blob: b388b7ae981bfa3ea7a7b078aa34f5646c03c253 [file] [log] [blame]
/*
* Copyright (C) 2012, 2013 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGFixupPhase.h"
#if ENABLE(DFG_JIT)
#include "DFGGraph.h"
#include "DFGInsertionSet.h"
#include "DFGPhase.h"
#include "Operations.h"
namespace JSC { namespace DFG {
class FixupPhase : public Phase {
public:
FixupPhase(Graph& graph)
: Phase(graph, "fixup")
, m_insertionSet(graph)
{
}
bool run()
{
for (BlockIndex blockIndex = 0; blockIndex < m_graph.m_blocks.size(); ++blockIndex)
fixupBlock(m_graph.m_blocks[blockIndex].get());
return true;
}
private:
void fixupBlock(BasicBlock* block)
{
if (!block)
return;
ASSERT(block->isReachable);
m_block = block;
for (m_indexInBlock = 0; m_indexInBlock < block->size(); ++m_indexInBlock) {
m_currentNode = block->at(m_indexInBlock);
fixupNode(m_currentNode);
}
m_insertionSet.execute(block);
}
void fixupNode(Node* node)
{
if (!node->shouldGenerate())
return;
NodeType op = node->op();
#if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE)
dataLogF(" %s @%u: ", Graph::opName(op), node->index());
#endif
switch (op) {
case GetById: {
if (m_graph.m_fixpointState > BeforeFixpoint)
break;
if (!isInt32Speculation(node->prediction()))
break;
if (codeBlock()->identifier(node->identifierNumber()) != globalData().propertyNames->length)
break;
ArrayProfile* arrayProfile =
m_graph.baselineCodeBlockFor(node->codeOrigin)->getArrayProfile(
node->codeOrigin.bytecodeIndex);
ArrayMode arrayMode = ArrayMode(Array::SelectUsingPredictions);
if (arrayProfile) {
arrayProfile->computeUpdatedPrediction(m_graph.baselineCodeBlockFor(node->codeOrigin));
arrayMode = ArrayMode::fromObserved(arrayProfile, Array::Read, false);
arrayMode = arrayMode.refine(
node->child1()->prediction(), node->prediction());
if (arrayMode.supportsLength() && arrayProfile->hasDefiniteStructure()) {
m_insertionSet.insertNode(
m_indexInBlock, RefChildren, DontRefNode, SpecNone, CheckStructure,
node->codeOrigin, OpInfo(m_graph.addStructureSet(arrayProfile->expectedStructure())),
node->child1().node());
}
} else
arrayMode = arrayMode.refine(node->child1()->prediction(), node->prediction());
if (!arrayMode.supportsLength())
break;
node->setOp(GetArrayLength);
ASSERT(node->flags() & NodeMustGenerate);
node->clearFlags(NodeMustGenerate | NodeClobbersWorld);
m_graph.deref(node);
node->setArrayMode(arrayMode);
Node* storage = checkArray(arrayMode, node->codeOrigin, node->child1().node(), 0, lengthNeedsStorage, node->shouldGenerate());
if (!storage)
break;
node->children.child2() = Edge(storage);
break;
}
case GetIndexedPropertyStorage: {
ASSERT(node->arrayMode().canCSEStorage());
break;
}
case GetByVal: {
node->setArrayMode(
node->arrayMode().refine(
node->child1()->prediction(),
node->child2()->prediction(),
SpecNone, node->flags()));
blessArrayOperation(node->child1(), node->child2(), 2);
ArrayMode arrayMode = node->arrayMode();
if (arrayMode.type() == Array::Double
&& arrayMode.arrayClass() == Array::OriginalArray
&& arrayMode.speculation() == Array::InBounds
&& arrayMode.conversion() == Array::AsIs
&& m_graph.globalObjectFor(node->codeOrigin)->arrayPrototypeChainIsSane()
&& !(node->flags() & NodeUsedAsOther))
node->setArrayMode(arrayMode.withSpeculation(Array::SaneChain));
break;
}
case StringCharAt:
case StringCharCodeAt: {
// Currently we have no good way of refining these.
ASSERT(node->arrayMode() == ArrayMode(Array::String));
blessArrayOperation(node->child1(), node->child2(), 2);
break;
}
case ArrayPush: {
// May need to refine the array mode in case the value prediction contravenes
// the array prediction. For example, we may have evidence showing that the
// array is in Int32 mode, but the value we're storing is likely to be a double.
// Then we should turn this into a conversion to Double array followed by the
// push. On the other hand, we absolutely don't want to refine based on the
// base prediction. If it has non-cell garbage in it, then we want that to be
// ignored. That's because ArrayPush can't handle any array modes that aren't
// array-related - so if refine() turned this into a "Generic" ArrayPush then
// that would break things.
node->setArrayMode(
node->arrayMode().refine(
node->child1()->prediction() & SpecCell,
SpecInt32,
node->child2()->prediction()));
blessArrayOperation(node->child1(), Edge(), 2);
switch (node->arrayMode().type()) {
case Array::Double:
fixDoubleEdge(1);
break;
default:
break;
}
break;
}
case ArrayPop: {
blessArrayOperation(node->child1(), Edge(), 1);
break;
}
case BitAnd:
case BitOr:
case BitXor:
case BitRShift:
case BitLShift:
case BitURShift: {
fixIntEdge(node->children.child1());
fixIntEdge(node->children.child2());
break;
}
case CompareEq:
case CompareLess:
case CompareLessEq:
case CompareGreater:
case CompareGreaterEq:
case CompareStrictEq: {
if (Node::shouldSpeculateInteger(node->child1().node(), node->child2().node()))
break;
if (!Node::shouldSpeculateNumber(node->child1().node(), node->child2().node()))
break;
fixDoubleEdge(0);
fixDoubleEdge(1);
break;
}
case LogicalNot: {
if (node->child1()->shouldSpeculateInteger())
break;
if (!node->child1()->shouldSpeculateNumber())
break;
fixDoubleEdge(0);
break;
}
case Branch: {
if (!node->child1()->shouldSpeculateInteger()
&& node->child1()->shouldSpeculateNumber())
fixDoubleEdge(0);
Node* logicalNot = node->child1().node();
if (logicalNot->op() == LogicalNot
&& logicalNot->adjustedRefCount() == 1) {
// Make sure that OSR exit can't observe the LogicalNot. If it can,
// then we must compute it and cannot peephole around it.
bool found = false;
bool ok = true;
for (unsigned i = m_indexInBlock; i--;) {
Node* candidate = m_block->at(i);
if (!candidate->shouldGenerate())
continue;
if (candidate == logicalNot) {
found = true;
break;
}
if (candidate->canExit()) {
ok = false;
found = true;
break;
}
}
ASSERT_UNUSED(found, found);
if (ok) {
Edge newChildEdge = logicalNot->child1();
if (newChildEdge->hasBooleanResult()) {
m_graph.ref(newChildEdge);
m_graph.deref(logicalNot);
node->children.setChild1(newChildEdge);
BlockIndex toBeTaken = node->notTakenBlockIndex();
BlockIndex toBeNotTaken = node->takenBlockIndex();
node->setTakenBlockIndex(toBeTaken);
node->setNotTakenBlockIndex(toBeNotTaken);
}
}
}
break;
}
case SetLocal: {
if (node->variableAccessData()->isCaptured())
break;
if (!node->variableAccessData()->shouldUseDoubleFormat())
break;
fixDoubleEdge(0, ForwardSpeculation);
break;
}
case ArithAdd:
case ValueAdd: {
if (m_graph.addShouldSpeculateInteger(node))
break;
if (!Node::shouldSpeculateNumberExpectingDefined(node->child1().node(), node->child2().node()))
break;
fixDoubleEdge(0);
fixDoubleEdge(1);
break;
}
case ArithSub: {
if (m_graph.addShouldSpeculateInteger(node)
&& node->canSpeculateInteger())
break;
fixDoubleEdge(0);
fixDoubleEdge(1);
break;
}
case ArithNegate: {
if (m_graph.negateShouldSpeculateInteger(node))
break;
fixDoubleEdge(0);
break;
}
case ArithMin:
case ArithMax:
case ArithMod: {
if (Node::shouldSpeculateIntegerForArithmetic(node->child1().node(), node->child2().node())
&& node->canSpeculateInteger())
break;
fixDoubleEdge(0);
fixDoubleEdge(1);
break;
}
case ArithMul: {
if (m_graph.mulShouldSpeculateInteger(node))
break;
fixDoubleEdge(0);
fixDoubleEdge(1);
break;
}
case ArithDiv: {
if (Node::shouldSpeculateIntegerForArithmetic(node->child1().node(), node->child2().node())
&& node->canSpeculateInteger()) {
if (isX86() || isARMv7s())
break;
injectInt32ToDoubleNode(0);
injectInt32ToDoubleNode(1);
// We don't need to do ref'ing on the children because we're stealing them from
// the original division.
Node* newDivision = m_insertionSet.insertNode(
m_indexInBlock, DontRefChildren, RefNode, SpecDouble, *node);
node->setOp(DoubleAsInt32);
node->children.initialize(Edge(newDivision, DoubleUse), Edge(), Edge());
break;
}
fixDoubleEdge(0);
fixDoubleEdge(1);
break;
}
case ArithAbs: {
if (node->child1()->shouldSpeculateIntegerForArithmetic()
&& node->canSpeculateInteger())
break;
fixDoubleEdge(0);
break;
}
case ArithSqrt: {
fixDoubleEdge(0);
break;
}
case PutByVal:
case PutByValAlias: {
Edge child1 = m_graph.varArgChild(node, 0);
Edge child2 = m_graph.varArgChild(node, 1);
Edge child3 = m_graph.varArgChild(node, 2);
node->setArrayMode(
node->arrayMode().refine(
child1->prediction(),
child2->prediction(),
child3->prediction()));
blessArrayOperation(child1, child2, 3);
switch (node->arrayMode().modeForPut().type()) {
case Array::Double:
fixDoubleEdge(2);
break;
case Array::Int8Array:
case Array::Int16Array:
case Array::Int32Array:
case Array::Uint8Array:
case Array::Uint8ClampedArray:
case Array::Uint16Array:
case Array::Uint32Array:
if (!child3->shouldSpeculateInteger())
fixDoubleEdge(2);
break;
case Array::Float32Array:
case Array::Float64Array:
fixDoubleEdge(2);
break;
default:
break;
}
break;
}
case NewArray: {
for (unsigned i = m_graph.varArgNumChildren(node); i--;) {
node->setIndexingType(
leastUpperBoundOfIndexingTypeAndType(
node->indexingType(), m_graph.varArgChild(node, i)->prediction()));
}
if (node->indexingType() == ArrayWithDouble) {
for (unsigned i = m_graph.varArgNumChildren(node); i--;)
fixDoubleEdge(i);
}
break;
}
default:
break;
}
#if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE)
if (!(node->flags() & NodeHasVarArgs)) {
dataLogF("new children: ");
node->dumpChildren(WTF::dataFile());
}
dataLogF("\n");
#endif
}
Node* checkArray(ArrayMode arrayMode, CodeOrigin codeOrigin, Node* array, Node* index, bool (*storageCheck)(const ArrayMode&) = canCSEStorage, bool shouldGenerate = true)
{
ASSERT(arrayMode.isSpecific());
Structure* structure = arrayMode.originalArrayStructure(m_graph, codeOrigin);
if (arrayMode.doesConversion()) {
if (structure) {
if (m_indexInBlock > 0) {
// If the previous node was a CheckStructure inserted because of stuff
// that the array profile told us, then remove it.
Node* previousNode = m_block->at(m_indexInBlock - 1);
if (previousNode->op() == CheckStructure
&& previousNode->child1() == array
&& previousNode->codeOrigin == codeOrigin)
previousNode->setOpAndDefaultFlags(Phantom);
}
m_insertionSet.insertNode(
m_indexInBlock, RefChildren, DontRefNode, SpecNone, ArrayifyToStructure, codeOrigin,
OpInfo(structure), OpInfo(arrayMode.asWord()), array, index);
} else {
m_insertionSet.insertNode(
m_indexInBlock, RefChildren, DontRefNode, SpecNone, Arrayify, codeOrigin,
OpInfo(arrayMode.asWord()), array, index);
}
} else {
if (structure) {
m_insertionSet.insertNode(
m_indexInBlock, RefChildren, DontRefNode, SpecNone, CheckStructure, codeOrigin,
OpInfo(m_graph.addStructureSet(structure)), array);
} else {
m_insertionSet.insertNode(
m_indexInBlock, RefChildren, DontRefNode, SpecNone, CheckArray, codeOrigin,
OpInfo(arrayMode.asWord()), array);
}
}
if (!storageCheck(arrayMode))
return 0;
if (arrayMode.usesButterfly()) {
return m_insertionSet.insertNode(
m_indexInBlock,
shouldGenerate ? RefChildren : DontRefChildren,
shouldGenerate ? RefNode : DontRefNode,
SpecNone, GetButterfly, codeOrigin, array);
}
return m_insertionSet.insertNode(
m_indexInBlock,
shouldGenerate ? RefChildren : DontRefChildren,
shouldGenerate ? RefNode : DontRefNode,
SpecNone, GetIndexedPropertyStorage, codeOrigin, OpInfo(arrayMode.asWord()), array);
}
void blessArrayOperation(Edge base, Edge index, unsigned storageChildIdx)
{
if (m_graph.m_fixpointState > BeforeFixpoint)
return;
Node* node = m_currentNode;
switch (node->arrayMode().type()) {
case Array::ForceExit: {
m_insertionSet.insertNode(
m_indexInBlock, DontRefChildren, DontRefNode, SpecNone, ForceOSRExit,
node->codeOrigin);
return;
}
case Array::SelectUsingPredictions:
case Array::Unprofiled:
RELEASE_ASSERT_NOT_REACHED();
return;
case Array::Generic:
return;
default: {
Node* storage = checkArray(node->arrayMode(), node->codeOrigin, base.node(), index.node());
if (!storage)
return;
m_graph.child(node, storageChildIdx) = Edge(storage);
return;
} }
}
void fixIntEdge(Edge& edge)
{
Node* node = edge.node();
if (node->op() != ValueToInt32)
return;
if (!node->child1()->shouldSpeculateInteger())
return;
Edge oldEdge = edge;
Edge newEdge = node->child1();
m_graph.ref(newEdge);
m_graph.deref(oldEdge);
edge = newEdge;
}
void fixDoubleEdge(unsigned childIndex, SpeculationDirection direction = BackwardSpeculation)
{
Node* source = m_currentNode;
Edge& edge = m_graph.child(source, childIndex);
if (edge->prediction() & SpecDouble) {
edge.setUseKind(DoubleUse);
return;
}
injectInt32ToDoubleNode(childIndex, direction);
}
void injectInt32ToDoubleNode(unsigned childIndex, SpeculationDirection direction = BackwardSpeculation)
{
Node* result = m_insertionSet.insertNode(
m_indexInBlock, DontRefChildren, RefNode, SpecDouble,
direction == BackwardSpeculation ? Int32ToDouble : ForwardInt32ToDouble,
m_currentNode->codeOrigin, m_graph.child(m_currentNode, childIndex).node());
#if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE)
dataLogF(
"(replacing @%u->@%u with @%u->@%u) ",
m_currentNode->index(), m_graph.child(m_currentNode, childIndex)->index(), m_currentNode->index(), result->index());
#endif
m_graph.child(m_currentNode, childIndex) = Edge(result, DoubleUse);
}
BasicBlock* m_block;
unsigned m_indexInBlock;
Node* m_currentNode;
InsertionSet m_insertionSet;
};
bool performFixup(Graph& graph)
{
SamplingRegion samplingRegion("DFG Fixup Phase");
return runPhase<FixupPhase>(graph);
}
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)