl(node->functionDeclIndex());
out.print(comma, executable->inferredName().string(), "#", executable->hashFor(CodeForCall));
}
if (node->hasFunctionExprIndex()) {
FunctionExecutable* executable = m_codeBlock->functionExpr(node->functionExprIndex());
out.print(comma, executable->inferredName().string(), "#", executable->hashFor(CodeForCall));
}
if (node->hasStorageAccessData()) {
StorageAccessData& storageAccessData = m_storageAccessData[node->storageAccessDataIndex()];
out.print(comma, "id", storageAccessData.identifierNumber, "{", identifiers()[storageAccessData.identifierNumber], "}");
out.print(", ", static_cast<ptrdiff_t>(storageAccessData.offset));
}
ASSERT(node->hasVariableAccessData() == node->hasLocal());
if (node->hasVariableAccessData()) {
VariableAccessData* variableAccessData = node->variableAccessData();
int operand = variableAccessData->operand();
if (operandIsArgument(operand))
out.print(comma, "arg", operandToArgument(operand), "(", VariableAccessDataDump(*this, variableAccessData), ")");
else
out.print(comma, "r", operand, "(", VariableAccessDataDump(*this, variableAccessData), ")");
}
if (node->hasConstantBuffer()) {
out.print(comma);
out.print(node->startConstant(), ":[");
CommaPrinter anotherComma;
for (unsigned i = 0; i < node->numConstants(); ++i)
out.print(anotherComma, m_codeBlock->constantBuffer(node->startConstant())[i]);
out.print("]");
}
if (node->hasIndexingType())
out.print(comma, IndexingTypeDump(node->indexingType()));
if (node->hasExecutionCounter())
out.print(comma, RawPointer(node->executionCounter()));
if (op == JSConstant) {
out.print(comma, "$", node->constantNumber());
JSValue value = valueOfJSConstant(node);
out.print(" = ", value);
}
if (op == WeakJSConstant)
out.print(comma, RawPointer(node->weakConstant()), " (structure: ", *node->weakConstant()->structure(), ")");
if (node->isBranch() || node->isJump())
out.print(comma, "T:#", node->takenBlockIndex());
if (node->isBranch())
out.print(comma, "F:#", node->notTakenBlockIndex());
if (node->isSwitch()) {
SwitchData* data = node->switchData();
out.print(comma, data->kind);
for (unsigned i = 0; i < data->cases.size(); ++i)
out.print(comma, data->cases[i].value, ":#", data->cases[i].target);
out.print(comma, "default:#", data->fallThrough);
}
out.print(comma, "bc#", node->codeOrigin.bytecodeIndex);
out.print(")");
if (!skipped) {
if (node->hasVariableAccessData())
out.print(" predicting ", SpeculationDump(node->variableAccessData()->prediction()), node->variableAccessData()->shouldUseDoubleFormat() ? ", forcing double" : "");
else if (node->hasHeapPrediction())
out.print(" predicting ", SpeculationDump(node->getHeapPrediction()));
}
out.print("\n");
}
void Graph::dumpBlockHeader(PrintStream& out, const char* prefix, BlockIndex blockIndex, PhiNodeDumpMode phiNodeDumpMode)
{
BasicBlock* block = m_blocks[blockIndex].get();
out.print(prefix, "Block #", blockIndex, " (", block->at(0)->codeOrigin, "): ", block->isReachable ? "" : "(skipped)", block->isOSRTarget ? " (OSR target)" : "", "\n");
out.print(prefix, " Predecessors:");
for (size_t i = 0; i < block->m_predecessors.size(); ++i)
out.print(" #", block->m_predecessors[i]);
out.print("\n");
if (m_dominators.isValid()) {
out.print(prefix, " Dominated by:");
for (size_t i = 0; i < m_blocks.size(); ++i) {
if (!m_dominators.dominates(i, blockIndex))
continue;
out.print(" #", i);
}
out.print("\n");
out.print(prefix, " Dominates:");
for (size_t i = 0; i < m_blocks.size(); ++i) {
if (!m_dominators.dominates(blockIndex, i))
continue;
out.print(" #", i);
}
out.print("\n");
}
if (m_naturalLoops.isValid()) {
if (const NaturalLoop* loop = m_naturalLoops.headerOf(blockIndex)) {
out.print(prefix, " Loop header, contains:");
Vector<BlockIndex> sortedBlockList;
for (unsigned i = 0; i < loop->size(); ++i)
sortedBlockList.append(loop->at(i));
std::sort(sortedBlockList.begin(), sortedBlockList.end());
for (unsigned i = 0; i < sortedBlockList.size(); ++i)
out.print(" #", sortedBlockList[i]);
out.print("\n");
}
Vector<const NaturalLoop*> containingLoops =
m_naturalLoops.loopsOf(blockIndex);
if (!containingLoops.isEmpty()) {
out.print(prefix, " Containing loop headers:");
for (unsigned i = 0; i < containingLoops.size(); ++i)
out.print(" #", containingLoops[i]->header());
out.print("\n");
}
}
out.print(prefix, " Phi Nodes:");
for (size_t i = 0; i < block->phis.size(); ++i) {
Node* phiNode = block->phis[i];
if (!phiNode->shouldGenerate() && phiNodeDumpMode == DumpLivePhisOnly)
continue;
out.print(" @", phiNode->index(), "<", phiNode->refCount(), ">->(");
if (phiNode->child1()) {
out.print("@", phiNode->child1()->index());
if (phiNode->child2()) {
out.print(", @", phiNode->child2()->index());
if (phiNode->child3())
out.print(", @", phiNode->child3()->index());
}
}
out.print(")", i + 1 < block->phis.size() ? "," : "");
}
out.print("\n");
}
void Graph::dump(PrintStream& out)
{
dataLog("DFG for ", CodeBlockWithJITType(m_codeBlock, JITCode::DFGJIT), ":\n");
dataLog(" Fixpoint state: ", m_fixpointState, "; Form: ", m_form, "; Unification state: ", m_unificationState, "; Ref count state: ", m_refCountState, "\n");
out.print(" ArgumentPosition size: ", m_argumentPositions.size(), "\n");
for (size_t i = 0; i < m_argumentPositions.size(); ++i) {
out.print(" #", i, ": ");
ArgumentPosition& arguments = m_argumentPositions[i];
arguments.dump(out, this);
}
Node* lastNode = 0;
for (size_t b = 0; b < m_blocks.size(); ++b) {
BasicBlock* block = m_blocks[b].get();
if (!block)
continue;
dumpBlockHeader(out, "", b, DumpAllPhis);
out.print(" vars before: ");
if (block->cfaHasVisited)
dumpOperands(block->valuesAtHead, out);
else
out.print("<empty>");
out.print("\n");
out.print(" var links: ");
dumpOperands(block->variablesAtHead, out);
out.print("\n");
for (size_t i = 0; i < block->size(); ++i) {
dumpCodeOrigin(out, "", lastNode, block->at(i));
dump(out, "", block->at(i));
lastNode = block->at(i);
}
out.print(" vars after: ");
if (block->cfaHasVisited)
dumpOperands(block->valuesAtTail, out);
else
out.print("<empty>");
out.print("\n");
out.print(" var links: ");
dumpOperands(block->variablesAtTail, out);
out.print("\n");
}
}
void Graph::dethread()
{
if (m_form == LoadStore)
return;
if (logCompilationChanges())
dataLog("Dethreading DFG graph.\n");
SamplingRegion samplingRegion("DFG Dethreading");
for (BlockIndex blockIndex = m_blocks.size(); blockIndex--;) {
BasicBlock* block = m_blocks[blockIndex].get();
if (!block)
continue;
for (unsigned phiIndex = block->phis.size(); phiIndex--;) {
Node* phi = block->phis[phiIndex];
phi->children.reset();
}
}
m_form = LoadStore;
}
void Graph::handleSuccessor(Vector<BlockIndex, 16>& worklist, BlockIndex blockIndex, BlockIndex successorIndex)
{
BasicBlock* successor = m_blocks[successorIndex].get();
if (!successor->isReachable) {
successor->isReachable = true;
worklist.append(successorIndex);
}
successor->m_predecessors.append(blockIndex);
}
void Graph::determineReachability()
{
Vector<BlockIndex, 16> worklist;
worklist.append(0);
m_blocks[0]->isReachable = true;
while (!worklist.isEmpty()) {
BlockIndex index = worklist.last();
worklist.removeLast();
BasicBlock* block = m_blocks[index].get();
for (unsigned i = numSuccessors(block); i--;)
handleSuccessor(worklist, index, successor(block, i));
}
}
void Graph::resetReachability()
{
for (BlockIndex blockIndex = m_blocks.size(); blockIndex--;) {
BasicBlock* block = m_blocks[blockIndex].get();
if (!block)
continue;
block->isReachable = false;
block->m_predecessors.clear();
}
determineReachability();
}
void Graph::resetExitStates()
{
for (BlockIndex blockIndex = 0; blockIndex < m_blocks.size(); ++blockIndex) {
BasicBlock* block = m_blocks[blockIndex].get();
if (!block)
continue;
for (unsigned indexInBlock = block->size(); indexInBlock--;)
block->at(indexInBlock)->setCanExit(true);
}
}
void Graph::invalidateCFG()
{
m_dominators.invalidate();
m_naturalLoops.invalidate();
}
void Graph::substituteGetLocal(BasicBlock& block, unsigned startIndexInBlock, VariableAccessData* variableAccessData, Node* newGetLocal)
{
if (variableAccessData->isCaptured()) {
// Let CSE worry about this one.
return;
}
for (unsigned indexInBlock = startIndexInBlock; indexInBlock < block.size(); ++indexInBlock) {
Node* node = block[indexInBlock];
bool shouldContinue = true;
switch (node->op()) {
case SetLocal: {
if (node->local() == variableAccessData->local())
shouldContinue = false;
break;
}
case GetLocal: {
if (node->variableAccessData() != variableAccessData)
continue;
substitute(block, indexInBlock, node, newGetLocal);
Node* oldTailNode = block.variablesAtTail.operand(variableAccessData->local());
if (oldTailNode == node)
block.variablesAtTail.operand(variableAccessData->local()) = newGetLocal;
shouldContinue = false;
break;
}
default:
break;
}
if (!shouldContinue)
break;
}
}
} } // namespace JSC::DFG
#endif