| /* |
| * Copyright (C) 2008 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "JIT.h" |
| |
| #if ENABLE(JIT) |
| |
| #include "CodeBlock.h" |
| #include "JITInlineMethods.h" |
| #include "JITStubCall.h" |
| #include "JSArray.h" |
| #include "JSFunction.h" |
| #include "Interpreter.h" |
| #include "ResultType.h" |
| #include "SamplingTool.h" |
| |
| #ifndef NDEBUG |
| #include <stdio.h> |
| #endif |
| |
| |
| using namespace std; |
| |
| namespace JSC { |
| |
| void JIT::emit_op_lshift(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| emitGetVirtualRegisters(op1, regT0, op2, regT2); |
| // FIXME: would we be better using 'emitJumpSlowCaseIfNotImmediateIntegers'? - we *probably* ought to be consistent. |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT2); |
| emitFastArithImmToInt(regT0); |
| emitFastArithImmToInt(regT2); |
| #if !PLATFORM(X86) |
| // Mask with 0x1f as per ecma-262 11.7.2 step 7. |
| // On 32-bit x86 this is not necessary, since the shift anount is implicitly masked in the instruction. |
| and32(Imm32(0x1f), regT2); |
| #endif |
| lshift32(regT2, regT0); |
| #if !USE(ALTERNATE_JSIMMEDIATE) |
| addSlowCase(branchAdd32(Overflow, regT0, regT0)); |
| signExtend32ToPtr(regT0, regT0); |
| #endif |
| emitFastArithReTagImmediate(regT0, regT0); |
| emitPutVirtualRegister(result); |
| } |
| |
| void JIT::emitSlow_op_lshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| #if USE(ALTERNATE_JSIMMEDIATE) |
| UNUSED_PARAM(op1); |
| UNUSED_PARAM(op2); |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| #else |
| // If we are limited to 32-bit immediates there is a third slow case, which required the operands to have been reloaded. |
| Jump notImm1 = getSlowCase(iter); |
| Jump notImm2 = getSlowCase(iter); |
| linkSlowCase(iter); |
| emitGetVirtualRegisters(op1, regT0, op2, regT2); |
| notImm1.link(this); |
| notImm2.link(this); |
| #endif |
| JITStubCall stubCall(this, JITStubs::cti_op_lshift); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(regT2); |
| stubCall.call(result); |
| } |
| |
| void JIT::emit_op_rshift(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| if (isOperandConstantImmediateInt(op2)) { |
| // isOperandConstantImmediateInt(op2) => 1 SlowCase |
| emitGetVirtualRegister(op1, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| // Mask with 0x1f as per ecma-262 11.7.2 step 7. |
| #if USE(ALTERNATE_JSIMMEDIATE) |
| rshift32(Imm32(getConstantOperandImmediateInt(op2) & 0x1f), regT0); |
| #else |
| rshiftPtr(Imm32(getConstantOperandImmediateInt(op2) & 0x1f), regT0); |
| #endif |
| } else { |
| emitGetVirtualRegisters(op1, regT0, op2, regT2); |
| if (supportsFloatingPointTruncate()) { |
| Jump lhsIsInt = emitJumpIfImmediateInteger(regT0); |
| #if USE(ALTERNATE_JSIMMEDIATE) |
| // supportsFloatingPoint() && USE(ALTERNATE_JSIMMEDIATE) => 3 SlowCases |
| addSlowCase(emitJumpIfNotImmediateNumber(regT0)); |
| addPtr(tagTypeNumberRegister, regT0); |
| movePtrToDouble(regT0, fpRegT0); |
| addSlowCase(branchTruncateDoubleToInt32(fpRegT0, regT0)); |
| #else |
| // supportsFloatingPoint() && !USE(ALTERNATE_JSIMMEDIATE) => 5 SlowCases (of which 1 IfNotJSCell) |
| emitJumpSlowCaseIfNotJSCell(regT0, op1); |
| addSlowCase(checkStructure(regT0, m_globalData->numberStructure.get())); |
| loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); |
| addSlowCase(branchTruncateDoubleToInt32(fpRegT0, regT0)); |
| addSlowCase(branchAdd32(Overflow, regT0, regT0)); |
| #endif |
| lhsIsInt.link(this); |
| emitJumpSlowCaseIfNotImmediateInteger(regT2); |
| } else { |
| // !supportsFloatingPoint() => 2 SlowCases |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT2); |
| } |
| emitFastArithImmToInt(regT2); |
| #if !PLATFORM(X86) |
| // Mask with 0x1f as per ecma-262 11.7.2 step 7. |
| // On 32-bit x86 this is not necessary, since the shift anount is implicitly masked in the instruction. |
| and32(Imm32(0x1f), regT2); |
| #endif |
| #if USE(ALTERNATE_JSIMMEDIATE) |
| rshift32(regT2, regT0); |
| #else |
| rshiftPtr(regT2, regT0); |
| #endif |
| } |
| #if USE(ALTERNATE_JSIMMEDIATE) |
| emitFastArithIntToImmNoCheck(regT0, regT0); |
| #else |
| orPtr(Imm32(JSImmediate::TagTypeNumber), regT0); |
| #endif |
| emitPutVirtualRegister(result); |
| } |
| |
| void JIT::emitSlow_op_rshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| JITStubCall stubCall(this, JITStubs::cti_op_rshift); |
| |
| if (isOperandConstantImmediateInt(op2)) { |
| linkSlowCase(iter); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(op2, regT2); |
| } else { |
| if (supportsFloatingPointTruncate()) { |
| #if USE(ALTERNATE_JSIMMEDIATE) |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| #else |
| linkSlowCaseIfNotJSCell(iter, op1); |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| #endif |
| // We're reloading op1 to regT0 as we can no longer guarantee that |
| // we have not munged the operand. It may have already been shifted |
| // correctly, but it still will not have been tagged. |
| stubCall.addArgument(op1, regT0); |
| stubCall.addArgument(regT2); |
| } else { |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(regT2); |
| } |
| } |
| |
| stubCall.call(result); |
| } |
| |
| void JIT::emit_op_jnless(Instruction* currentInstruction) |
| { |
| unsigned op1 = currentInstruction[1].u.operand; |
| unsigned op2 = currentInstruction[2].u.operand; |
| unsigned target = currentInstruction[3].u.operand; |
| |
| // We generate inline code for the following cases in the fast path: |
| // - int immediate to constant int immediate |
| // - constant int immediate to int immediate |
| // - int immediate to int immediate |
| |
| if (isOperandConstantImmediateInt(op2)) { |
| emitGetVirtualRegister(op1, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| #if USE(ALTERNATE_JSIMMEDIATE) |
| int32_t op2imm = getConstantOperandImmediateInt(op2); |
| #else |
| int32_t op2imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2))); |
| #endif |
| addJump(branch32(GreaterThanOrEqual, regT0, Imm32(op2imm)), target + 3); |
| } else if (isOperandConstantImmediateInt(op1)) { |
| emitGetVirtualRegister(op2, regT1); |
| emitJumpSlowCaseIfNotImmediateInteger(regT1); |
| #if USE(ALTERNATE_JSIMMEDIATE) |
| int32_t op1imm = getConstantOperandImmediateInt(op1); |
| #else |
| int32_t op1imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op1))); |
| #endif |
| addJump(branch32(LessThanOrEqual, regT1, Imm32(op1imm)), target + 3); |
| } else { |
| emitGetVirtualRegisters(op1, regT0, op2, regT1); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT1); |
| |
| addJump(branch32(GreaterThanOrEqual, regT0, regT1), target + 3); |
| } |
| } |
| |
| void JIT::emitSlow_op_jnless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned op1 = currentInstruction[1].u.operand; |
| unsigned op2 = currentInstruction[2].u.operand; |
| unsigned target = currentInstruction[3].u.operand; |
| |
| // We generate inline code for the following cases in the slow path: |
| // - floating-point number to constant int immediate |
| // - constant int immediate to floating-point number |
| // - floating-point number to floating-point number. |
| |
| if (isOperandConstantImmediateInt(op2)) { |
| linkSlowCase(iter); |
| |
| if (supportsFloatingPoint()) { |
| #if USE(ALTERNATE_JSIMMEDIATE) |
| Jump fail1 = emitJumpIfNotImmediateNumber(regT0); |
| addPtr(tagTypeNumberRegister, regT0); |
| movePtrToDouble(regT0, fpRegT0); |
| #else |
| Jump fail1; |
| if (!m_codeBlock->isKnownNotImmediate(op1)) |
| fail1 = emitJumpIfNotJSCell(regT0); |
| |
| Jump fail2 = checkStructure(regT0, m_globalData->numberStructure.get()); |
| loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); |
| #endif |
| |
| int32_t op2imm = getConstantOperand(op2).getInt32Fast();; |
| |
| move(Imm32(op2imm), regT1); |
| convertInt32ToDouble(regT1, fpRegT1); |
| |
| emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqual, fpRegT1, fpRegT0), target + 3); |
| |
| emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless)); |
| |
| #if USE(ALTERNATE_JSIMMEDIATE) |
| fail1.link(this); |
| #else |
| if (!m_codeBlock->isKnownNotImmediate(op1)) |
| fail1.link(this); |
| fail2.link(this); |
| #endif |
| } |
| |
| JITStubCall stubCall(this, JITStubs::cti_op_jless); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(op2, regT2); |
| stubCall.call(); |
| emitJumpSlowToHot(branchTest32(Zero, regT0), target + 3); |
| |
| } else if (isOperandConstantImmediateInt(op1)) { |
| linkSlowCase(iter); |
| |
| if (supportsFloatingPoint()) { |
| #if USE(ALTERNATE_JSIMMEDIATE) |
| Jump fail1 = emitJumpIfNotImmediateNumber(regT1); |
| addPtr(tagTypeNumberRegister, regT1); |
| movePtrToDouble(regT1, fpRegT1); |
| #else |
| Jump fail1; |
| if (!m_codeBlock->isKnownNotImmediate(op2)) |
| fail1 = emitJumpIfNotJSCell(regT1); |
| |
| Jump fail2 = checkStructure(regT1, m_globalData->numberStructure.get()); |
| loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1); |
| #endif |
| |
| int32_t op1imm = getConstantOperand(op1).getInt32Fast();; |
| |
| move(Imm32(op1imm), regT0); |
| convertInt32ToDouble(regT0, fpRegT0); |
| |
| emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqual, fpRegT1, fpRegT0), target + 3); |
| |
| emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless)); |
| |
| #if USE(ALTERNATE_JSIMMEDIATE) |
| fail1.link(this); |
| #else |
| if (!m_codeBlock->isKnownNotImmediate(op2)) |
| fail1.link(this); |
| fail2.link(this); |
| #endif |
| } |
| |
| JITStubCall stubCall(this, JITStubs::cti_op_jless); |
| stubCall.addArgument(op1, regT2); |
| stubCall.addArgument(regT1); |
| stubCall.call(); |
| emitJumpSlowToHot(branchTest32(Zero, regT0), target + 3); |
| |
| } else { |
| linkSlowCase(iter); |
| |
| if (supportsFloatingPoint()) { |
| #if USE(ALTERNATE_JSIMMEDIATE) |
| Jump fail1 = emitJumpIfNotImmediateNumber(regT0); |
| Jump fail2 = emitJumpIfNotImmediateNumber(regT1); |
| Jump fail3 = emitJumpIfImmediateInteger(regT1); |
| addPtr(tagTypeNumberRegister, regT0); |
| addPtr(tagTypeNumberRegister, regT1); |
| movePtrToDouble(regT0, fpRegT0); |
| movePtrToDouble(regT1, fpRegT1); |
| #else |
| Jump fail1; |
| if (!m_codeBlock->isKnownNotImmediate(op1)) |
| fail1 = emitJumpIfNotJSCell(regT0); |
| |
| Jump fail2; |
| if (!m_codeBlock->isKnownNotImmediate(op2)) |
| fail2 = emitJumpIfNotJSCell(regT1); |
| |
| Jump fail3 = checkStructure(regT0, m_globalData->numberStructure.get()); |
| Jump fail4 = checkStructure(regT1, m_globalData->numberStructure.get()); |
| loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); |
| loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1); |
| #endif |
| |
| emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqual, fpRegT1, fpRegT0), target + 3); |
| |
| emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless)); |
| |
| #if USE(ALTERNATE_JSIMMEDIATE) |
| fail1.link(this); |
| fail2.link(this); |
| fail3.link(this); |
| #else |
| if (!m_codeBlock->isKnownNotImmediate(op1)) |
| fail1.link(this); |
| if (!m_codeBlock->isKnownNotImmediate(op2)) |
| fail2.link(this); |
| fail3.link(this); |
| fail4.link(this); |
| #endif |
| } |
| |
| linkSlowCase(iter); |
| JITStubCall stubCall(this, JITStubs::cti_op_jless); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(regT1); |
| stubCall.call(); |
| emitJumpSlowToHot(branchTest32(Zero, regT0), target + 3); |
| } |
| } |
| |
| void JIT::emit_op_jnlesseq(Instruction* currentInstruction) |
| { |
| unsigned op1 = currentInstruction[1].u.operand; |
| unsigned op2 = currentInstruction[2].u.operand; |
| unsigned target = currentInstruction[3].u.operand; |
| |
| // We generate inline code for the following cases in the fast path: |
| // - int immediate to constant int immediate |
| // - constant int immediate to int immediate |
| // - int immediate to int immediate |
| |
| if (isOperandConstantImmediateInt(op2)) { |
| emitGetVirtualRegister(op1, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| #if USE(ALTERNATE_JSIMMEDIATE) |
| int32_t op2imm = getConstantOperandImmediateInt(op2); |
| #else |
| int32_t op2imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2))); |
| #endif |
| addJump(branch32(GreaterThan, regT0, Imm32(op2imm)), target + 3); |
| } else if (isOperandConstantImmediateInt(op1)) { |
| emitGetVirtualRegister(op2, regT1); |
| emitJumpSlowCaseIfNotImmediateInteger(regT1); |
| #if USE(ALTERNATE_JSIMMEDIATE) |
| int32_t op1imm = getConstantOperandImmediateInt(op1); |
| #else |
| int32_t op1imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op1))); |
| #endif |
| addJump(branch32(LessThan, regT1, Imm32(op1imm)), target + 3); |
| } else { |
| emitGetVirtualRegisters(op1, regT0, op2, regT1); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT1); |
| |
| addJump(branch32(GreaterThan, regT0, regT1), target + 3); |
| } |
| } |
| |
| void JIT::emitSlow_op_jnlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned op1 = currentInstruction[1].u.operand; |
| unsigned op2 = currentInstruction[2].u.operand; |
| unsigned target = currentInstruction[3].u.operand; |
| |
| // We generate inline code for the following cases in the slow path: |
| // - floating-point number to constant int immediate |
| // - constant int immediate to floating-point number |
| // - floating-point number to floating-point number. |
| |
| if (isOperandConstantImmediateInt(op2)) { |
| linkSlowCase(iter); |
| |
| if (supportsFloatingPoint()) { |
| #if USE(ALTERNATE_JSIMMEDIATE) |
| Jump fail1 = emitJumpIfNotImmediateNumber(regT0); |
| addPtr(tagTypeNumberRegister, regT0); |
| movePtrToDouble(regT0, fpRegT0); |
| #else |
| Jump fail1; |
| if (!m_codeBlock->isKnownNotImmediate(op1)) |
| fail1 = emitJumpIfNotJSCell(regT0); |
| |
| Jump fail2 = checkStructure(regT0, m_globalData->numberStructure.get()); |
| loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); |
| #endif |
| |
| int32_t op2imm = getConstantOperand(op2).getInt32Fast();; |
| |
| move(Imm32(op2imm), regT1); |
| convertInt32ToDouble(regT1, fpRegT1); |
| |
| emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT1, fpRegT0), target + 3); |
| |
| emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq)); |
| |
| #if USE(ALTERNATE_JSIMMEDIATE) |
| fail1.link(this); |
| #else |
| if (!m_codeBlock->isKnownNotImmediate(op1)) |
| fail1.link(this); |
| fail2.link(this); |
| #endif |
| } |
| |
| JITStubCall stubCall(this, JITStubs::cti_op_jlesseq); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(op2, regT2); |
| stubCall.call(); |
| emitJumpSlowToHot(branchTest32(Zero, regT0), target + 3); |
| |
| } else if (isOperandConstantImmediateInt(op1)) { |
| linkSlowCase(iter); |
| |
| if (supportsFloatingPoint()) { |
| #if USE(ALTERNATE_JSIMMEDIATE) |
| Jump fail1 = emitJumpIfNotImmediateNumber(regT1); |
| addPtr(tagTypeNumberRegister, regT1); |
| movePtrToDouble(regT1, fpRegT1); |
| #else |
| Jump fail1; |
| if (!m_codeBlock->isKnownNotImmediate(op2)) |
| fail1 = emitJumpIfNotJSCell(regT1); |
| |
| Jump fail2 = checkStructure(regT1, m_globalData->numberStructure.get()); |
| loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1); |
| #endif |
| |
| int32_t op1imm = getConstantOperand(op1).getInt32Fast();; |
| |
| move(Imm32(op1imm), regT0); |
| convertInt32ToDouble(regT0, fpRegT0); |
| |
| emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT1, fpRegT0), target + 3); |
| |
| emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq)); |
| |
| #if USE(ALTERNATE_JSIMMEDIATE) |
| fail1.link(this); |
| #else |
| if (!m_codeBlock->isKnownNotImmediate(op2)) |
| fail1.link(this); |
| fail2.link(this); |
| #endif |
| } |
| |
| JITStubCall stubCall(this, JITStubs::cti_op_jlesseq); |
| stubCall.addArgument(op1, regT2); |
| stubCall.addArgument(regT1); |
| stubCall.call(); |
| emitJumpSlowToHot(branchTest32(Zero, regT0), target + 3); |
| |
| } else { |
| linkSlowCase(iter); |
| |
| if (supportsFloatingPoint()) { |
| #if USE(ALTERNATE_JSIMMEDIATE) |
| Jump fail1 = emitJumpIfNotImmediateNumber(regT0); |
| Jump fail2 = emitJumpIfNotImmediateNumber(regT1); |
| Jump fail3 = emitJumpIfImmediateInteger(regT1); |
| addPtr(tagTypeNumberRegister, regT0); |
| addPtr(tagTypeNumberRegister, regT1); |
| movePtrToDouble(regT0, fpRegT0); |
| movePtrToDouble(regT1, fpRegT1); |
| #else |
| Jump fail1; |
| if (!m_codeBlock->isKnownNotImmediate(op1)) |
| fail1 = emitJumpIfNotJSCell(regT0); |
| |
| Jump fail2; |
| if (!m_codeBlock->isKnownNotImmediate(op2)) |
| fail2 = emitJumpIfNotJSCell(regT1); |
| |
| Jump fail3 = checkStructure(regT0, m_globalData->numberStructure.get()); |
| Jump fail4 = checkStructure(regT1, m_globalData->numberStructure.get()); |
| loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); |
| loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1); |
| #endif |
| |
| emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT1, fpRegT0), target + 3); |
| |
| emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq)); |
| |
| #if USE(ALTERNATE_JSIMMEDIATE) |
| fail1.link(this); |
| fail2.link(this); |
| fail3.link(this); |
| #else |
| if (!m_codeBlock->isKnownNotImmediate(op1)) |
| fail1.link(this); |
| if (!m_codeBlock->isKnownNotImmediate(op2)) |
| fail2.link(this); |
| fail3.link(this); |
| fail4.link(this); |
| #endif |
| } |
| |
| linkSlowCase(iter); |
| JITStubCall stubCall(this, JITStubs::cti_op_jlesseq); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(regT1); |
| stubCall.call(); |
| emitJumpSlowToHot(branchTest32(Zero, regT0), target + 3); |
| } |
| } |
| |
| void JIT::emit_op_bitand(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| if (isOperandConstantImmediateInt(op1)) { |
| emitGetVirtualRegister(op2, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| #if USE(ALTERNATE_JSIMMEDIATE) |
| int32_t imm = getConstantOperandImmediateInt(op1); |
| andPtr(Imm32(imm), regT0); |
| if (imm >= 0) |
| emitFastArithIntToImmNoCheck(regT0, regT0); |
| #else |
| andPtr(Imm32(static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op1)))), regT0); |
| #endif |
| } else if (isOperandConstantImmediateInt(op2)) { |
| emitGetVirtualRegister(op1, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| #if USE(ALTERNATE_JSIMMEDIATE) |
| int32_t imm = getConstantOperandImmediateInt(op2); |
| andPtr(Imm32(imm), regT0); |
| if (imm >= 0) |
| emitFastArithIntToImmNoCheck(regT0, regT0); |
| #else |
| andPtr(Imm32(static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2)))), regT0); |
| #endif |
| } else { |
| emitGetVirtualRegisters(op1, regT0, op2, regT1); |
| andPtr(regT1, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| } |
| emitPutVirtualRegister(result); |
| } |
| |
| void JIT::emitSlow_op_bitand(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| linkSlowCase(iter); |
| if (isOperandConstantImmediateInt(op1)) { |
| JITStubCall stubCall(this, JITStubs::cti_op_bitand); |
| stubCall.addArgument(op1, regT2); |
| stubCall.addArgument(regT0); |
| stubCall.call(result); |
| } else if (isOperandConstantImmediateInt(op2)) { |
| JITStubCall stubCall(this, JITStubs::cti_op_bitand); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(op2, regT2); |
| stubCall.call(result); |
| } else { |
| JITStubCall stubCall(this, JITStubs::cti_op_bitand); |
| stubCall.addArgument(op1, regT2); |
| stubCall.addArgument(regT1); |
| stubCall.call(result); |
| } |
| } |
| |
| void JIT::emit_op_post_inc(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned srcDst = currentInstruction[2].u.operand; |
| |
| emitGetVirtualRegister(srcDst, regT0); |
| move(regT0, regT1); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| #if USE(ALTERNATE_JSIMMEDIATE) |
| addSlowCase(branchAdd32(Overflow, Imm32(1), regT1)); |
| emitFastArithIntToImmNoCheck(regT1, regT1); |
| #else |
| addSlowCase(branchAdd32(Overflow, Imm32(1 << JSImmediate::IntegerPayloadShift), regT1)); |
| signExtend32ToPtr(regT1, regT1); |
| #endif |
| emitPutVirtualRegister(srcDst, regT1); |
| emitPutVirtualRegister(result); |
| } |
| |
| void JIT::emitSlow_op_post_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned srcDst = currentInstruction[2].u.operand; |
| |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| JITStubCall stubCall(this, JITStubs::cti_op_post_inc); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(Imm32(srcDst)); |
| stubCall.call(result); |
| } |
| |
| void JIT::emit_op_post_dec(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned srcDst = currentInstruction[2].u.operand; |
| |
| emitGetVirtualRegister(srcDst, regT0); |
| move(regT0, regT1); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| #if USE(ALTERNATE_JSIMMEDIATE) |
| addSlowCase(branchSub32(Zero, Imm32(1), regT1)); |
| emitFastArithIntToImmNoCheck(regT1, regT1); |
| #else |
| addSlowCase(branchSub32(Zero, Imm32(1 << JSImmediate::IntegerPayloadShift), regT1)); |
| signExtend32ToPtr(regT1, regT1); |
| #endif |
| emitPutVirtualRegister(srcDst, regT1); |
| emitPutVirtualRegister(result); |
| } |
| |
| void JIT::emitSlow_op_post_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned srcDst = currentInstruction[2].u.operand; |
| |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| JITStubCall stubCall(this, JITStubs::cti_op_post_dec); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(Imm32(srcDst)); |
| stubCall.call(result); |
| } |
| |
| void JIT::emit_op_pre_inc(Instruction* currentInstruction) |
| { |
| unsigned srcDst = currentInstruction[1].u.operand; |
| |
| emitGetVirtualRegister(srcDst, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| #if USE(ALTERNATE_JSIMMEDIATE) |
| addSlowCase(branchAdd32(Overflow, Imm32(1), regT0)); |
| emitFastArithIntToImmNoCheck(regT0, regT0); |
| #else |
| addSlowCase(branchAdd32(Overflow, Imm32(1 << JSImmediate::IntegerPayloadShift), regT0)); |
| signExtend32ToPtr(regT0, regT0); |
| #endif |
| emitPutVirtualRegister(srcDst); |
| } |
| |
| void JIT::emitSlow_op_pre_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned srcDst = currentInstruction[1].u.operand; |
| |
| Jump notImm = getSlowCase(iter); |
| linkSlowCase(iter); |
| emitGetVirtualRegister(srcDst, regT0); |
| notImm.link(this); |
| JITStubCall stubCall(this, JITStubs::cti_op_pre_inc); |
| stubCall.addArgument(regT0); |
| stubCall.call(srcDst); |
| } |
| |
| void JIT::emit_op_pre_dec(Instruction* currentInstruction) |
| { |
| unsigned srcDst = currentInstruction[1].u.operand; |
| |
| emitGetVirtualRegister(srcDst, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| #if USE(ALTERNATE_JSIMMEDIATE) |
| addSlowCase(branchSub32(Zero, Imm32(1), regT0)); |
| emitFastArithIntToImmNoCheck(regT0, regT0); |
| #else |
| addSlowCase(branchSub32(Zero, Imm32(1 << JSImmediate::IntegerPayloadShift), regT0)); |
| signExtend32ToPtr(regT0, regT0); |
| #endif |
| emitPutVirtualRegister(srcDst); |
| } |
| |
| void JIT::emitSlow_op_pre_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned srcDst = currentInstruction[1].u.operand; |
| |
| Jump notImm = getSlowCase(iter); |
| linkSlowCase(iter); |
| emitGetVirtualRegister(srcDst, regT0); |
| notImm.link(this); |
| JITStubCall stubCall(this, JITStubs::cti_op_pre_dec); |
| stubCall.addArgument(regT0); |
| stubCall.call(srcDst); |
| } |
| |
| /* ------------------------------ BEGIN: OP_MOD ------------------------------ */ |
| |
| #if PLATFORM(X86) || PLATFORM(X86_64) |
| |
| void JIT::emit_op_mod(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| emitGetVirtualRegisters(op1, X86::eax, op2, X86::ecx); |
| emitJumpSlowCaseIfNotImmediateInteger(X86::eax); |
| emitJumpSlowCaseIfNotImmediateInteger(X86::ecx); |
| #if USE(ALTERNATE_JSIMMEDIATE) |
| addSlowCase(branchPtr(Equal, X86::ecx, ImmPtr(JSValue::encode(jsNumber(m_globalData, 0))))); |
| m_assembler.cdq(); |
| m_assembler.idivl_r(X86::ecx); |
| #else |
| emitFastArithDeTagImmediate(X86::eax); |
| addSlowCase(emitFastArithDeTagImmediateJumpIfZero(X86::ecx)); |
| m_assembler.cdq(); |
| m_assembler.idivl_r(X86::ecx); |
| signExtend32ToPtr(X86::edx, X86::edx); |
| #endif |
| emitFastArithReTagImmediate(X86::edx, X86::eax); |
| emitPutVirtualRegister(result); |
| } |
| |
| void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| |
| #if USE(ALTERNATE_JSIMMEDIATE) |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| #else |
| Jump notImm1 = getSlowCase(iter); |
| Jump notImm2 = getSlowCase(iter); |
| linkSlowCase(iter); |
| emitFastArithReTagImmediate(X86::eax, X86::eax); |
| emitFastArithReTagImmediate(X86::ecx, X86::ecx); |
| notImm1.link(this); |
| notImm2.link(this); |
| #endif |
| JITStubCall stubCall(this, JITStubs::cti_op_mod); |
| stubCall.addArgument(X86::eax); |
| stubCall.addArgument(X86::ecx); |
| stubCall.call(result); |
| } |
| |
| #else // PLATFORM(X86) || PLATFORM(X86_64) |
| |
| void JIT::emit_op_mod(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| JITStubCall stubCall(this, JITStubs::cti_op_mod); |
| stubCall.addArgument(op1, regT2); |
| stubCall.addArgument(op2, regT2); |
| stubCall.call(result); |
| } |
| |
| void JIT::emitSlow_op_mod(Instruction*, Vector<SlowCaseEntry>::iterator&) |
| { |
| ASSERT_NOT_REACHED(); |
| } |
| |
| #endif // PLATFORM(X86) || PLATFORM(X86_64) |
| |
| /* ------------------------------ END: OP_MOD ------------------------------ */ |
| |
| #if !ENABLE(JIT_OPTIMIZE_ARITHMETIC) |
| |
| /* ------------------------------ BEGIN: !ENABLE(JIT_OPTIMIZE_ARITHMETIC) (OP_ADD, OP_SUB, OP_MUL) ------------------------------ */ |
| |
| void JIT::emit_op_add(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| JITStubCall stubCall(this, JITStubs::cti_op_add); |
| stubCall.addArgument(op1, regT2); |
| stubCall.addArgument(op2, regT2); |
| stubCall.call(result); |
| } |
| |
| void JIT::emitSlow_op_add(Instruction*, Vector<SlowCaseEntry>::iterator&) |
| { |
| ASSERT_NOT_REACHED(); |
| } |
| |
| void JIT::emit_op_mul(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| JITStubCall stubCall(this, JITStubs::cti_op_mul); |
| stubCall.addArgument(op1, regT2); |
| stubCall.addArgument(op2, regT2); |
| stubCall.call(result); |
| } |
| |
| void JIT::emitSlow_op_mul(Instruction*, Vector<SlowCaseEntry>::iterator&) |
| { |
| ASSERT_NOT_REACHED(); |
| } |
| |
| void JIT::emit_op_sub(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| JITStubCall stubCall(this, JITStubs::cti_op_sub); |
| stubCall.addArgument(op1, regT2); |
| stubCall.addArgument(op2, regT2); |
| stubCall.call(result); |
| } |
| |
| void JIT::emitSlow_op_sub(Instruction*, Vector<SlowCaseEntry>::iterator&) |
| { |
| ASSERT_NOT_REACHED(); |
| } |
| |
| #elif USE(ALTERNATE_JSIMMEDIATE) // *AND* ENABLE(JIT_OPTIMIZE_ARITHMETIC) |
| |
| /* ------------------------------ BEGIN: USE(ALTERNATE_JSIMMEDIATE) (OP_ADD, OP_SUB, OP_MUL) ------------------------------ */ |
| |
| void JIT::compileBinaryArithOp(OpcodeID opcodeID, unsigned, unsigned op1, unsigned op2, OperandTypes) |
| { |
| emitGetVirtualRegisters(op1, regT0, op2, regT1); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT1); |
| if (opcodeID == op_add) |
| addSlowCase(branchAdd32(Overflow, regT1, regT0)); |
| else if (opcodeID == op_sub) |
| addSlowCase(branchSub32(Overflow, regT1, regT0)); |
| else { |
| ASSERT(opcodeID == op_mul); |
| addSlowCase(branchMul32(Overflow, regT1, regT0)); |
| addSlowCase(branchTest32(Zero, regT0)); |
| } |
| emitFastArithIntToImmNoCheck(regT0, regT0); |
| } |
| |
| void JIT::compileBinaryArithOpSlowCase(OpcodeID opcodeID, Vector<SlowCaseEntry>::iterator& iter, unsigned result, unsigned op1, unsigned, OperandTypes types) |
| { |
| // We assume that subtracting TagTypeNumber is equivalent to adding DoubleEncodeOffset. |
| COMPILE_ASSERT(((JSImmediate::TagTypeNumber + JSImmediate::DoubleEncodeOffset) == 0), TagTypeNumber_PLUS_DoubleEncodeOffset_EQUALS_0); |
| |
| Jump notImm1 = getSlowCase(iter); |
| Jump notImm2 = getSlowCase(iter); |
| |
| linkSlowCase(iter); // Integer overflow case - we could handle this in JIT code, but this is likely rare. |
| if (opcodeID == op_mul) // op_mul has an extra slow case to handle 0 * negative number. |
| linkSlowCase(iter); |
| emitGetVirtualRegister(op1, regT0); |
| |
| Label stubFunctionCall(this); |
| JITStubCall stubCall(this, opcodeID == op_add ? JITStubs::cti_op_add : opcodeID == op_sub ? JITStubs::cti_op_sub : JITStubs::cti_op_mul); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(regT1); |
| stubCall.call(result); |
| Jump end = jump(); |
| |
| // if we get here, eax is not an int32, edx not yet checked. |
| notImm1.link(this); |
| if (!types.first().definitelyIsNumber()) |
| emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this); |
| if (!types.second().definitelyIsNumber()) |
| emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this); |
| addPtr(tagTypeNumberRegister, regT0); |
| movePtrToDouble(regT0, fpRegT1); |
| Jump op2isDouble = emitJumpIfNotImmediateInteger(regT1); |
| convertInt32ToDouble(regT1, fpRegT2); |
| Jump op2wasInteger = jump(); |
| |
| // if we get here, eax IS an int32, edx is not. |
| notImm2.link(this); |
| if (!types.second().definitelyIsNumber()) |
| emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this); |
| convertInt32ToDouble(regT0, fpRegT1); |
| op2isDouble.link(this); |
| addPtr(tagTypeNumberRegister, regT1); |
| movePtrToDouble(regT1, fpRegT2); |
| op2wasInteger.link(this); |
| |
| if (opcodeID == op_add) |
| addDouble(fpRegT2, fpRegT1); |
| else if (opcodeID == op_sub) |
| subDouble(fpRegT2, fpRegT1); |
| else { |
| ASSERT(opcodeID == op_mul); |
| mulDouble(fpRegT2, fpRegT1); |
| } |
| moveDoubleToPtr(fpRegT1, regT0); |
| subPtr(tagTypeNumberRegister, regT0); |
| emitPutVirtualRegister(result, regT0); |
| |
| end.link(this); |
| } |
| |
| void JIT::emit_op_add(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); |
| |
| if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) { |
| JITStubCall stubCall(this, JITStubs::cti_op_add); |
| stubCall.addArgument(op1, regT2); |
| stubCall.addArgument(op2, regT2); |
| stubCall.call(result); |
| return; |
| } |
| |
| if (isOperandConstantImmediateInt(op1)) { |
| emitGetVirtualRegister(op2, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op1)), regT0)); |
| emitFastArithIntToImmNoCheck(regT0, regT0); |
| } else if (isOperandConstantImmediateInt(op2)) { |
| emitGetVirtualRegister(op1, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op2)), regT0)); |
| emitFastArithIntToImmNoCheck(regT0, regT0); |
| } else |
| compileBinaryArithOp(op_add, result, op1, op2, types); |
| |
| emitPutVirtualRegister(result); |
| } |
| |
| void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| if (isOperandConstantImmediateInt(op1) || isOperandConstantImmediateInt(op2)) { |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| JITStubCall stubCall(this, JITStubs::cti_op_add); |
| stubCall.addArgument(op1, regT2); |
| stubCall.addArgument(op2, regT2); |
| stubCall.call(result); |
| } else |
| compileBinaryArithOpSlowCase(op_add, iter, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand)); |
| } |
| |
| void JIT::emit_op_mul(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); |
| |
| // For now, only plant a fast int case if the constant operand is greater than zero. |
| int32_t value; |
| if (isOperandConstantImmediateInt(op1) && ((value = getConstantOperandImmediateInt(op1)) > 0)) { |
| emitGetVirtualRegister(op2, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0)); |
| emitFastArithReTagImmediate(regT0, regT0); |
| } else if (isOperandConstantImmediateInt(op2) && ((value = getConstantOperandImmediateInt(op2)) > 0)) { |
| emitGetVirtualRegister(op1, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0)); |
| emitFastArithReTagImmediate(regT0, regT0); |
| } else |
| compileBinaryArithOp(op_mul, result, op1, op2, types); |
| |
| emitPutVirtualRegister(result); |
| } |
| |
| void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); |
| |
| if ((isOperandConstantImmediateInt(op1) && (getConstantOperandImmediateInt(op1) > 0)) |
| || (isOperandConstantImmediateInt(op2) && (getConstantOperandImmediateInt(op2) > 0))) { |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| // There is an extra slow case for (op1 * -N) or (-N * op2), to check for 0 since this should produce a result of -0. |
| JITStubCall stubCall(this, JITStubs::cti_op_mul); |
| stubCall.addArgument(op1, regT2); |
| stubCall.addArgument(op2, regT2); |
| stubCall.call(result); |
| } else |
| compileBinaryArithOpSlowCase(op_mul, iter, result, op1, op2, types); |
| } |
| |
| void JIT::emit_op_sub(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); |
| |
| compileBinaryArithOp(op_sub, result, op1, op2, types); |
| |
| emitPutVirtualRegister(result); |
| } |
| |
| void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); |
| |
| compileBinaryArithOpSlowCase(op_sub, iter, result, op1, op2, types); |
| } |
| |
| #else // !ENABLE(JIT_OPTIMIZE_ARITHMETIC) |
| |
| /* ------------------------------ BEGIN: !ENABLE(JIT_OPTIMIZE_ARITHMETIC) (OP_ADD, OP_SUB, OP_MUL) ------------------------------ */ |
| |
| void JIT::compileBinaryArithOp(OpcodeID opcodeID, unsigned dst, unsigned src1, unsigned src2, OperandTypes types) |
| { |
| Structure* numberStructure = m_globalData->numberStructure.get(); |
| Jump wasJSNumberCell1; |
| Jump wasJSNumberCell2; |
| |
| emitGetVirtualRegisters(src1, regT0, src2, regT1); |
| |
| if (types.second().isReusable() && supportsFloatingPoint()) { |
| ASSERT(types.second().mightBeNumber()); |
| |
| // Check op2 is a number |
| Jump op2imm = emitJumpIfImmediateInteger(regT1); |
| if (!types.second().definitelyIsNumber()) { |
| emitJumpSlowCaseIfNotJSCell(regT1, src2); |
| addSlowCase(checkStructure(regT1, numberStructure)); |
| } |
| |
| // (1) In this case src2 is a reusable number cell. |
| // Slow case if src1 is not a number type. |
| Jump op1imm = emitJumpIfImmediateInteger(regT0); |
| if (!types.first().definitelyIsNumber()) { |
| emitJumpSlowCaseIfNotJSCell(regT0, src1); |
| addSlowCase(checkStructure(regT0, numberStructure)); |
| } |
| |
| // (1a) if we get here, src1 is also a number cell |
| loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); |
| Jump loadedDouble = jump(); |
| // (1b) if we get here, src1 is an immediate |
| op1imm.link(this); |
| emitFastArithImmToInt(regT0); |
| convertInt32ToDouble(regT0, fpRegT0); |
| // (1c) |
| loadedDouble.link(this); |
| if (opcodeID == op_add) |
| addDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); |
| else if (opcodeID == op_sub) |
| subDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); |
| else { |
| ASSERT(opcodeID == op_mul); |
| mulDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); |
| } |
| |
| // Store the result to the JSNumberCell and jump. |
| storeDouble(fpRegT0, Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value))); |
| move(regT1, regT0); |
| emitPutVirtualRegister(dst); |
| wasJSNumberCell2 = jump(); |
| |
| // (2) This handles cases where src2 is an immediate number. |
| // Two slow cases - either src1 isn't an immediate, or the subtract overflows. |
| op2imm.link(this); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| } else if (types.first().isReusable() && supportsFloatingPoint()) { |
| ASSERT(types.first().mightBeNumber()); |
| |
| // Check op1 is a number |
| Jump op1imm = emitJumpIfImmediateInteger(regT0); |
| if (!types.first().definitelyIsNumber()) { |
| emitJumpSlowCaseIfNotJSCell(regT0, src1); |
| addSlowCase(checkStructure(regT0, numberStructure)); |
| } |
| |
| // (1) In this case src1 is a reusable number cell. |
| // Slow case if src2 is not a number type. |
| Jump op2imm = emitJumpIfImmediateInteger(regT1); |
| if (!types.second().definitelyIsNumber()) { |
| emitJumpSlowCaseIfNotJSCell(regT1, src2); |
| addSlowCase(checkStructure(regT1, numberStructure)); |
| } |
| |
| // (1a) if we get here, src2 is also a number cell |
| loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1); |
| Jump loadedDouble = jump(); |
| // (1b) if we get here, src2 is an immediate |
| op2imm.link(this); |
| emitFastArithImmToInt(regT1); |
| convertInt32ToDouble(regT1, fpRegT1); |
| // (1c) |
| loadedDouble.link(this); |
| loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0); |
| if (opcodeID == op_add) |
| addDouble(fpRegT1, fpRegT0); |
| else if (opcodeID == op_sub) |
| subDouble(fpRegT1, fpRegT0); |
| else { |
| ASSERT(opcodeID == op_mul); |
| mulDouble(fpRegT1, fpRegT0); |
| } |
| storeDouble(fpRegT0, Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value))); |
| emitPutVirtualRegister(dst); |
| |
| // Store the result to the JSNumberCell and jump. |
| storeDouble(fpRegT0, Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value))); |
| emitPutVirtualRegister(dst); |
| wasJSNumberCell1 = jump(); |
| |
| // (2) This handles cases where src1 is an immediate number. |
| // Two slow cases - either src2 isn't an immediate, or the subtract overflows. |
| op1imm.link(this); |
| emitJumpSlowCaseIfNotImmediateInteger(regT1); |
| } else |
| emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2); |
| |
| if (opcodeID == op_add) { |
| emitFastArithDeTagImmediate(regT0); |
| addSlowCase(branchAdd32(Overflow, regT1, regT0)); |
| } else if (opcodeID == op_sub) { |
| addSlowCase(branchSub32(Overflow, regT1, regT0)); |
| signExtend32ToPtr(regT0, regT0); |
| emitFastArithReTagImmediate(regT0, regT0); |
| } else { |
| ASSERT(opcodeID == op_mul); |
| // convert eax & edx from JSImmediates to ints, and check if either are zero |
| emitFastArithImmToInt(regT1); |
| Jump op1Zero = emitFastArithDeTagImmediateJumpIfZero(regT0); |
| Jump op2NonZero = branchTest32(NonZero, regT1); |
| op1Zero.link(this); |
| // if either input is zero, add the two together, and check if the result is < 0. |
| // If it is, we have a problem (N < 0), (N * 0) == -0, not representatble as a JSImmediate. |
| move(regT0, regT2); |
| addSlowCase(branchAdd32(Signed, regT1, regT2)); |
| // Skip the above check if neither input is zero |
| op2NonZero.link(this); |
| addSlowCase(branchMul32(Overflow, regT1, regT0)); |
| signExtend32ToPtr(regT0, regT0); |
| emitFastArithReTagImmediate(regT0, regT0); |
| } |
| emitPutVirtualRegister(dst); |
| |
| if (types.second().isReusable() && supportsFloatingPoint()) |
| wasJSNumberCell2.link(this); |
| else if (types.first().isReusable() && supportsFloatingPoint()) |
| wasJSNumberCell1.link(this); |
| } |
| |
| void JIT::compileBinaryArithOpSlowCase(OpcodeID opcodeID, Vector<SlowCaseEntry>::iterator& iter, unsigned dst, unsigned src1, unsigned src2, OperandTypes types) |
| { |
| linkSlowCase(iter); |
| if (types.second().isReusable() && supportsFloatingPoint()) { |
| if (!types.first().definitelyIsNumber()) { |
| linkSlowCaseIfNotJSCell(iter, src1); |
| linkSlowCase(iter); |
| } |
| if (!types.second().definitelyIsNumber()) { |
| linkSlowCaseIfNotJSCell(iter, src2); |
| linkSlowCase(iter); |
| } |
| } else if (types.first().isReusable() && supportsFloatingPoint()) { |
| if (!types.first().definitelyIsNumber()) { |
| linkSlowCaseIfNotJSCell(iter, src1); |
| linkSlowCase(iter); |
| } |
| if (!types.second().definitelyIsNumber()) { |
| linkSlowCaseIfNotJSCell(iter, src2); |
| linkSlowCase(iter); |
| } |
| } |
| linkSlowCase(iter); |
| |
| // additional entry point to handle -0 cases. |
| if (opcodeID == op_mul) |
| linkSlowCase(iter); |
| |
| JITStubCall stubCall(this, opcodeID == op_add ? JITStubs::cti_op_add : opcodeID == op_sub ? JITStubs::cti_op_sub : JITStubs::cti_op_mul); |
| stubCall.addArgument(src1, regT2); |
| stubCall.addArgument(src2, regT2); |
| stubCall.call(dst); |
| } |
| |
| void JIT::emit_op_add(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| if (isOperandConstantImmediateInt(op1)) { |
| emitGetVirtualRegister(op2, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op1) << JSImmediate::IntegerPayloadShift), regT0)); |
| signExtend32ToPtr(regT0, regT0); |
| emitPutVirtualRegister(result); |
| } else if (isOperandConstantImmediateInt(op2)) { |
| emitGetVirtualRegister(op1, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op2) << JSImmediate::IntegerPayloadShift), regT0)); |
| signExtend32ToPtr(regT0, regT0); |
| emitPutVirtualRegister(result); |
| } else { |
| OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); |
| if (types.first().mightBeNumber() && types.second().mightBeNumber()) |
| compileBinaryArithOp(op_add, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand)); |
| else { |
| JITStubCall stubCall(this, JITStubs::cti_op_add); |
| stubCall.addArgument(op1, regT2); |
| stubCall.addArgument(op2, regT2); |
| stubCall.call(result); |
| } |
| } |
| } |
| |
| void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| if (isOperandConstantImmediateInt(op1)) { |
| Jump notImm = getSlowCase(iter); |
| linkSlowCase(iter); |
| sub32(Imm32(getConstantOperandImmediateInt(op1) << JSImmediate::IntegerPayloadShift), regT0); |
| notImm.link(this); |
| JITStubCall stubCall(this, JITStubs::cti_op_add); |
| stubCall.addArgument(op1, regT2); |
| stubCall.addArgument(regT0); |
| stubCall.call(result); |
| } else if (isOperandConstantImmediateInt(op2)) { |
| Jump notImm = getSlowCase(iter); |
| linkSlowCase(iter); |
| sub32(Imm32(getConstantOperandImmediateInt(op2) << JSImmediate::IntegerPayloadShift), regT0); |
| notImm.link(this); |
| JITStubCall stubCall(this, JITStubs::cti_op_add); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(op2, regT2); |
| stubCall.call(result); |
| } else { |
| OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); |
| ASSERT(types.first().mightBeNumber() && types.second().mightBeNumber()); |
| compileBinaryArithOpSlowCase(op_add, iter, result, op1, op2, types); |
| } |
| } |
| |
| void JIT::emit_op_mul(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| // For now, only plant a fast int case if the constant operand is greater than zero. |
| int32_t value; |
| if (isOperandConstantImmediateInt(op1) && ((value = getConstantOperandImmediateInt(op1)) > 0)) { |
| emitGetVirtualRegister(op2, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| emitFastArithDeTagImmediate(regT0); |
| addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0)); |
| signExtend32ToPtr(regT0, regT0); |
| emitFastArithReTagImmediate(regT0, regT0); |
| emitPutVirtualRegister(result); |
| } else if (isOperandConstantImmediateInt(op2) && ((value = getConstantOperandImmediateInt(op2)) > 0)) { |
| emitGetVirtualRegister(op1, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| emitFastArithDeTagImmediate(regT0); |
| addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0)); |
| signExtend32ToPtr(regT0, regT0); |
| emitFastArithReTagImmediate(regT0, regT0); |
| emitPutVirtualRegister(result); |
| } else |
| compileBinaryArithOp(op_mul, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand)); |
| } |
| |
| void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| unsigned op1 = currentInstruction[2].u.operand; |
| unsigned op2 = currentInstruction[3].u.operand; |
| |
| if ((isOperandConstantImmediateInt(op1) && (getConstantOperandImmediateInt(op1) > 0)) |
| || (isOperandConstantImmediateInt(op2) && (getConstantOperandImmediateInt(op2) > 0))) { |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| // There is an extra slow case for (op1 * -N) or (-N * op2), to check for 0 since this should produce a result of -0. |
| JITStubCall stubCall(this, JITStubs::cti_op_mul); |
| stubCall.addArgument(op1, regT2); |
| stubCall.addArgument(op2, regT2); |
| stubCall.call(result); |
| } else |
| compileBinaryArithOpSlowCase(op_mul, iter, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand)); |
| } |
| |
| void JIT::emit_op_sub(Instruction* currentInstruction) |
| { |
| compileBinaryArithOp(op_sub, currentInstruction[1].u.operand, currentInstruction[2].u.operand, currentInstruction[3].u.operand, OperandTypes::fromInt(currentInstruction[4].u.operand)); |
| } |
| |
| void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| compileBinaryArithOpSlowCase(op_sub, iter, currentInstruction[1].u.operand, currentInstruction[2].u.operand, currentInstruction[3].u.operand, OperandTypes::fromInt(currentInstruction[4].u.operand)); |
| } |
| |
| #endif // !ENABLE(JIT_OPTIMIZE_ARITHMETIC) |
| |
| /* ------------------------------ END: OP_ADD, OP_SUB, OP_MUL ------------------------------ */ |
| |
| } // namespace JSC |
| |
| #endif // ENABLE(JIT) |