| /* |
| * Copyright (C) 2010 Google Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| // A red-black tree, which is a form of a balanced binary tree. It |
| // supports efficient insertion, deletion and queries of comparable |
| // elements. The same element may be inserted multiple times. The |
| // algorithmic complexity of common operations is: |
| // |
| // Insertion: O(lg(n)) |
| // Deletion: O(lg(n)) |
| // Querying: O(lg(n)) |
| // |
| // The data type T that is stored in this red-black tree must be only |
| // Plain Old Data (POD), or bottom out into POD. It must _not_ rely on |
| // having its destructor called. This implementation internally |
| // allocates storage in large chunks and does not call the destructor |
| // on each object. |
| // |
| // Type T must supply a default constructor, a copy constructor, and |
| // the "<" and "==" operators. |
| // |
| // In debug mode, printing of the data contained in the tree is |
| // enabled. This requires the template specialization to be available: |
| // |
| // template<> struct WebCore::ValueToString<T> { |
| // static String string(const T& t); |
| // }; |
| // |
| // Note that when complex types are stored in this red/black tree, it |
| // is possible that single invocations of the "<" and "==" operators |
| // will be insufficient to describe the ordering of elements in the |
| // tree during queries. As a concrete example, consider the case where |
| // intervals are stored in the tree sorted by low endpoint. The "<" |
| // operator on the Interval class only compares the low endpoint, but |
| // the "==" operator takes into account the high endpoint as well. |
| // This makes the necessary logic for querying and deletion somewhat |
| // more complex. In order to properly handle such situations, the |
| // property "needsFullOrderingComparisons" must be set to true on |
| // the tree. |
| // |
| // This red-black tree is designed to be _augmented_; subclasses can |
| // add additional and summary information to each node to efficiently |
| // store and index more complex data structures. A concrete example is |
| // the IntervalTree, which extends each node with a summary statistic |
| // to efficiently store one-dimensional intervals. |
| // |
| // The design of this red-black tree comes from Cormen, Leiserson, |
| // and Rivest, _Introduction to Algorithms_, MIT Press, 1990. |
| |
| #ifndef PODRedBlackTree_h |
| #define PODRedBlackTree_h |
| |
| #include <wtf/Assertions.h> |
| #include <wtf/Noncopyable.h> |
| #include <wtf/text/ValueToString.h> |
| #ifndef NDEBUG |
| #include <wtf/text/StringBuilder.h> |
| #include <wtf/text/WTFString.h> |
| #endif |
| |
| namespace WebCore { |
| |
| template<class T> |
| class PODRedBlackTree { |
| WTF_MAKE_FAST_ALLOCATED; |
| public: |
| class Node; |
| |
| // Visitor interface for walking all of the tree's elements. |
| class Visitor { |
| public: |
| virtual void visit(const T& data) = 0; |
| protected: |
| virtual ~Visitor() = default; |
| }; |
| |
| PODRedBlackTree() |
| : m_root(0) |
| , m_needsFullOrderingComparisons(false) |
| #ifndef NDEBUG |
| , m_verboseDebugging(false) |
| #endif |
| { |
| } |
| |
| virtual ~PODRedBlackTree() |
| { |
| clear(); |
| } |
| |
| // Clearing will delete the contents of the tree. After this call |
| // isInitialized will return false. |
| void clear() |
| { |
| markFree(m_root); |
| m_root = 0; |
| } |
| |
| void add(const T& data) |
| { |
| Node* node = new Node(data); |
| insertNode(node); |
| } |
| |
| // Returns true if the datum was found in the tree. |
| bool remove(const T& data) |
| { |
| Node* node = treeSearch(data); |
| if (node) { |
| deleteNode(node); |
| return true; |
| } |
| return false; |
| } |
| |
| bool contains(const T& data) const |
| { |
| return treeSearch(data); |
| } |
| |
| void visitInorder(Visitor* visitor) const |
| { |
| if (!m_root) |
| return; |
| visitInorderImpl(m_root, visitor); |
| } |
| |
| int size() const |
| { |
| Counter counter; |
| visitInorder(&counter); |
| return counter.count(); |
| } |
| |
| // See the class documentation for an explanation of this property. |
| void setNeedsFullOrderingComparisons(bool needsFullOrderingComparisons) |
| { |
| m_needsFullOrderingComparisons = needsFullOrderingComparisons; |
| } |
| |
| virtual bool checkInvariants() const |
| { |
| int blackCount; |
| return checkInvariantsFromNode(m_root, &blackCount); |
| } |
| |
| #ifndef NDEBUG |
| // Dumps the tree's contents to the logging info stream for |
| // debugging purposes. |
| void dump() const |
| { |
| dumpFromNode(m_root, 0); |
| } |
| |
| // Turns on or off verbose debugging of the tree, causing many |
| // messages to be logged during insertion and other operations in |
| // debug mode. |
| void setVerboseDebugging(bool verboseDebugging) |
| { |
| m_verboseDebugging = verboseDebugging; |
| } |
| #endif |
| |
| enum Color { |
| Red = 1, |
| Black |
| }; |
| |
| // The base Node class which is stored in the tree. Nodes are only |
| // an internal concept; users of the tree deal only with the data |
| // they store in it. |
| class Node { |
| WTF_MAKE_FAST_ALLOCATED; |
| WTF_MAKE_NONCOPYABLE(Node); |
| public: |
| // Constructor. Newly-created nodes are colored red. |
| explicit Node(const T& data) |
| : m_left(0) |
| , m_right(0) |
| , m_parent(0) |
| , m_color(Red) |
| , m_data(data) |
| { |
| } |
| |
| virtual ~Node() = default; |
| |
| Color color() const { return m_color; } |
| void setColor(Color color) { m_color = color; } |
| |
| // Fetches the user data. |
| T& data() { return m_data; } |
| |
| // Copies all user-level fields from the source node, but not |
| // internal fields. For example, the base implementation of this |
| // method copies the "m_data" field, but not the child or parent |
| // fields. Any augmentation information also does not need to be |
| // copied, as it will be recomputed. Subclasses must call the |
| // superclass implementation. |
| virtual void copyFrom(Node* src) { m_data = src->data(); } |
| |
| Node* left() const { return m_left; } |
| void setLeft(Node* node) { m_left = node; } |
| |
| Node* right() const { return m_right; } |
| void setRight(Node* node) { m_right = node; } |
| |
| Node* parent() const { return m_parent; } |
| void setParent(Node* node) { m_parent = node; } |
| |
| private: |
| Node* m_left; |
| Node* m_right; |
| Node* m_parent; |
| Color m_color; |
| T m_data; |
| }; |
| |
| protected: |
| // Returns the root of the tree, which is needed by some subclasses. |
| Node* root() const { return m_root; } |
| |
| private: |
| // This virtual method is the hook that subclasses should use when |
| // augmenting the red-black tree with additional per-node summary |
| // information. For example, in the case of an interval tree, this |
| // is used to compute the maximum endpoint of the subtree below the |
| // given node based on the values in the left and right children. It |
| // is guaranteed that this will be called in the correct order to |
| // properly update such summary information based only on the values |
| // in the left and right children. This method should return true if |
| // the node's summary information changed. |
| virtual bool updateNode(Node*) { return false; } |
| |
| //---------------------------------------------------------------------- |
| // Generic binary search tree operations |
| // |
| |
| // Searches the tree for the given datum. |
| Node* treeSearch(const T& data) const |
| { |
| if (m_needsFullOrderingComparisons) |
| return treeSearchFullComparisons(m_root, data); |
| |
| return treeSearchNormal(m_root, data); |
| } |
| |
| // Searches the tree using the normal comparison operations, |
| // suitable for simple data types such as numbers. |
| Node* treeSearchNormal(Node* current, const T& data) const |
| { |
| while (current) { |
| if (current->data() == data) |
| return current; |
| if (data < current->data()) |
| current = current->left(); |
| else |
| current = current->right(); |
| } |
| return 0; |
| } |
| |
| // Searches the tree using multiple comparison operations, required |
| // for data types with more complex behavior such as intervals. |
| Node* treeSearchFullComparisons(Node* current, const T& data) const |
| { |
| if (!current) |
| return 0; |
| if (data < current->data()) |
| return treeSearchFullComparisons(current->left(), data); |
| if (current->data() < data) |
| return treeSearchFullComparisons(current->right(), data); |
| if (data == current->data()) |
| return current; |
| |
| // We may need to traverse both the left and right subtrees. |
| Node* result = treeSearchFullComparisons(current->left(), data); |
| if (!result) |
| result = treeSearchFullComparisons(current->right(), data); |
| return result; |
| } |
| |
| void treeInsert(Node* z) |
| { |
| Node* y = 0; |
| Node* x = m_root; |
| while (x) { |
| y = x; |
| if (z->data() < x->data()) |
| x = x->left(); |
| else |
| x = x->right(); |
| } |
| z->setParent(y); |
| if (!y) |
| m_root = z; |
| else { |
| if (z->data() < y->data()) |
| y->setLeft(z); |
| else |
| y->setRight(z); |
| } |
| } |
| |
| // Finds the node following the given one in sequential ordering of |
| // their data, or null if none exists. |
| Node* treeSuccessor(Node* x) |
| { |
| if (x->right()) |
| return treeMinimum(x->right()); |
| Node* y = x->parent(); |
| while (y && x == y->right()) { |
| x = y; |
| y = y->parent(); |
| } |
| return y; |
| } |
| |
| // Finds the minimum element in the sub-tree rooted at the given |
| // node. |
| Node* treeMinimum(Node* x) |
| { |
| while (x->left()) |
| x = x->left(); |
| return x; |
| } |
| |
| // Helper for maintaining the augmented red-black tree. |
| void propagateUpdates(Node* start) |
| { |
| bool shouldContinue = true; |
| while (start && shouldContinue) { |
| shouldContinue = updateNode(start); |
| start = start->parent(); |
| } |
| } |
| |
| //---------------------------------------------------------------------- |
| // Red-Black tree operations |
| // |
| |
| // Left-rotates the subtree rooted at x. |
| // Returns the new root of the subtree (x's right child). |
| Node* leftRotate(Node* x) |
| { |
| // Set y. |
| Node* y = x->right(); |
| |
| // Turn y's left subtree into x's right subtree. |
| x->setRight(y->left()); |
| if (y->left()) |
| y->left()->setParent(x); |
| |
| // Link x's parent to y. |
| y->setParent(x->parent()); |
| if (!x->parent()) |
| m_root = y; |
| else { |
| if (x == x->parent()->left()) |
| x->parent()->setLeft(y); |
| else |
| x->parent()->setRight(y); |
| } |
| |
| // Put x on y's left. |
| y->setLeft(x); |
| x->setParent(y); |
| |
| // Update nodes lowest to highest. |
| updateNode(x); |
| updateNode(y); |
| return y; |
| } |
| |
| // Right-rotates the subtree rooted at y. |
| // Returns the new root of the subtree (y's left child). |
| Node* rightRotate(Node* y) |
| { |
| // Set x. |
| Node* x = y->left(); |
| |
| // Turn x's right subtree into y's left subtree. |
| y->setLeft(x->right()); |
| if (x->right()) |
| x->right()->setParent(y); |
| |
| // Link y's parent to x. |
| x->setParent(y->parent()); |
| if (!y->parent()) |
| m_root = x; |
| else { |
| if (y == y->parent()->left()) |
| y->parent()->setLeft(x); |
| else |
| y->parent()->setRight(x); |
| } |
| |
| // Put y on x's right. |
| x->setRight(y); |
| y->setParent(x); |
| |
| // Update nodes lowest to highest. |
| updateNode(y); |
| updateNode(x); |
| return x; |
| } |
| |
| // Inserts the given node into the tree. |
| void insertNode(Node* x) |
| { |
| treeInsert(x); |
| x->setColor(Red); |
| updateNode(x); |
| |
| logIfVerbose(" PODRedBlackTree::InsertNode"); |
| |
| // The node from which to start propagating updates upwards. |
| Node* updateStart = x->parent(); |
| |
| while (x != m_root && x->parent()->color() == Red) { |
| if (x->parent() == x->parent()->parent()->left()) { |
| Node* y = x->parent()->parent()->right(); |
| if (y && y->color() == Red) { |
| // Case 1 |
| logIfVerbose(" Case 1/1"); |
| x->parent()->setColor(Black); |
| y->setColor(Black); |
| x->parent()->parent()->setColor(Red); |
| updateNode(x->parent()); |
| x = x->parent()->parent(); |
| updateNode(x); |
| updateStart = x->parent(); |
| } else { |
| if (x == x->parent()->right()) { |
| logIfVerbose(" Case 1/2"); |
| // Case 2 |
| x = x->parent(); |
| leftRotate(x); |
| } |
| // Case 3 |
| logIfVerbose(" Case 1/3"); |
| x->parent()->setColor(Black); |
| x->parent()->parent()->setColor(Red); |
| Node* newSubTreeRoot = rightRotate(x->parent()->parent()); |
| updateStart = newSubTreeRoot->parent(); |
| } |
| } else { |
| // Same as "then" clause with "right" and "left" exchanged. |
| Node* y = x->parent()->parent()->left(); |
| if (y && y->color() == Red) { |
| // Case 1 |
| logIfVerbose(" Case 2/1"); |
| x->parent()->setColor(Black); |
| y->setColor(Black); |
| x->parent()->parent()->setColor(Red); |
| updateNode(x->parent()); |
| x = x->parent()->parent(); |
| updateNode(x); |
| updateStart = x->parent(); |
| } else { |
| if (x == x->parent()->left()) { |
| // Case 2 |
| logIfVerbose(" Case 2/2"); |
| x = x->parent(); |
| rightRotate(x); |
| } |
| // Case 3 |
| logIfVerbose(" Case 2/3"); |
| x->parent()->setColor(Black); |
| x->parent()->parent()->setColor(Red); |
| Node* newSubTreeRoot = leftRotate(x->parent()->parent()); |
| updateStart = newSubTreeRoot->parent(); |
| } |
| } |
| } |
| |
| propagateUpdates(updateStart); |
| |
| m_root->setColor(Black); |
| } |
| |
| // Restores the red-black property to the tree after splicing out |
| // a node. Note that x may be null, which is why xParent must be |
| // supplied. |
| void deleteFixup(Node* x, Node* xParent) |
| { |
| while (x != m_root && (!x || x->color() == Black)) { |
| if (x == xParent->left()) { |
| // Note: the text points out that w can not be null. |
| // The reason is not obvious from simply looking at |
| // the code; it comes about from the properties of the |
| // red-black tree. |
| Node* w = xParent->right(); |
| ASSERT(w); // x's sibling should not be null. |
| if (w->color() == Red) { |
| // Case 1 |
| w->setColor(Black); |
| xParent->setColor(Red); |
| leftRotate(xParent); |
| w = xParent->right(); |
| } |
| if ((!w->left() || w->left()->color() == Black) |
| && (!w->right() || w->right()->color() == Black)) { |
| // Case 2 |
| w->setColor(Red); |
| x = xParent; |
| xParent = x->parent(); |
| } else { |
| if (!w->right() || w->right()->color() == Black) { |
| // Case 3 |
| w->left()->setColor(Black); |
| w->setColor(Red); |
| rightRotate(w); |
| w = xParent->right(); |
| } |
| // Case 4 |
| w->setColor(xParent->color()); |
| xParent->setColor(Black); |
| if (w->right()) |
| w->right()->setColor(Black); |
| leftRotate(xParent); |
| x = m_root; |
| xParent = x->parent(); |
| } |
| } else { |
| // Same as "then" clause with "right" and "left" |
| // exchanged. |
| |
| // Note: the text points out that w can not be null. |
| // The reason is not obvious from simply looking at |
| // the code; it comes about from the properties of the |
| // red-black tree. |
| Node* w = xParent->left(); |
| ASSERT(w); // x's sibling should not be null. |
| if (w->color() == Red) { |
| // Case 1 |
| w->setColor(Black); |
| xParent->setColor(Red); |
| rightRotate(xParent); |
| w = xParent->left(); |
| } |
| if ((!w->right() || w->right()->color() == Black) |
| && (!w->left() || w->left()->color() == Black)) { |
| // Case 2 |
| w->setColor(Red); |
| x = xParent; |
| xParent = x->parent(); |
| } else { |
| if (!w->left() || w->left()->color() == Black) { |
| // Case 3 |
| w->right()->setColor(Black); |
| w->setColor(Red); |
| leftRotate(w); |
| w = xParent->left(); |
| } |
| // Case 4 |
| w->setColor(xParent->color()); |
| xParent->setColor(Black); |
| if (w->left()) |
| w->left()->setColor(Black); |
| rightRotate(xParent); |
| x = m_root; |
| xParent = x->parent(); |
| } |
| } |
| } |
| if (x) |
| x->setColor(Black); |
| } |
| |
| // Deletes the given node from the tree. Note that this |
| // particular node may not actually be removed from the tree; |
| // instead, another node might be removed and its contents |
| // copied into z. |
| void deleteNode(Node* z) |
| { |
| // Y is the node to be unlinked from the tree. |
| Node* y; |
| if (!z->left() || !z->right()) |
| y = z; |
| else |
| y = treeSuccessor(z); |
| |
| // Y is guaranteed to be non-null at this point. |
| Node* x; |
| if (y->left()) |
| x = y->left(); |
| else |
| x = y->right(); |
| |
| // X is the child of y which might potentially replace y in |
| // the tree. X might be null at this point. |
| Node* xParent; |
| if (x) { |
| x->setParent(y->parent()); |
| xParent = x->parent(); |
| } else |
| xParent = y->parent(); |
| if (!y->parent()) |
| m_root = x; |
| else { |
| if (y == y->parent()->left()) |
| y->parent()->setLeft(x); |
| else |
| y->parent()->setRight(x); |
| } |
| if (y != z) { |
| z->copyFrom(y); |
| // This node has changed location in the tree and must be updated. |
| updateNode(z); |
| // The parent and its parents may now be out of date. |
| propagateUpdates(z->parent()); |
| } |
| |
| // If we haven't already updated starting from xParent, do so now. |
| if (xParent && xParent != y && xParent != z) |
| propagateUpdates(xParent); |
| if (y->color() == Black) |
| deleteFixup(x, xParent); |
| |
| delete y; |
| } |
| |
| // Visits the subtree rooted at the given node in order. |
| void visitInorderImpl(Node* node, Visitor* visitor) const |
| { |
| if (node->left()) |
| visitInorderImpl(node->left(), visitor); |
| visitor->visit(node->data()); |
| if (node->right()) |
| visitInorderImpl(node->right(), visitor); |
| } |
| |
| void markFree(Node *node) |
| { |
| if (!node) |
| return; |
| |
| if (node->left()) |
| markFree(node->left()); |
| if (node->right()) |
| markFree(node->right()); |
| delete node; |
| } |
| |
| //---------------------------------------------------------------------- |
| // Helper class for size() |
| |
| // A Visitor which simply counts the number of visited elements. |
| class Counter : public Visitor { |
| WTF_MAKE_NONCOPYABLE(Counter); |
| public: |
| Counter() |
| : m_count(0) { } |
| |
| void visit(const T&) override { ++m_count; } |
| int count() const { return m_count; } |
| |
| private: |
| int m_count; |
| }; |
| |
| //---------------------------------------------------------------------- |
| // Verification and debugging routines |
| // |
| |
| // Returns in the "blackCount" parameter the number of black |
| // children along all paths to all leaves of the given node. |
| bool checkInvariantsFromNode(Node* node, int* blackCount) const |
| { |
| // Base case is a leaf node. |
| if (!node) { |
| *blackCount = 1; |
| return true; |
| } |
| |
| // Each node is either red or black. |
| if (!(node->color() == Red || node->color() == Black)) |
| return false; |
| |
| // Every leaf (or null) is black. |
| |
| if (node->color() == Red) { |
| // Both of its children are black. |
| if (!((!node->left() || node->left()->color() == Black))) |
| return false; |
| if (!((!node->right() || node->right()->color() == Black))) |
| return false; |
| } |
| |
| // Every simple path to a leaf node contains the same number of |
| // black nodes. |
| int leftCount = 0, rightCount = 0; |
| bool leftValid = checkInvariantsFromNode(node->left(), &leftCount); |
| bool rightValid = checkInvariantsFromNode(node->right(), &rightCount); |
| if (!leftValid || !rightValid) |
| return false; |
| *blackCount = leftCount + (node->color() == Black ? 1 : 0); |
| return leftCount == rightCount; |
| } |
| |
| #ifdef NDEBUG |
| void logIfVerbose(const char*) const { } |
| #else |
| void logIfVerbose(const char* output) const |
| { |
| if (m_verboseDebugging) |
| LOG_ERROR("%s", output); |
| } |
| #endif |
| |
| #ifndef NDEBUG |
| // Dumps the subtree rooted at the given node. |
| void dumpFromNode(Node* node, int indentation) const |
| { |
| StringBuilder builder; |
| for (int i = 0; i < indentation; i++) |
| builder.append(' '); |
| builder.append('-'); |
| if (node) { |
| builder.append(' '); |
| builder.append(ValueToString<T>::string(node->data())); |
| builder.append((node->color() == Black) ? " (black)" : " (red)"); |
| } |
| LOG_ERROR("%s", builder.toString().ascii().data()); |
| if (node) { |
| dumpFromNode(node->left(), indentation + 2); |
| dumpFromNode(node->right(), indentation + 2); |
| } |
| } |
| #endif |
| |
| //---------------------------------------------------------------------- |
| // Data members |
| |
| Node* m_root; |
| bool m_needsFullOrderingComparisons; |
| #ifndef NDEBUG |
| bool m_verboseDebugging; |
| #endif |
| }; |
| |
| } // namespace WebCore |
| |
| #endif // PODRedBlackTree_h |