| /* |
| * Copyright (C) 2011, 2012, 2013, 2014 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| |
| #if ENABLE(DFG_JIT) |
| |
| #include "DFGByteCodeParser.h" |
| |
| #include "ArrayConstructor.h" |
| #include "CallLinkStatus.h" |
| #include "CodeBlock.h" |
| #include "CodeBlockWithJITType.h" |
| #include "DFGArrayMode.h" |
| #include "DFGCapabilities.h" |
| #include "DFGJITCode.h" |
| #include "GetByIdStatus.h" |
| #include "JSActivation.h" |
| #include "Operations.h" |
| #include "PreciseJumpTargets.h" |
| #include "PutByIdStatus.h" |
| #include "StackAlignment.h" |
| #include "StringConstructor.h" |
| #include <wtf/CommaPrinter.h> |
| #include <wtf/HashMap.h> |
| #include <wtf/MathExtras.h> |
| #include <wtf/StdLibExtras.h> |
| |
| namespace JSC { namespace DFG { |
| |
| class ConstantBufferKey { |
| public: |
| ConstantBufferKey() |
| : m_codeBlock(0) |
| , m_index(0) |
| { |
| } |
| |
| ConstantBufferKey(WTF::HashTableDeletedValueType) |
| : m_codeBlock(0) |
| , m_index(1) |
| { |
| } |
| |
| ConstantBufferKey(CodeBlock* codeBlock, unsigned index) |
| : m_codeBlock(codeBlock) |
| , m_index(index) |
| { |
| } |
| |
| bool operator==(const ConstantBufferKey& other) const |
| { |
| return m_codeBlock == other.m_codeBlock |
| && m_index == other.m_index; |
| } |
| |
| unsigned hash() const |
| { |
| return WTF::PtrHash<CodeBlock*>::hash(m_codeBlock) ^ m_index; |
| } |
| |
| bool isHashTableDeletedValue() const |
| { |
| return !m_codeBlock && m_index; |
| } |
| |
| CodeBlock* codeBlock() const { return m_codeBlock; } |
| unsigned index() const { return m_index; } |
| |
| private: |
| CodeBlock* m_codeBlock; |
| unsigned m_index; |
| }; |
| |
| struct ConstantBufferKeyHash { |
| static unsigned hash(const ConstantBufferKey& key) { return key.hash(); } |
| static bool equal(const ConstantBufferKey& a, const ConstantBufferKey& b) |
| { |
| return a == b; |
| } |
| |
| static const bool safeToCompareToEmptyOrDeleted = true; |
| }; |
| |
| } } // namespace JSC::DFG |
| |
| namespace WTF { |
| |
| template<typename T> struct DefaultHash; |
| template<> struct DefaultHash<JSC::DFG::ConstantBufferKey> { |
| typedef JSC::DFG::ConstantBufferKeyHash Hash; |
| }; |
| |
| template<typename T> struct HashTraits; |
| template<> struct HashTraits<JSC::DFG::ConstantBufferKey> : SimpleClassHashTraits<JSC::DFG::ConstantBufferKey> { }; |
| |
| } // namespace WTF |
| |
| namespace JSC { namespace DFG { |
| |
| // === ByteCodeParser === |
| // |
| // This class is used to compile the dataflow graph from a CodeBlock. |
| class ByteCodeParser { |
| public: |
| ByteCodeParser(Graph& graph) |
| : m_vm(&graph.m_vm) |
| , m_codeBlock(graph.m_codeBlock) |
| , m_profiledBlock(graph.m_profiledBlock) |
| , m_graph(graph) |
| , m_currentBlock(0) |
| , m_currentIndex(0) |
| , m_constantUndefined(UINT_MAX) |
| , m_constantNull(UINT_MAX) |
| , m_constantNaN(UINT_MAX) |
| , m_constant1(UINT_MAX) |
| , m_constants(m_codeBlock->numberOfConstantRegisters()) |
| , m_numArguments(m_codeBlock->numParameters()) |
| , m_numLocals(m_codeBlock->m_numCalleeRegisters) |
| , m_parameterSlots(0) |
| , m_numPassedVarArgs(0) |
| , m_inlineStackTop(0) |
| , m_haveBuiltOperandMaps(false) |
| , m_emptyJSValueIndex(UINT_MAX) |
| , m_currentInstruction(0) |
| { |
| ASSERT(m_profiledBlock); |
| } |
| |
| // Parse a full CodeBlock of bytecode. |
| bool parse(); |
| |
| private: |
| struct InlineStackEntry; |
| |
| // Just parse from m_currentIndex to the end of the current CodeBlock. |
| void parseCodeBlock(); |
| |
| // Helper for min and max. |
| bool handleMinMax(int resultOperand, NodeType op, int registerOffset, int argumentCountIncludingThis); |
| |
| // Handle calls. This resolves issues surrounding inlining and intrinsics. |
| void handleCall(int result, NodeType op, CodeSpecializationKind, unsigned instructionSize, int callee, int argCount, int registerOffset); |
| void handleCall(Instruction* pc, NodeType op, CodeSpecializationKind); |
| void emitFunctionChecks(const CallLinkStatus&, Node* callTarget, int registerOffset, CodeSpecializationKind); |
| void emitArgumentPhantoms(int registerOffset, int argumentCountIncludingThis, CodeSpecializationKind); |
| // Handle inlining. Return true if it succeeded, false if we need to plant a call. |
| bool handleInlining(Node* callTargetNode, int resultOperand, const CallLinkStatus&, int registerOffset, int argumentCountIncludingThis, unsigned nextOffset, CodeSpecializationKind); |
| // Handle intrinsic functions. Return true if it succeeded, false if we need to plant a call. |
| bool handleIntrinsic(int resultOperand, Intrinsic, int registerOffset, int argumentCountIncludingThis, SpeculatedType prediction); |
| bool handleTypedArrayConstructor(int resultOperand, InternalFunction*, int registerOffset, int argumentCountIncludingThis, TypedArrayType); |
| bool handleConstantInternalFunction(int resultOperand, InternalFunction*, int registerOffset, int argumentCountIncludingThis, SpeculatedType prediction, CodeSpecializationKind); |
| Node* handlePutByOffset(Node* base, unsigned identifier, PropertyOffset, Node* value); |
| Node* handleGetByOffset(SpeculatedType, Node* base, unsigned identifierNumber, PropertyOffset); |
| void handleGetByOffset( |
| int destinationOperand, SpeculatedType, Node* base, unsigned identifierNumber, |
| PropertyOffset); |
| void handleGetById( |
| int destinationOperand, SpeculatedType, Node* base, unsigned identifierNumber, |
| const GetByIdStatus&); |
| |
| Node* getScope(bool skipTop, unsigned skipCount); |
| |
| // Prepare to parse a block. |
| void prepareToParseBlock(); |
| // Parse a single basic block of bytecode instructions. |
| bool parseBlock(unsigned limit); |
| // Link block successors. |
| void linkBlock(BasicBlock*, Vector<BasicBlock*>& possibleTargets); |
| void linkBlocks(Vector<UnlinkedBlock>& unlinkedBlocks, Vector<BasicBlock*>& possibleTargets); |
| |
| VariableAccessData* newVariableAccessData(VirtualRegister operand, bool isCaptured) |
| { |
| ASSERT(!operand.isConstant()); |
| |
| m_graph.m_variableAccessData.append(VariableAccessData(operand, isCaptured)); |
| return &m_graph.m_variableAccessData.last(); |
| } |
| |
| // Get/Set the operands/result of a bytecode instruction. |
| Node* getDirect(VirtualRegister operand) |
| { |
| // Is this a constant? |
| if (operand.isConstant()) { |
| unsigned constant = operand.toConstantIndex(); |
| ASSERT(constant < m_constants.size()); |
| return getJSConstant(constant); |
| } |
| |
| // Is this an argument? |
| if (operand.isArgument()) |
| return getArgument(operand); |
| |
| // Must be a local. |
| return getLocal(operand); |
| } |
| |
| Node* get(VirtualRegister operand) |
| { |
| if (inlineCallFrame()) { |
| if (!inlineCallFrame()->isClosureCall) { |
| JSFunction* callee = inlineCallFrame()->calleeConstant(); |
| if (operand.offset() == JSStack::Callee) |
| return cellConstant(callee); |
| if (operand.offset() == JSStack::ScopeChain) |
| return cellConstant(callee->scope()); |
| } |
| } else if (operand.offset() == JSStack::Callee) |
| return addToGraph(GetCallee); |
| else if (operand.offset() == JSStack::ScopeChain) |
| return addToGraph(GetMyScope); |
| |
| return getDirect(m_inlineStackTop->remapOperand(operand)); |
| } |
| |
| enum SetMode { NormalSet, ImmediateSet }; |
| Node* setDirect(VirtualRegister operand, Node* value, SetMode setMode = NormalSet) |
| { |
| addToGraph(MovHint, OpInfo(operand.offset()), value); |
| |
| DelayedSetLocal delayed = DelayedSetLocal(operand, value); |
| |
| if (setMode == NormalSet) { |
| m_setLocalQueue.append(delayed); |
| return 0; |
| } |
| |
| return delayed.execute(this, setMode); |
| } |
| |
| Node* set(VirtualRegister operand, Node* value, SetMode setMode = NormalSet) |
| { |
| return setDirect(m_inlineStackTop->remapOperand(operand), value, setMode); |
| } |
| |
| Node* injectLazyOperandSpeculation(Node* node) |
| { |
| ASSERT(node->op() == GetLocal); |
| ASSERT(node->codeOrigin.bytecodeIndex == m_currentIndex); |
| ConcurrentJITLocker locker(m_inlineStackTop->m_profiledBlock->m_lock); |
| LazyOperandValueProfileKey key(m_currentIndex, node->local()); |
| SpeculatedType prediction = m_inlineStackTop->m_lazyOperands.prediction(locker, key); |
| node->variableAccessData()->predict(prediction); |
| return node; |
| } |
| |
| // Used in implementing get/set, above, where the operand is a local variable. |
| Node* getLocal(VirtualRegister operand) |
| { |
| unsigned local = operand.toLocal(); |
| |
| if (local < m_localWatchpoints.size()) { |
| if (VariableWatchpointSet* set = m_localWatchpoints[local]) { |
| if (JSValue value = set->inferredValue()) { |
| addToGraph(FunctionReentryWatchpoint, OpInfo(m_codeBlock->symbolTable())); |
| addToGraph(VariableWatchpoint, OpInfo(set)); |
| // Note: this is very special from an OSR exit standpoint. We wouldn't be |
| // able to do this for most locals, but it works here because we're dealing |
| // with a flushed local. For most locals we would need to issue a GetLocal |
| // here and ensure that we have uses in DFG IR wherever there would have |
| // been uses in bytecode. Clearly this optimization does not do this. But |
| // that's fine, because we don't need to track liveness for captured |
| // locals, and this optimization only kicks in for captured locals. |
| return inferredConstant(value); |
| } |
| } |
| } |
| |
| Node* node = m_currentBlock->variablesAtTail.local(local); |
| bool isCaptured = m_codeBlock->isCaptured(operand, inlineCallFrame()); |
| |
| // This has two goals: 1) link together variable access datas, and 2) |
| // try to avoid creating redundant GetLocals. (1) is required for |
| // correctness - no other phase will ensure that block-local variable |
| // access data unification is done correctly. (2) is purely opportunistic |
| // and is meant as an compile-time optimization only. |
| |
| VariableAccessData* variable; |
| |
| if (node) { |
| variable = node->variableAccessData(); |
| variable->mergeIsCaptured(isCaptured); |
| |
| if (!isCaptured) { |
| switch (node->op()) { |
| case GetLocal: |
| return node; |
| case SetLocal: |
| return node->child1().node(); |
| default: |
| break; |
| } |
| } |
| } else |
| variable = newVariableAccessData(operand, isCaptured); |
| |
| node = injectLazyOperandSpeculation(addToGraph(GetLocal, OpInfo(variable))); |
| m_currentBlock->variablesAtTail.local(local) = node; |
| return node; |
| } |
| |
| Node* setLocal(VirtualRegister operand, Node* value, SetMode setMode = NormalSet) |
| { |
| unsigned local = operand.toLocal(); |
| bool isCaptured = m_codeBlock->isCaptured(operand, inlineCallFrame()); |
| |
| if (setMode == NormalSet) { |
| ArgumentPosition* argumentPosition = findArgumentPositionForLocal(operand); |
| if (isCaptured || argumentPosition) |
| flushDirect(operand, argumentPosition); |
| } |
| |
| VariableAccessData* variableAccessData = newVariableAccessData(operand, isCaptured); |
| variableAccessData->mergeStructureCheckHoistingFailed( |
| m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCache) |
| || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCacheWatchpoint)); |
| variableAccessData->mergeCheckArrayHoistingFailed( |
| m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadIndexingType)); |
| Node* node = addToGraph(SetLocal, OpInfo(variableAccessData), value); |
| m_currentBlock->variablesAtTail.local(local) = node; |
| return node; |
| } |
| |
| // Used in implementing get/set, above, where the operand is an argument. |
| Node* getArgument(VirtualRegister operand) |
| { |
| unsigned argument = operand.toArgument(); |
| ASSERT(argument < m_numArguments); |
| |
| Node* node = m_currentBlock->variablesAtTail.argument(argument); |
| bool isCaptured = m_codeBlock->isCaptured(operand); |
| |
| VariableAccessData* variable; |
| |
| if (node) { |
| variable = node->variableAccessData(); |
| variable->mergeIsCaptured(isCaptured); |
| |
| switch (node->op()) { |
| case GetLocal: |
| return node; |
| case SetLocal: |
| return node->child1().node(); |
| default: |
| break; |
| } |
| } else |
| variable = newVariableAccessData(operand, isCaptured); |
| |
| node = injectLazyOperandSpeculation(addToGraph(GetLocal, OpInfo(variable))); |
| m_currentBlock->variablesAtTail.argument(argument) = node; |
| return node; |
| } |
| Node* setArgument(VirtualRegister operand, Node* value, SetMode setMode = NormalSet) |
| { |
| unsigned argument = operand.toArgument(); |
| ASSERT(argument < m_numArguments); |
| |
| bool isCaptured = m_codeBlock->isCaptured(operand); |
| |
| VariableAccessData* variableAccessData = newVariableAccessData(operand, isCaptured); |
| |
| // Always flush arguments, except for 'this'. If 'this' is created by us, |
| // then make sure that it's never unboxed. |
| if (argument) { |
| if (setMode == NormalSet) |
| flushDirect(operand); |
| } else if (m_codeBlock->specializationKind() == CodeForConstruct) |
| variableAccessData->mergeShouldNeverUnbox(true); |
| |
| variableAccessData->mergeStructureCheckHoistingFailed( |
| m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCache) |
| || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCacheWatchpoint)); |
| variableAccessData->mergeCheckArrayHoistingFailed( |
| m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadIndexingType)); |
| Node* node = addToGraph(SetLocal, OpInfo(variableAccessData), value); |
| m_currentBlock->variablesAtTail.argument(argument) = node; |
| return node; |
| } |
| |
| ArgumentPosition* findArgumentPositionForArgument(int argument) |
| { |
| InlineStackEntry* stack = m_inlineStackTop; |
| while (stack->m_inlineCallFrame) |
| stack = stack->m_caller; |
| return stack->m_argumentPositions[argument]; |
| } |
| |
| ArgumentPosition* findArgumentPositionForLocal(VirtualRegister operand) |
| { |
| for (InlineStackEntry* stack = m_inlineStackTop; ; stack = stack->m_caller) { |
| InlineCallFrame* inlineCallFrame = stack->m_inlineCallFrame; |
| if (!inlineCallFrame) |
| break; |
| if (operand.offset() < static_cast<int>(inlineCallFrame->stackOffset + JSStack::CallFrameHeaderSize)) |
| continue; |
| if (operand.offset() == inlineCallFrame->stackOffset + CallFrame::thisArgumentOffset()) |
| continue; |
| if (operand.offset() >= static_cast<int>(inlineCallFrame->stackOffset + CallFrame::thisArgumentOffset() + inlineCallFrame->arguments.size())) |
| continue; |
| int argument = VirtualRegister(operand.offset() - inlineCallFrame->stackOffset).toArgument(); |
| return stack->m_argumentPositions[argument]; |
| } |
| return 0; |
| } |
| |
| ArgumentPosition* findArgumentPosition(VirtualRegister operand) |
| { |
| if (operand.isArgument()) |
| return findArgumentPositionForArgument(operand.toArgument()); |
| return findArgumentPositionForLocal(operand); |
| } |
| |
| void addConstant(JSValue value) |
| { |
| unsigned constantIndex = m_codeBlock->addConstantLazily(); |
| initializeLazyWriteBarrierForConstant( |
| m_graph.m_plan.writeBarriers, |
| m_codeBlock->constants()[constantIndex], |
| m_codeBlock, |
| constantIndex, |
| m_codeBlock->ownerExecutable(), |
| value); |
| } |
| |
| void flush(VirtualRegister operand) |
| { |
| flushDirect(m_inlineStackTop->remapOperand(operand)); |
| } |
| |
| void flushDirect(VirtualRegister operand) |
| { |
| flushDirect(operand, findArgumentPosition(operand)); |
| } |
| |
| void flushDirect(VirtualRegister operand, ArgumentPosition* argumentPosition) |
| { |
| bool isCaptured = m_codeBlock->isCaptured(operand, inlineCallFrame()); |
| |
| ASSERT(!operand.isConstant()); |
| |
| Node* node = m_currentBlock->variablesAtTail.operand(operand); |
| |
| VariableAccessData* variable; |
| |
| if (node) { |
| variable = node->variableAccessData(); |
| variable->mergeIsCaptured(isCaptured); |
| } else |
| variable = newVariableAccessData(operand, isCaptured); |
| |
| node = addToGraph(Flush, OpInfo(variable)); |
| m_currentBlock->variablesAtTail.operand(operand) = node; |
| if (argumentPosition) |
| argumentPosition->addVariable(variable); |
| } |
| |
| void flush(InlineStackEntry* inlineStackEntry) |
| { |
| int numArguments; |
| if (InlineCallFrame* inlineCallFrame = inlineStackEntry->m_inlineCallFrame) { |
| numArguments = inlineCallFrame->arguments.size(); |
| if (inlineCallFrame->isClosureCall) { |
| flushDirect(inlineStackEntry->remapOperand(VirtualRegister(JSStack::Callee))); |
| flushDirect(inlineStackEntry->remapOperand(VirtualRegister(JSStack::ScopeChain))); |
| } |
| } else |
| numArguments = inlineStackEntry->m_codeBlock->numParameters(); |
| for (unsigned argument = numArguments; argument-- > 1;) |
| flushDirect(inlineStackEntry->remapOperand(virtualRegisterForArgument(argument))); |
| for (int local = 0; local < inlineStackEntry->m_codeBlock->m_numVars; ++local) { |
| if (!inlineStackEntry->m_codeBlock->isCaptured(virtualRegisterForLocal(local))) |
| continue; |
| flushDirect(inlineStackEntry->remapOperand(virtualRegisterForLocal(local))); |
| } |
| } |
| |
| void flushAllArgumentsAndCapturedVariablesInInlineStack() |
| { |
| for (InlineStackEntry* inlineStackEntry = m_inlineStackTop; inlineStackEntry; inlineStackEntry = inlineStackEntry->m_caller) |
| flush(inlineStackEntry); |
| } |
| |
| void flushArgumentsAndCapturedVariables() |
| { |
| flush(m_inlineStackTop); |
| } |
| |
| // NOTE: Only use this to construct constants that arise from non-speculative |
| // constant folding. I.e. creating constants using this if we had constant |
| // field inference would be a bad idea, since the bytecode parser's folding |
| // doesn't handle liveness preservation. |
| Node* getJSConstantForValue(JSValue constantValue, NodeFlags flags = NodeIsStaticConstant) |
| { |
| unsigned constantIndex; |
| if (!m_codeBlock->findConstant(constantValue, constantIndex)) { |
| addConstant(constantValue); |
| m_constants.append(ConstantRecord()); |
| } |
| |
| ASSERT(m_constants.size() == m_codeBlock->numberOfConstantRegisters()); |
| |
| return getJSConstant(constantIndex, flags); |
| } |
| |
| Node* getJSConstant(unsigned constant, NodeFlags flags = NodeIsStaticConstant) |
| { |
| Node* node = m_constants[constant].asJSValue; |
| if (node) |
| return node; |
| |
| Node* result = addToGraph(JSConstant, OpInfo(constant)); |
| result->mergeFlags(flags); |
| m_constants[constant].asJSValue = result; |
| return result; |
| } |
| |
| // Helper functions to get/set the this value. |
| Node* getThis() |
| { |
| return get(m_inlineStackTop->m_codeBlock->thisRegister()); |
| } |
| |
| void setThis(Node* value) |
| { |
| set(m_inlineStackTop->m_codeBlock->thisRegister(), value); |
| } |
| |
| // Convenience methods for checking nodes for constants. |
| bool isJSConstant(Node* node) |
| { |
| return node->op() == JSConstant; |
| } |
| bool isInt32Constant(Node* node) |
| { |
| return isJSConstant(node) && valueOfJSConstant(node).isInt32(); |
| } |
| // Convenience methods for getting constant values. |
| JSValue valueOfJSConstant(Node* node) |
| { |
| ASSERT(isJSConstant(node)); |
| return m_codeBlock->getConstant(FirstConstantRegisterIndex + node->constantNumber()); |
| } |
| int32_t valueOfInt32Constant(Node* node) |
| { |
| ASSERT(isInt32Constant(node)); |
| return valueOfJSConstant(node).asInt32(); |
| } |
| |
| // This method returns a JSConstant with the value 'undefined'. |
| Node* constantUndefined() |
| { |
| // Has m_constantUndefined been set up yet? |
| if (m_constantUndefined == UINT_MAX) { |
| // Search the constant pool for undefined, if we find it, we can just reuse this! |
| unsigned numberOfConstants = m_codeBlock->numberOfConstantRegisters(); |
| for (m_constantUndefined = 0; m_constantUndefined < numberOfConstants; ++m_constantUndefined) { |
| JSValue testMe = m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantUndefined); |
| if (testMe.isUndefined()) |
| return getJSConstant(m_constantUndefined); |
| } |
| |
| // Add undefined to the CodeBlock's constants, and add a corresponding slot in m_constants. |
| ASSERT(m_constants.size() == numberOfConstants); |
| addConstant(jsUndefined()); |
| m_constants.append(ConstantRecord()); |
| ASSERT(m_constants.size() == m_codeBlock->numberOfConstantRegisters()); |
| } |
| |
| // m_constantUndefined must refer to an entry in the CodeBlock's constant pool that has the value 'undefined'. |
| ASSERT(m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantUndefined).isUndefined()); |
| return getJSConstant(m_constantUndefined); |
| } |
| |
| // This method returns a JSConstant with the value 'null'. |
| Node* constantNull() |
| { |
| // Has m_constantNull been set up yet? |
| if (m_constantNull == UINT_MAX) { |
| // Search the constant pool for null, if we find it, we can just reuse this! |
| unsigned numberOfConstants = m_codeBlock->numberOfConstantRegisters(); |
| for (m_constantNull = 0; m_constantNull < numberOfConstants; ++m_constantNull) { |
| JSValue testMe = m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantNull); |
| if (testMe.isNull()) |
| return getJSConstant(m_constantNull); |
| } |
| |
| // Add null to the CodeBlock's constants, and add a corresponding slot in m_constants. |
| ASSERT(m_constants.size() == numberOfConstants); |
| addConstant(jsNull()); |
| m_constants.append(ConstantRecord()); |
| ASSERT(m_constants.size() == m_codeBlock->numberOfConstantRegisters()); |
| } |
| |
| // m_constantNull must refer to an entry in the CodeBlock's constant pool that has the value 'null'. |
| ASSERT(m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantNull).isNull()); |
| return getJSConstant(m_constantNull); |
| } |
| |
| // This method returns a DoubleConstant with the value 1. |
| Node* one() |
| { |
| // Has m_constant1 been set up yet? |
| if (m_constant1 == UINT_MAX) { |
| // Search the constant pool for the value 1, if we find it, we can just reuse this! |
| unsigned numberOfConstants = m_codeBlock->numberOfConstantRegisters(); |
| for (m_constant1 = 0; m_constant1 < numberOfConstants; ++m_constant1) { |
| JSValue testMe = m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constant1); |
| if (testMe.isInt32() && testMe.asInt32() == 1) |
| return getJSConstant(m_constant1); |
| } |
| |
| // Add the value 1 to the CodeBlock's constants, and add a corresponding slot in m_constants. |
| ASSERT(m_constants.size() == numberOfConstants); |
| addConstant(jsNumber(1)); |
| m_constants.append(ConstantRecord()); |
| ASSERT(m_constants.size() == m_codeBlock->numberOfConstantRegisters()); |
| } |
| |
| // m_constant1 must refer to an entry in the CodeBlock's constant pool that has the integer value 1. |
| ASSERT(m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constant1).isInt32()); |
| ASSERT(m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constant1).asInt32() == 1); |
| return getJSConstant(m_constant1); |
| } |
| |
| // This method returns a DoubleConstant with the value NaN. |
| Node* constantNaN() |
| { |
| JSValue nan = jsNaN(); |
| |
| // Has m_constantNaN been set up yet? |
| if (m_constantNaN == UINT_MAX) { |
| // Search the constant pool for the value NaN, if we find it, we can just reuse this! |
| unsigned numberOfConstants = m_codeBlock->numberOfConstantRegisters(); |
| for (m_constantNaN = 0; m_constantNaN < numberOfConstants; ++m_constantNaN) { |
| JSValue testMe = m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantNaN); |
| if (JSValue::encode(testMe) == JSValue::encode(nan)) |
| return getJSConstant(m_constantNaN); |
| } |
| |
| // Add the value nan to the CodeBlock's constants, and add a corresponding slot in m_constants. |
| ASSERT(m_constants.size() == numberOfConstants); |
| addConstant(nan); |
| m_constants.append(ConstantRecord()); |
| ASSERT(m_constants.size() == m_codeBlock->numberOfConstantRegisters()); |
| } |
| |
| // m_constantNaN must refer to an entry in the CodeBlock's constant pool that has the value nan. |
| ASSERT(m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantNaN).isDouble()); |
| ASSERT(std::isnan(m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantNaN).asDouble())); |
| return getJSConstant(m_constantNaN); |
| } |
| |
| Node* cellConstant(JSCell* cell) |
| { |
| HashMap<JSCell*, Node*>::AddResult result = m_cellConstantNodes.add(cell, nullptr); |
| if (result.isNewEntry) |
| result.iterator->value = addToGraph(WeakJSConstant, OpInfo(cell)); |
| |
| return result.iterator->value; |
| } |
| |
| Node* inferredConstant(JSValue value) |
| { |
| if (value.isCell()) |
| return cellConstant(value.asCell()); |
| return getJSConstantForValue(value, 0); |
| } |
| |
| InlineCallFrame* inlineCallFrame() |
| { |
| return m_inlineStackTop->m_inlineCallFrame; |
| } |
| |
| CodeOrigin currentCodeOrigin() |
| { |
| return CodeOrigin(m_currentIndex, inlineCallFrame()); |
| } |
| |
| bool canFold(Node* node) |
| { |
| if (Options::validateFTLOSRExitLiveness()) { |
| // The static folding that the bytecode parser does results in the DFG |
| // being able to do some DCE that the bytecode liveness analysis would |
| // miss. Hence, we disable the static folding if we're validating FTL OSR |
| // exit liveness. This may be brutish, but this validator is powerful |
| // enough that it's worth it. |
| return false; |
| } |
| |
| return node->isStronglyProvedConstantIn(inlineCallFrame()); |
| } |
| |
| // Our codegen for constant strict equality performs a bitwise comparison, |
| // so we can only select values that have a consistent bitwise identity. |
| bool isConstantForCompareStrictEq(Node* node) |
| { |
| if (!node->isConstant()) |
| return false; |
| JSValue value = valueOfJSConstant(node); |
| return value.isBoolean() || value.isUndefinedOrNull(); |
| } |
| |
| Node* addToGraph(NodeType op, Node* child1 = 0, Node* child2 = 0, Node* child3 = 0) |
| { |
| Node* result = m_graph.addNode( |
| SpecNone, op, currentCodeOrigin(), Edge(child1), Edge(child2), Edge(child3)); |
| ASSERT(op != Phi); |
| m_currentBlock->append(result); |
| return result; |
| } |
| Node* addToGraph(NodeType op, Edge child1, Edge child2 = Edge(), Edge child3 = Edge()) |
| { |
| Node* result = m_graph.addNode( |
| SpecNone, op, currentCodeOrigin(), child1, child2, child3); |
| ASSERT(op != Phi); |
| m_currentBlock->append(result); |
| return result; |
| } |
| Node* addToGraph(NodeType op, OpInfo info, Node* child1 = 0, Node* child2 = 0, Node* child3 = 0) |
| { |
| Node* result = m_graph.addNode( |
| SpecNone, op, currentCodeOrigin(), info, Edge(child1), Edge(child2), Edge(child3)); |
| ASSERT(op != Phi); |
| m_currentBlock->append(result); |
| return result; |
| } |
| Node* addToGraph(NodeType op, OpInfo info1, OpInfo info2, Node* child1 = 0, Node* child2 = 0, Node* child3 = 0) |
| { |
| Node* result = m_graph.addNode( |
| SpecNone, op, currentCodeOrigin(), info1, info2, |
| Edge(child1), Edge(child2), Edge(child3)); |
| ASSERT(op != Phi); |
| m_currentBlock->append(result); |
| return result; |
| } |
| |
| Node* addToGraph(Node::VarArgTag, NodeType op, OpInfo info1, OpInfo info2) |
| { |
| Node* result = m_graph.addNode( |
| SpecNone, Node::VarArg, op, currentCodeOrigin(), info1, info2, |
| m_graph.m_varArgChildren.size() - m_numPassedVarArgs, m_numPassedVarArgs); |
| ASSERT(op != Phi); |
| m_currentBlock->append(result); |
| |
| m_numPassedVarArgs = 0; |
| |
| return result; |
| } |
| |
| void addVarArgChild(Node* child) |
| { |
| m_graph.m_varArgChildren.append(Edge(child)); |
| m_numPassedVarArgs++; |
| } |
| |
| Node* addCall(int result, NodeType op, int callee, int argCount, int registerOffset) |
| { |
| SpeculatedType prediction = getPrediction(); |
| |
| addVarArgChild(get(VirtualRegister(callee))); |
| size_t parameterSlots = JSStack::CallFrameHeaderSize - JSStack::CallerFrameAndPCSize + argCount; |
| if (parameterSlots > m_parameterSlots) |
| m_parameterSlots = parameterSlots; |
| |
| int dummyThisArgument = op == Call ? 0 : 1; |
| for (int i = 0 + dummyThisArgument; i < argCount; ++i) |
| addVarArgChild(get(virtualRegisterForArgument(i, registerOffset))); |
| |
| Node* call = addToGraph(Node::VarArg, op, OpInfo(0), OpInfo(prediction)); |
| set(VirtualRegister(result), call); |
| return call; |
| } |
| |
| Node* cellConstantWithStructureCheck(JSCell* object, Structure* structure) |
| { |
| Node* objectNode = cellConstant(object); |
| addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(structure)), objectNode); |
| return objectNode; |
| } |
| |
| Node* cellConstantWithStructureCheck(JSCell* object) |
| { |
| return cellConstantWithStructureCheck(object, object->structure()); |
| } |
| |
| SpeculatedType getPredictionWithoutOSRExit(unsigned bytecodeIndex) |
| { |
| ConcurrentJITLocker locker(m_inlineStackTop->m_profiledBlock->m_lock); |
| return m_inlineStackTop->m_profiledBlock->valueProfilePredictionForBytecodeOffset(locker, bytecodeIndex); |
| } |
| |
| SpeculatedType getPrediction(unsigned bytecodeIndex) |
| { |
| SpeculatedType prediction = getPredictionWithoutOSRExit(bytecodeIndex); |
| |
| if (prediction == SpecNone) { |
| // We have no information about what values this node generates. Give up |
| // on executing this code, since we're likely to do more damage than good. |
| addToGraph(ForceOSRExit); |
| } |
| |
| return prediction; |
| } |
| |
| SpeculatedType getPredictionWithoutOSRExit() |
| { |
| return getPredictionWithoutOSRExit(m_currentIndex); |
| } |
| |
| SpeculatedType getPrediction() |
| { |
| return getPrediction(m_currentIndex); |
| } |
| |
| ArrayMode getArrayMode(ArrayProfile* profile, Array::Action action) |
| { |
| ConcurrentJITLocker locker(m_inlineStackTop->m_profiledBlock->m_lock); |
| profile->computeUpdatedPrediction(locker, m_inlineStackTop->m_profiledBlock); |
| return ArrayMode::fromObserved(locker, profile, action, false); |
| } |
| |
| ArrayMode getArrayMode(ArrayProfile* profile) |
| { |
| return getArrayMode(profile, Array::Read); |
| } |
| |
| ArrayMode getArrayModeConsideringSlowPath(ArrayProfile* profile, Array::Action action) |
| { |
| ConcurrentJITLocker locker(m_inlineStackTop->m_profiledBlock->m_lock); |
| |
| profile->computeUpdatedPrediction(locker, m_inlineStackTop->m_profiledBlock); |
| |
| bool makeSafe = |
| m_inlineStackTop->m_profiledBlock->likelyToTakeSlowCase(m_currentIndex) |
| || profile->outOfBounds(locker); |
| |
| ArrayMode result = ArrayMode::fromObserved(locker, profile, action, makeSafe); |
| |
| return result; |
| } |
| |
| Node* makeSafe(Node* node) |
| { |
| bool likelyToTakeSlowCase; |
| if (!isX86() && node->op() == ArithMod) |
| likelyToTakeSlowCase = false; |
| else |
| likelyToTakeSlowCase = m_inlineStackTop->m_profiledBlock->likelyToTakeSlowCase(m_currentIndex); |
| |
| if (!likelyToTakeSlowCase |
| && !m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, Overflow) |
| && !m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, NegativeZero)) |
| return node; |
| |
| switch (node->op()) { |
| case UInt32ToNumber: |
| case ArithAdd: |
| case ArithSub: |
| case ValueAdd: |
| case ArithMod: // for ArithMod "MayOverflow" means we tried to divide by zero, or we saw double. |
| node->mergeFlags(NodeMayOverflow); |
| break; |
| |
| case ArithNegate: |
| // Currently we can't tell the difference between a negation overflowing |
| // (i.e. -(1 << 31)) or generating negative zero (i.e. -0). If it took slow |
| // path then we assume that it did both of those things. |
| node->mergeFlags(NodeMayOverflow); |
| node->mergeFlags(NodeMayNegZero); |
| break; |
| |
| case ArithMul: |
| if (m_inlineStackTop->m_profiledBlock->likelyToTakeDeepestSlowCase(m_currentIndex) |
| || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, Overflow)) |
| node->mergeFlags(NodeMayOverflow | NodeMayNegZero); |
| else if (m_inlineStackTop->m_profiledBlock->likelyToTakeSlowCase(m_currentIndex) |
| || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, NegativeZero)) |
| node->mergeFlags(NodeMayNegZero); |
| break; |
| |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| |
| return node; |
| } |
| |
| Node* makeDivSafe(Node* node) |
| { |
| ASSERT(node->op() == ArithDiv); |
| |
| // The main slow case counter for op_div in the old JIT counts only when |
| // the operands are not numbers. We don't care about that since we already |
| // have speculations in place that take care of that separately. We only |
| // care about when the outcome of the division is not an integer, which |
| // is what the special fast case counter tells us. |
| |
| if (!m_inlineStackTop->m_profiledBlock->couldTakeSpecialFastCase(m_currentIndex) |
| && !m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, Overflow) |
| && !m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, NegativeZero)) |
| return node; |
| |
| // FIXME: It might be possible to make this more granular. The DFG certainly can |
| // distinguish between negative zero and overflow in its exit profiles. |
| node->mergeFlags(NodeMayOverflow | NodeMayNegZero); |
| |
| return node; |
| } |
| |
| bool structureChainIsStillValid(bool direct, Structure* previousStructure, StructureChain* chain) |
| { |
| if (direct) |
| return true; |
| |
| if (!previousStructure->storedPrototype().isNull() && previousStructure->storedPrototype().asCell()->structure() != chain->head()->get()) |
| return false; |
| |
| for (WriteBarrier<Structure>* it = chain->head(); *it; ++it) { |
| if (!(*it)->storedPrototype().isNull() && (*it)->storedPrototype().asCell()->structure() != it[1].get()) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void buildOperandMapsIfNecessary(); |
| |
| VM* m_vm; |
| CodeBlock* m_codeBlock; |
| CodeBlock* m_profiledBlock; |
| Graph& m_graph; |
| |
| // The current block being generated. |
| BasicBlock* m_currentBlock; |
| // The bytecode index of the current instruction being generated. |
| unsigned m_currentIndex; |
| |
| // We use these values during code generation, and to avoid the need for |
| // special handling we make sure they are available as constants in the |
| // CodeBlock's constant pool. These variables are initialized to |
| // UINT_MAX, and lazily updated to hold an index into the CodeBlock's |
| // constant pool, as necessary. |
| unsigned m_constantUndefined; |
| unsigned m_constantNull; |
| unsigned m_constantNaN; |
| unsigned m_constant1; |
| HashMap<JSCell*, unsigned> m_cellConstants; |
| HashMap<JSCell*, Node*> m_cellConstantNodes; |
| |
| // A constant in the constant pool may be represented by more than one |
| // node in the graph, depending on the context in which it is being used. |
| struct ConstantRecord { |
| ConstantRecord() |
| : asInt32(0) |
| , asNumeric(0) |
| , asJSValue(0) |
| { |
| } |
| |
| Node* asInt32; |
| Node* asNumeric; |
| Node* asJSValue; |
| }; |
| |
| // Track the index of the node whose result is the current value for every |
| // register value in the bytecode - argument, local, and temporary. |
| Vector<ConstantRecord, 16> m_constants; |
| |
| // The number of arguments passed to the function. |
| unsigned m_numArguments; |
| // The number of locals (vars + temporaries) used in the function. |
| unsigned m_numLocals; |
| // The number of slots (in units of sizeof(Register)) that we need to |
| // preallocate for arguments to outgoing calls from this frame. This |
| // number includes the CallFrame slots that we initialize for the callee |
| // (but not the callee-initialized CallerFrame and ReturnPC slots). |
| // This number is 0 if and only if this function is a leaf. |
| unsigned m_parameterSlots; |
| // The number of var args passed to the next var arg node. |
| unsigned m_numPassedVarArgs; |
| |
| HashMap<ConstantBufferKey, unsigned> m_constantBufferCache; |
| |
| Vector<VariableWatchpointSet*, 16> m_localWatchpoints; |
| |
| struct InlineStackEntry { |
| ByteCodeParser* m_byteCodeParser; |
| |
| CodeBlock* m_codeBlock; |
| CodeBlock* m_profiledBlock; |
| InlineCallFrame* m_inlineCallFrame; |
| |
| ScriptExecutable* executable() { return m_codeBlock->ownerExecutable(); } |
| |
| QueryableExitProfile m_exitProfile; |
| |
| // Remapping of identifier and constant numbers from the code block being |
| // inlined (inline callee) to the code block that we're inlining into |
| // (the machine code block, which is the transitive, though not necessarily |
| // direct, caller). |
| Vector<unsigned> m_identifierRemap; |
| Vector<unsigned> m_constantRemap; |
| Vector<unsigned> m_constantBufferRemap; |
| Vector<unsigned> m_switchRemap; |
| |
| // Blocks introduced by this code block, which need successor linking. |
| // May include up to one basic block that includes the continuation after |
| // the callsite in the caller. These must be appended in the order that they |
| // are created, but their bytecodeBegin values need not be in order as they |
| // are ignored. |
| Vector<UnlinkedBlock> m_unlinkedBlocks; |
| |
| // Potential block linking targets. Must be sorted by bytecodeBegin, and |
| // cannot have two blocks that have the same bytecodeBegin. For this very |
| // reason, this is not equivalent to |
| Vector<BasicBlock*> m_blockLinkingTargets; |
| |
| // If the callsite's basic block was split into two, then this will be |
| // the head of the callsite block. It needs its successors linked to the |
| // m_unlinkedBlocks, but not the other way around: there's no way for |
| // any blocks in m_unlinkedBlocks to jump back into this block. |
| BasicBlock* m_callsiteBlockHead; |
| |
| // Does the callsite block head need linking? This is typically true |
| // but will be false for the machine code block's inline stack entry |
| // (since that one is not inlined) and for cases where an inline callee |
| // did the linking for us. |
| bool m_callsiteBlockHeadNeedsLinking; |
| |
| VirtualRegister m_returnValue; |
| |
| // Speculations about variable types collected from the profiled code block, |
| // which are based on OSR exit profiles that past DFG compilatins of this |
| // code block had gathered. |
| LazyOperandValueProfileParser m_lazyOperands; |
| |
| StubInfoMap m_stubInfos; |
| |
| // Did we see any returns? We need to handle the (uncommon but necessary) |
| // case where a procedure that does not return was inlined. |
| bool m_didReturn; |
| |
| // Did we have any early returns? |
| bool m_didEarlyReturn; |
| |
| // Pointers to the argument position trackers for this slice of code. |
| Vector<ArgumentPosition*> m_argumentPositions; |
| |
| InlineStackEntry* m_caller; |
| |
| InlineStackEntry( |
| ByteCodeParser*, |
| CodeBlock*, |
| CodeBlock* profiledBlock, |
| BasicBlock* callsiteBlockHead, |
| JSFunction* callee, // Null if this is a closure call. |
| VirtualRegister returnValueVR, |
| VirtualRegister inlineCallFrameStart, |
| int argumentCountIncludingThis, |
| CodeSpecializationKind); |
| |
| ~InlineStackEntry() |
| { |
| m_byteCodeParser->m_inlineStackTop = m_caller; |
| } |
| |
| VirtualRegister remapOperand(VirtualRegister operand) const |
| { |
| if (!m_inlineCallFrame) |
| return operand; |
| |
| if (operand.isConstant()) { |
| VirtualRegister result = VirtualRegister(m_constantRemap[operand.toConstantIndex()]); |
| ASSERT(result.isConstant()); |
| return result; |
| } |
| |
| return VirtualRegister(operand.offset() + m_inlineCallFrame->stackOffset); |
| } |
| }; |
| |
| InlineStackEntry* m_inlineStackTop; |
| |
| struct DelayedSetLocal { |
| VirtualRegister m_operand; |
| Node* m_value; |
| |
| DelayedSetLocal() { } |
| DelayedSetLocal(VirtualRegister operand, Node* value) |
| : m_operand(operand) |
| , m_value(value) |
| { |
| } |
| |
| Node* execute(ByteCodeParser* parser, SetMode setMode = NormalSet) |
| { |
| if (m_operand.isArgument()) |
| return parser->setArgument(m_operand, m_value, setMode); |
| return parser->setLocal(m_operand, m_value, setMode); |
| } |
| }; |
| |
| Vector<DelayedSetLocal, 2> m_setLocalQueue; |
| |
| // Have we built operand maps? We initialize them lazily, and only when doing |
| // inlining. |
| bool m_haveBuiltOperandMaps; |
| // Mapping between identifier names and numbers. |
| BorrowedIdentifierMap m_identifierMap; |
| // Mapping between values and constant numbers. |
| JSValueMap m_jsValueMap; |
| // Index of the empty value, or UINT_MAX if there is no mapping. This is a horrible |
| // work-around for the fact that JSValueMap can't handle "empty" values. |
| unsigned m_emptyJSValueIndex; |
| |
| CodeBlock* m_dfgCodeBlock; |
| CallLinkStatus::ContextMap m_callContextMap; |
| StubInfoMap m_dfgStubInfos; |
| |
| Instruction* m_currentInstruction; |
| }; |
| |
| #define NEXT_OPCODE(name) \ |
| m_currentIndex += OPCODE_LENGTH(name); \ |
| continue |
| |
| #define LAST_OPCODE(name) \ |
| m_currentIndex += OPCODE_LENGTH(name); \ |
| return shouldContinueParsing |
| |
| void ByteCodeParser::handleCall(Instruction* pc, NodeType op, CodeSpecializationKind kind) |
| { |
| ASSERT(OPCODE_LENGTH(op_call) == OPCODE_LENGTH(op_construct)); |
| handleCall( |
| pc[1].u.operand, op, kind, OPCODE_LENGTH(op_call), |
| pc[2].u.operand, pc[3].u.operand, -pc[4].u.operand); |
| } |
| |
| void ByteCodeParser::handleCall( |
| int result, NodeType op, CodeSpecializationKind kind, unsigned instructionSize, |
| int callee, int argumentCountIncludingThis, int registerOffset) |
| { |
| ASSERT(registerOffset <= 0); |
| |
| Node* callTarget = get(VirtualRegister(callee)); |
| |
| CallLinkStatus callLinkStatus; |
| |
| if (m_graph.isConstant(callTarget)) { |
| callLinkStatus = CallLinkStatus( |
| m_graph.valueOfJSConstant(callTarget)).setIsProved(true); |
| } else { |
| callLinkStatus = CallLinkStatus::computeFor( |
| m_inlineStackTop->m_profiledBlock, currentCodeOrigin(), m_callContextMap); |
| } |
| |
| if (!callLinkStatus.canOptimize()) { |
| // Oddly, this conflates calls that haven't executed with calls that behaved sufficiently polymorphically |
| // that we cannot optimize them. |
| |
| addCall(result, op, callee, argumentCountIncludingThis, registerOffset); |
| return; |
| } |
| |
| unsigned nextOffset = m_currentIndex + instructionSize; |
| SpeculatedType prediction = getPrediction(); |
| |
| if (InternalFunction* function = callLinkStatus.internalFunction()) { |
| if (handleConstantInternalFunction(result, function, registerOffset, argumentCountIncludingThis, prediction, kind)) { |
| // This phantoming has to be *after* the code for the intrinsic, to signify that |
| // the inputs must be kept alive whatever exits the intrinsic may do. |
| addToGraph(Phantom, callTarget); |
| emitArgumentPhantoms(registerOffset, argumentCountIncludingThis, kind); |
| return; |
| } |
| |
| // Can only handle this using the generic call handler. |
| addCall(result, op, callee, argumentCountIncludingThis, registerOffset); |
| return; |
| } |
| |
| Intrinsic intrinsic = callLinkStatus.intrinsicFor(kind); |
| if (intrinsic != NoIntrinsic) { |
| emitFunctionChecks(callLinkStatus, callTarget, registerOffset, kind); |
| |
| if (handleIntrinsic(result, intrinsic, registerOffset, argumentCountIncludingThis, prediction)) { |
| // This phantoming has to be *after* the code for the intrinsic, to signify that |
| // the inputs must be kept alive whatever exits the intrinsic may do. |
| addToGraph(Phantom, callTarget); |
| emitArgumentPhantoms(registerOffset, argumentCountIncludingThis, kind); |
| if (m_graph.compilation()) |
| m_graph.compilation()->noticeInlinedCall(); |
| return; |
| } |
| } else if (handleInlining(callTarget, result, callLinkStatus, registerOffset, argumentCountIncludingThis, nextOffset, kind)) { |
| if (m_graph.compilation()) |
| m_graph.compilation()->noticeInlinedCall(); |
| return; |
| } |
| |
| addCall(result, op, callee, argumentCountIncludingThis, registerOffset); |
| } |
| |
| void ByteCodeParser::emitFunctionChecks(const CallLinkStatus& callLinkStatus, Node* callTarget, int registerOffset, CodeSpecializationKind kind) |
| { |
| Node* thisArgument; |
| if (kind == CodeForCall) |
| thisArgument = get(virtualRegisterForArgument(0, registerOffset)); |
| else |
| thisArgument = 0; |
| |
| if (callLinkStatus.isProved()) { |
| addToGraph(Phantom, callTarget, thisArgument); |
| return; |
| } |
| |
| ASSERT(callLinkStatus.canOptimize()); |
| |
| if (JSFunction* function = callLinkStatus.function()) |
| addToGraph(CheckFunction, OpInfo(function), callTarget, thisArgument); |
| else { |
| ASSERT(callLinkStatus.structure()); |
| ASSERT(callLinkStatus.executable()); |
| |
| addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(callLinkStatus.structure())), callTarget); |
| addToGraph(CheckExecutable, OpInfo(callLinkStatus.executable()), callTarget, thisArgument); |
| } |
| } |
| |
| void ByteCodeParser::emitArgumentPhantoms(int registerOffset, int argumentCountIncludingThis, CodeSpecializationKind kind) |
| { |
| for (int i = kind == CodeForCall ? 0 : 1; i < argumentCountIncludingThis; ++i) |
| addToGraph(Phantom, get(virtualRegisterForArgument(i, registerOffset))); |
| } |
| |
| bool ByteCodeParser::handleInlining(Node* callTargetNode, int resultOperand, const CallLinkStatus& callLinkStatus, int registerOffset, int argumentCountIncludingThis, unsigned nextOffset, CodeSpecializationKind kind) |
| { |
| static const bool verbose = false; |
| |
| if (verbose) |
| dataLog("Considering inlining ", callLinkStatus, " into ", currentCodeOrigin(), "\n"); |
| |
| // First, the really simple checks: do we have an actual JS function? |
| if (!callLinkStatus.executable()) { |
| if (verbose) |
| dataLog(" Failing because there is no executable.\n"); |
| return false; |
| } |
| if (callLinkStatus.executable()->isHostFunction()) { |
| if (verbose) |
| dataLog(" Failing because it's a host function.\n"); |
| return false; |
| } |
| |
| FunctionExecutable* executable = jsCast<FunctionExecutable*>(callLinkStatus.executable()); |
| |
| // Does the number of arguments we're passing match the arity of the target? We currently |
| // inline only if the number of arguments passed is greater than or equal to the number |
| // arguments expected. |
| if (static_cast<int>(executable->parameterCount()) + 1 > argumentCountIncludingThis) { |
| if (verbose) |
| dataLog(" Failing because of arity mismatch.\n"); |
| return false; |
| } |
| |
| // Do we have a code block, and does the code block's size match the heuristics/requirements for |
| // being an inline candidate? We might not have a code block if code was thrown away or if we |
| // simply hadn't actually made this call yet. We could still theoretically attempt to inline it |
| // if we had a static proof of what was being called; this might happen for example if you call a |
| // global function, where watchpointing gives us static information. Overall, it's a rare case |
| // because we expect that any hot callees would have already been compiled. |
| CodeBlock* codeBlock = executable->baselineCodeBlockFor(kind); |
| if (!codeBlock) { |
| if (verbose) |
| dataLog(" Failing because no code block available.\n"); |
| return false; |
| } |
| CapabilityLevel capabilityLevel = inlineFunctionForCapabilityLevel( |
| codeBlock, kind, callLinkStatus.isClosureCall()); |
| if (!canInline(capabilityLevel)) { |
| if (verbose) |
| dataLog(" Failing because the function is not inlineable.\n"); |
| return false; |
| } |
| |
| // FIXME: this should be better at predicting how much bloat we will introduce by inlining |
| // this function. |
| // https://bugs.webkit.org/show_bug.cgi?id=127627 |
| |
| // Have we exceeded inline stack depth, or are we trying to inline a recursive call to |
| // too many levels? If either of these are detected, then don't inline. We adjust our |
| // heuristics if we are dealing with a function that cannot otherwise be compiled. |
| |
| unsigned depth = 0; |
| unsigned recursion = 0; |
| |
| for (InlineStackEntry* entry = m_inlineStackTop; entry; entry = entry->m_caller) { |
| ++depth; |
| if (depth >= Options::maximumInliningDepth()) { |
| if (verbose) |
| dataLog(" Failing because depth exceeded.\n"); |
| return false; |
| } |
| |
| if (entry->executable() == executable) { |
| ++recursion; |
| if (recursion >= Options::maximumInliningRecursion()) { |
| if (verbose) |
| dataLog(" Failing because recursion detected.\n"); |
| return false; |
| } |
| } |
| } |
| |
| if (verbose) |
| dataLog(" Committing to inlining.\n"); |
| |
| // Now we know without a doubt that we are committed to inlining. So begin the process |
| // by checking the callee (if necessary) and making sure that arguments and the callee |
| // are flushed. |
| emitFunctionChecks(callLinkStatus, callTargetNode, registerOffset, kind); |
| |
| // FIXME: Don't flush constants! |
| |
| int inlineCallFrameStart = m_inlineStackTop->remapOperand(VirtualRegister(registerOffset)).offset() + JSStack::CallFrameHeaderSize; |
| |
| // Make sure that we have enough locals. |
| unsigned newNumLocals = VirtualRegister(inlineCallFrameStart).toLocal() + 1 + JSStack::CallFrameHeaderSize + codeBlock->m_numCalleeRegisters; |
| if (newNumLocals > m_numLocals) { |
| m_numLocals = newNumLocals; |
| for (size_t i = 0; i < m_graph.numBlocks(); ++i) |
| m_graph.block(i)->ensureLocals(newNumLocals); |
| } |
| |
| size_t argumentPositionStart = m_graph.m_argumentPositions.size(); |
| |
| InlineStackEntry inlineStackEntry( |
| this, codeBlock, codeBlock, m_graph.lastBlock(), callLinkStatus.function(), |
| m_inlineStackTop->remapOperand(VirtualRegister(resultOperand)), |
| (VirtualRegister)inlineCallFrameStart, argumentCountIncludingThis, kind); |
| |
| // This is where the actual inlining really happens. |
| unsigned oldIndex = m_currentIndex; |
| m_currentIndex = 0; |
| |
| InlineVariableData inlineVariableData; |
| inlineVariableData.inlineCallFrame = m_inlineStackTop->m_inlineCallFrame; |
| inlineVariableData.argumentPositionStart = argumentPositionStart; |
| inlineVariableData.calleeVariable = 0; |
| |
| RELEASE_ASSERT( |
| m_inlineStackTop->m_inlineCallFrame->isClosureCall |
| == callLinkStatus.isClosureCall()); |
| if (callLinkStatus.isClosureCall()) { |
| VariableAccessData* calleeVariable = |
| set(VirtualRegister(JSStack::Callee), callTargetNode, ImmediateSet)->variableAccessData(); |
| VariableAccessData* scopeVariable = |
| set(VirtualRegister(JSStack::ScopeChain), addToGraph(GetScope, callTargetNode), ImmediateSet)->variableAccessData(); |
| |
| calleeVariable->mergeShouldNeverUnbox(true); |
| scopeVariable->mergeShouldNeverUnbox(true); |
| |
| inlineVariableData.calleeVariable = calleeVariable; |
| } |
| |
| m_graph.m_inlineVariableData.append(inlineVariableData); |
| |
| parseCodeBlock(); |
| |
| m_currentIndex = oldIndex; |
| |
| // If the inlined code created some new basic blocks, then we have linking to do. |
| if (inlineStackEntry.m_callsiteBlockHead != m_graph.lastBlock()) { |
| |
| ASSERT(!inlineStackEntry.m_unlinkedBlocks.isEmpty()); |
| if (inlineStackEntry.m_callsiteBlockHeadNeedsLinking) |
| linkBlock(inlineStackEntry.m_callsiteBlockHead, inlineStackEntry.m_blockLinkingTargets); |
| else |
| ASSERT(inlineStackEntry.m_callsiteBlockHead->isLinked); |
| |
| // It's possible that the callsite block head is not owned by the caller. |
| if (!inlineStackEntry.m_caller->m_unlinkedBlocks.isEmpty()) { |
| // It's definitely owned by the caller, because the caller created new blocks. |
| // Assert that this all adds up. |
| ASSERT(inlineStackEntry.m_caller->m_unlinkedBlocks.last().m_block == inlineStackEntry.m_callsiteBlockHead); |
| ASSERT(inlineStackEntry.m_caller->m_unlinkedBlocks.last().m_needsNormalLinking); |
| inlineStackEntry.m_caller->m_unlinkedBlocks.last().m_needsNormalLinking = false; |
| } else { |
| // It's definitely not owned by the caller. Tell the caller that he does not |
| // need to link his callsite block head, because we did it for him. |
| ASSERT(inlineStackEntry.m_caller->m_callsiteBlockHeadNeedsLinking); |
| ASSERT(inlineStackEntry.m_caller->m_callsiteBlockHead == inlineStackEntry.m_callsiteBlockHead); |
| inlineStackEntry.m_caller->m_callsiteBlockHeadNeedsLinking = false; |
| } |
| |
| linkBlocks(inlineStackEntry.m_unlinkedBlocks, inlineStackEntry.m_blockLinkingTargets); |
| } else |
| ASSERT(inlineStackEntry.m_unlinkedBlocks.isEmpty()); |
| |
| BasicBlock* lastBlock = m_graph.lastBlock(); |
| // If there was a return, but no early returns, then we're done. We allow parsing of |
| // the caller to continue in whatever basic block we're in right now. |
| if (!inlineStackEntry.m_didEarlyReturn && inlineStackEntry.m_didReturn) { |
| ASSERT(lastBlock->isEmpty() || !lastBlock->last()->isTerminal()); |
| |
| // If we created new blocks then the last block needs linking, but in the |
| // caller. It doesn't need to be linked to, but it needs outgoing links. |
| if (!inlineStackEntry.m_unlinkedBlocks.isEmpty()) { |
| // For debugging purposes, set the bytecodeBegin. Note that this doesn't matter |
| // for release builds because this block will never serve as a potential target |
| // in the linker's binary search. |
| lastBlock->bytecodeBegin = m_currentIndex; |
| m_inlineStackTop->m_caller->m_unlinkedBlocks.append(UnlinkedBlock(m_graph.lastBlock())); |
| } |
| |
| m_currentBlock = m_graph.lastBlock(); |
| return true; |
| } |
| |
| // If we get to this point then all blocks must end in some sort of terminals. |
| ASSERT(lastBlock->last()->isTerminal()); |
| |
| |
| // Need to create a new basic block for the continuation at the caller. |
| RefPtr<BasicBlock> block = adoptRef(new BasicBlock(nextOffset, m_numArguments, m_numLocals)); |
| |
| // Link the early returns to the basic block we're about to create. |
| for (size_t i = 0; i < inlineStackEntry.m_unlinkedBlocks.size(); ++i) { |
| if (!inlineStackEntry.m_unlinkedBlocks[i].m_needsEarlyReturnLinking) |
| continue; |
| BasicBlock* blockToLink = inlineStackEntry.m_unlinkedBlocks[i].m_block; |
| ASSERT(!blockToLink->isLinked); |
| Node* node = blockToLink->last(); |
| ASSERT(node->op() == Jump); |
| ASSERT(node->takenBlock() == 0); |
| node->setTakenBlock(block.get()); |
| inlineStackEntry.m_unlinkedBlocks[i].m_needsEarlyReturnLinking = false; |
| #if !ASSERT_DISABLED |
| blockToLink->isLinked = true; |
| #endif |
| } |
| |
| m_currentBlock = block.get(); |
| ASSERT(m_inlineStackTop->m_caller->m_blockLinkingTargets.isEmpty() || m_inlineStackTop->m_caller->m_blockLinkingTargets.last()->bytecodeBegin < nextOffset); |
| m_inlineStackTop->m_caller->m_unlinkedBlocks.append(UnlinkedBlock(block.get())); |
| m_inlineStackTop->m_caller->m_blockLinkingTargets.append(block.get()); |
| m_graph.appendBlock(block); |
| prepareToParseBlock(); |
| |
| // At this point we return and continue to generate code for the caller, but |
| // in the new basic block. |
| return true; |
| } |
| |
| bool ByteCodeParser::handleMinMax(int resultOperand, NodeType op, int registerOffset, int argumentCountIncludingThis) |
| { |
| if (argumentCountIncludingThis == 1) { // Math.min() |
| set(VirtualRegister(resultOperand), constantNaN()); |
| return true; |
| } |
| |
| if (argumentCountIncludingThis == 2) { // Math.min(x) |
| Node* result = get(VirtualRegister(virtualRegisterForArgument(1, registerOffset))); |
| addToGraph(Phantom, Edge(result, NumberUse)); |
| set(VirtualRegister(resultOperand), result); |
| return true; |
| } |
| |
| if (argumentCountIncludingThis == 3) { // Math.min(x, y) |
| set(VirtualRegister(resultOperand), addToGraph(op, get(virtualRegisterForArgument(1, registerOffset)), get(virtualRegisterForArgument(2, registerOffset)))); |
| return true; |
| } |
| |
| // Don't handle >=3 arguments for now. |
| return false; |
| } |
| |
| bool ByteCodeParser::handleIntrinsic(int resultOperand, Intrinsic intrinsic, int registerOffset, int argumentCountIncludingThis, SpeculatedType prediction) |
| { |
| switch (intrinsic) { |
| case AbsIntrinsic: { |
| if (argumentCountIncludingThis == 1) { // Math.abs() |
| set(VirtualRegister(resultOperand), constantNaN()); |
| return true; |
| } |
| |
| if (!MacroAssembler::supportsFloatingPointAbs()) |
| return false; |
| |
| Node* node = addToGraph(ArithAbs, get(virtualRegisterForArgument(1, registerOffset))); |
| if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, Overflow)) |
| node->mergeFlags(NodeMayOverflow); |
| set(VirtualRegister(resultOperand), node); |
| return true; |
| } |
| |
| case MinIntrinsic: |
| return handleMinMax(resultOperand, ArithMin, registerOffset, argumentCountIncludingThis); |
| |
| case MaxIntrinsic: |
| return handleMinMax(resultOperand, ArithMax, registerOffset, argumentCountIncludingThis); |
| |
| case SqrtIntrinsic: |
| case CosIntrinsic: |
| case SinIntrinsic: { |
| if (argumentCountIncludingThis == 1) { |
| set(VirtualRegister(resultOperand), constantNaN()); |
| return true; |
| } |
| |
| switch (intrinsic) { |
| case SqrtIntrinsic: |
| if (!MacroAssembler::supportsFloatingPointSqrt()) |
| return false; |
| |
| set(VirtualRegister(resultOperand), addToGraph(ArithSqrt, get(virtualRegisterForArgument(1, registerOffset)))); |
| return true; |
| |
| case CosIntrinsic: |
| set(VirtualRegister(resultOperand), addToGraph(ArithCos, get(virtualRegisterForArgument(1, registerOffset)))); |
| return true; |
| |
| case SinIntrinsic: |
| set(VirtualRegister(resultOperand), addToGraph(ArithSin, get(virtualRegisterForArgument(1, registerOffset)))); |
| return true; |
| |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| return false; |
| } |
| } |
| |
| case ArrayPushIntrinsic: { |
| if (argumentCountIncludingThis != 2) |
| return false; |
| |
| ArrayMode arrayMode = getArrayMode(m_currentInstruction[6].u.arrayProfile); |
| if (!arrayMode.isJSArray()) |
| return false; |
| switch (arrayMode.type()) { |
| case Array::Undecided: |
| case Array::Int32: |
| case Array::Double: |
| case Array::Contiguous: |
| case Array::ArrayStorage: { |
| Node* arrayPush = addToGraph(ArrayPush, OpInfo(arrayMode.asWord()), OpInfo(prediction), get(virtualRegisterForArgument(0, registerOffset)), get(virtualRegisterForArgument(1, registerOffset))); |
| set(VirtualRegister(resultOperand), arrayPush); |
| |
| return true; |
| } |
| |
| default: |
| return false; |
| } |
| } |
| |
| case ArrayPopIntrinsic: { |
| if (argumentCountIncludingThis != 1) |
| return false; |
| |
| ArrayMode arrayMode = getArrayMode(m_currentInstruction[6].u.arrayProfile); |
| if (!arrayMode.isJSArray()) |
| return false; |
| switch (arrayMode.type()) { |
| case Array::Int32: |
| case Array::Double: |
| case Array::Contiguous: |
| case Array::ArrayStorage: { |
| Node* arrayPop = addToGraph(ArrayPop, OpInfo(arrayMode.asWord()), OpInfo(prediction), get(virtualRegisterForArgument(0, registerOffset))); |
| set(VirtualRegister(resultOperand), arrayPop); |
| return true; |
| } |
| |
| default: |
| return false; |
| } |
| } |
| |
| case CharCodeAtIntrinsic: { |
| if (argumentCountIncludingThis != 2) |
| return false; |
| |
| VirtualRegister thisOperand = virtualRegisterForArgument(0, registerOffset); |
| VirtualRegister indexOperand = virtualRegisterForArgument(1, registerOffset); |
| Node* charCode = addToGraph(StringCharCodeAt, OpInfo(ArrayMode(Array::String).asWord()), get(thisOperand), get(indexOperand)); |
| |
| set(VirtualRegister(resultOperand), charCode); |
| return true; |
| } |
| |
| case CharAtIntrinsic: { |
| if (argumentCountIncludingThis != 2) |
| return false; |
| |
| VirtualRegister thisOperand = virtualRegisterForArgument(0, registerOffset); |
| VirtualRegister indexOperand = virtualRegisterForArgument(1, registerOffset); |
| Node* charCode = addToGraph(StringCharAt, OpInfo(ArrayMode(Array::String).asWord()), get(thisOperand), get(indexOperand)); |
| |
| set(VirtualRegister(resultOperand), charCode); |
| return true; |
| } |
| case FromCharCodeIntrinsic: { |
| if (argumentCountIncludingThis != 2) |
| return false; |
| |
| VirtualRegister indexOperand = virtualRegisterForArgument(1, registerOffset); |
| Node* charCode = addToGraph(StringFromCharCode, get(indexOperand)); |
| |
| set(VirtualRegister(resultOperand), charCode); |
| |
| return true; |
| } |
| |
| case RegExpExecIntrinsic: { |
| if (argumentCountIncludingThis != 2) |
| return false; |
| |
| Node* regExpExec = addToGraph(RegExpExec, OpInfo(0), OpInfo(prediction), get(virtualRegisterForArgument(0, registerOffset)), get(virtualRegisterForArgument(1, registerOffset))); |
| set(VirtualRegister(resultOperand), regExpExec); |
| |
| return true; |
| } |
| |
| case RegExpTestIntrinsic: { |
| if (argumentCountIncludingThis != 2) |
| return false; |
| |
| Node* regExpExec = addToGraph(RegExpTest, OpInfo(0), OpInfo(prediction), get(virtualRegisterForArgument(0, registerOffset)), get(virtualRegisterForArgument(1, registerOffset))); |
| set(VirtualRegister(resultOperand), regExpExec); |
| |
| return true; |
| } |
| |
| case IMulIntrinsic: { |
| if (argumentCountIncludingThis != 3) |
| return false; |
| VirtualRegister leftOperand = virtualRegisterForArgument(1, registerOffset); |
| VirtualRegister rightOperand = virtualRegisterForArgument(2, registerOffset); |
| Node* left = get(leftOperand); |
| Node* right = get(rightOperand); |
| set(VirtualRegister(resultOperand), addToGraph(ArithIMul, left, right)); |
| return true; |
| } |
| |
| default: |
| return false; |
| } |
| } |
| |
| bool ByteCodeParser::handleTypedArrayConstructor( |
| int resultOperand, InternalFunction* function, int registerOffset, |
| int argumentCountIncludingThis, TypedArrayType type) |
| { |
| if (!isTypedView(type)) |
| return false; |
| |
| if (function->classInfo() != constructorClassInfoForType(type)) |
| return false; |
| |
| if (function->globalObject() != m_inlineStackTop->m_codeBlock->globalObject()) |
| return false; |
| |
| // We only have an intrinsic for the case where you say: |
| // |
| // new FooArray(blah); |
| // |
| // Of course, 'blah' could be any of the following: |
| // |
| // - Integer, indicating that you want to allocate an array of that length. |
| // This is the thing we're hoping for, and what we can actually do meaningful |
| // optimizations for. |
| // |
| // - Array buffer, indicating that you want to create a view onto that _entire_ |
| // buffer. |
| // |
| // - Non-buffer object, indicating that you want to create a copy of that |
| // object by pretending that it quacks like an array. |
| // |
| // - Anything else, indicating that you want to have an exception thrown at |
| // you. |
| // |
| // The intrinsic, NewTypedArray, will behave as if it could do any of these |
| // things up until we do Fixup. Thereafter, if child1 (i.e. 'blah') is |
| // predicted Int32, then we lock it in as a normal typed array allocation. |
| // Otherwise, NewTypedArray turns into a totally opaque function call that |
| // may clobber the world - by virtue of it accessing properties on what could |
| // be an object. |
| // |
| // Note that although the generic form of NewTypedArray sounds sort of awful, |
| // it is actually quite likely to be more efficient than a fully generic |
| // Construct. So, we might want to think about making NewTypedArray variadic, |
| // or else making Construct not super slow. |
| |
| if (argumentCountIncludingThis != 2) |
| return false; |
| |
| set(VirtualRegister(resultOperand), |
| addToGraph(NewTypedArray, OpInfo(type), get(virtualRegisterForArgument(1, registerOffset)))); |
| return true; |
| } |
| |
| bool ByteCodeParser::handleConstantInternalFunction( |
| int resultOperand, InternalFunction* function, int registerOffset, |
| int argumentCountIncludingThis, SpeculatedType prediction, CodeSpecializationKind kind) |
| { |
| // If we ever find that we have a lot of internal functions that we specialize for, |
| // then we should probably have some sort of hashtable dispatch, or maybe even |
| // dispatch straight through the MethodTable of the InternalFunction. But for now, |
| // it seems that this case is hit infrequently enough, and the number of functions |
| // we know about is small enough, that having just a linear cascade of if statements |
| // is good enough. |
| |
| UNUSED_PARAM(prediction); // Remove this once we do more things. |
| |
| if (function->classInfo() == ArrayConstructor::info()) { |
| if (function->globalObject() != m_inlineStackTop->m_codeBlock->globalObject()) |
| return false; |
| |
| if (argumentCountIncludingThis == 2) { |
| set(VirtualRegister(resultOperand), |
| addToGraph(NewArrayWithSize, OpInfo(ArrayWithUndecided), get(virtualRegisterForArgument(1, registerOffset)))); |
| return true; |
| } |
| |
| for (int i = 1; i < argumentCountIncludingThis; ++i) |
| addVarArgChild(get(virtualRegisterForArgument(i, registerOffset))); |
| set(VirtualRegister(resultOperand), |
| addToGraph(Node::VarArg, NewArray, OpInfo(ArrayWithUndecided), OpInfo(0))); |
| return true; |
| } |
| |
| if (function->classInfo() == StringConstructor::info()) { |
| Node* result; |
| |
| if (argumentCountIncludingThis <= 1) |
| result = cellConstant(m_vm->smallStrings.emptyString()); |
| else |
| result = addToGraph(ToString, get(virtualRegisterForArgument(1, registerOffset))); |
| |
| if (kind == CodeForConstruct) |
| result = addToGraph(NewStringObject, OpInfo(function->globalObject()->stringObjectStructure()), result); |
| |
| set(VirtualRegister(resultOperand), result); |
| return true; |
| } |
| |
| for (unsigned typeIndex = 0; typeIndex < NUMBER_OF_TYPED_ARRAY_TYPES; ++typeIndex) { |
| bool result = handleTypedArrayConstructor( |
| resultOperand, function, registerOffset, argumentCountIncludingThis, |
| indexToTypedArrayType(typeIndex)); |
| if (result) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| Node* ByteCodeParser::handleGetByOffset(SpeculatedType prediction, Node* base, unsigned identifierNumber, PropertyOffset offset) |
| { |
| Node* propertyStorage; |
| if (isInlineOffset(offset)) |
| propertyStorage = base; |
| else |
| propertyStorage = addToGraph(GetButterfly, base); |
| Node* getByOffset = addToGraph(GetByOffset, OpInfo(m_graph.m_storageAccessData.size()), OpInfo(prediction), propertyStorage, base); |
| |
| StorageAccessData storageAccessData; |
| storageAccessData.offset = offset; |
| storageAccessData.identifierNumber = identifierNumber; |
| m_graph.m_storageAccessData.append(storageAccessData); |
| |
| return getByOffset; |
| } |
| |
| void ByteCodeParser::handleGetByOffset( |
| int destinationOperand, SpeculatedType prediction, Node* base, unsigned identifierNumber, |
| PropertyOffset offset) |
| { |
| set(VirtualRegister(destinationOperand), handleGetByOffset(prediction, base, identifierNumber, offset)); |
| } |
| |
| Node* ByteCodeParser::handlePutByOffset(Node* base, unsigned identifier, PropertyOffset offset, Node* value) |
| { |
| Node* propertyStorage; |
| if (isInlineOffset(offset)) |
| propertyStorage = base; |
| else |
| propertyStorage = addToGraph(GetButterfly, base); |
| Node* result = addToGraph(PutByOffset, OpInfo(m_graph.m_storageAccessData.size()), propertyStorage, base, value); |
| |
| StorageAccessData storageAccessData; |
| storageAccessData.offset = offset; |
| storageAccessData.identifierNumber = identifier; |
| m_graph.m_storageAccessData.append(storageAccessData); |
| |
| return result; |
| } |
| |
| void ByteCodeParser::handleGetById( |
| int destinationOperand, SpeculatedType prediction, Node* base, unsigned identifierNumber, |
| const GetByIdStatus& getByIdStatus) |
| { |
| if (!getByIdStatus.isSimple()) { |
| set(VirtualRegister(destinationOperand), |
| addToGraph( |
| getByIdStatus.makesCalls() ? GetByIdFlush : GetById, |
| OpInfo(identifierNumber), OpInfo(prediction), base)); |
| return; |
| } |
| |
| ASSERT(getByIdStatus.structureSet().size()); |
| |
| if (m_graph.compilation()) |
| m_graph.compilation()->noticeInlinedGetById(); |
| |
| Node* originalBaseForBaselineJIT = base; |
| |
| addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(getByIdStatus.structureSet())), base); |
| |
| if (getByIdStatus.chain()) { |
| m_graph.chains().addLazily(getByIdStatus.chain()); |
| Structure* currentStructure = getByIdStatus.structureSet().singletonStructure(); |
| JSObject* currentObject = 0; |
| for (unsigned i = 0; i < getByIdStatus.chain()->size(); ++i) { |
| currentObject = asObject(currentStructure->prototypeForLookup(m_inlineStackTop->m_codeBlock)); |
| currentStructure = getByIdStatus.chain()->at(i); |
| base = cellConstantWithStructureCheck(currentObject, currentStructure); |
| } |
| } |
| |
| // Unless we want bugs like https://bugs.webkit.org/show_bug.cgi?id=88783, we need to |
| // ensure that the base of the original get_by_id is kept alive until we're done with |
| // all of the speculations. We only insert the Phantom if there had been a CheckStructure |
| // on something other than the base following the CheckStructure on base, or if the |
| // access was compiled to a WeakJSConstant specific value, in which case we might not |
| // have any explicit use of the base at all. |
| if (getByIdStatus.specificValue() || originalBaseForBaselineJIT != base) |
| addToGraph(Phantom, originalBaseForBaselineJIT); |
| |
| if (getByIdStatus.specificValue()) { |
| ASSERT(getByIdStatus.specificValue().isCell()); |
| |
| set(VirtualRegister(destinationOperand), cellConstant(getByIdStatus.specificValue().asCell())); |
| return; |
| } |
| |
| handleGetByOffset( |
| destinationOperand, prediction, base, identifierNumber, getByIdStatus.offset()); |
| } |
| |
| void ByteCodeParser::prepareToParseBlock() |
| { |
| for (unsigned i = 0; i < m_constants.size(); ++i) |
| m_constants[i] = ConstantRecord(); |
| m_cellConstantNodes.clear(); |
| } |
| |
| Node* ByteCodeParser::getScope(bool skipTop, unsigned skipCount) |
| { |
| Node* localBase = get(VirtualRegister(JSStack::ScopeChain)); |
| if (skipTop) { |
| ASSERT(!inlineCallFrame()); |
| localBase = addToGraph(SkipTopScope, localBase); |
| } |
| for (unsigned n = skipCount; n--;) |
| localBase = addToGraph(SkipScope, localBase); |
| return localBase; |
| } |
| |
| bool ByteCodeParser::parseBlock(unsigned limit) |
| { |
| bool shouldContinueParsing = true; |
| |
| Interpreter* interpreter = m_vm->interpreter; |
| Instruction* instructionsBegin = m_inlineStackTop->m_codeBlock->instructions().begin(); |
| unsigned blockBegin = m_currentIndex; |
| |
| // If we are the first basic block, introduce markers for arguments. This allows |
| // us to track if a use of an argument may use the actual argument passed, as |
| // opposed to using a value we set explicitly. |
| if (m_currentBlock == m_graph.block(0) && !inlineCallFrame()) { |
| m_graph.m_arguments.resize(m_numArguments); |
| for (unsigned argument = 0; argument < m_numArguments; ++argument) { |
| VariableAccessData* variable = newVariableAccessData( |
| virtualRegisterForArgument(argument), m_codeBlock->isCaptured(virtualRegisterForArgument(argument))); |
| variable->mergeStructureCheckHoistingFailed( |
| m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCache) |
| || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCacheWatchpoint)); |
| variable->mergeCheckArrayHoistingFailed( |
| m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadIndexingType)); |
| |
| Node* setArgument = addToGraph(SetArgument, OpInfo(variable)); |
| m_graph.m_arguments[argument] = setArgument; |
| m_currentBlock->variablesAtTail.setArgumentFirstTime(argument, setArgument); |
| } |
| } |
| |
| while (true) { |
| for (unsigned i = 0; i < m_setLocalQueue.size(); ++i) |
| m_setLocalQueue[i].execute(this); |
| m_setLocalQueue.resize(0); |
| |
| // Don't extend over jump destinations. |
| if (m_currentIndex == limit) { |
| // Ordinarily we want to plant a jump. But refuse to do this if the block is |
| // empty. This is a special case for inlining, which might otherwise create |
| // some empty blocks in some cases. When parseBlock() returns with an empty |
| // block, it will get repurposed instead of creating a new one. Note that this |
| // logic relies on every bytecode resulting in one or more nodes, which would |
| // be true anyway except for op_loop_hint, which emits a Phantom to force this |
| // to be true. |
| if (!m_currentBlock->isEmpty()) |
| addToGraph(Jump, OpInfo(m_currentIndex)); |
| return shouldContinueParsing; |
| } |
| |
| // Switch on the current bytecode opcode. |
| Instruction* currentInstruction = instructionsBegin + m_currentIndex; |
| m_currentInstruction = currentInstruction; // Some methods want to use this, and we'd rather not thread it through calls. |
| OpcodeID opcodeID = interpreter->getOpcodeID(currentInstruction->u.opcode); |
| |
| if (m_graph.compilation()) { |
| addToGraph(CountExecution, OpInfo(m_graph.compilation()->executionCounterFor( |
| Profiler::OriginStack(*m_vm->m_perBytecodeProfiler, m_codeBlock, currentCodeOrigin())))); |
| } |
| |
| switch (opcodeID) { |
| |
| // === Function entry opcodes === |
| |
| case op_enter: |
| // Initialize all locals to undefined. |
| for (int i = 0; i < m_inlineStackTop->m_codeBlock->m_numVars; ++i) |
| set(virtualRegisterForLocal(i), constantUndefined(), ImmediateSet); |
| NEXT_OPCODE(op_enter); |
| |
| case op_touch_entry: |
| if (m_inlineStackTop->m_codeBlock->symbolTable()->m_functionEnteredOnce.isStillValid()) |
| addToGraph(ForceOSRExit); |
| NEXT_OPCODE(op_touch_entry); |
| |
| case op_to_this: { |
| Node* op1 = getThis(); |
| if (op1->op() != ToThis) { |
| Structure* cachedStructure = currentInstruction[2].u.structure.get(); |
| if (!cachedStructure |
| || cachedStructure->classInfo()->methodTable.toThis != JSObject::info()->methodTable.toThis |
| || m_inlineStackTop->m_profiledBlock->couldTakeSlowCase(m_currentIndex) |
| || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCache) |
| || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCacheWatchpoint) |
| || (op1->op() == GetLocal && op1->variableAccessData()->structureCheckHoistingFailed())) { |
| setThis(addToGraph(ToThis, op1)); |
| } else { |
| addToGraph( |
| CheckStructure, |
| OpInfo(m_graph.addStructureSet(cachedStructure)), |
| op1); |
| } |
| } |
| NEXT_OPCODE(op_to_this); |
| } |
| |
| case op_create_this: { |
| int calleeOperand = currentInstruction[2].u.operand; |
| Node* callee = get(VirtualRegister(calleeOperand)); |
| bool alreadyEmitted = false; |
| if (callee->op() == WeakJSConstant) { |
| JSCell* cell = callee->weakConstant(); |
| ASSERT(cell->inherits(JSFunction::info())); |
| |
| JSFunction* function = jsCast<JSFunction*>(cell); |
| if (Structure* structure = function->allocationStructure()) { |
| addToGraph(AllocationProfileWatchpoint, OpInfo(function)); |
| // The callee is still live up to this point. |
| addToGraph(Phantom, callee); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(NewObject, OpInfo(structure))); |
| alreadyEmitted = true; |
| } |
| } |
| if (!alreadyEmitted) { |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| addToGraph(CreateThis, OpInfo(currentInstruction[3].u.operand), callee)); |
| } |
| NEXT_OPCODE(op_create_this); |
| } |
| |
| case op_new_object: { |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| addToGraph(NewObject, |
| OpInfo(currentInstruction[3].u.objectAllocationProfile->structure()))); |
| NEXT_OPCODE(op_new_object); |
| } |
| |
| case op_new_array: { |
| int startOperand = currentInstruction[2].u.operand; |
| int numOperands = currentInstruction[3].u.operand; |
| ArrayAllocationProfile* profile = currentInstruction[4].u.arrayAllocationProfile; |
| for (int operandIdx = startOperand; operandIdx > startOperand - numOperands; --operandIdx) |
| addVarArgChild(get(VirtualRegister(operandIdx))); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(Node::VarArg, NewArray, OpInfo(profile->selectIndexingType()), OpInfo(0))); |
| NEXT_OPCODE(op_new_array); |
| } |
| |
| case op_new_array_with_size: { |
| int lengthOperand = currentInstruction[2].u.operand; |
| ArrayAllocationProfile* profile = currentInstruction[3].u.arrayAllocationProfile; |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(NewArrayWithSize, OpInfo(profile->selectIndexingType()), get(VirtualRegister(lengthOperand)))); |
| NEXT_OPCODE(op_new_array_with_size); |
| } |
| |
| case op_new_array_buffer: { |
| int startConstant = currentInstruction[2].u.operand; |
| int numConstants = currentInstruction[3].u.operand; |
| ArrayAllocationProfile* profile = currentInstruction[4].u.arrayAllocationProfile; |
| NewArrayBufferData data; |
| data.startConstant = m_inlineStackTop->m_constantBufferRemap[startConstant]; |
| data.numConstants = numConstants; |
| data.indexingType = profile->selectIndexingType(); |
| |
| // If this statement has never executed, we'll have the wrong indexing type in the profile. |
| for (int i = 0; i < numConstants; ++i) { |
| data.indexingType = |
| leastUpperBoundOfIndexingTypeAndValue( |
| data.indexingType, |
| m_codeBlock->constantBuffer(data.startConstant)[i]); |
| } |
| |
| m_graph.m_newArrayBufferData.append(data); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(NewArrayBuffer, OpInfo(&m_graph.m_newArrayBufferData.last()))); |
| NEXT_OPCODE(op_new_array_buffer); |
| } |
| |
| case op_new_regexp: { |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(NewRegexp, OpInfo(currentInstruction[2].u.operand))); |
| NEXT_OPCODE(op_new_regexp); |
| } |
| |
| case op_get_callee: { |
| JSCell* cachedFunction = currentInstruction[2].u.jsCell.get(); |
| if (!cachedFunction |
| || m_inlineStackTop->m_profiledBlock->couldTakeSlowCase(m_currentIndex) |
| || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadFunction)) { |
| set(VirtualRegister(currentInstruction[1].u.operand), get(VirtualRegister(JSStack::Callee))); |
| } else { |
| ASSERT(cachedFunction->inherits(JSFunction::info())); |
| Node* actualCallee = get(VirtualRegister(JSStack::Callee)); |
| addToGraph(CheckFunction, OpInfo(cachedFunction), actualCallee); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(WeakJSConstant, OpInfo(cachedFunction))); |
| } |
| NEXT_OPCODE(op_get_callee); |
| } |
| |
| // === Bitwise operations === |
| |
| case op_bitand: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(BitAnd, op1, op2)); |
| NEXT_OPCODE(op_bitand); |
| } |
| |
| case op_bitor: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(BitOr, op1, op2)); |
| NEXT_OPCODE(op_bitor); |
| } |
| |
| case op_bitxor: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(BitXor, op1, op2)); |
| NEXT_OPCODE(op_bitxor); |
| } |
| |
| case op_rshift: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| addToGraph(BitRShift, op1, op2)); |
| NEXT_OPCODE(op_rshift); |
| } |
| |
| case op_lshift: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| addToGraph(BitLShift, op1, op2)); |
| NEXT_OPCODE(op_lshift); |
| } |
| |
| case op_urshift: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| addToGraph(BitURShift, op1, op2)); |
| NEXT_OPCODE(op_urshift); |
| } |
| |
| case op_unsigned: { |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| makeSafe(addToGraph(UInt32ToNumber, get(VirtualRegister(currentInstruction[2].u.operand))))); |
| NEXT_OPCODE(op_unsigned); |
| } |
| |
| // === Increment/Decrement opcodes === |
| |
| case op_inc: { |
| int srcDst = currentInstruction[1].u.operand; |
| VirtualRegister srcDstVirtualRegister = VirtualRegister(srcDst); |
| Node* op = get(srcDstVirtualRegister); |
| set(srcDstVirtualRegister, makeSafe(addToGraph(ArithAdd, op, one()))); |
| NEXT_OPCODE(op_inc); |
| } |
| |
| case op_dec: { |
| int srcDst = currentInstruction[1].u.operand; |
| VirtualRegister srcDstVirtualRegister = VirtualRegister(srcDst); |
| Node* op = get(srcDstVirtualRegister); |
| set(srcDstVirtualRegister, makeSafe(addToGraph(ArithSub, op, one()))); |
| NEXT_OPCODE(op_dec); |
| } |
| |
| // === Arithmetic operations === |
| |
| case op_add: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| if (op1->hasNumberResult() && op2->hasNumberResult()) |
| set(VirtualRegister(currentInstruction[1].u.operand), makeSafe(addToGraph(ArithAdd, op1, op2))); |
| else |
| set(VirtualRegister(currentInstruction[1].u.operand), makeSafe(addToGraph(ValueAdd, op1, op2))); |
| NEXT_OPCODE(op_add); |
| } |
| |
| case op_sub: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), makeSafe(addToGraph(ArithSub, op1, op2))); |
| NEXT_OPCODE(op_sub); |
| } |
| |
| case op_negate: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), makeSafe(addToGraph(ArithNegate, op1))); |
| NEXT_OPCODE(op_negate); |
| } |
| |
| case op_mul: { |
| // Multiply requires that the inputs are not truncated, unfortunately. |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), makeSafe(addToGraph(ArithMul, op1, op2))); |
| NEXT_OPCODE(op_mul); |
| } |
| |
| case op_mod: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), makeSafe(addToGraph(ArithMod, op1, op2))); |
| NEXT_OPCODE(op_mod); |
| } |
| |
| case op_div: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), makeDivSafe(addToGraph(ArithDiv, op1, op2))); |
| NEXT_OPCODE(op_div); |
| } |
| |
| // === Misc operations === |
| |
| case op_debug: |
| addToGraph(Breakpoint); |
| NEXT_OPCODE(op_debug); |
| |
| case op_profile_will_call: { |
| addToGraph(ProfileWillCall); |
| NEXT_OPCODE(op_profile_will_call); |
| } |
| |
| case op_profile_did_call: { |
| addToGraph(ProfileDidCall); |
| NEXT_OPCODE(op_profile_did_call); |
| } |
| |
| case op_mov: { |
| Node* op = get(VirtualRegister(currentInstruction[2].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), op); |
| NEXT_OPCODE(op_mov); |
| } |
| |
| case op_captured_mov: { |
| Node* op = get(VirtualRegister(currentInstruction[2].u.operand)); |
| if (VariableWatchpointSet* set = currentInstruction[3].u.watchpointSet) { |
| if (set->state() != IsInvalidated) |
| addToGraph(NotifyWrite, OpInfo(set), op); |
| } |
| set(VirtualRegister(currentInstruction[1].u.operand), op); |
| NEXT_OPCODE(op_captured_mov); |
| } |
| |
| case op_check_has_instance: |
| addToGraph(CheckHasInstance, get(VirtualRegister(currentInstruction[3].u.operand))); |
| NEXT_OPCODE(op_check_has_instance); |
| |
| case op_instanceof: { |
| Node* value = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* prototype = get(VirtualRegister(currentInstruction[3].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(InstanceOf, value, prototype)); |
| NEXT_OPCODE(op_instanceof); |
| } |
| |
| case op_is_undefined: { |
| Node* value = get(VirtualRegister(currentInstruction[2].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsUndefined, value)); |
| NEXT_OPCODE(op_is_undefined); |
| } |
| |
| case op_is_boolean: { |
| Node* value = get(VirtualRegister(currentInstruction[2].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsBoolean, value)); |
| NEXT_OPCODE(op_is_boolean); |
| } |
| |
| case op_is_number: { |
| Node* value = get(VirtualRegister(currentInstruction[2].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsNumber, value)); |
| NEXT_OPCODE(op_is_number); |
| } |
| |
| case op_is_string: { |
| Node* value = get(VirtualRegister(currentInstruction[2].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsString, value)); |
| NEXT_OPCODE(op_is_string); |
| } |
| |
| case op_is_object: { |
| Node* value = get(VirtualRegister(currentInstruction[2].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsObject, value)); |
| NEXT_OPCODE(op_is_object); |
| } |
| |
| case op_is_function: { |
| Node* value = get(VirtualRegister(currentInstruction[2].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsFunction, value)); |
| NEXT_OPCODE(op_is_function); |
| } |
| |
| case op_not: { |
| Node* value = get(VirtualRegister(currentInstruction[2].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(LogicalNot, value)); |
| NEXT_OPCODE(op_not); |
| } |
| |
| case op_to_primitive: { |
| Node* value = get(VirtualRegister(currentInstruction[2].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(ToPrimitive, value)); |
| NEXT_OPCODE(op_to_primitive); |
| } |
| |
| case op_strcat: { |
| int startOperand = currentInstruction[2].u.operand; |
| int numOperands = currentInstruction[3].u.operand; |
| #if CPU(X86) |
| // X86 doesn't have enough registers to compile MakeRope with three arguments. |
| // Rather than try to be clever, we just make MakeRope dumber on this processor. |
| const unsigned maxRopeArguments = 2; |
| #else |
| const unsigned maxRopeArguments = 3; |
| #endif |
| auto toStringNodes = std::make_unique<Node*[]>(numOperands); |
| for (int i = 0; i < numOperands; i++) |
| toStringNodes[i] = addToGraph(ToString, get(VirtualRegister(startOperand - i))); |
| |
| for (int i = 0; i < numOperands; i++) |
| addToGraph(Phantom, toStringNodes[i]); |
| |
| Node* operands[AdjacencyList::Size]; |
| unsigned indexInOperands = 0; |
| for (unsigned i = 0; i < AdjacencyList::Size; ++i) |
| operands[i] = 0; |
| for (int operandIdx = 0; operandIdx < numOperands; ++operandIdx) { |
| if (indexInOperands == maxRopeArguments) { |
| operands[0] = addToGraph(MakeRope, operands[0], operands[1], operands[2]); |
| for (unsigned i = 1; i < AdjacencyList::Size; ++i) |
| operands[i] = 0; |
| indexInOperands = 1; |
| } |
| |
| ASSERT(indexInOperands < AdjacencyList::Size); |
| ASSERT(indexInOperands < maxRopeArguments); |
| operands[indexInOperands++] = toStringNodes[operandIdx]; |
| } |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| addToGraph(MakeRope, operands[0], operands[1], operands[2])); |
| NEXT_OPCODE(op_strcat); |
| } |
| |
| case op_less: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| if (canFold(op1) && canFold(op2)) { |
| JSValue a = valueOfJSConstant(op1); |
| JSValue b = valueOfJSConstant(op2); |
| if (a.isNumber() && b.isNumber()) { |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| getJSConstantForValue(jsBoolean(a.asNumber() < b.asNumber()))); |
| NEXT_OPCODE(op_less); |
| } |
| } |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareLess, op1, op2)); |
| NEXT_OPCODE(op_less); |
| } |
| |
| case op_lesseq: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| if (canFold(op1) && canFold(op2)) { |
| JSValue a = valueOfJSConstant(op1); |
| JSValue b = valueOfJSConstant(op2); |
| if (a.isNumber() && b.isNumber()) { |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| getJSConstantForValue(jsBoolean(a.asNumber() <= b.asNumber()))); |
| NEXT_OPCODE(op_lesseq); |
| } |
| } |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareLessEq, op1, op2)); |
| NEXT_OPCODE(op_lesseq); |
| } |
| |
| case op_greater: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| if (canFold(op1) && canFold(op2)) { |
| JSValue a = valueOfJSConstant(op1); |
| JSValue b = valueOfJSConstant(op2); |
| if (a.isNumber() && b.isNumber()) { |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| getJSConstantForValue(jsBoolean(a.asNumber() > b.asNumber()))); |
| NEXT_OPCODE(op_greater); |
| } |
| } |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareGreater, op1, op2)); |
| NEXT_OPCODE(op_greater); |
| } |
| |
| case op_greatereq: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| if (canFold(op1) && canFold(op2)) { |
| JSValue a = valueOfJSConstant(op1); |
| JSValue b = valueOfJSConstant(op2); |
| if (a.isNumber() && b.isNumber()) { |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| getJSConstantForValue(jsBoolean(a.asNumber() >= b.asNumber()))); |
| NEXT_OPCODE(op_greatereq); |
| } |
| } |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareGreaterEq, op1, op2)); |
| NEXT_OPCODE(op_greatereq); |
| } |
| |
| case op_eq: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| if (canFold(op1) && canFold(op2)) { |
| JSValue a = valueOfJSConstant(op1); |
| JSValue b = valueOfJSConstant(op2); |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| getJSConstantForValue(jsBoolean(JSValue::equal(m_codeBlock->globalObject()->globalExec(), a, b)))); |
| NEXT_OPCODE(op_eq); |
| } |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareEq, op1, op2)); |
| NEXT_OPCODE(op_eq); |
| } |
| |
| case op_eq_null: { |
| Node* value = get(VirtualRegister(currentInstruction[2].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareEqConstant, value, constantNull())); |
| NEXT_OPCODE(op_eq_null); |
| } |
| |
| case op_stricteq: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| if (canFold(op1) && canFold(op2)) { |
| JSValue a = valueOfJSConstant(op1); |
| JSValue b = valueOfJSConstant(op2); |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| getJSConstantForValue(jsBoolean(JSValue::strictEqual(m_codeBlock->globalObject()->globalExec(), a, b)))); |
| NEXT_OPCODE(op_stricteq); |
| } |
| if (isConstantForCompareStrictEq(op1)) |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareStrictEqConstant, op2, op1)); |
| else if (isConstantForCompareStrictEq(op2)) |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareStrictEqConstant, op1, op2)); |
| else |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareStrictEq, op1, op2)); |
| NEXT_OPCODE(op_stricteq); |
| } |
| |
| case op_neq: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| if (canFold(op1) && canFold(op2)) { |
| JSValue a = valueOfJSConstant(op1); |
| JSValue b = valueOfJSConstant(op2); |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| getJSConstantForValue(jsBoolean(!JSValue::equal(m_codeBlock->globalObject()->globalExec(), a, b)))); |
| NEXT_OPCODE(op_neq); |
| } |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(LogicalNot, addToGraph(CompareEq, op1, op2))); |
| NEXT_OPCODE(op_neq); |
| } |
| |
| case op_neq_null: { |
| Node* value = get(VirtualRegister(currentInstruction[2].u.operand)); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(LogicalNot, addToGraph(CompareEqConstant, value, constantNull()))); |
| NEXT_OPCODE(op_neq_null); |
| } |
| |
| case op_nstricteq: { |
| Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand)); |
| if (canFold(op1) && canFold(op2)) { |
| JSValue a = valueOfJSConstant(op1); |
| JSValue b = valueOfJSConstant(op2); |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| getJSConstantForValue(jsBoolean(!JSValue::strictEqual(m_codeBlock->globalObject()->globalExec(), a, b)))); |
| NEXT_OPCODE(op_nstricteq); |
| } |
| Node* invertedResult; |
| if (isConstantForCompareStrictEq(op1)) |
| invertedResult = addToGraph(CompareStrictEqConstant, op2, op1); |
| else if (isConstantForCompareStrictEq(op2)) |
| invertedResult = addToGraph(CompareStrictEqConstant, op1, op2); |
| else |
| invertedResult = addToGraph(CompareStrictEq, op1, op2); |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(LogicalNot, invertedResult)); |
| NEXT_OPCODE(op_nstricteq); |
| } |
| |
| // === Property access operations === |
| |
| case op_get_by_val: { |
| SpeculatedType prediction = getPrediction(); |
| |
| Node* base = get(VirtualRegister(currentInstruction[2].u.operand)); |
| ArrayMode arrayMode = getArrayModeConsideringSlowPath(currentInstruction[4].u.arrayProfile, Array::Read); |
| Node* property = get(VirtualRegister(currentInstruction[3].u.operand)); |
| Node* getByVal = addToGraph(GetByVal, OpInfo(arrayMode.asWord()), OpInfo(prediction), base, property); |
| set(VirtualRegister(currentInstruction[1].u.operand), getByVal); |
| |
| NEXT_OPCODE(op_get_by_val); |
| } |
| |
| case op_put_by_val_direct: |
| case op_put_by_val: { |
| Node* base = get(VirtualRegister(currentInstruction[1].u.operand)); |
| |
| ArrayMode arrayMode = getArrayModeConsideringSlowPath(currentInstruction[4].u.arrayProfile, Array::Write); |
| |
| Node* property = get(VirtualRegister(currentInstruction[2].u.operand)); |
| Node* value = get(VirtualRegister(currentInstruction[3].u.operand)); |
| |
| addVarArgChild(base); |
| addVarArgChild(property); |
| addVarArgChild(value); |
| addVarArgChild(0); // Leave room for property storage. |
| addVarArgChild(0); // Leave room for length. |
| addToGraph(Node::VarArg, opcodeID == op_put_by_val_direct ? PutByValDirect : PutByVal, OpInfo(arrayMode.asWord()), OpInfo(0)); |
| |
| NEXT_OPCODE(op_put_by_val); |
| } |
| |
| case op_get_by_id: |
| case op_get_by_id_out_of_line: |
| case op_get_array_length: { |
| SpeculatedType prediction = getPrediction(); |
| |
| Node* base = get(VirtualRegister(currentInstruction[2].u.operand)); |
| unsigned identifierNumber = m_inlineStackTop->m_identifierRemap[currentInstruction[3].u.operand]; |
| |
| StringImpl* uid = m_graph.identifiers()[identifierNumber]; |
| GetByIdStatus getByIdStatus = GetByIdStatus::computeFor( |
| m_inlineStackTop->m_profiledBlock, m_dfgCodeBlock, |
| m_inlineStackTop->m_stubInfos, m_dfgStubInfos, |
| currentCodeOrigin(), uid); |
| |
| handleGetById( |
| currentInstruction[1].u.operand, prediction, base, identifierNumber, getByIdStatus); |
| |
| NEXT_OPCODE(op_get_by_id); |
| } |
| case op_put_by_id: |
| case op_put_by_id_out_of_line: |
| case op_put_by_id_transition_direct: |
| case op_put_by_id_transition_normal: |
| case op_put_by_id_transition_direct_out_of_line: |
| case op_put_by_id_transition_normal_out_of_line: { |
| Node* value = get(VirtualRegister(currentInstruction[3].u.operand)); |
| Node* base = get(VirtualRegister(currentInstruction[1].u.operand)); |
| unsigned identifierNumber = m_inlineStackTop->m_identifierRemap[currentInstruction[2].u.operand]; |
| bool direct = currentInstruction[8].u.operand; |
| |
| PutByIdStatus putByIdStatus = PutByIdStatus::computeFor( |
| m_inlineStackTop->m_profiledBlock, m_dfgCodeBlock, |
| m_inlineStackTop->m_stubInfos, m_dfgStubInfos, |
| currentCodeOrigin(), m_graph.identifiers()[identifierNumber]); |
| bool canCountAsInlined = true; |
| if (!putByIdStatus.isSet()) { |
| addToGraph(ForceOSRExit); |
| canCountAsInlined = false; |
| } |
| |
| if (putByIdStatus.isSimpleReplace()) { |
| addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(putByIdStatus.oldStructure())), base); |
| handlePutByOffset(base, identifierNumber, putByIdStatus.offset(), value); |
| } else if ( |
| putByIdStatus.isSimpleTransition() |
| && (!putByIdStatus.structureChain() |
| || putByIdStatus.structureChain()->isStillValid())) { |
| |
| m_graph.chains().addLazily(putByIdStatus.structureChain()); |
| |
| addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(putByIdStatus.oldStructure())), base); |
| if (!direct) { |
| if (!putByIdStatus.oldStructure()->storedPrototype().isNull()) { |
| cellConstantWithStructureCheck( |
| putByIdStatus.oldStructure()->storedPrototype().asCell()); |
| } |
| |
| for (unsigned i = 0; i < putByIdStatus.structureChain()->size(); ++i) { |
| JSValue prototype = putByIdStatus.structureChain()->at(i)->storedPrototype(); |
| if (prototype.isNull()) |
| continue; |
| cellConstantWithStructureCheck(prototype.asCell()); |
| } |
| } |
| ASSERT(putByIdStatus.oldStructure()->transitionWatchpointSetHasBeenInvalidated()); |
| |
| Node* propertyStorage; |
| StructureTransitionData* transitionData = |
| m_graph.addStructureTransitionData( |
| StructureTransitionData( |
| putByIdStatus.oldStructure(), |
| putByIdStatus.newStructure())); |
| |
| if (putByIdStatus.oldStructure()->outOfLineCapacity() |
| != putByIdStatus.newStructure()->outOfLineCapacity()) { |
| |
| // If we're growing the property storage then it must be because we're |
| // storing into the out-of-line storage. |
| ASSERT(!isInlineOffset(putByIdStatus.offset())); |
| |
| if (!putByIdStatus.oldStructure()->outOfLineCapacity()) { |
| propertyStorage = addToGraph( |
| AllocatePropertyStorage, OpInfo(transitionData), base); |
| } else { |
| propertyStorage = addToGraph( |
| ReallocatePropertyStorage, OpInfo(transitionData), |
| base, addToGraph(GetButterfly, base)); |
| } |
| } else { |
| if (isInlineOffset(putByIdStatus.offset())) |
| propertyStorage = base; |
| else |
| propertyStorage = addToGraph(GetButterfly, base); |
| } |
| |
| addToGraph(PutStructure, OpInfo(transitionData), base); |
| |
| addToGraph( |
| PutByOffset, |
| OpInfo(m_graph.m_storageAccessData.size()), |
| propertyStorage, |
| base, |
| value); |
| |
| StorageAccessData storageAccessData; |
| storageAccessData.offset = putByIdStatus.offset(); |
| storageAccessData.identifierNumber = identifierNumber; |
| m_graph.m_storageAccessData.append(storageAccessData); |
| } else { |
| if (direct) |
| addToGraph(PutByIdDirect, OpInfo(identifierNumber), base, value); |
| else |
| addToGraph(PutById, OpInfo(identifierNumber), base, value); |
| canCountAsInlined = false; |
| } |
| |
| if (canCountAsInlined && m_graph.compilation()) |
| m_graph.compilation()->noticeInlinedPutById(); |
| |
| NEXT_OPCODE(op_put_by_id); |
| } |
| |
| case op_init_global_const_nop: { |
| NEXT_OPCODE(op_init_global_const_nop); |
| } |
| |
| case op_init_global_const: { |
| Node* value = get(VirtualRegister(currentInstruction[2].u.operand)); |
| addToGraph( |
| PutGlobalVar, |
| OpInfo(m_inlineStackTop->m_codeBlock->globalObject()->assertRegisterIsInThisObject(currentInstruction[1].u.registerPointer)), |
| value); |
| NEXT_OPCODE(op_init_global_const); |
| } |
| |
| // === Block terminators. === |
| |
| case op_jmp: { |
| unsigned relativeOffset = currentInstruction[1].u.operand; |
| addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset)); |
| LAST_OPCODE(op_jmp); |
| } |
| |
| case op_jtrue: { |
| unsigned relativeOffset = currentInstruction[2].u.operand; |
| Node* condition = get(VirtualRegister(currentInstruction[1].u.operand)); |
| if (canFold(condition)) { |
| TriState state = valueOfJSConstant(condition).pureToBoolean(); |
| if (state == TrueTriState) { |
| addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset)); |
| LAST_OPCODE(op_jtrue); |
| } else if (state == FalseTriState) { |
| // Emit a placeholder for this bytecode operation but otherwise |
| // just fall through. |
| addToGraph(Phantom); |
| NEXT_OPCODE(op_jtrue); |
| } |
| } |
| addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_jtrue)), condition); |
| LAST_OPCODE(op_jtrue); |
| } |
| |
| case op_jfalse: { |
| unsigned relativeOffset = currentInstruction[2].u.operand; |
| Node* condition = get(VirtualRegister(currentInstruction[1].u.operand)); |
| if (canFold(condition)) { |
| TriState state = valueOfJSConstant(condition).pureToBoolean(); |
| if (state == FalseTriState) { |
| addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset)); |
| LAST_OPCODE(op_jfalse); |
| } else if (state == TrueTriState) { |
| // Emit a placeholder for this bytecode operation but otherwise |
| // just fall through. |
| addToGraph(Phantom); |
| NEXT_OPCODE(op_jfalse); |
| } |
| } |
| addToGraph(Branch, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jfalse)), OpInfo(m_currentIndex + relativeOffset), condition); |
| LAST_OPCODE(op_jfalse); |
| } |
| |
| case op_jeq_null: { |
| unsigned relativeOffset = currentInstruction[2].u.operand; |
| Node* value = get(VirtualRegister(currentInstruction[1].u.operand)); |
| Node* condition = addToGraph(CompareEqConstant, value, constantNull()); |
| addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_jeq_null)), condition); |
| LAST_OPCODE(op_jeq_null); |
| } |
| |
| case op_jneq_null: { |
| unsigned relativeOffset = currentInstruction[2].u.operand; |
| Node* value = get(VirtualRegister(currentInstruction[1].u.operand)); |
| Node* condition = addToGraph(CompareEqConstant, value, constantNull()); |
| addToGraph(Branch, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jneq_null)), OpInfo(m_currentIndex + relativeOffset), condition); |
| LAST_OPCODE(op_jneq_null); |
| } |
| |
| case op_jless: { |
| unsigned relativeOffset = currentInstruction[3].u.operand; |
| Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| if (canFold(op1) && canFold(op2)) { |
| JSValue aValue = valueOfJSConstant(op1); |
| JSValue bValue = valueOfJSConstant(op2); |
| if (aValue.isNumber() && bValue.isNumber()) { |
| double a = aValue.asNumber(); |
| double b = bValue.asNumber(); |
| if (a < b) { |
| addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset)); |
| LAST_OPCODE(op_jless); |
| } else { |
| // Emit a placeholder for this bytecode operation but otherwise |
| // just fall through. |
| addToGraph(Phantom); |
| NEXT_OPCODE(op_jless); |
| } |
| } |
| } |
| Node* condition = addToGraph(CompareLess, op1, op2); |
| addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_jless)), condition); |
| LAST_OPCODE(op_jless); |
| } |
| |
| case op_jlesseq: { |
| unsigned relativeOffset = currentInstruction[3].u.operand; |
| Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| if (canFold(op1) && canFold(op2)) { |
| JSValue aValue = valueOfJSConstant(op1); |
| JSValue bValue = valueOfJSConstant(op2); |
| if (aValue.isNumber() && bValue.isNumber()) { |
| double a = aValue.asNumber(); |
| double b = bValue.asNumber(); |
| if (a <= b) { |
| addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset)); |
| LAST_OPCODE(op_jlesseq); |
| } else { |
| // Emit a placeholder for this bytecode operation but otherwise |
| // just fall through. |
| addToGraph(Phantom); |
| NEXT_OPCODE(op_jlesseq); |
| } |
| } |
| } |
| Node* condition = addToGraph(CompareLessEq, op1, op2); |
| addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_jlesseq)), condition); |
| LAST_OPCODE(op_jlesseq); |
| } |
| |
| case op_jgreater: { |
| unsigned relativeOffset = currentInstruction[3].u.operand; |
| Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| if (canFold(op1) && canFold(op2)) { |
| JSValue aValue = valueOfJSConstant(op1); |
| JSValue bValue = valueOfJSConstant(op2); |
| if (aValue.isNumber() && bValue.isNumber()) { |
| double a = aValue.asNumber(); |
| double b = bValue.asNumber(); |
| if (a > b) { |
| addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset)); |
| LAST_OPCODE(op_jgreater); |
| } else { |
| // Emit a placeholder for this bytecode operation but otherwise |
| // just fall through. |
| addToGraph(Phantom); |
| NEXT_OPCODE(op_jgreater); |
| } |
| } |
| } |
| Node* condition = addToGraph(CompareGreater, op1, op2); |
| addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_jgreater)), condition); |
| LAST_OPCODE(op_jgreater); |
| } |
| |
| case op_jgreatereq: { |
| unsigned relativeOffset = currentInstruction[3].u.operand; |
| Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| if (canFold(op1) && canFold(op2)) { |
| JSValue aValue = valueOfJSConstant(op1); |
| JSValue bValue = valueOfJSConstant(op2); |
| if (aValue.isNumber() && bValue.isNumber()) { |
| double a = aValue.asNumber(); |
| double b = bValue.asNumber(); |
| if (a >= b) { |
| addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset)); |
| LAST_OPCODE(op_jgreatereq); |
| } else { |
| // Emit a placeholder for this bytecode operation but otherwise |
| // just fall through. |
| addToGraph(Phantom); |
| NEXT_OPCODE(op_jgreatereq); |
| } |
| } |
| } |
| Node* condition = addToGraph(CompareGreaterEq, op1, op2); |
| addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_jgreatereq)), condition); |
| LAST_OPCODE(op_jgreatereq); |
| } |
| |
| case op_jnless: { |
| unsigned relativeOffset = currentInstruction[3].u.operand; |
| Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| if (canFold(op1) && canFold(op2)) { |
| JSValue aValue = valueOfJSConstant(op1); |
| JSValue bValue = valueOfJSConstant(op2); |
| if (aValue.isNumber() && bValue.isNumber()) { |
| double a = aValue.asNumber(); |
| double b = bValue.asNumber(); |
| if (a < b) { |
| // Emit a placeholder for this bytecode operation but otherwise |
| // just fall through. |
| addToGraph(Phantom); |
| NEXT_OPCODE(op_jnless); |
| } else { |
| addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset)); |
| LAST_OPCODE(op_jnless); |
| } |
| } |
| } |
| Node* condition = addToGraph(CompareLess, op1, op2); |
| addToGraph(Branch, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jnless)), OpInfo(m_currentIndex + relativeOffset), condition); |
| LAST_OPCODE(op_jnless); |
| } |
| |
| case op_jnlesseq: { |
| unsigned relativeOffset = currentInstruction[3].u.operand; |
| Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| if (canFold(op1) && canFold(op2)) { |
| JSValue aValue = valueOfJSConstant(op1); |
| JSValue bValue = valueOfJSConstant(op2); |
| if (aValue.isNumber() && bValue.isNumber()) { |
| double a = aValue.asNumber(); |
| double b = bValue.asNumber(); |
| if (a <= b) { |
| // Emit a placeholder for this bytecode operation but otherwise |
| // just fall through. |
| addToGraph(Phantom); |
| NEXT_OPCODE(op_jnlesseq); |
| } else { |
| addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset)); |
| LAST_OPCODE(op_jnlesseq); |
| } |
| } |
| } |
| Node* condition = addToGraph(CompareLessEq, op1, op2); |
| addToGraph(Branch, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jnlesseq)), OpInfo(m_currentIndex + relativeOffset), condition); |
| LAST_OPCODE(op_jnlesseq); |
| } |
| |
| case op_jngreater: { |
| unsigned relativeOffset = currentInstruction[3].u.operand; |
| Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| if (canFold(op1) && canFold(op2)) { |
| JSValue aValue = valueOfJSConstant(op1); |
| JSValue bValue = valueOfJSConstant(op2); |
| if (aValue.isNumber() && bValue.isNumber()) { |
| double a = aValue.asNumber(); |
| double b = bValue.asNumber(); |
| if (a > b) { |
| // Emit a placeholder for this bytecode operation but otherwise |
| // just fall through. |
| addToGraph(Phantom); |
| NEXT_OPCODE(op_jngreater); |
| } else { |
| addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset)); |
| LAST_OPCODE(op_jngreater); |
| } |
| } |
| } |
| Node* condition = addToGraph(CompareGreater, op1, op2); |
| addToGraph(Branch, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jngreater)), OpInfo(m_currentIndex + relativeOffset), condition); |
| LAST_OPCODE(op_jngreater); |
| } |
| |
| case op_jngreatereq: { |
| unsigned relativeOffset = currentInstruction[3].u.operand; |
| Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand)); |
| Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand)); |
| if (canFold(op1) && canFold(op2)) { |
| JSValue aValue = valueOfJSConstant(op1); |
| JSValue bValue = valueOfJSConstant(op2); |
| if (aValue.isNumber() && bValue.isNumber()) { |
| double a = aValue.asNumber(); |
| double b = bValue.asNumber(); |
| if (a >= b) { |
| // Emit a placeholder for this bytecode operation but otherwise |
| // just fall through. |
| addToGraph(Phantom); |
| NEXT_OPCODE(op_jngreatereq); |
| } else { |
| addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset)); |
| LAST_OPCODE(op_jngreatereq); |
| } |
| } |
| } |
| Node* condition = addToGraph(CompareGreaterEq, op1, op2); |
| addToGraph(Branch, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jngreatereq)), OpInfo(m_currentIndex + relativeOffset), condition); |
| LAST_OPCODE(op_jngreatereq); |
| } |
| |
| case op_switch_imm: { |
| SwitchData data; |
| data.kind = SwitchImm; |
| data.switchTableIndex = m_inlineStackTop->m_switchRemap[currentInstruction[1].u.operand]; |
| data.setFallThroughBytecodeIndex(m_currentIndex + currentInstruction[2].u.operand); |
| SimpleJumpTable& table = m_codeBlock->switchJumpTable(data.switchTableIndex); |
| for (unsigned i = 0; i < table.branchOffsets.size(); ++i) { |
| if (!table.branchOffsets[i]) |
| continue; |
| unsigned target = m_currentIndex + table.branchOffsets[i]; |
| if (target == data.fallThroughBytecodeIndex()) |
| continue; |
| data.cases.append(SwitchCase::withBytecodeIndex(jsNumber(static_cast<int32_t>(table.min + i)), target)); |
| } |
| m_graph.m_switchData.append(data); |
| addToGraph(Switch, OpInfo(&m_graph.m_switchData.last()), get(VirtualRegister(currentInstruction[3].u.operand))); |
| LAST_OPCODE(op_switch_imm); |
| } |
| |
| case op_switch_char: { |
| SwitchData data; |
| data.kind = SwitchChar; |
| data.switchTableIndex = m_inlineStackTop->m_switchRemap[currentInstruction[1].u.operand]; |
| data.setFallThroughBytecodeIndex(m_currentIndex + currentInstruction[2].u.operand); |
| SimpleJumpTable& table = m_codeBlock->switchJumpTable(data.switchTableIndex); |
| for (unsigned i = 0; i < table.branchOffsets.size(); ++i) { |
| if (!table.branchOffsets[i]) |
| continue; |
| unsigned target = m_currentIndex + table.branchOffsets[i]; |
| if (target == data.fallThroughBytecodeIndex()) |
| continue; |
| data.cases.append( |
| SwitchCase::withBytecodeIndex(LazyJSValue::singleCharacterString(table.min + i), target)); |
| } |
| m_graph.m_switchData.append(data); |
| addToGraph(Switch, OpInfo(&m_graph.m_switchData.last()), get(VirtualRegister(currentInstruction[3].u.operand))); |
| LAST_OPCODE(op_switch_char); |
| } |
| |
| case op_switch_string: { |
| SwitchData data; |
| data.kind = SwitchString; |
| data.switchTableIndex = currentInstruction[1].u.operand; |
| data.setFallThroughBytecodeIndex(m_currentIndex + currentInstruction[2].u.operand); |
| StringJumpTable& table = m_codeBlock->stringSwitchJumpTable(data.switchTableIndex); |
| StringJumpTable::StringOffsetTable::iterator iter; |
| StringJumpTable::StringOffsetTable::iterator end = table.offsetTable.end(); |
| for (iter = table.offsetTable.begin(); iter != end; ++iter) { |
| unsigned target = m_currentIndex + iter->value.branchOffset; |
| if (target == data.fallThroughBytecodeIndex()) |
| continue; |
| data.cases.append( |
| SwitchCase::withBytecodeIndex(LazyJSValue::knownStringImpl(iter->key.get()), target)); |
| } |
| m_graph.m_switchData.append(data); |
| addToGraph(Switch, OpInfo(&m_graph.m_switchData.last()), get(VirtualRegister(currentInstruction[3].u.operand))); |
| LAST_OPCODE(op_switch_string); |
| } |
| |
| case op_ret: |
| flushArgumentsAndCapturedVariables(); |
| if (inlineCallFrame()) { |
| ASSERT(m_inlineStackTop->m_returnValue.isValid()); |
| setDirect(m_inlineStackTop->m_returnValue, get(VirtualRegister(currentInstruction[1].u.operand)), ImmediateSet); |
| m_inlineStackTop->m_didReturn = true; |
| if (m_inlineStackTop->m_unlinkedBlocks.isEmpty()) { |
| // If we're returning from the first block, then we're done parsing. |
| ASSERT(m_inlineStackTop->m_callsiteBlockHead == m_graph.lastBlock()); |
| shouldContinueParsing = false; |
| LAST_OPCODE(op_ret); |
| } else { |
| // If inlining created blocks, and we're doing a return, then we need some |
| // special linking. |
| ASSERT(m_inlineStackTop->m_unlinkedBlocks.last().m_block == m_graph.lastBlock()); |
| m_inlineStackTop->m_unlinkedBlocks.last().m_needsNormalLinking = false; |
| } |
| if (m_currentIndex + OPCODE_LENGTH(op_ret) != m_inlineStackTop->m_codeBlock->instructions().size() || m_inlineStackTop->m_didEarlyReturn) { |
| ASSERT(m_currentIndex + OPCODE_LENGTH(op_ret) <= m_inlineStackTop->m_codeBlock->instructions().size()); |
| addToGraph(Jump, OpInfo(0)); |
| m_inlineStackTop->m_unlinkedBlocks.last().m_needsEarlyReturnLinking = true; |
| m_inlineStackTop->m_didEarlyReturn = true; |
| } |
| LAST_OPCODE(op_ret); |
| } |
| addToGraph(Return, get(VirtualRegister(currentInstruction[1].u.operand))); |
| LAST_OPCODE(op_ret); |
| |
| case op_end: |
| flushArgumentsAndCapturedVariables(); |
| ASSERT(!inlineCallFrame()); |
| addToGraph(Return, get(VirtualRegister(currentInstruction[1].u.operand))); |
| LAST_OPCODE(op_end); |
| |
| case op_throw: |
| addToGraph(Throw, get(VirtualRegister(currentInstruction[1].u.operand))); |
| flushAllArgumentsAndCapturedVariablesInInlineStack(); |
| addToGraph(Unreachable); |
| LAST_OPCODE(op_throw); |
| |
| case op_throw_static_error: |
| addToGraph(ThrowReferenceError); |
| flushAllArgumentsAndCapturedVariablesInInlineStack(); |
| addToGraph(Unreachable); |
| LAST_OPCODE(op_throw_static_error); |
| |
| case op_call: |
| handleCall(currentInstruction, Call, CodeForCall); |
| NEXT_OPCODE(op_call); |
| |
| case op_construct: |
| handleCall(currentInstruction, Construct, CodeForConstruct); |
| NEXT_OPCODE(op_construct); |
| |
| case op_call_varargs: { |
| int result = currentInstruction[1].u.operand; |
| int callee = currentInstruction[2].u.operand; |
| int thisReg = currentInstruction[3].u.operand; |
| int arguments = currentInstruction[4].u.operand; |
| int firstFreeReg = currentInstruction[5].u.operand; |
| |
| ASSERT(inlineCallFrame()); |
| ASSERT_UNUSED(arguments, arguments == m_inlineStackTop->m_codeBlock->argumentsRegister().offset()); |
| ASSERT(!m_inlineStackTop->m_codeBlock->symbolTable()->slowArguments()); |
| |
| addToGraph(CheckArgumentsNotCreated); |
| |
| unsigned argCount = inlineCallFrame()->arguments.size(); |
| |
| // Let's compute the register offset. We start with the last used register, and |
| // then adjust for the things we want in the call frame. |
| int registerOffset = firstFreeReg + 1; |
| registerOffset -= argCount; // We will be passing some arguments. |
| registerOffset -= JSStack::CallFrameHeaderSize; // We will pretend to have a call frame header. |
| |
| // Get the alignment right. |
| registerOffset = -WTF::roundUpToMultipleOf( |
| stackAlignmentRegisters(), |
| -registerOffset); |
| |
| // The bytecode wouldn't have set up the arguments. But we'll do it and make it |
| // look like the bytecode had done it. |
| int nextRegister = registerOffset + JSStack::CallFrameHeaderSize; |
| set(VirtualRegister(nextRegister++), get(VirtualRegister(thisReg)), ImmediateSet); |
| for (unsigned argument = 1; argument < argCount; ++argument) |
| set(VirtualRegister(nextRegister++), get(virtualRegisterForArgument(argument)), ImmediateSet); |
| |
| handleCall( |
| result, Call, CodeForCall, OPCODE_LENGTH(op_call_varargs), |
| callee, argCount, registerOffset); |
| NEXT_OPCODE(op_call_varargs); |
| } |
| |
| case op_jneq_ptr: |
| // Statically speculate for now. It makes sense to let speculate-only jneq_ptr |
| // support simmer for a while before making it more general, since it's |
| // already gnarly enough as it is. |
| ASSERT(pointerIsFunction(currentInstruction[2].u.specialPointer)); |
| addToGraph( |
| CheckFunction, |
| OpInfo(actualPointerFor(m_inlineStackTop->m_codeBlock, currentInstruction[2].u.specialPointer)), |
| get(VirtualRegister(currentInstruction[1].u.operand))); |
| addToGraph(Jump, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jneq_ptr))); |
| LAST_OPCODE(op_jneq_ptr); |
| |
| case op_resolve_scope: { |
| int dst = currentInstruction[1].u.operand; |
| ResolveType resolveType = static_cast<ResolveType>(currentInstruction[3].u.operand); |
| unsigned depth = currentInstruction[4].u.operand; |
| |
| // get_from_scope and put_to_scope depend on this watchpoint forcing OSR exit, so they don't add their own watchpoints. |
| if (needsVarInjectionChecks(resolveType)) |
| addToGraph(VarInjectionWatchpoint); |
| |
| switch (resolveType) { |
| case GlobalProperty: |
| case GlobalVar: |
| case GlobalPropertyWithVarInjectionChecks: |
| case GlobalVarWithVarInjectionChecks: |
| set(VirtualRegister(dst), cellConstant(m_inlineStackTop->m_codeBlock->globalObject())); |
| break; |
| case ClosureVar: |
| case ClosureVarWithVarInjectionChecks: { |
| JSActivation* activation = currentInstruction[5].u.activation.get(); |
| if (activation |
| && activation->symbolTable()->m_functionEnteredOnce.isStillValid()) { |
| addToGraph(FunctionReentryWatchpoint, OpInfo(activation->symbolTable())); |
| set(VirtualRegister(dst), cellConstant(activation)); |
| break; |
| } |
| set(VirtualRegister(dst), |
| getScope(m_inlineStackTop->m_codeBlock->needsActivation(), depth)); |
| break; |
| } |
| case Dynamic: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| NEXT_OPCODE(op_resolve_scope); |
| } |
| |
| case op_get_from_scope: { |
| int dst = currentInstruction[1].u.operand; |
| int scope = currentInstruction[2].u.operand; |
| unsigned identifierNumber = m_inlineStackTop->m_identifierRemap[currentInstruction[3].u.operand]; |
| StringImpl* uid = m_graph.identifiers()[identifierNumber]; |
| ResolveType resolveType = ResolveModeAndType(currentInstruction[4].u.operand).type(); |
| |
| Structure* structure = 0; |
| WatchpointSet* watchpoints = 0; |
| uintptr_t operand; |
| { |
| ConcurrentJITLocker locker(m_inlineStackTop->m_profiledBlock->m_lock); |
| if (resolveType == GlobalVar || resolveType == GlobalVarWithVarInjectionChecks) |
| watchpoints = currentInstruction[5].u.watchpointSet; |
| else |
| structure = currentInstruction[5].u.structure.get(); |
| operand = reinterpret_cast<uintptr_t>(currentInstruction[6].u.pointer); |
| } |
| |
| UNUSED_PARAM(watchpoints); // We will use this in the future. For now we set it as a way of documenting the fact that that's what index 5 is in GlobalVar mode. |
| |
| SpeculatedType prediction = getPrediction(); |
| JSGlobalObject* globalObject = m_inlineStackTop->m_codeBlock->globalObject(); |
| |
| switch (resolveType) { |
| case GlobalProperty: |
| case GlobalPropertyWithVarInjectionChecks: { |
| GetByIdStatus status = GetByIdStatus::computeFor(*m_vm, structure, uid); |
| if (status.takesSlowPath()) { |
| set(VirtualRegister(dst), addToGraph(GetByIdFlush, OpInfo(identifierNumber), OpInfo(prediction), get(VirtualRegister(scope)))); |
| break; |
| } |
| Node* base = cellConstantWithStructureCheck(globalObject, status.structureSet().singletonStructure()); |
| addToGraph(Phantom, get(VirtualRegister(scope))); |
| if (JSValue specificValue = status.specificValue()) |
| set(VirtualRegister(dst), cellConstant(specificValue.asCell())); |
| else |
| set(VirtualRegister(dst), handleGetByOffset(prediction, base, identifierNumber, operand)); |
| break; |
| } |
| case GlobalVar: |
| case GlobalVarWithVarInjectionChecks: { |
| addToGraph(Phantom, get(VirtualRegister(scope))); |
| SymbolTableEntry entry = globalObject->symbolTable()->get(uid); |
| VariableWatchpointSet* watchpointSet = entry.watchpointSet(); |
| JSValue specificValue = |
| watchpointSet ? watchpointSet->inferredValue() : JSValue(); |
| if (!specificValue) { |
| set(VirtualRegister(dst), addToGraph(GetGlobalVar, OpInfo(operand), OpInfo(prediction))); |
| break; |
| } |
| |
| addToGraph(VariableWatchpoint, OpInfo(watchpointSet)); |
| set(VirtualRegister(dst), inferredConstant(specificValue)); |
| break; |
| } |
| case ClosureVar: |
| case ClosureVarWithVarInjectionChecks: { |
| Node* scopeNode = get(VirtualRegister(scope)); |
| if (JSActivation* activation = m_graph.tryGetActivation(scopeNode)) { |
| SymbolTable* symbolTable = activation->symbolTable(); |
| ConcurrentJITLocker locker(symbolTable->m_lock); |
| SymbolTable::Map::iterator iter = symbolTable->find(locker, uid); |
| ASSERT(iter != symbolTable->end(locker)); |
| VariableWatchpointSet* watchpointSet = iter->value.watchpointSet(); |
| if (watchpointSet) { |
| if (JSValue value = watchpointSet->inferredValue()) { |
| addToGraph(Phantom, scopeNode); |
| addToGraph(VariableWatchpoint, OpInfo(watchpointSet)); |
| set(VirtualRegister(dst), inferredConstant(value)); |
| break; |
| } |
| } |
| } |
| set(VirtualRegister(dst), |
| addToGraph(GetClosureVar, OpInfo(operand), OpInfo(prediction), |
| addToGraph(GetClosureRegisters, scopeNode))); |
| break; |
| } |
| case Dynamic: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| NEXT_OPCODE(op_get_from_scope); |
| } |
| |
| case op_put_to_scope: { |
| unsigned scope = currentInstruction[1].u.operand; |
| unsigned identifierNumber = m_inlineStackTop->m_identifierRemap[currentInstruction[2].u.operand]; |
| unsigned value = currentInstruction[3].u.operand; |
| ResolveType resolveType = ResolveModeAndType(currentInstruction[4].u.operand).type(); |
| StringImpl* uid = m_graph.identifiers()[identifierNumber]; |
| |
| Structure* structure = 0; |
| VariableWatchpointSet* watchpoints = 0; |
| uintptr_t operand; |
| { |
| ConcurrentJITLocker locker(m_inlineStackTop->m_profiledBlock->m_lock); |
| if (resolveType == GlobalVar || resolveType == GlobalVarWithVarInjectionChecks) |
| watchpoints = currentInstruction[5].u.watchpointSet; |
| else |
| structure = currentInstruction[5].u.structure.get(); |
| operand = reinterpret_cast<uintptr_t>(currentInstruction[6].u.pointer); |
| } |
| |
| JSGlobalObject* globalObject = m_inlineStackTop->m_codeBlock->globalObject(); |
| |
| switch (resolveType) { |
| case GlobalProperty: |
| case GlobalPropertyWithVarInjectionChecks: { |
| PutByIdStatus status = PutByIdStatus::computeFor(*m_vm, globalObject, structure, uid, false); |
| if (!status.isSimpleReplace()) { |
| addToGraph(PutById, OpInfo(identifierNumber), get(VirtualRegister(scope)), get(VirtualRegister(value))); |
| break; |
| } |
| Node* base = cellConstantWithStructureCheck(globalObject, status.oldStructure()); |
| addToGraph(Phantom, get(VirtualRegister(scope))); |
| handlePutByOffset(base, identifierNumber, static_cast<PropertyOffset>(operand), get(VirtualRegister(value))); |
| // Keep scope alive until after put. |
| addToGraph(Phantom, get(VirtualRegister(scope))); |
| break; |
| } |
| case GlobalVar: |
| case GlobalVarWithVarInjectionChecks: { |
| SymbolTableEntry entry = globalObject->symbolTable()->get(uid); |
| ASSERT(watchpoints == entry.watchpointSet()); |
| Node* valueNode = get(VirtualRegister(value)); |
| addToGraph(PutGlobalVar, OpInfo(operand), valueNode); |
| if (watchpoints->state() != IsInvalidated) |
| addToGraph(NotifyWrite, OpInfo(watchpoints), valueNode); |
| // Keep scope alive until after put. |
| addToGraph(Phantom, get(VirtualRegister(scope))); |
| break; |
| } |
| case ClosureVar: |
| case ClosureVarWithVarInjectionChecks: { |
| Node* scopeNode = get(VirtualRegister(scope)); |
| Node* scopeRegisters = addToGraph(GetClosureRegisters, scopeNode); |
| addToGraph(PutClosureVar, OpInfo(operand), scopeNode, scopeRegisters, get(VirtualRegister(value))); |
| break; |
| } |
| case Dynamic: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| NEXT_OPCODE(op_put_to_scope); |
| } |
| |
| case op_loop_hint: { |
| // Baseline->DFG OSR jumps between loop hints. The DFG assumes that Baseline->DFG |
| // OSR can only happen at basic block boundaries. Assert that these two statements |
| // are compatible. |
| RELEASE_ASSERT(m_currentIndex == blockBegin); |
| |
| // We never do OSR into an inlined code block. That could not happen, since OSR |
| // looks up the code block that is the replacement for the baseline JIT code |
| // block. Hence, machine code block = true code block = not inline code block. |
| if (!m_inlineStackTop->m_caller) |
| m_currentBlock->isOSRTarget = true; |
| |
| addToGraph(LoopHint); |
| |
| if (m_vm->watchdog.isEnabled()) |
| addToGraph(CheckWatchdogTimer); |
| |
| NEXT_OPCODE(op_loop_hint); |
| } |
| |
| case op_init_lazy_reg: { |
| set(VirtualRegister(currentInstruction[1].u.operand), getJSConstantForValue(JSValue())); |
| ASSERT(operandIsLocal(currentInstruction[1].u.operand)); |
| m_graph.m_lazyVars.set(VirtualRegister(currentInstruction[1].u.operand).toLocal()); |
| NEXT_OPCODE(op_init_lazy_reg); |
| } |
| |
| case op_create_activation: { |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CreateActivation, get(VirtualRegister(currentInstruction[1].u.operand)))); |
| NEXT_OPCODE(op_create_activation); |
| } |
| |
| case op_create_arguments: { |
| m_graph.m_hasArguments = true; |
| Node* createArguments = addToGraph(CreateArguments, get(VirtualRegister(currentInstruction[1].u.operand))); |
| set(VirtualRegister(currentInstruction[1].u.operand), createArguments); |
| set(unmodifiedArgumentsRegister(VirtualRegister(currentInstruction[1].u.operand)), createArguments); |
| NEXT_OPCODE(op_create_arguments); |
| } |
| |
| case op_tear_off_activation: { |
| addToGraph(TearOffActivation, get(VirtualRegister(currentInstruction[1].u.operand))); |
| NEXT_OPCODE(op_tear_off_activation); |
| } |
| |
| case op_tear_off_arguments: { |
| m_graph.m_hasArguments = true; |
| addToGraph(TearOffArguments, get(unmodifiedArgumentsRegister(VirtualRegister(currentInstruction[1].u.operand))), get(VirtualRegister(currentInstruction[2].u.operand))); |
| NEXT_OPCODE(op_tear_off_arguments); |
| } |
| |
| case op_get_arguments_length: { |
| m_graph.m_hasArguments = true; |
| set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(GetMyArgumentsLengthSafe)); |
| NEXT_OPCODE(op_get_arguments_length); |
| } |
| |
| case op_get_argument_by_val: { |
| m_graph.m_hasArguments = true; |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| addToGraph( |
| GetMyArgumentByValSafe, OpInfo(0), OpInfo(getPrediction()), |
| get(VirtualRegister(currentInstruction[3].u.operand)))); |
| NEXT_OPCODE(op_get_argument_by_val); |
| } |
| |
| case op_new_func: { |
| if (!currentInstruction[3].u.operand) { |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| addToGraph(NewFunctionNoCheck, OpInfo(currentInstruction[2].u.operand))); |
| } else { |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| addToGraph( |
| NewFunction, |
| OpInfo(currentInstruction[2].u.operand), |
| get(VirtualRegister(currentInstruction[1].u.operand)))); |
| } |
| NEXT_OPCODE(op_new_func); |
| } |
| |
| case op_new_captured_func: { |
| Node* function = addToGraph( |
| NewFunctionNoCheck, OpInfo(currentInstruction[2].u.operand)); |
| if (VariableWatchpointSet* set = currentInstruction[3].u.watchpointSet) |
| addToGraph(NotifyWrite, OpInfo(set), function); |
| set(VirtualRegister(currentInstruction[1].u.operand), function); |
| NEXT_OPCODE(op_new_captured_func); |
| } |
| |
| case op_new_func_exp: { |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| addToGraph(NewFunctionExpression, OpInfo(currentInstruction[2].u.operand))); |
| NEXT_OPCODE(op_new_func_exp); |
| } |
| |
| case op_typeof: { |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| addToGraph(TypeOf, get(VirtualRegister(currentInstruction[2].u.operand)))); |
| NEXT_OPCODE(op_typeof); |
| } |
| |
| case op_to_number: { |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| addToGraph(Identity, Edge(get(VirtualRegister(currentInstruction[2].u.operand)), NumberUse))); |
| NEXT_OPCODE(op_to_number); |
| } |
| |
| case op_in: { |
| set(VirtualRegister(currentInstruction[1].u.operand), |
| addToGraph(In, get(VirtualRegister(currentInstruction[2].u.operand)), get(VirtualRegister(currentInstruction[3].u.operand)))); |
| NEXT_OPCODE(op_in); |
| } |
| |
| default: |
| // Parse failed! This should not happen because the capabilities checker |
| // should have caught it. |
| RELEASE_ASSERT_NOT_REACHED(); |
| return false; |
| } |
| } |
| } |
| |
| void ByteCodeParser::linkBlock(BasicBlock* block, Vector<BasicBlock*>& possibleTargets) |
| { |
| ASSERT(!block->isLinked); |
| ASSERT(!block->isEmpty()); |
| Node* node = block->last(); |
| ASSERT(node->isTerminal()); |
| |
| switch (node->op()) { |
| case Jump: |
| node->setTakenBlock(blockForBytecodeOffset(possibleTargets, node->takenBytecodeOffsetDuringParsing())); |
| break; |
| |
| case Branch: |
| node->setTakenBlock(blockForBytecodeOffset(possibleTargets, node->takenBytecodeOffsetDuringParsing())); |
| node->setNotTakenBlock(blockForBytecodeOffset(possibleTargets, node->notTakenBytecodeOffsetDuringParsing())); |
| break; |
| |
| case Switch: |
| for (unsigned i = node->switchData()->cases.size(); i--;) |
| node->switchData()->cases[i].target = blockForBytecodeOffset(possibleTargets, node->switchData()->cases[i].targetBytecodeIndex()); |
| node->switchData()->fallThrough = blockForBytecodeOffset(possibleTargets, node->switchData()->fallThroughBytecodeIndex()); |
| break; |
| |
| default: |
| break; |
| } |
| |
| #if !ASSERT_DISABLED |
| block->isLinked = true; |
| #endif |
| } |
| |
| void ByteCodeParser::linkBlocks(Vector<UnlinkedBlock>& unlinkedBlocks, Vector<BasicBlock*>& possibleTargets) |
| { |
| for (size_t i = 0; i < unlinkedBlocks.size(); ++i) { |
| if (unlinkedBlocks[i].m_needsNormalLinking) { |
| linkBlock(unlinkedBlocks[i].m_block, possibleTargets); |
| unlinkedBlocks[i].m_needsNormalLinking = false; |
| } |
| } |
| } |
| |
| void ByteCodeParser::buildOperandMapsIfNecessary() |
| { |
| if (m_haveBuiltOperandMaps) |
| return; |
| |
| for (size_t i = 0; i < m_codeBlock->numberOfIdentifiers(); ++i) |
| m_identifierMap.add(m_codeBlock->identifier(i).impl(), i); |
| for (size_t i = 0; i < m_codeBlock->numberOfConstantRegisters(); ++i) { |
| JSValue value = m_codeBlock->getConstant(i + FirstConstantRegisterIndex); |
| if (!value) |
| m_emptyJSValueIndex = i + FirstConstantRegisterIndex; |
| else |
| m_jsValueMap.add(JSValue::encode(value), i + FirstConstantRegisterIndex); |
| } |
| |
| m_haveBuiltOperandMaps = true; |
| } |
| |
| ByteCodeParser::InlineStackEntry::InlineStackEntry( |
| ByteCodeParser* byteCodeParser, |
| CodeBlock* codeBlock, |
| CodeBlock* profiledBlock, |
| BasicBlock* callsiteBlockHead, |
| JSFunction* callee, // Null if this is a closure call. |
| VirtualRegister returnValueVR, |
| VirtualRegister inlineCallFrameStart, |
| int argumentCountIncludingThis, |
| CodeSpecializationKind kind) |
| : m_byteCodeParser(byteCodeParser) |
| , m_codeBlock(codeBlock) |
| , m_profiledBlock(profiledBlock) |
| , m_callsiteBlockHead(callsiteBlockHead) |
| , m_returnValue(returnValueVR) |
| , m_didReturn(false) |
| , m_didEarlyReturn(false) |
| , m_caller(byteCodeParser->m_inlineStackTop) |
| { |
| { |
| ConcurrentJITLocker locker(m_profiledBlock->m_lock); |
| m_lazyOperands.initialize(locker, m_profiledBlock->lazyOperandValueProfiles()); |
| m_exitProfile.initialize(locker, profiledBlock->exitProfile()); |
| |
| // We do this while holding the lock because we want to encourage StructureStubInfo's |
| // to be potentially added to operations and because the profiled block could be in the |
| // middle of LLInt->JIT tier-up in which case we would be adding the info's right now. |
| if (m_profiledBlock->hasBaselineJITProfiling()) |
| m_profiledBlock->getStubInfoMap(locker, m_stubInfos); |
| } |
| |
| m_argumentPositions.resize(argumentCountIncludingThis); |
| for (int i = 0; i < argumentCountIncludingThis; ++i) { |
| byteCodeParser->m_graph.m_argumentPositions.append(ArgumentPosition()); |
| ArgumentPosition* argumentPosition = &byteCodeParser->m_graph.m_argumentPositions.last(); |
| m_argumentPositions[i] = argumentPosition; |
| } |
| |
| // Track the code-block-global exit sites. |
| if (m_exitProfile.hasExitSite(ArgumentsEscaped)) { |
| byteCodeParser->m_graph.m_executablesWhoseArgumentsEscaped.add( |
| codeBlock->ownerExecutable()); |
| } |
| |
| if (m_caller) { |
| // Inline case. |
| ASSERT(codeBlock != byteCodeParser->m_codeBlock); |
| ASSERT(inlineCallFrameStart.isValid()); |
| ASSERT(callsiteBlockHead); |
| |
| m_inlineCallFrame = byteCodeParser->m_graph.m_inlineCallFrames->add(); |
| initializeLazyWriteBarrierForInlineCallFrameExecutable( |
| byteCodeParser->m_graph.m_plan.writeBarriers, |
| m_inlineCallFrame->executable, |
| byteCodeParser->m_codeBlock, |
| m_inlineCallFrame, |
| byteCodeParser->m_codeBlock->ownerExecutable(), |
| codeBlock->ownerExecutable()); |
| m_inlineCallFrame->stackOffset = inlineCallFrameStart.offset() - JSStack::CallFrameHeaderSize; |
| if (callee) { |
| m_inlineCallFrame->calleeRecovery = ValueRecovery::constant(callee); |
| m_inlineCallFrame->isClosureCall = false; |
| } else |
| m_inlineCallFrame->isClosureCall = true; |
| m_inlineCallFrame->caller = byteCodeParser->currentCodeOrigin(); |
| m_inlineCallFrame->arguments.resize(argumentCountIncludingThis); // Set the number of arguments including this, but don't configure the value recoveries, yet. |
| m_inlineCallFrame->isCall = isCall(kind); |
| |
| if (m_inlineCallFrame->caller.inlineCallFrame) |
| m_inlineCallFrame->capturedVars = m_inlineCallFrame->caller.inlineCallFrame->capturedVars; |
| else { |
| for (int i = byteCodeParser->m_codeBlock->m_numVars; i--;) { |
| if (byteCodeParser->m_codeBlock->isCaptured(virtualRegisterForLocal(i))) |
| m_inlineCallFrame->capturedVars.set(i); |
| } |
| } |
| |
| for (int i = argumentCountIncludingThis; i--;) { |
| VirtualRegister argument = virtualRegisterForArgument(i); |
| if (codeBlock->isCaptured(argument)) |
| m_inlineCallFrame->capturedVars.set(VirtualRegister(argument.offset() + m_inlineCallFrame->stackOffset).toLocal()); |
| } |
| for (size_t i = codeBlock->m_numVars; i--;) { |
| VirtualRegister local = virtualRegisterForLocal(i); |
| if (codeBlock->isCaptured(local)) |
| m_inlineCallFrame->capturedVars.set(VirtualRegister(local.offset() + m_inlineCallFrame->stackOffset).toLocal()); |
| } |
| |
| byteCodeParser->buildOperandMapsIfNecessary(); |
| |
| m_identifierRemap.resize(codeBlock->numberOfIdentifiers()); |
| m_constantRemap.resize(codeBlock->numberOfConstantRegisters()); |
| m_constantBufferRemap.resize(codeBlock->numberOfConstantBuffers()); |
| m_switchRemap.resize(codeBlock->numberOfSwitchJumpTables()); |
| |
| for (size_t i = 0; i < codeBlock->numberOfIdentifiers(); ++i) { |
| StringImpl* rep = codeBlock->identifier(i).impl(); |
| BorrowedIdentifierMap::AddResult result = byteCodeParser->m_identifierMap.add(rep, byteCodeParser->m_graph.identifiers().numberOfIdentifiers()); |
| if (result.isNewEntry) |
| byteCodeParser->m_graph.identifiers().addLazily(rep); |
| m_identifierRemap[i] = result.iterator->value; |
| } |
| for (size_t i = 0; i < codeBlock->numberOfConstantRegisters(); ++i) { |
| JSValue value = codeBlock->getConstant(i + FirstConstantRegisterIndex); |
| if (!value) { |
| if (byteCodeParser->m_emptyJSValueIndex == UINT_MAX) { |
| byteCodeParser->m_emptyJSValueIndex = byteCodeParser->m_codeBlock->numberOfConstantRegisters() + FirstConstantRegisterIndex; |
| byteCodeParser->addConstant(JSValue()); |
| byteCodeParser->m_constants.append(ConstantRecord()); |
| } |
| m_constantRemap[i] = byteCodeParser->m_emptyJSValueIndex; |
| continue; |
| } |
| JSValueMap::AddResult result = byteCodeParser->m_jsValueMap.add(JSValue::encode(value), byteCodeParser->m_codeBlock->numberOfConstantRegisters() + FirstConstantRegisterIndex); |
| if (result.isNewEntry) { |
| byteCodeParser->addConstant(value); |
| byteCodeParser->m_constants.append(ConstantRecord()); |
| } |
| m_constantRemap[i] = result.iterator->value; |
| } |
| for (unsigned i = 0; i < codeBlock->numberOfConstantBuffers(); ++i) { |
| // If we inline the same code block multiple times, we don't want to needlessly |
| // duplicate its constant buffers. |
| HashMap<ConstantBufferKey, unsigned>::iterator iter = |
| byteCodeParser->m_constantBufferCache.find(ConstantBufferKey(codeBlock, i)); |
| if (iter != byteCodeParser->m_constantBufferCache.end()) { |
| m_constantBufferRemap[i] = iter->value; |
| continue; |
| } |
| Vector<JSValue>& buffer = codeBlock->constantBufferAsVector(i); |
| unsigned newIndex = byteCodeParser->m_codeBlock->addConstantBuffer(buffer); |
| m_constantBufferRemap[i] = newIndex; |
| byteCodeParser->m_constantBufferCache.add(ConstantBufferKey(codeBlock, i), newIndex); |
| } |
| for (unsigned i = 0; i < codeBlock->numberOfSwitchJumpTables(); ++i) { |
| m_switchRemap[i] = byteCodeParser->m_codeBlock->numberOfSwitchJumpTables(); |
| byteCodeParser->m_codeBlock->addSwitchJumpTable() = codeBlock->switchJumpTable(i); |
| } |
| m_callsiteBlockHeadNeedsLinking = true; |
| } else { |
| // Machine code block case. |
| ASSERT(codeBlock == byteCodeParser->m_codeBlock); |
| ASSERT(!callee); |
| ASSERT(!returnValueVR.isValid()); |
| ASSERT(!inlineCallFrameStart.isValid()); |
| ASSERT(!callsiteBlockHead); |
| |
| m_inlineCallFrame = 0; |
| |
| m_identifierRemap.resize(codeBlock->numberOfIdentifiers()); |
| m_constantRemap.resize(codeBlock->numberOfConstantRegisters()); |
| m_constantBufferRemap.resize(codeBlock->numberOfConstantBuffers()); |
| m_switchRemap.resize(codeBlock->numberOfSwitchJumpTables()); |
| for (size_t i = 0; i < codeBlock->numberOfIdentifiers(); ++i) |
| m_identifierRemap[i] = i; |
| for (size_t i = 0; i < codeBlock->numberOfConstantRegisters(); ++i) |
| m_constantRemap[i] = i + FirstConstantRegisterIndex; |
| for (size_t i = 0; i < codeBlock->numberOfConstantBuffers(); ++i) |
| m_constantBufferRemap[i] = i; |
| for (size_t i = 0; i < codeBlock->numberOfSwitchJumpTables(); ++i) |
| m_switchRemap[i] = i; |
| m_callsiteBlockHeadNeedsLinking = false; |
| } |
| |
| for (size_t i = 0; i < m_constantRemap.size(); ++i) |
| ASSERT(m_constantRemap[i] >= static_cast<unsigned>(FirstConstantRegisterIndex)); |
| |
| byteCodeParser->m_inlineStackTop = this; |
| } |
| |
| void ByteCodeParser::parseCodeBlock() |
| { |
| CodeBlock* codeBlock = m_inlineStackTop->m_codeBlock; |
| |
| if (m_graph.compilation()) { |
| m_graph.compilation()->addProfiledBytecodes( |
| *m_vm->m_perBytecodeProfiler, m_inlineStackTop->m_profiledBlock); |
| } |
| |
| bool shouldDumpBytecode = Options::dumpBytecodeAtDFGTime(); |
| if (shouldDumpBytecode) { |
| dataLog("Parsing ", *codeBlock); |
| if (inlineCallFrame()) { |
| dataLog( |
| " for inlining at ", CodeBlockWithJITType(m_codeBlock, JITCode::DFGJIT), |
| " ", inlineCallFrame()->caller); |
| } |
| dataLog( |
| ": captureCount = ", codeBlock->symbolTable() ? codeBlock->symbolTable()->captureCount() : 0, |
| ", needsActivation = ", codeBlock->needsActivation(), |
| ", isStrictMode = ", codeBlock->ownerExecutable()->isStrictMode(), "\n"); |
| codeBlock->baselineVersion()->dumpBytecode(); |
| } |
| |
| Vector<unsigned, 32> jumpTargets; |
| computePreciseJumpTargets(codeBlock, jumpTargets); |
| if (Options::dumpBytecodeAtDFGTime()) { |
| dataLog("Jump targets: "); |
| CommaPrinter comma; |
| for (unsigned i = 0; i < jumpTargets.size(); ++i) |
| dataLog(comma, jumpTargets[i]); |
| dataLog("\n"); |
| } |
| |
| for (unsigned jumpTargetIndex = 0; jumpTargetIndex <= jumpTargets.size(); ++jumpTargetIndex) { |
| // The maximum bytecode offset to go into the current basicblock is either the next jump target, or the end of the instructions. |
| unsigned limit = jumpTargetIndex < jumpTargets.size() ? jumpTargets[jumpTargetIndex] : codeBlock->instructions().size(); |
| ASSERT(m_currentIndex < limit); |
| |
| // Loop until we reach the current limit (i.e. next jump target). |
| do { |
| if (!m_currentBlock) { |
| // Check if we can use the last block. |
| if (m_graph.numBlocks() && m_graph.lastBlock()->isEmpty()) { |
| // This must be a block belonging to us. |
| ASSERT(m_inlineStackTop->m_unlinkedBlocks.last().m_block == m_graph.lastBlock()); |
| // Either the block is linkable or it isn't. If it's linkable then it's the last |
| // block in the blockLinkingTargets list. If it's not then the last block will |
| // have a lower bytecode index that the one we're about to give to this block. |
| if (m_inlineStackTop->m_blockLinkingTargets.isEmpty() || m_inlineStackTop->m_blockLinkingTargets.last()->bytecodeBegin != m_currentIndex) { |
| // Make the block linkable. |
| ASSERT(m_inlineStackTop->m_blockLinkingTargets.isEmpty() || m_inlineStackTop->m_blockLinkingTargets.last()->bytecodeBegin < m_currentIndex); |
| m_inlineStackTop->m_blockLinkingTargets.append(m_graph.lastBlock()); |
| } |
| // Change its bytecode begin and continue. |
| m_currentBlock = m_graph.lastBlock(); |
| m_currentBlock->bytecodeBegin = m_currentIndex; |
| } else { |
| RefPtr<BasicBlock> block = adoptRef(new BasicBlock(m_currentIndex, m_numArguments, m_numLocals)); |
| m_currentBlock = block.get(); |
| // This assertion checks two things: |
| // 1) If the bytecodeBegin is greater than currentIndex, then something has gone |
| // horribly wrong. So, we're probably generating incorrect code. |
| // 2) If the bytecodeBegin is equal to the currentIndex, then we failed to do |
| // a peephole coalescing of this block in the if statement above. So, we're |
| // generating suboptimal code and leaving more work for the CFG simplifier. |
| ASSERT(m_inlineStackTop->m_unlinkedBlocks.isEmpty() || m_inlineStackTop->m_unlinkedBlocks.last().m_block->bytecodeBegin < m_currentIndex); |
| m_inlineStackTop->m_unlinkedBlocks.append(UnlinkedBlock(block.get())); |
| m_inlineStackTop->m_blockLinkingTargets.append(block.get()); |
| // The first block is definitely an OSR target. |
| if (!m_graph.numBlocks()) |
| block->isOSRTarget = true; |
| m_graph.appendBlock(block); |
| prepareToParseBlock(); |
| } |
| } |
| |
| bool shouldContinueParsing = parseBlock(limit); |
| |
| // We should not have gone beyond the limit. |
| ASSERT(m_currentIndex <= limit); |
| |
| // We should have planted a terminal, or we just gave up because |
| // we realized that the jump target information is imprecise, or we |
| // are at the end of an inline function, or we realized that we |
| // should stop parsing because there was a return in the first |
| // basic block. |
| ASSERT(m_currentBlock->isEmpty() || m_currentBlock->last()->isTerminal() || (m_currentIndex == codeBlock->instructions().size() && inlineCallFrame()) || !shouldContinueParsing); |
| |
| if (!shouldContinueParsing) |
| return; |
| |
| m_currentBlock = 0; |
| } while (m_currentIndex < limit); |
| } |
| |
| // Should have reached the end of the instructions. |
| ASSERT(m_currentIndex == codeBlock->instructions().size()); |
| } |
| |
| bool ByteCodeParser::parse() |
| { |
| // Set during construction. |
| ASSERT(!m_currentIndex); |
| |
| m_dfgCodeBlock = m_graph.m_plan.profiledDFGCodeBlock.get(); |
| if (isFTL(m_graph.m_plan.mode) && m_dfgCodeBlock) { |
| if (Options::enablePolyvariantCallInlining()) |
| CallLinkStatus::computeDFGStatuses(m_dfgCodeBlock, m_callContextMap); |
| if (Options::enablePolyvariantByIdInlining()) |
| m_dfgCodeBlock->getStubInfoMap(m_dfgStubInfos); |
| } |
| |
| if (m_codeBlock->captureCount()) { |
| SymbolTable* symbolTable = m_codeBlock->symbolTable(); |
| ConcurrentJITLocker locker(symbolTable->m_lock); |
| SymbolTable::Map::iterator iter = symbolTable->begin(locker); |
| SymbolTable::Map::iterator end = symbolTable->end(locker); |
| for (; iter != end; ++iter) { |
| VariableWatchpointSet* set = iter->value.watchpointSet(); |
| if (!set) |
| continue; |
| size_t index = static_cast<size_t>(VirtualRegister(iter->value.getIndex()).toLocal()); |
| while (m_localWatchpoints.size() <= index) |
| m_localWatchpoints.append(nullptr); |
| m_localWatchpoints[index] = set; |
| } |
| } |
| |
| InlineStackEntry inlineStackEntry( |
| this, m_codeBlock, m_profiledBlock, 0, 0, VirtualRegister(), VirtualRegister(), |
| m_codeBlock->numParameters(), CodeForCall); |
| |
| parseCodeBlock(); |
| |
| linkBlocks(inlineStackEntry.m_unlinkedBlocks, inlineStackEntry.m_blockLinkingTargets); |
| m_graph.determineReachability(); |
| m_graph.killUnreachableBlocks(); |
| |
| for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) { |
| BasicBlock* block = m_graph.block(blockIndex); |
| if (!block) |
| continue; |
| ASSERT(block->variablesAtHead.numberOfLocals() == m_graph.block(0)->variablesAtHead.numberOfLocals()); |
| ASSERT(block->variablesAtHead.numberOfArguments() == m_graph.block(0)->variablesAtHead.numberOfArguments()); |
| ASSERT(block->variablesAtTail.numberOfLocals() == m_graph.block(0)->variablesAtHead.numberOfLocals()); |
| ASSERT(block->variablesAtTail.numberOfArguments() == m_graph.block(0)->variablesAtHead.numberOfArguments()); |
| } |
| |
| m_graph.m_localVars = m_numLocals; |
| m_graph.m_parameterSlots = m_parameterSlots; |
| |
| return true; |
| } |
| |
| bool parse(Graph& graph) |
| { |
| SamplingRegion samplingRegion("DFG Parsing"); |
| return ByteCodeParser(graph).parse(); |
| } |
| |
| } } // namespace JSC::DFG |
| |
| #endif |