blob: c1df187c1220d2f7f0324a2d25f9b83c052d82ec [file] [log] [blame]
/*
* Copyright (C) 2008-2015 Apple Inc. All rights reserved.
* Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CodeBlock_h
#define CodeBlock_h
#include "ArrayProfile.h"
#include "ByValInfo.h"
#include "BytecodeConventions.h"
#include "BytecodeLivenessAnalysis.h"
#include "CallLinkInfo.h"
#include "CallReturnOffsetToBytecodeOffset.h"
#include "CodeBlockHash.h"
#include "CodeBlockSet.h"
#include "CodeOrigin.h"
#include "CodeType.h"
#include "CompactJITCodeMap.h"
#include "ConcurrentJITLock.h"
#include "DFGCommon.h"
#include "DFGExitProfile.h"
#include "DeferredCompilationCallback.h"
#include "EvalCodeCache.h"
#include "ExecutionCounter.h"
#include "ExpressionRangeInfo.h"
#include "HandlerInfo.h"
#include "Instruction.h"
#include "JITCode.h"
#include "JITWriteBarrier.h"
#include "JSCell.h"
#include "JSGlobalObject.h"
#include "JumpTable.h"
#include "LLIntCallLinkInfo.h"
#include "LazyOperandValueProfile.h"
#include "ObjectAllocationProfile.h"
#include "Options.h"
#include "ProfilerCompilation.h"
#include "ProfilerJettisonReason.h"
#include "PutPropertySlot.h"
#include "RegExpObject.h"
#include "StructureStubInfo.h"
#include "UnconditionalFinalizer.h"
#include "ValueProfile.h"
#include "VirtualRegister.h"
#include "Watchpoint.h"
#include <wtf/Bag.h>
#include <wtf/FastMalloc.h>
#include <wtf/RefCountedArray.h>
#include <wtf/RefPtr.h>
#include <wtf/SegmentedVector.h>
#include <wtf/Vector.h>
#include <wtf/text/WTFString.h>
namespace JSC {
class ExecState;
class LLIntOffsetsExtractor;
class RegisterAtOffsetList;
class TypeLocation;
class JSModuleEnvironment;
enum ReoptimizationMode { DontCountReoptimization, CountReoptimization };
class CodeBlock : public JSCell {
typedef JSCell Base;
friend class BytecodeLivenessAnalysis;
friend class JIT;
friend class LLIntOffsetsExtractor;
class UnconditionalFinalizer : public JSC::UnconditionalFinalizer {
virtual void finalizeUnconditionally() override;
};
class WeakReferenceHarvester : public JSC::WeakReferenceHarvester {
virtual void visitWeakReferences(SlotVisitor&) override;
};
public:
enum CopyParsedBlockTag { CopyParsedBlock };
static const unsigned StructureFlags = Base::StructureFlags | StructureIsImmortal;
DECLARE_INFO;
protected:
CodeBlock(VM*, Structure*, CopyParsedBlockTag, CodeBlock& other);
CodeBlock(VM*, Structure*, ScriptExecutable* ownerExecutable, UnlinkedCodeBlock*, JSScope*, PassRefPtr<SourceProvider>, unsigned sourceOffset, unsigned firstLineColumnOffset);
#if ENABLE(WEBASSEMBLY)
CodeBlock(VM*, Structure*, WebAssemblyExecutable* ownerExecutable, JSGlobalObject*);
#endif
void finishCreation(VM&, CopyParsedBlockTag, CodeBlock& other);
void finishCreation(VM&, ScriptExecutable* ownerExecutable, UnlinkedCodeBlock*, JSScope*);
#if ENABLE(WEBASSEMBLY)
void finishCreation(VM&, WebAssemblyExecutable* ownerExecutable, JSGlobalObject*);
#endif
WriteBarrier<JSGlobalObject> m_globalObject;
Heap* m_heap;
public:
JS_EXPORT_PRIVATE ~CodeBlock();
UnlinkedCodeBlock* unlinkedCodeBlock() const { return m_unlinkedCode.get(); }
CString inferredName() const;
CodeBlockHash hash() const;
bool hasHash() const;
bool isSafeToComputeHash() const;
CString hashAsStringIfPossible() const;
CString sourceCodeForTools() const; // Not quite the actual source we parsed; this will do things like prefix the source for a function with a reified signature.
CString sourceCodeOnOneLine() const; // As sourceCodeForTools(), but replaces all whitespace runs with a single space.
void dumpAssumingJITType(PrintStream&, JITCode::JITType) const;
void dump(PrintStream&) const;
int numParameters() const { return m_numParameters; }
void setNumParameters(int newValue);
int* addressOfNumParameters() { return &m_numParameters; }
static ptrdiff_t offsetOfNumParameters() { return OBJECT_OFFSETOF(CodeBlock, m_numParameters); }
CodeBlock* alternative() const { return static_cast<CodeBlock*>(m_alternative.get()); }
void setAlternative(VM&, CodeBlock*);
template <typename Functor> void forEachRelatedCodeBlock(Functor&& functor)
{
Functor f(std::forward<Functor>(functor));
Vector<CodeBlock*, 4> codeBlocks;
codeBlocks.append(this);
while (!codeBlocks.isEmpty()) {
CodeBlock* currentCodeBlock = codeBlocks.takeLast();
f(currentCodeBlock);
if (CodeBlock* alternative = currentCodeBlock->alternative())
codeBlocks.append(alternative);
if (CodeBlock* osrEntryBlock = currentCodeBlock->specialOSREntryBlockOrNull())
codeBlocks.append(osrEntryBlock);
}
}
CodeSpecializationKind specializationKind() const
{
return specializationFromIsConstruct(m_isConstructor);
}
CodeBlock* alternativeForJettison();
JS_EXPORT_PRIVATE CodeBlock* baselineAlternative();
// FIXME: Get rid of this.
// https://bugs.webkit.org/show_bug.cgi?id=123677
CodeBlock* baselineVersion();
static void visitChildren(JSCell*, SlotVisitor&);
void visitChildren(SlotVisitor&);
void visitWeakly(SlotVisitor&);
void clearVisitWeaklyHasBeenCalled();
void dumpSource();
void dumpSource(PrintStream&);
void dumpBytecode();
void dumpBytecode(PrintStream&);
void dumpBytecode(
PrintStream&, unsigned bytecodeOffset,
const StubInfoMap& = StubInfoMap(), const CallLinkInfoMap& = CallLinkInfoMap());
void printStructures(PrintStream&, const Instruction*);
void printStructure(PrintStream&, const char* name, const Instruction*, int operand);
bool isStrictMode() const { return m_isStrictMode; }
ECMAMode ecmaMode() const { return isStrictMode() ? StrictMode : NotStrictMode; }
inline bool isKnownNotImmediate(int index)
{
if (index == m_thisRegister.offset() && !m_isStrictMode)
return true;
if (isConstantRegisterIndex(index))
return getConstant(index).isCell();
return false;
}
ALWAYS_INLINE bool isTemporaryRegisterIndex(int index)
{
return index >= m_numVars;
}
enum class RequiredHandler {
CatchHandler,
AnyHandler
};
HandlerInfo* handlerForBytecodeOffset(unsigned bytecodeOffset, RequiredHandler = RequiredHandler::AnyHandler);
HandlerInfo* handlerForIndex(unsigned, RequiredHandler = RequiredHandler::AnyHandler);
void removeExceptionHandlerForCallSite(CallSiteIndex);
unsigned lineNumberForBytecodeOffset(unsigned bytecodeOffset);
unsigned columnNumberForBytecodeOffset(unsigned bytecodeOffset);
void expressionRangeForBytecodeOffset(unsigned bytecodeOffset, int& divot,
int& startOffset, int& endOffset, unsigned& line, unsigned& column);
void getStubInfoMap(const ConcurrentJITLocker&, StubInfoMap& result);
void getStubInfoMap(StubInfoMap& result);
void getCallLinkInfoMap(const ConcurrentJITLocker&, CallLinkInfoMap& result);
void getCallLinkInfoMap(CallLinkInfoMap& result);
void getByValInfoMap(const ConcurrentJITLocker&, ByValInfoMap& result);
void getByValInfoMap(ByValInfoMap& result);
#if ENABLE(JIT)
StructureStubInfo* addStubInfo(AccessType);
Bag<StructureStubInfo>::iterator stubInfoBegin() { return m_stubInfos.begin(); }
Bag<StructureStubInfo>::iterator stubInfoEnd() { return m_stubInfos.end(); }
// O(n) operation. Use getStubInfoMap() unless you really only intend to get one
// stub info.
StructureStubInfo* findStubInfo(CodeOrigin);
ByValInfo* addByValInfo();
CallLinkInfo* addCallLinkInfo();
Bag<CallLinkInfo>::iterator callLinkInfosBegin() { return m_callLinkInfos.begin(); }
Bag<CallLinkInfo>::iterator callLinkInfosEnd() { return m_callLinkInfos.end(); }
// This is a slow function call used primarily for compiling OSR exits in the case
// that there had been inlining. Chances are if you want to use this, you're really
// looking for a CallLinkInfoMap to amortize the cost of calling this.
CallLinkInfo* getCallLinkInfoForBytecodeIndex(unsigned bytecodeIndex);
#endif // ENABLE(JIT)
void unlinkIncomingCalls();
#if ENABLE(JIT)
void linkIncomingCall(ExecState* callerFrame, CallLinkInfo*);
void linkIncomingPolymorphicCall(ExecState* callerFrame, PolymorphicCallNode*);
#endif // ENABLE(JIT)
void linkIncomingCall(ExecState* callerFrame, LLIntCallLinkInfo*);
void setJITCodeMap(std::unique_ptr<CompactJITCodeMap> jitCodeMap)
{
m_jitCodeMap = WTF::move(jitCodeMap);
}
CompactJITCodeMap* jitCodeMap()
{
return m_jitCodeMap.get();
}
unsigned bytecodeOffset(Instruction* returnAddress)
{
RELEASE_ASSERT(returnAddress >= instructions().begin() && returnAddress < instructions().end());
return static_cast<Instruction*>(returnAddress) - instructions().begin();
}
unsigned numberOfInstructions() const { return m_instructions.size(); }
RefCountedArray<Instruction>& instructions() { return m_instructions; }
const RefCountedArray<Instruction>& instructions() const { return m_instructions; }
size_t predictedMachineCodeSize();
bool usesOpcode(OpcodeID);
unsigned instructionCount() const { return m_instructions.size(); }
// Exactly equivalent to codeBlock->ownerExecutable()->newReplacementCodeBlockFor(codeBlock->specializationKind())
CodeBlock* newReplacement();
void setJITCode(PassRefPtr<JITCode> code)
{
ASSERT(m_heap->isDeferred());
m_heap->reportExtraMemoryAllocated(code->size());
ConcurrentJITLocker locker(m_lock);
WTF::storeStoreFence(); // This is probably not needed because the lock will also do something similar, but it's good to be paranoid.
m_jitCode = code;
}
PassRefPtr<JITCode> jitCode() { return m_jitCode; }
JITCode::JITType jitType() const
{
JITCode* jitCode = m_jitCode.get();
WTF::loadLoadFence();
JITCode::JITType result = JITCode::jitTypeFor(jitCode);
WTF::loadLoadFence(); // This probably isn't needed. Oh well, paranoia is good.
return result;
}
bool hasBaselineJITProfiling() const
{
return jitType() == JITCode::BaselineJIT;
}
#if ENABLE(JIT)
CodeBlock* replacement();
DFG::CapabilityLevel computeCapabilityLevel();
DFG::CapabilityLevel capabilityLevel();
DFG::CapabilityLevel capabilityLevelState() { return m_capabilityLevelState; }
bool hasOptimizedReplacement(JITCode::JITType typeToReplace);
bool hasOptimizedReplacement(); // the typeToReplace is my JITType
#endif
void jettison(Profiler::JettisonReason, ReoptimizationMode = DontCountReoptimization, const FireDetail* = nullptr);
ExecutableBase* ownerExecutable() const { return m_ownerExecutable.get(); }
ScriptExecutable* ownerScriptExecutable() const { return jsCast<ScriptExecutable*>(m_ownerExecutable.get()); }
void setVM(VM* vm) { m_vm = vm; }
VM* vm() { return m_vm; }
void setThisRegister(VirtualRegister thisRegister) { m_thisRegister = thisRegister; }
VirtualRegister thisRegister() const { return m_thisRegister; }
bool usesEval() const { return m_unlinkedCode->usesEval(); }
void setScopeRegister(VirtualRegister scopeRegister)
{
ASSERT(scopeRegister.isLocal() || !scopeRegister.isValid());
m_scopeRegister = scopeRegister;
}
VirtualRegister scopeRegister() const
{
return m_scopeRegister;
}
void setActivationRegister(VirtualRegister activationRegister)
{
m_lexicalEnvironmentRegister = activationRegister;
}
VirtualRegister activationRegister() const
{
ASSERT(m_lexicalEnvironmentRegister.isValid());
return m_lexicalEnvironmentRegister;
}
VirtualRegister uncheckedActivationRegister()
{
return m_lexicalEnvironmentRegister;
}
bool needsActivation() const
{
ASSERT(m_lexicalEnvironmentRegister.isValid() == m_needsActivation);
return m_needsActivation;
}
CodeType codeType() const
{
return m_codeType;
}
PutPropertySlot::Context putByIdContext() const
{
if (codeType() == EvalCode)
return PutPropertySlot::PutByIdEval;
return PutPropertySlot::PutById;
}
SourceProvider* source() const { return m_source.get(); }
unsigned sourceOffset() const { return m_sourceOffset; }
unsigned firstLineColumnOffset() const { return m_firstLineColumnOffset; }
size_t numberOfJumpTargets() const { return m_unlinkedCode->numberOfJumpTargets(); }
unsigned jumpTarget(int index) const { return m_unlinkedCode->jumpTarget(index); }
String nameForRegister(VirtualRegister);
unsigned numberOfArgumentValueProfiles()
{
ASSERT(m_numParameters >= 0);
ASSERT(m_argumentValueProfiles.size() == static_cast<unsigned>(m_numParameters));
return m_argumentValueProfiles.size();
}
ValueProfile* valueProfileForArgument(unsigned argumentIndex)
{
ValueProfile* result = &m_argumentValueProfiles[argumentIndex];
ASSERT(result->m_bytecodeOffset == -1);
return result;
}
unsigned numberOfValueProfiles() { return m_valueProfiles.size(); }
ValueProfile* valueProfile(int index) { return &m_valueProfiles[index]; }
ValueProfile* valueProfileForBytecodeOffset(int bytecodeOffset);
SpeculatedType valueProfilePredictionForBytecodeOffset(const ConcurrentJITLocker& locker, int bytecodeOffset)
{
return valueProfileForBytecodeOffset(bytecodeOffset)->computeUpdatedPrediction(locker);
}
unsigned totalNumberOfValueProfiles()
{
return numberOfArgumentValueProfiles() + numberOfValueProfiles();
}
ValueProfile* getFromAllValueProfiles(unsigned index)
{
if (index < numberOfArgumentValueProfiles())
return valueProfileForArgument(index);
return valueProfile(index - numberOfArgumentValueProfiles());
}
RareCaseProfile* addRareCaseProfile(int bytecodeOffset)
{
m_rareCaseProfiles.append(RareCaseProfile(bytecodeOffset));
return &m_rareCaseProfiles.last();
}
unsigned numberOfRareCaseProfiles() { return m_rareCaseProfiles.size(); }
RareCaseProfile* rareCaseProfileForBytecodeOffset(int bytecodeOffset);
unsigned rareCaseProfileCountForBytecodeOffset(int bytecodeOffset);
bool likelyToTakeSlowCase(int bytecodeOffset)
{
if (!hasBaselineJITProfiling())
return false;
unsigned value = rareCaseProfileCountForBytecodeOffset(bytecodeOffset);
return value >= Options::likelyToTakeSlowCaseMinimumCount();
}
bool couldTakeSlowCase(int bytecodeOffset)
{
if (!hasBaselineJITProfiling())
return false;
unsigned value = rareCaseProfileCountForBytecodeOffset(bytecodeOffset);
return value >= Options::couldTakeSlowCaseMinimumCount();
}
RareCaseProfile* addSpecialFastCaseProfile(int bytecodeOffset)
{
m_specialFastCaseProfiles.append(RareCaseProfile(bytecodeOffset));
return &m_specialFastCaseProfiles.last();
}
unsigned numberOfSpecialFastCaseProfiles() { return m_specialFastCaseProfiles.size(); }
RareCaseProfile* specialFastCaseProfile(int index) { return &m_specialFastCaseProfiles[index]; }
RareCaseProfile* specialFastCaseProfileForBytecodeOffset(int bytecodeOffset)
{
return tryBinarySearch<RareCaseProfile, int>(
m_specialFastCaseProfiles, m_specialFastCaseProfiles.size(), bytecodeOffset,
getRareCaseProfileBytecodeOffset);
}
unsigned specialFastCaseProfileCountForBytecodeOffset(int bytecodeOffset)
{
RareCaseProfile* profile = specialFastCaseProfileForBytecodeOffset(bytecodeOffset);
if (!profile)
return 0;
return profile->m_counter;
}
bool couldTakeSpecialFastCase(int bytecodeOffset)
{
if (!hasBaselineJITProfiling())
return false;
unsigned specialFastCaseCount = specialFastCaseProfileCountForBytecodeOffset(bytecodeOffset);
return specialFastCaseCount >= Options::couldTakeSlowCaseMinimumCount();
}
bool likelyToTakeDeepestSlowCase(int bytecodeOffset)
{
if (!hasBaselineJITProfiling())
return false;
unsigned slowCaseCount = rareCaseProfileCountForBytecodeOffset(bytecodeOffset);
unsigned specialFastCaseCount = specialFastCaseProfileCountForBytecodeOffset(bytecodeOffset);
unsigned value = slowCaseCount - specialFastCaseCount;
return value >= Options::likelyToTakeSlowCaseMinimumCount();
}
unsigned numberOfArrayProfiles() const { return m_arrayProfiles.size(); }
const ArrayProfileVector& arrayProfiles() { return m_arrayProfiles; }
ArrayProfile* addArrayProfile(unsigned bytecodeOffset)
{
m_arrayProfiles.append(ArrayProfile(bytecodeOffset));
return &m_arrayProfiles.last();
}
ArrayProfile* getArrayProfile(unsigned bytecodeOffset);
ArrayProfile* getOrAddArrayProfile(unsigned bytecodeOffset);
// Exception handling support
size_t numberOfExceptionHandlers() const { return m_rareData ? m_rareData->m_exceptionHandlers.size() : 0; }
HandlerInfo& exceptionHandler(int index) { RELEASE_ASSERT(m_rareData); return m_rareData->m_exceptionHandlers[index]; }
bool hasExpressionInfo() { return m_unlinkedCode->hasExpressionInfo(); }
#if ENABLE(DFG_JIT)
Vector<CodeOrigin, 0, UnsafeVectorOverflow>& codeOrigins();
// Having code origins implies that there has been some inlining.
bool hasCodeOrigins()
{
return JITCode::isOptimizingJIT(jitType());
}
bool canGetCodeOrigin(CallSiteIndex index)
{
if (!hasCodeOrigins())
return false;
return index.bits() < codeOrigins().size();
}
CodeOrigin codeOrigin(CallSiteIndex index)
{
return codeOrigins()[index.bits()];
}
bool addFrequentExitSite(const DFG::FrequentExitSite& site)
{
ASSERT(JITCode::isBaselineCode(jitType()));
ConcurrentJITLocker locker(m_lock);
return m_exitProfile.add(locker, site);
}
bool hasExitSite(const ConcurrentJITLocker& locker, const DFG::FrequentExitSite& site) const
{
return m_exitProfile.hasExitSite(locker, site);
}
bool hasExitSite(const DFG::FrequentExitSite& site) const
{
ConcurrentJITLocker locker(m_lock);
return hasExitSite(locker, site);
}
DFG::ExitProfile& exitProfile() { return m_exitProfile; }
CompressedLazyOperandValueProfileHolder& lazyOperandValueProfiles()
{
return m_lazyOperandValueProfiles;
}
#endif // ENABLE(DFG_JIT)
// Constant Pool
#if ENABLE(DFG_JIT)
size_t numberOfIdentifiers() const { return m_unlinkedCode->numberOfIdentifiers() + numberOfDFGIdentifiers(); }
size_t numberOfDFGIdentifiers() const;
const Identifier& identifier(int index) const;
#else
size_t numberOfIdentifiers() const { return m_unlinkedCode->numberOfIdentifiers(); }
const Identifier& identifier(int index) const { return m_unlinkedCode->identifier(index); }
#endif
Vector<WriteBarrier<Unknown>>& constants() { return m_constantRegisters; }
Vector<SourceCodeRepresentation>& constantsSourceCodeRepresentation() { return m_constantsSourceCodeRepresentation; }
unsigned addConstant(JSValue v)
{
unsigned result = m_constantRegisters.size();
m_constantRegisters.append(WriteBarrier<Unknown>());
m_constantRegisters.last().set(m_globalObject->vm(), this, v);
m_constantsSourceCodeRepresentation.append(SourceCodeRepresentation::Other);
return result;
}
unsigned addConstantLazily()
{
unsigned result = m_constantRegisters.size();
m_constantRegisters.append(WriteBarrier<Unknown>());
m_constantsSourceCodeRepresentation.append(SourceCodeRepresentation::Other);
return result;
}
WriteBarrier<Unknown>& constantRegister(int index) { return m_constantRegisters[index - FirstConstantRegisterIndex]; }
ALWAYS_INLINE bool isConstantRegisterIndex(int index) const { return index >= FirstConstantRegisterIndex; }
ALWAYS_INLINE JSValue getConstant(int index) const { return m_constantRegisters[index - FirstConstantRegisterIndex].get(); }
ALWAYS_INLINE SourceCodeRepresentation constantSourceCodeRepresentation(int index) const { return m_constantsSourceCodeRepresentation[index - FirstConstantRegisterIndex]; }
FunctionExecutable* functionDecl(int index) { return m_functionDecls[index].get(); }
int numberOfFunctionDecls() { return m_functionDecls.size(); }
FunctionExecutable* functionExpr(int index) { return m_functionExprs[index].get(); }
RegExp* regexp(int index) const { return m_unlinkedCode->regexp(index); }
unsigned numberOfConstantBuffers() const
{
if (!m_rareData)
return 0;
return m_rareData->m_constantBuffers.size();
}
unsigned addConstantBuffer(const Vector<JSValue>& buffer)
{
createRareDataIfNecessary();
unsigned size = m_rareData->m_constantBuffers.size();
m_rareData->m_constantBuffers.append(buffer);
return size;
}
Vector<JSValue>& constantBufferAsVector(unsigned index)
{
ASSERT(m_rareData);
return m_rareData->m_constantBuffers[index];
}
JSValue* constantBuffer(unsigned index)
{
return constantBufferAsVector(index).data();
}
Heap* heap() const { return m_heap; }
JSGlobalObject* globalObject() { return m_globalObject.get(); }
JSGlobalObject* globalObjectFor(CodeOrigin);
BytecodeLivenessAnalysis& livenessAnalysis()
{
{
ConcurrentJITLocker locker(m_lock);
if (!!m_livenessAnalysis)
return *m_livenessAnalysis;
}
std::unique_ptr<BytecodeLivenessAnalysis> analysis =
std::make_unique<BytecodeLivenessAnalysis>(this);
{
ConcurrentJITLocker locker(m_lock);
if (!m_livenessAnalysis)
m_livenessAnalysis = WTF::move(analysis);
return *m_livenessAnalysis;
}
}
void validate();
// Jump Tables
size_t numberOfSwitchJumpTables() const { return m_rareData ? m_rareData->m_switchJumpTables.size() : 0; }
SimpleJumpTable& addSwitchJumpTable() { createRareDataIfNecessary(); m_rareData->m_switchJumpTables.append(SimpleJumpTable()); return m_rareData->m_switchJumpTables.last(); }
SimpleJumpTable& switchJumpTable(int tableIndex) { RELEASE_ASSERT(m_rareData); return m_rareData->m_switchJumpTables[tableIndex]; }
void clearSwitchJumpTables()
{
if (!m_rareData)
return;
m_rareData->m_switchJumpTables.clear();
}
size_t numberOfStringSwitchJumpTables() const { return m_rareData ? m_rareData->m_stringSwitchJumpTables.size() : 0; }
StringJumpTable& addStringSwitchJumpTable() { createRareDataIfNecessary(); m_rareData->m_stringSwitchJumpTables.append(StringJumpTable()); return m_rareData->m_stringSwitchJumpTables.last(); }
StringJumpTable& stringSwitchJumpTable(int tableIndex) { RELEASE_ASSERT(m_rareData); return m_rareData->m_stringSwitchJumpTables[tableIndex]; }
EvalCodeCache& evalCodeCache() { createRareDataIfNecessary(); return m_rareData->m_evalCodeCache; }
enum ShrinkMode {
// Shrink prior to generating machine code that may point directly into vectors.
EarlyShrink,
// Shrink after generating machine code, and after possibly creating new vectors
// and appending to others. At this time it is not safe to shrink certain vectors
// because we would have generated machine code that references them directly.
LateShrink
};
void shrinkToFit(ShrinkMode);
// Functions for controlling when JITting kicks in, in a mixed mode
// execution world.
bool checkIfJITThresholdReached()
{
return m_llintExecuteCounter.checkIfThresholdCrossedAndSet(this);
}
void dontJITAnytimeSoon()
{
m_llintExecuteCounter.deferIndefinitely();
}
void jitAfterWarmUp()
{
m_llintExecuteCounter.setNewThreshold(Options::thresholdForJITAfterWarmUp(), this);
}
void jitSoon()
{
m_llintExecuteCounter.setNewThreshold(Options::thresholdForJITSoon(), this);
}
const BaselineExecutionCounter& llintExecuteCounter() const
{
return m_llintExecuteCounter;
}
// Functions for controlling when tiered compilation kicks in. This
// controls both when the optimizing compiler is invoked and when OSR
// entry happens. Two triggers exist: the loop trigger and the return
// trigger. In either case, when an addition to m_jitExecuteCounter
// causes it to become non-negative, the optimizing compiler is
// invoked. This includes a fast check to see if this CodeBlock has
// already been optimized (i.e. replacement() returns a CodeBlock
// that was optimized with a higher tier JIT than this one). In the
// case of the loop trigger, if the optimized compilation succeeds
// (or has already succeeded in the past) then OSR is attempted to
// redirect program flow into the optimized code.
// These functions are called from within the optimization triggers,
// and are used as a single point at which we define the heuristics
// for how much warm-up is mandated before the next optimization
// trigger files. All CodeBlocks start out with optimizeAfterWarmUp(),
// as this is called from the CodeBlock constructor.
// When we observe a lot of speculation failures, we trigger a
// reoptimization. But each time, we increase the optimization trigger
// to avoid thrashing.
JS_EXPORT_PRIVATE unsigned reoptimizationRetryCounter() const;
void countReoptimization();
#if ENABLE(JIT)
static unsigned numberOfLLIntBaselineCalleeSaveRegisters() { return RegisterSet::llintBaselineCalleeSaveRegisters().numberOfSetRegisters(); }
static size_t llintBaselineCalleeSaveSpaceAsVirtualRegisters();
size_t calleeSaveSpaceAsVirtualRegisters();
unsigned numberOfDFGCompiles();
int32_t codeTypeThresholdMultiplier() const;
int32_t adjustedCounterValue(int32_t desiredThreshold);
int32_t* addressOfJITExecuteCounter()
{
return &m_jitExecuteCounter.m_counter;
}
static ptrdiff_t offsetOfJITExecuteCounter() { return OBJECT_OFFSETOF(CodeBlock, m_jitExecuteCounter) + OBJECT_OFFSETOF(BaselineExecutionCounter, m_counter); }
static ptrdiff_t offsetOfJITExecutionActiveThreshold() { return OBJECT_OFFSETOF(CodeBlock, m_jitExecuteCounter) + OBJECT_OFFSETOF(BaselineExecutionCounter, m_activeThreshold); }
static ptrdiff_t offsetOfJITExecutionTotalCount() { return OBJECT_OFFSETOF(CodeBlock, m_jitExecuteCounter) + OBJECT_OFFSETOF(BaselineExecutionCounter, m_totalCount); }
const BaselineExecutionCounter& jitExecuteCounter() const { return m_jitExecuteCounter; }
unsigned optimizationDelayCounter() const { return m_optimizationDelayCounter; }
// Check if the optimization threshold has been reached, and if not,
// adjust the heuristics accordingly. Returns true if the threshold has
// been reached.
bool checkIfOptimizationThresholdReached();
// Call this to force the next optimization trigger to fire. This is
// rarely wise, since optimization triggers are typically more
// expensive than executing baseline code.
void optimizeNextInvocation();
// Call this to prevent optimization from happening again. Note that
// optimization will still happen after roughly 2^29 invocations,
// so this is really meant to delay that as much as possible. This
// is called if optimization failed, and we expect it to fail in
// the future as well.
void dontOptimizeAnytimeSoon();
// Call this to reinitialize the counter to its starting state,
// forcing a warm-up to happen before the next optimization trigger
// fires. This is called in the CodeBlock constructor. It also
// makes sense to call this if an OSR exit occurred. Note that
// OSR exit code is code generated, so the value of the execute
// counter that this corresponds to is also available directly.
void optimizeAfterWarmUp();
// Call this to force an optimization trigger to fire only after
// a lot of warm-up.
void optimizeAfterLongWarmUp();
// Call this to cause an optimization trigger to fire soon, but
// not necessarily the next one. This makes sense if optimization
// succeeds. Successfuly optimization means that all calls are
// relinked to the optimized code, so this only affects call
// frames that are still executing this CodeBlock. The value here
// is tuned to strike a balance between the cost of OSR entry
// (which is too high to warrant making every loop back edge to
// trigger OSR immediately) and the cost of executing baseline
// code (which is high enough that we don't necessarily want to
// have a full warm-up). The intuition for calling this instead of
// optimizeNextInvocation() is for the case of recursive functions
// with loops. Consider that there may be N call frames of some
// recursive function, for a reasonably large value of N. The top
// one triggers optimization, and then returns, and then all of
// the others return. We don't want optimization to be triggered on
// each return, as that would be superfluous. It only makes sense
// to trigger optimization if one of those functions becomes hot
// in the baseline code.
void optimizeSoon();
void forceOptimizationSlowPathConcurrently();
void setOptimizationThresholdBasedOnCompilationResult(CompilationResult);
uint32_t osrExitCounter() const { return m_osrExitCounter; }
void countOSRExit() { m_osrExitCounter++; }
uint32_t* addressOfOSRExitCounter() { return &m_osrExitCounter; }
static ptrdiff_t offsetOfOSRExitCounter() { return OBJECT_OFFSETOF(CodeBlock, m_osrExitCounter); }
uint32_t adjustedExitCountThreshold(uint32_t desiredThreshold);
uint32_t exitCountThresholdForReoptimization();
uint32_t exitCountThresholdForReoptimizationFromLoop();
bool shouldReoptimizeNow();
bool shouldReoptimizeFromLoopNow();
void setCalleeSaveRegisters(RegisterSet);
void setCalleeSaveRegisters(std::unique_ptr<RegisterAtOffsetList>);
RegisterAtOffsetList* calleeSaveRegisters() const { return m_calleeSaveRegisters.get(); }
#else // No JIT
static unsigned numberOfLLIntBaselineCalleeSaveRegisters() { return 0; }
static size_t llintBaselineCalleeSaveSpaceAsVirtualRegisters() { return 0; };
void optimizeAfterWarmUp() { }
unsigned numberOfDFGCompiles() { return 0; }
#endif
bool shouldOptimizeNow();
void updateAllValueProfilePredictions();
void updateAllArrayPredictions();
void updateAllPredictions();
unsigned frameRegisterCount();
int stackPointerOffset();
bool hasOpDebugForLineAndColumn(unsigned line, unsigned column);
bool hasDebuggerRequests() const { return m_debuggerRequests; }
void* debuggerRequestsAddress() { return &m_debuggerRequests; }
void addBreakpoint(unsigned numBreakpoints);
void removeBreakpoint(unsigned numBreakpoints)
{
ASSERT(m_numBreakpoints >= numBreakpoints);
m_numBreakpoints -= numBreakpoints;
}
enum SteppingMode {
SteppingModeDisabled,
SteppingModeEnabled
};
void setSteppingMode(SteppingMode);
void clearDebuggerRequests()
{
m_steppingMode = SteppingModeDisabled;
m_numBreakpoints = 0;
}
// FIXME: Make these remaining members private.
int m_numLocalRegistersForCalleeSaves;
int m_numCalleeRegisters;
int m_numVars;
bool m_isConstructor : 1;
// This is intentionally public; it's the responsibility of anyone doing any
// of the following to hold the lock:
//
// - Modifying any inline cache in this code block.
//
// - Quering any inline cache in this code block, from a thread other than
// the main thread.
//
// Additionally, it's only legal to modify the inline cache on the main
// thread. This means that the main thread can query the inline cache without
// locking. This is crucial since executing the inline cache is effectively
// "querying" it.
//
// Another exception to the rules is that the GC can do whatever it wants
// without holding any locks, because the GC is guaranteed to wait until any
// concurrent compilation threads finish what they're doing.
mutable ConcurrentJITLock m_lock;
bool m_shouldAlwaysBeInlined; // Not a bitfield because the JIT wants to store to it.
bool m_allTransitionsHaveBeenMarked : 1; // Initialized and used on every GC.
bool m_didFailFTLCompilation : 1;
bool m_hasBeenCompiledWithFTL : 1;
// Internal methods for use by validation code. It would be private if it wasn't
// for the fact that we use it from anonymous namespaces.
void beginValidationDidFail();
NO_RETURN_DUE_TO_CRASH void endValidationDidFail();
struct RareData {
WTF_MAKE_FAST_ALLOCATED;
public:
Vector<HandlerInfo> m_exceptionHandlers;
// Buffers used for large array literals
Vector<Vector<JSValue>> m_constantBuffers;
// Jump Tables
Vector<SimpleJumpTable> m_switchJumpTables;
Vector<StringJumpTable> m_stringSwitchJumpTables;
EvalCodeCache m_evalCodeCache;
};
void clearExceptionHandlers()
{
if (m_rareData)
m_rareData->m_exceptionHandlers.clear();
}
void appendExceptionHandler(const HandlerInfo& handler)
{
createRareDataIfNecessary(); // We may be handling the exception of an inlined call frame.
m_rareData->m_exceptionHandlers.append(handler);
}
CallSiteIndex newExceptionHandlingCallSiteIndex(CallSiteIndex originalCallSite);
protected:
void finalizeLLIntInlineCaches();
void finalizeBaselineJITInlineCaches();
#if ENABLE(DFG_JIT)
void tallyFrequentExitSites();
#else
void tallyFrequentExitSites() { }
#endif
private:
friend class CodeBlockSet;
CodeBlock* specialOSREntryBlockOrNull();
void noticeIncomingCall(ExecState* callerFrame);
double optimizationThresholdScalingFactor();
void updateAllPredictionsAndCountLiveness(unsigned& numberOfLiveNonArgumentValueProfiles, unsigned& numberOfSamplesInProfiles);
void setConstantRegisters(const Vector<WriteBarrier<Unknown>>& constants, const Vector<SourceCodeRepresentation>& constantsSourceCodeRepresentation)
{
ASSERT(constants.size() == constantsSourceCodeRepresentation.size());
size_t count = constants.size();
m_constantRegisters.resizeToFit(count);
for (size_t i = 0; i < count; i++)
m_constantRegisters[i].set(*m_vm, this, constants[i].get());
m_constantsSourceCodeRepresentation = constantsSourceCodeRepresentation;
}
void replaceConstant(int index, JSValue value)
{
ASSERT(isConstantRegisterIndex(index) && static_cast<size_t>(index - FirstConstantRegisterIndex) < m_constantRegisters.size());
m_constantRegisters[index - FirstConstantRegisterIndex].set(m_globalObject->vm(), this, value);
}
void dumpBytecode(
PrintStream&, ExecState*, const Instruction* begin, const Instruction*&,
const StubInfoMap& = StubInfoMap(), const CallLinkInfoMap& = CallLinkInfoMap());
CString registerName(int r) const;
CString constantName(int index) const;
void printUnaryOp(PrintStream&, ExecState*, int location, const Instruction*&, const char* op);
void printBinaryOp(PrintStream&, ExecState*, int location, const Instruction*&, const char* op);
void printConditionalJump(PrintStream&, ExecState*, const Instruction*, const Instruction*&, int location, const char* op);
void printGetByIdOp(PrintStream&, ExecState*, int location, const Instruction*&);
void printGetByIdCacheStatus(PrintStream&, ExecState*, int location, const StubInfoMap&);
enum CacheDumpMode { DumpCaches, DontDumpCaches };
void printCallOp(PrintStream&, ExecState*, int location, const Instruction*&, const char* op, CacheDumpMode, bool& hasPrintedProfiling, const CallLinkInfoMap&);
void printPutByIdOp(PrintStream&, ExecState*, int location, const Instruction*&, const char* op);
void printPutByIdCacheStatus(PrintStream&, int location, const StubInfoMap&);
void printLocationAndOp(PrintStream&, ExecState*, int location, const Instruction*&, const char* op);
void printLocationOpAndRegisterOperand(PrintStream&, ExecState*, int location, const Instruction*& it, const char* op, int operand);
void beginDumpProfiling(PrintStream&, bool& hasPrintedProfiling);
void dumpValueProfiling(PrintStream&, const Instruction*&, bool& hasPrintedProfiling);
void dumpArrayProfiling(PrintStream&, const Instruction*&, bool& hasPrintedProfiling);
void dumpRareCaseProfile(PrintStream&, const char* name, RareCaseProfile*, bool& hasPrintedProfiling);
bool shouldVisitStrongly();
bool shouldJettisonDueToWeakReference();
bool shouldJettisonDueToOldAge();
void propagateTransitions(SlotVisitor&);
void determineLiveness(SlotVisitor&);
void stronglyVisitStrongReferences(SlotVisitor&);
void stronglyVisitWeakReferences(SlotVisitor&);
void visitOSRExitTargets(SlotVisitor&);
std::chrono::milliseconds timeSinceCreation()
{
return std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now() - m_creationTime);
}
void createRareDataIfNecessary()
{
if (!m_rareData)
m_rareData = std::make_unique<RareData>();
}
void insertBasicBlockBoundariesForControlFlowProfiler(RefCountedArray<Instruction>&);
WriteBarrier<UnlinkedCodeBlock> m_unlinkedCode;
int m_numParameters;
union {
unsigned m_debuggerRequests;
struct {
unsigned m_hasDebuggerStatement : 1;
unsigned m_steppingMode : 1;
unsigned m_numBreakpoints : 30;
};
};
WriteBarrier<ExecutableBase> m_ownerExecutable;
VM* m_vm;
RefCountedArray<Instruction> m_instructions;
VirtualRegister m_thisRegister;
VirtualRegister m_scopeRegister;
VirtualRegister m_lexicalEnvironmentRegister;
bool m_isStrictMode;
bool m_needsActivation;
Atomic<bool> m_visitWeaklyHasBeenCalled;
RefPtr<SourceProvider> m_source;
unsigned m_sourceOffset;
unsigned m_firstLineColumnOffset;
CodeType m_codeType;
Vector<LLIntCallLinkInfo> m_llintCallLinkInfos;
SentinelLinkedList<LLIntCallLinkInfo, BasicRawSentinelNode<LLIntCallLinkInfo>> m_incomingLLIntCalls;
RefPtr<JITCode> m_jitCode;
#if ENABLE(JIT)
std::unique_ptr<RegisterAtOffsetList> m_calleeSaveRegisters;
Bag<StructureStubInfo> m_stubInfos;
Bag<ByValInfo> m_byValInfos;
Bag<CallLinkInfo> m_callLinkInfos;
SentinelLinkedList<CallLinkInfo, BasicRawSentinelNode<CallLinkInfo>> m_incomingCalls;
SentinelLinkedList<PolymorphicCallNode, BasicRawSentinelNode<PolymorphicCallNode>> m_incomingPolymorphicCalls;
#endif
std::unique_ptr<CompactJITCodeMap> m_jitCodeMap;
#if ENABLE(DFG_JIT)
// This is relevant to non-DFG code blocks that serve as the profiled code block
// for DFG code blocks.
DFG::ExitProfile m_exitProfile;
CompressedLazyOperandValueProfileHolder m_lazyOperandValueProfiles;
#endif
Vector<ValueProfile> m_argumentValueProfiles;
Vector<ValueProfile> m_valueProfiles;
SegmentedVector<RareCaseProfile, 8> m_rareCaseProfiles;
SegmentedVector<RareCaseProfile, 8> m_specialFastCaseProfiles;
Vector<ArrayAllocationProfile> m_arrayAllocationProfiles;
ArrayProfileVector m_arrayProfiles;
Vector<ObjectAllocationProfile> m_objectAllocationProfiles;
// Constant Pool
COMPILE_ASSERT(sizeof(Register) == sizeof(WriteBarrier<Unknown>), Register_must_be_same_size_as_WriteBarrier_Unknown);
// TODO: This could just be a pointer to m_unlinkedCodeBlock's data, but the DFG mutates
// it, so we're stuck with it for now.
Vector<WriteBarrier<Unknown>> m_constantRegisters;
Vector<SourceCodeRepresentation> m_constantsSourceCodeRepresentation;
Vector<WriteBarrier<FunctionExecutable>> m_functionDecls;
Vector<WriteBarrier<FunctionExecutable>> m_functionExprs;
WriteBarrier<CodeBlock> m_alternative;
BaselineExecutionCounter m_llintExecuteCounter;
BaselineExecutionCounter m_jitExecuteCounter;
int32_t m_totalJITExecutions;
uint32_t m_osrExitCounter;
uint16_t m_optimizationDelayCounter;
uint16_t m_reoptimizationRetryCounter;
std::chrono::steady_clock::time_point m_creationTime;
mutable CodeBlockHash m_hash;
std::unique_ptr<BytecodeLivenessAnalysis> m_livenessAnalysis;
std::unique_ptr<RareData> m_rareData;
#if ENABLE(JIT)
DFG::CapabilityLevel m_capabilityLevelState;
#endif
UnconditionalFinalizer m_unconditionalFinalizer;
WeakReferenceHarvester m_weakReferenceHarvester;
};
// Program code is not marked by any function, so we make the global object
// responsible for marking it.
class GlobalCodeBlock : public CodeBlock {
typedef CodeBlock Base;
DECLARE_INFO;
protected:
GlobalCodeBlock(VM* vm, Structure* structure, CopyParsedBlockTag, GlobalCodeBlock& other)
: CodeBlock(vm, structure, CopyParsedBlock, other)
{
}
GlobalCodeBlock(VM* vm, Structure* structure, ScriptExecutable* ownerExecutable, UnlinkedCodeBlock* unlinkedCodeBlock, JSScope* scope, PassRefPtr<SourceProvider> sourceProvider, unsigned sourceOffset, unsigned firstLineColumnOffset)
: CodeBlock(vm, structure, ownerExecutable, unlinkedCodeBlock, scope, sourceProvider, sourceOffset, firstLineColumnOffset)
{
}
};
class ProgramCodeBlock : public GlobalCodeBlock {
public:
typedef GlobalCodeBlock Base;
DECLARE_INFO;
static ProgramCodeBlock* create(VM* vm, CopyParsedBlockTag, ProgramCodeBlock& other)
{
ProgramCodeBlock* instance = new (NotNull, allocateCell<ProgramCodeBlock>(vm->heap))
ProgramCodeBlock(vm, vm->programCodeBlockStructure.get(), CopyParsedBlock, other);
instance->finishCreation(*vm, CopyParsedBlock, other);
return instance;
}
static ProgramCodeBlock* create(VM* vm, ProgramExecutable* ownerExecutable, UnlinkedProgramCodeBlock* unlinkedCodeBlock,
JSScope* scope, PassRefPtr<SourceProvider> sourceProvider, unsigned firstLineColumnOffset)
{
ProgramCodeBlock* instance = new (NotNull, allocateCell<ProgramCodeBlock>(vm->heap))
ProgramCodeBlock(vm, vm->programCodeBlockStructure.get(), ownerExecutable, unlinkedCodeBlock, scope, sourceProvider, firstLineColumnOffset);
instance->finishCreation(*vm, ownerExecutable, unlinkedCodeBlock, scope);
return instance;
}
static Structure* createStructure(VM& vm, JSGlobalObject* globalObject, JSValue prototype)
{
return Structure::create(vm, globalObject, prototype, TypeInfo(CellType, StructureFlags), info());
}
private:
ProgramCodeBlock(VM* vm, Structure* structure, CopyParsedBlockTag, ProgramCodeBlock& other)
: GlobalCodeBlock(vm, structure, CopyParsedBlock, other)
{
}
ProgramCodeBlock(VM* vm, Structure* structure, ProgramExecutable* ownerExecutable, UnlinkedProgramCodeBlock* unlinkedCodeBlock,
JSScope* scope, PassRefPtr<SourceProvider> sourceProvider, unsigned firstLineColumnOffset)
: GlobalCodeBlock(vm, structure, ownerExecutable, unlinkedCodeBlock, scope, sourceProvider, 0, firstLineColumnOffset)
{
}
static void destroy(JSCell*);
};
class ModuleProgramCodeBlock : public GlobalCodeBlock {
public:
typedef GlobalCodeBlock Base;
DECLARE_INFO;
static ModuleProgramCodeBlock* create(VM* vm, CopyParsedBlockTag, ModuleProgramCodeBlock& other)
{
ModuleProgramCodeBlock* instance = new (NotNull, allocateCell<ModuleProgramCodeBlock>(vm->heap))
ModuleProgramCodeBlock(vm, vm->moduleProgramCodeBlockStructure.get(), CopyParsedBlock, other);
instance->finishCreation(*vm, CopyParsedBlock, other);
return instance;
}
static ModuleProgramCodeBlock* create(VM* vm, ModuleProgramExecutable* ownerExecutable, UnlinkedModuleProgramCodeBlock* unlinkedCodeBlock,
JSScope* scope, PassRefPtr<SourceProvider> sourceProvider, unsigned firstLineColumnOffset)
{
ModuleProgramCodeBlock* instance = new (NotNull, allocateCell<ModuleProgramCodeBlock>(vm->heap))
ModuleProgramCodeBlock(vm, vm->moduleProgramCodeBlockStructure.get(), ownerExecutable, unlinkedCodeBlock, scope, sourceProvider, firstLineColumnOffset);
instance->finishCreation(*vm, ownerExecutable, unlinkedCodeBlock, scope);
return instance;
}
static Structure* createStructure(VM& vm, JSGlobalObject* globalObject, JSValue prototype)
{
return Structure::create(vm, globalObject, prototype, TypeInfo(CellType, StructureFlags), info());
}
private:
ModuleProgramCodeBlock(VM* vm, Structure* structure, CopyParsedBlockTag, ModuleProgramCodeBlock& other)
: GlobalCodeBlock(vm, structure, CopyParsedBlock, other)
{
}
ModuleProgramCodeBlock(VM* vm, Structure* structure, ModuleProgramExecutable* ownerExecutable, UnlinkedModuleProgramCodeBlock* unlinkedCodeBlock,
JSScope* scope, PassRefPtr<SourceProvider> sourceProvider, unsigned firstLineColumnOffset)
: GlobalCodeBlock(vm, structure, ownerExecutable, unlinkedCodeBlock, scope, sourceProvider, 0, firstLineColumnOffset)
{
}
static void destroy(JSCell*);
};
class EvalCodeBlock : public GlobalCodeBlock {
public:
typedef GlobalCodeBlock Base;
DECLARE_INFO;
static EvalCodeBlock* create(VM* vm, CopyParsedBlockTag, EvalCodeBlock& other)
{
EvalCodeBlock* instance = new (NotNull, allocateCell<EvalCodeBlock>(vm->heap))
EvalCodeBlock(vm, vm->evalCodeBlockStructure.get(), CopyParsedBlock, other);
instance->finishCreation(*vm, CopyParsedBlock, other);
return instance;
}
static EvalCodeBlock* create(VM* vm, EvalExecutable* ownerExecutable, UnlinkedEvalCodeBlock* unlinkedCodeBlock,
JSScope* scope, PassRefPtr<SourceProvider> sourceProvider)
{
EvalCodeBlock* instance = new (NotNull, allocateCell<EvalCodeBlock>(vm->heap))
EvalCodeBlock(vm, vm->evalCodeBlockStructure.get(), ownerExecutable, unlinkedCodeBlock, scope, sourceProvider);
instance->finishCreation(*vm, ownerExecutable, unlinkedCodeBlock, scope);
return instance;
}
static Structure* createStructure(VM& vm, JSGlobalObject* globalObject, JSValue prototype)
{
return Structure::create(vm, globalObject, prototype, TypeInfo(CellType, StructureFlags), info());
}
const Identifier& variable(unsigned index) { return unlinkedEvalCodeBlock()->variable(index); }
unsigned numVariables() { return unlinkedEvalCodeBlock()->numVariables(); }
private:
EvalCodeBlock(VM* vm, Structure* structure, CopyParsedBlockTag, EvalCodeBlock& other)
: GlobalCodeBlock(vm, structure, CopyParsedBlock, other)
{
}
EvalCodeBlock(VM* vm, Structure* structure, EvalExecutable* ownerExecutable, UnlinkedEvalCodeBlock* unlinkedCodeBlock,
JSScope* scope, PassRefPtr<SourceProvider> sourceProvider)
: GlobalCodeBlock(vm, structure, ownerExecutable, unlinkedCodeBlock, scope, sourceProvider, 0, 1)
{
}
static void destroy(JSCell*);
private:
UnlinkedEvalCodeBlock* unlinkedEvalCodeBlock() const { return jsCast<UnlinkedEvalCodeBlock*>(unlinkedCodeBlock()); }
};
class FunctionCodeBlock : public CodeBlock {
public:
typedef CodeBlock Base;
DECLARE_INFO;
static FunctionCodeBlock* create(VM* vm, CopyParsedBlockTag, FunctionCodeBlock& other)
{
FunctionCodeBlock* instance = new (NotNull, allocateCell<FunctionCodeBlock>(vm->heap))
FunctionCodeBlock(vm, vm->functionCodeBlockStructure.get(), CopyParsedBlock, other);
instance->finishCreation(*vm, CopyParsedBlock, other);
return instance;
}
static FunctionCodeBlock* create(VM* vm, FunctionExecutable* ownerExecutable, UnlinkedFunctionCodeBlock* unlinkedCodeBlock, JSScope* scope,
PassRefPtr<SourceProvider> sourceProvider, unsigned sourceOffset, unsigned firstLineColumnOffset)
{
FunctionCodeBlock* instance = new (NotNull, allocateCell<FunctionCodeBlock>(vm->heap))
FunctionCodeBlock(vm, vm->functionCodeBlockStructure.get(), ownerExecutable, unlinkedCodeBlock, scope, sourceProvider, sourceOffset, firstLineColumnOffset);
instance->finishCreation(*vm, ownerExecutable, unlinkedCodeBlock, scope);
return instance;
}
static Structure* createStructure(VM& vm, JSGlobalObject* globalObject, JSValue prototype)
{
return Structure::create(vm, globalObject, prototype, TypeInfo(CellType, StructureFlags), info());
}
private:
FunctionCodeBlock(VM* vm, Structure* structure, CopyParsedBlockTag, FunctionCodeBlock& other)
: CodeBlock(vm, structure, CopyParsedBlock, other)
{
}
FunctionCodeBlock(VM* vm, Structure* structure, FunctionExecutable* ownerExecutable, UnlinkedFunctionCodeBlock* unlinkedCodeBlock, JSScope* scope,
PassRefPtr<SourceProvider> sourceProvider, unsigned sourceOffset, unsigned firstLineColumnOffset)
: CodeBlock(vm, structure, ownerExecutable, unlinkedCodeBlock, scope, sourceProvider, sourceOffset, firstLineColumnOffset)
{
}
static void destroy(JSCell*);
};
#if ENABLE(WEBASSEMBLY)
class WebAssemblyCodeBlock : public CodeBlock {
public:
typedef CodeBlock Base;
DECLARE_INFO;
static WebAssemblyCodeBlock* create(VM* vm, CopyParsedBlockTag, WebAssemblyCodeBlock& other)
{
WebAssemblyCodeBlock* instance = new (NotNull, allocateCell<WebAssemblyCodeBlock>(vm->heap))
WebAssemblyCodeBlock(vm, vm->webAssemblyCodeBlockStructure.get(), CopyParsedBlock, other);
instance->finishCreation(*vm, CopyParsedBlock, other);
return instance;
}
static WebAssemblyCodeBlock* create(VM* vm, WebAssemblyExecutable* ownerExecutable, JSGlobalObject* globalObject)
{
WebAssemblyCodeBlock* instance = new (NotNull, allocateCell<WebAssemblyCodeBlock>(vm->heap))
WebAssemblyCodeBlock(vm, vm->webAssemblyCodeBlockStructure.get(), ownerExecutable, globalObject);
instance->finishCreation(*vm, ownerExecutable, globalObject);
return instance;
}
static Structure* createStructure(VM& vm, JSGlobalObject* globalObject, JSValue prototype)
{
return Structure::create(vm, globalObject, prototype, TypeInfo(CellType, StructureFlags), info());
}
private:
WebAssemblyCodeBlock(VM* vm, Structure* structure, CopyParsedBlockTag, WebAssemblyCodeBlock& other)
: CodeBlock(vm, structure, CopyParsedBlock, other)
{
}
WebAssemblyCodeBlock(VM* vm, Structure* structure, WebAssemblyExecutable* ownerExecutable, JSGlobalObject* globalObject)
: CodeBlock(vm, structure, ownerExecutable, globalObject)
{
}
static void destroy(JSCell*);
};
#endif
inline Register& ExecState::r(int index)
{
CodeBlock* codeBlock = this->codeBlock();
if (codeBlock->isConstantRegisterIndex(index))
return *reinterpret_cast<Register*>(&codeBlock->constantRegister(index));
return this[index];
}
inline Register& ExecState::r(VirtualRegister reg)
{
return r(reg.offset());
}
inline Register& ExecState::uncheckedR(int index)
{
RELEASE_ASSERT(index < FirstConstantRegisterIndex);
return this[index];
}
inline Register& ExecState::uncheckedR(VirtualRegister reg)
{
return uncheckedR(reg.offset());
}
inline void CodeBlock::clearVisitWeaklyHasBeenCalled()
{
m_visitWeaklyHasBeenCalled.store(false, std::memory_order_relaxed);
}
inline void CodeBlockSet::mark(void* candidateCodeBlock)
{
// We have to check for 0 and -1 because those are used by the HashMap as markers.
uintptr_t value = reinterpret_cast<uintptr_t>(candidateCodeBlock);
// This checks for both of those nasty cases in one go.
// 0 + 1 = 1
// -1 + 1 = 0
if (value + 1 <= 1)
return;
CodeBlock* codeBlock = static_cast<CodeBlock*>(candidateCodeBlock);
if (!m_oldCodeBlocks.contains(codeBlock) && !m_newCodeBlocks.contains(codeBlock))
return;
mark(codeBlock);
}
inline void CodeBlockSet::mark(CodeBlock* codeBlock)
{
if (!codeBlock)
return;
// Try to recover gracefully if we forget to execute a barrier for a
// CodeBlock that does value profiling. This is probably overkill, but we
// have always done it.
Heap::heap(codeBlock)->writeBarrier(codeBlock);
m_currentlyExecuting.add(codeBlock);
}
template <typename Functor> inline void ScriptExecutable::forEachCodeBlock(Functor&& functor)
{
switch (type()) {
case ProgramExecutableType: {
if (CodeBlock* codeBlock = static_cast<CodeBlock*>(jsCast<ProgramExecutable*>(this)->m_programCodeBlock.get()))
codeBlock->forEachRelatedCodeBlock(std::forward<Functor>(functor));
break;
}
case EvalExecutableType: {
if (CodeBlock* codeBlock = static_cast<CodeBlock*>(jsCast<EvalExecutable*>(this)->m_evalCodeBlock.get()))
codeBlock->forEachRelatedCodeBlock(std::forward<Functor>(functor));
break;
}
case FunctionExecutableType: {
Functor f(std::forward<Functor>(functor));
FunctionExecutable* executable = jsCast<FunctionExecutable*>(this);
if (CodeBlock* codeBlock = static_cast<CodeBlock*>(executable->m_codeBlockForCall.get()))
codeBlock->forEachRelatedCodeBlock(f);
if (CodeBlock* codeBlock = static_cast<CodeBlock*>(executable->m_codeBlockForConstruct.get()))
codeBlock->forEachRelatedCodeBlock(f);
break;
}
case ModuleProgramExecutableType: {
if (CodeBlock* codeBlock = static_cast<CodeBlock*>(jsCast<ModuleProgramExecutable*>(this)->m_moduleProgramCodeBlock.get()))
codeBlock->forEachRelatedCodeBlock(std::forward<Functor>(functor));
break;
}
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
} // namespace JSC
#endif // CodeBlock_h