blob: f9e50d05c311aff045dca66a5d65a7c89e2fb31c [file] [log] [blame]
/*
* Copyright (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 1999 Antti Koivisto (koivisto@kde.org)
* (C) 2007 David Smith (catfish.man@gmail.com)
* Copyright (C) 2003-2013 Apple Inc. All rights reserved.
* Copyright (C) Research In Motion Limited 2010. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include "config.h"
#include "RenderBlockFlow.h"
#include "Editor.h"
#include "FloatingObjects.h"
#include "Frame.h"
#include "HitTestLocation.h"
#include "InlineTextBox.h"
#include "LayoutRepainter.h"
#include "RenderFlowThread.h"
#include "RenderIterator.h"
#include "RenderLayer.h"
#include "RenderNamedFlowFragment.h"
#include "RenderText.h"
#include "RenderView.h"
#include "SimpleLineLayoutFunctions.h"
#include "VerticalPositionCache.h"
#include "VisiblePosition.h"
namespace WebCore {
bool RenderBlock::s_canPropagateFloatIntoSibling = false;
struct SameSizeAsMarginInfo {
uint32_t bitfields : 16;
LayoutUnit margins[2];
};
COMPILE_ASSERT(sizeof(RenderBlockFlow::MarginValues) == sizeof(LayoutUnit[4]), MarginValues_should_stay_small);
COMPILE_ASSERT(sizeof(RenderBlockFlow::MarginInfo) == sizeof(SameSizeAsMarginInfo), MarginInfo_should_stay_small);
// Our MarginInfo state used when laying out block children.
RenderBlockFlow::MarginInfo::MarginInfo(RenderBlockFlow& block, LayoutUnit beforeBorderPadding, LayoutUnit afterBorderPadding)
: m_atBeforeSideOfBlock(true)
, m_atAfterSideOfBlock(false)
, m_hasMarginBeforeQuirk(false)
, m_hasMarginAfterQuirk(false)
, m_determinedMarginBeforeQuirk(false)
, m_discardMargin(false)
{
const RenderStyle& blockStyle = block.style();
ASSERT(block.isRenderView() || block.parent());
m_canCollapseWithChildren = !block.isRenderView() && !block.isRoot() && !block.isOutOfFlowPositioned()
&& !block.isFloating() && !block.isTableCell() && !block.hasOverflowClip() && !block.isInlineBlockOrInlineTable()
&& !block.isRenderFlowThread() && !block.isWritingModeRoot() && !block.parent()->isFlexibleBox()
&& blockStyle.hasAutoColumnCount() && blockStyle.hasAutoColumnWidth() && !blockStyle.columnSpan();
m_canCollapseMarginBeforeWithChildren = m_canCollapseWithChildren && !beforeBorderPadding && blockStyle.marginBeforeCollapse() != MSEPARATE;
// If any height other than auto is specified in CSS, then we don't collapse our bottom
// margins with our children's margins. To do otherwise would be to risk odd visual
// effects when the children overflow out of the parent block and yet still collapse
// with it. We also don't collapse if we have any bottom border/padding.
m_canCollapseMarginAfterWithChildren = m_canCollapseWithChildren && !afterBorderPadding
&& (blockStyle.logicalHeight().isAuto() && !blockStyle.logicalHeight().value()) && blockStyle.marginAfterCollapse() != MSEPARATE;
m_quirkContainer = block.isTableCell() || block.isBody();
m_discardMargin = m_canCollapseMarginBeforeWithChildren && block.mustDiscardMarginBefore();
m_positiveMargin = (m_canCollapseMarginBeforeWithChildren && !block.mustDiscardMarginBefore()) ? block.maxPositiveMarginBefore() : LayoutUnit();
m_negativeMargin = (m_canCollapseMarginBeforeWithChildren && !block.mustDiscardMarginBefore()) ? block.maxNegativeMarginBefore() : LayoutUnit();
}
RenderBlockFlow::RenderBlockFlow(Element& element, PassRef<RenderStyle> style)
: RenderBlock(element, std::move(style), RenderBlockFlowFlag)
{
setChildrenInline(true);
}
RenderBlockFlow::RenderBlockFlow(Document& document, PassRef<RenderStyle> style)
: RenderBlock(document, std::move(style), RenderBlockFlowFlag)
{
setChildrenInline(true);
}
RenderBlockFlow::~RenderBlockFlow()
{
}
void RenderBlockFlow::insertedIntoTree()
{
RenderBlock::insertedIntoTree();
createRenderNamedFlowFragmentIfNeeded();
}
void RenderBlockFlow::willBeDestroyed()
{
// Mark as being destroyed to avoid trouble with merges in removeChild().
m_beingDestroyed = true;
if (renderNamedFlowFragment())
setRenderNamedFlowFragment(0);
if (!documentBeingDestroyed()) {
if (firstChild() && firstChild()->isRunIn())
moveRunInToOriginalPosition(*firstChild());
}
// Make sure to destroy anonymous children first while they are still connected to the rest of the tree, so that they will
// properly dirty line boxes that they are removed from. Effects that do :before/:after only on hover could crash otherwise.
destroyLeftoverChildren();
// Destroy our continuation before anything other than anonymous children.
// The reason we don't destroy it before anonymous children is that they may
// have continuations of their own that are anonymous children of our continuation.
RenderBoxModelObject* continuation = this->continuation();
if (continuation) {
continuation->destroy();
setContinuation(0);
}
if (!documentBeingDestroyed()) {
if (firstRootBox()) {
// We can't wait for RenderBox::destroy to clear the selection,
// because by then we will have nuked the line boxes.
// FIXME: The FrameSelection should be responsible for this when it
// is notified of DOM mutations.
if (isSelectionBorder())
view().clearSelection();
// If we are an anonymous block, then our line boxes might have children
// that will outlast this block. In the non-anonymous block case those
// children will be destroyed by the time we return from this function.
if (isAnonymousBlock()) {
for (auto box = firstRootBox(); box; box = box->nextRootBox()) {
while (auto childBox = box->firstChild())
childBox->removeFromParent();
}
}
} else if (parent())
parent()->dirtyLinesFromChangedChild(this);
}
m_lineBoxes.deleteLineBoxes();
removeFromDelayedUpdateScrollInfoSet();
// NOTE: This jumps down to RenderBox, bypassing RenderBlock since it would do duplicate work.
RenderBox::willBeDestroyed();
}
void RenderBlockFlow::clearFloats()
{
if (m_floatingObjects)
m_floatingObjects->setHorizontalWritingMode(isHorizontalWritingMode());
HashSet<RenderBox*> oldIntrudingFloatSet;
if (!childrenInline() && m_floatingObjects) {
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
auto end = floatingObjectSet.end();
for (auto it = floatingObjectSet.begin(); it != end; ++it) {
FloatingObject* floatingObject = it->get();
if (!floatingObject->isDescendant())
oldIntrudingFloatSet.add(&floatingObject->renderer());
}
}
// Inline blocks are covered by the isReplaced() check in the avoidFloats method.
if (avoidsFloats() || isRoot() || isRenderView() || isFloatingOrOutOfFlowPositioned() || isTableCell()) {
if (m_floatingObjects)
m_floatingObjects->clear();
if (!oldIntrudingFloatSet.isEmpty())
markAllDescendantsWithFloatsForLayout();
return;
}
RendererToFloatInfoMap floatMap;
if (m_floatingObjects) {
if (childrenInline())
m_floatingObjects->moveAllToFloatInfoMap(floatMap);
else
m_floatingObjects->clear();
}
// We should not process floats if the parent node is not a RenderBlock. Otherwise, we will add
// floats in an invalid context. This will cause a crash arising from a bad cast on the parent.
// See <rdar://problem/8049753>, where float property is applied on a text node in a SVG.
if (!parent() || !parent()->isRenderBlockFlow())
return;
// Attempt to locate a previous sibling with overhanging floats. We skip any elements that are
// out of flow (like floating/positioned elements), and we also skip over any objects that may have shifted
// to avoid floats.
RenderBlockFlow* parentBlock = toRenderBlockFlow(parent());
bool parentHasFloats = false;
RenderObject* prev = previousSibling();
while (prev && (prev->isFloatingOrOutOfFlowPositioned() || !prev->isBox() || !prev->isRenderBlockFlow() || toRenderBlockFlow(prev)->avoidsFloats())) {
if (prev->isFloating())
parentHasFloats = true;
prev = prev->previousSibling();
}
// First add in floats from the parent. Self-collapsing blocks let their parent track any floats that intrude into
// them (as opposed to floats they contain themselves) so check for those here too.
LayoutUnit logicalTopOffset = logicalTop();
if (parentHasFloats || (parentBlock->lowestFloatLogicalBottom() > logicalTopOffset && prev && toRenderBlockFlow(prev)->isSelfCollapsingBlock()))
addIntrudingFloats(parentBlock, parentBlock->logicalLeftOffsetForContent(), logicalTopOffset);
LayoutUnit logicalLeftOffset = 0;
if (prev)
logicalTopOffset -= toRenderBox(prev)->logicalTop();
else {
prev = parentBlock;
logicalLeftOffset += parentBlock->logicalLeftOffsetForContent();
}
// Add overhanging floats from the previous RenderBlock, but only if it has a float that intrudes into our space.
RenderBlockFlow* block = toRenderBlockFlow(prev);
if (block->m_floatingObjects && block->lowestFloatLogicalBottom() > logicalTopOffset)
addIntrudingFloats(block, logicalLeftOffset, logicalTopOffset);
if (childrenInline()) {
LayoutUnit changeLogicalTop = LayoutUnit::max();
LayoutUnit changeLogicalBottom = LayoutUnit::min();
if (m_floatingObjects) {
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
auto end = floatingObjectSet.end();
for (auto it = floatingObjectSet.begin(); it != end; ++it) {
FloatingObject* floatingObject = it->get();
std::unique_ptr<FloatingObject> oldFloatingObject = floatMap.take(&floatingObject->renderer());
LayoutUnit logicalBottom = logicalBottomForFloat(floatingObject);
if (oldFloatingObject) {
LayoutUnit oldLogicalBottom = logicalBottomForFloat(oldFloatingObject.get());
if (logicalWidthForFloat(floatingObject) != logicalWidthForFloat(oldFloatingObject.get()) || logicalLeftForFloat(floatingObject) != logicalLeftForFloat(oldFloatingObject.get())) {
changeLogicalTop = 0;
changeLogicalBottom = std::max(changeLogicalBottom, std::max(logicalBottom, oldLogicalBottom));
} else {
if (logicalBottom != oldLogicalBottom) {
changeLogicalTop = std::min(changeLogicalTop, std::min(logicalBottom, oldLogicalBottom));
changeLogicalBottom = std::max(changeLogicalBottom, std::max(logicalBottom, oldLogicalBottom));
}
LayoutUnit logicalTop = logicalTopForFloat(floatingObject);
LayoutUnit oldLogicalTop = logicalTopForFloat(oldFloatingObject.get());
if (logicalTop != oldLogicalTop) {
changeLogicalTop = std::min(changeLogicalTop, std::min(logicalTop, oldLogicalTop));
changeLogicalBottom = std::max(changeLogicalBottom, std::max(logicalTop, oldLogicalTop));
}
}
if (oldFloatingObject->originatingLine() && !selfNeedsLayout()) {
ASSERT(&oldFloatingObject->originatingLine()->renderer() == this);
oldFloatingObject->originatingLine()->markDirty();
}
} else {
changeLogicalTop = 0;
changeLogicalBottom = std::max(changeLogicalBottom, logicalBottom);
}
}
}
auto end = floatMap.end();
for (auto it = floatMap.begin(); it != end; ++it) {
FloatingObject* floatingObject = it->value.get();
if (!floatingObject->isDescendant()) {
changeLogicalTop = 0;
changeLogicalBottom = std::max(changeLogicalBottom, logicalBottomForFloat(floatingObject));
}
}
markLinesDirtyInBlockRange(changeLogicalTop, changeLogicalBottom);
} else if (!oldIntrudingFloatSet.isEmpty()) {
// If there are previously intruding floats that no longer intrude, then children with floats
// should also get layout because they might need their floating object lists cleared.
if (m_floatingObjects->set().size() < oldIntrudingFloatSet.size())
markAllDescendantsWithFloatsForLayout();
else {
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
auto end = floatingObjectSet.end();
for (auto it = floatingObjectSet.begin(); it != end && !oldIntrudingFloatSet.isEmpty(); ++it)
oldIntrudingFloatSet.remove(&(*it)->renderer());
if (!oldIntrudingFloatSet.isEmpty())
markAllDescendantsWithFloatsForLayout();
}
}
}
void RenderBlockFlow::layoutBlock(bool relayoutChildren, LayoutUnit pageLogicalHeight)
{
ASSERT(needsLayout());
if (!relayoutChildren && simplifiedLayout())
return;
LayoutRepainter repainter(*this, checkForRepaintDuringLayout());
if (updateLogicalWidthAndColumnWidth())
relayoutChildren = true;
clearFloats();
LayoutUnit previousHeight = logicalHeight();
// FIXME: should this start out as borderAndPaddingLogicalHeight() + scrollbarLogicalHeight(),
// for consistency with other render classes?
setLogicalHeight(0);
bool pageLogicalHeightChanged = false;
bool hasSpecifiedPageLogicalHeight = false;
checkForPaginationLogicalHeightChange(pageLogicalHeight, pageLogicalHeightChanged, hasSpecifiedPageLogicalHeight);
const RenderStyle& styleToUse = style();
LayoutStateMaintainer statePusher(view(), *this, locationOffset(), hasColumns() || hasTransform() || hasReflection() || styleToUse.isFlippedBlocksWritingMode(), pageLogicalHeight, pageLogicalHeightChanged, columnInfo());
prepareShapesAndPaginationBeforeBlockLayout(relayoutChildren);
if (!relayoutChildren)
relayoutChildren = namedFlowFragmentNeedsUpdate();
// We use four values, maxTopPos, maxTopNeg, maxBottomPos, and maxBottomNeg, to track
// our current maximal positive and negative margins. These values are used when we
// are collapsed with adjacent blocks, so for example, if you have block A and B
// collapsing together, then you'd take the maximal positive margin from both A and B
// and subtract it from the maximal negative margin from both A and B to get the
// true collapsed margin. This algorithm is recursive, so when we finish layout()
// our block knows its current maximal positive/negative values.
//
// Start out by setting our margin values to our current margins. Table cells have
// no margins, so we don't fill in the values for table cells.
bool isCell = isTableCell();
if (!isCell) {
initMaxMarginValues();
setHasMarginBeforeQuirk(styleToUse.hasMarginBeforeQuirk());
setHasMarginAfterQuirk(styleToUse.hasMarginAfterQuirk());
setPaginationStrut(0);
}
LayoutUnit repaintLogicalTop = 0;
LayoutUnit repaintLogicalBottom = 0;
LayoutUnit maxFloatLogicalBottom = 0;
if (!firstChild() && !isAnonymousBlock())
setChildrenInline(true);
if (childrenInline())
layoutInlineChildren(relayoutChildren, repaintLogicalTop, repaintLogicalBottom);
else
layoutBlockChildren(relayoutChildren, maxFloatLogicalBottom);
// Expand our intrinsic height to encompass floats.
LayoutUnit toAdd = borderAndPaddingAfter() + scrollbarLogicalHeight();
if (lowestFloatLogicalBottom() > (logicalHeight() - toAdd) && expandsToEncloseOverhangingFloats())
setLogicalHeight(lowestFloatLogicalBottom() + toAdd);
if (relayoutForPagination(hasSpecifiedPageLogicalHeight, pageLogicalHeight, statePusher) || relayoutToAvoidWidows(statePusher)) {
ASSERT(!shouldBreakAtLineToAvoidWidow());
return;
}
// Calculate our new height.
LayoutUnit oldHeight = logicalHeight();
LayoutUnit oldClientAfterEdge = clientLogicalBottom();
// Before updating the final size of the flow thread make sure a forced break is applied after the content.
// This ensures the size information is correctly computed for the last auto-height region receiving content.
if (isRenderFlowThread())
toRenderFlowThread(this)->applyBreakAfterContent(oldClientAfterEdge);
updateLogicalHeight();
LayoutUnit newHeight = logicalHeight();
if (oldHeight != newHeight) {
if (oldHeight > newHeight && maxFloatLogicalBottom > newHeight && !childrenInline()) {
// One of our children's floats may have become an overhanging float for us. We need to look for it.
for (RenderObject* child = firstChild(); child; child = child->nextSibling()) {
if (child->isRenderBlockFlow() && !child->isFloatingOrOutOfFlowPositioned()) {
RenderBlockFlow& block = toRenderBlockFlow(*child);
if (block.lowestFloatLogicalBottom() + block.logicalTop() > newHeight)
addOverhangingFloats(block, false);
}
}
}
}
bool heightChanged = (previousHeight != newHeight);
if (heightChanged)
relayoutChildren = true;
layoutPositionedObjects(relayoutChildren || isRoot());
updateShapesAfterBlockLayout(heightChanged);
// Add overflow from children (unless we're multi-column, since in that case all our child overflow is clipped anyway).
computeOverflow(oldClientAfterEdge);
statePusher.pop();
fitBorderToLinesIfNeeded();
if (view().layoutState()->m_pageLogicalHeight)
setPageLogicalOffset(view().layoutState()->pageLogicalOffset(this, logicalTop()));
updateLayerTransform();
// Update our scroll information if we're overflow:auto/scroll/hidden now that we know if
// we overflow or not.
updateScrollInfoAfterLayout();
// FIXME: This repaint logic should be moved into a separate helper function!
// Repaint with our new bounds if they are different from our old bounds.
bool didFullRepaint = repainter.repaintAfterLayout();
if (!didFullRepaint && repaintLogicalTop != repaintLogicalBottom && (styleToUse.visibility() == VISIBLE || enclosingLayer()->hasVisibleContent())) {
// FIXME: We could tighten up the left and right invalidation points if we let layoutInlineChildren fill them in based off the particular lines
// it had to lay out. We wouldn't need the hasOverflowClip() hack in that case either.
LayoutUnit repaintLogicalLeft = logicalLeftVisualOverflow();
LayoutUnit repaintLogicalRight = logicalRightVisualOverflow();
if (hasOverflowClip()) {
// If we have clipped overflow, we should use layout overflow as well, since visual overflow from lines didn't propagate to our block's overflow.
// Note the old code did this as well but even for overflow:visible. The addition of hasOverflowClip() at least tightens up the hack a bit.
// layoutInlineChildren should be patched to compute the entire repaint rect.
repaintLogicalLeft = std::min(repaintLogicalLeft, logicalLeftLayoutOverflow());
repaintLogicalRight = std::max(repaintLogicalRight, logicalRightLayoutOverflow());
}
LayoutRect repaintRect;
if (isHorizontalWritingMode())
repaintRect = LayoutRect(repaintLogicalLeft, repaintLogicalTop, repaintLogicalRight - repaintLogicalLeft, repaintLogicalBottom - repaintLogicalTop);
else
repaintRect = LayoutRect(repaintLogicalTop, repaintLogicalLeft, repaintLogicalBottom - repaintLogicalTop, repaintLogicalRight - repaintLogicalLeft);
// The repaint rect may be split across columns, in which case adjustRectForColumns() will return the union.
adjustRectForColumns(repaintRect);
repaintRect.inflate(maximalOutlineSize(PaintPhaseOutline));
if (hasOverflowClip()) {
// Adjust repaint rect for scroll offset
repaintRect.move(-scrolledContentOffset());
// Don't allow this rect to spill out of our overflow box.
repaintRect.intersect(LayoutRect(LayoutPoint(), size()));
}
// Make sure the rect is still non-empty after intersecting for overflow above
if (!repaintRect.isEmpty()) {
repaintRectangle(repaintRect); // We need to do a partial repaint of our content.
if (hasReflection())
repaintRectangle(reflectedRect(repaintRect));
}
}
clearNeedsLayout();
}
void RenderBlockFlow::layoutBlockChildren(bool relayoutChildren, LayoutUnit& maxFloatLogicalBottom)
{
dirtyForLayoutFromPercentageHeightDescendants();
LayoutUnit beforeEdge = borderAndPaddingBefore();
LayoutUnit afterEdge = borderAndPaddingAfter() + scrollbarLogicalHeight();
setLogicalHeight(beforeEdge);
// Lay out our hypothetical grid line as though it occurs at the top of the block.
if (view().layoutState()->lineGrid() == this)
layoutLineGridBox();
// The margin struct caches all our current margin collapsing state.
MarginInfo marginInfo(*this, beforeEdge, afterEdge);
// Fieldsets need to find their legend and position it inside the border of the object.
// The legend then gets skipped during normal layout. The same is true for ruby text.
// It doesn't get included in the normal layout process but is instead skipped.
RenderObject* childToExclude = layoutSpecialExcludedChild(relayoutChildren);
LayoutUnit previousFloatLogicalBottom = 0;
maxFloatLogicalBottom = 0;
RenderBox* next = firstChildBox();
while (next) {
RenderBox& child = *next;
next = child.nextSiblingBox();
if (childToExclude == &child)
continue; // Skip this child, since it will be positioned by the specialized subclass (fieldsets and ruby runs).
updateBlockChildDirtyBitsBeforeLayout(relayoutChildren, child);
if (child.isOutOfFlowPositioned()) {
child.containingBlock()->insertPositionedObject(child);
adjustPositionedBlock(child, marginInfo);
continue;
}
if (child.isFloating()) {
insertFloatingObject(child);
adjustFloatingBlock(marginInfo);
continue;
}
// Lay out the child.
layoutBlockChild(child, marginInfo, previousFloatLogicalBottom, maxFloatLogicalBottom);
}
// Now do the handling of the bottom of the block, adding in our bottom border/padding and
// determining the correct collapsed bottom margin information.
handleAfterSideOfBlock(beforeEdge, afterEdge, marginInfo);
}
void RenderBlockFlow::layoutInlineChildren(bool relayoutChildren, LayoutUnit& repaintLogicalTop, LayoutUnit& repaintLogicalBottom)
{
if (m_lineLayoutPath == UndeterminedPath)
m_lineLayoutPath = SimpleLineLayout::canUseFor(*this) ? SimpleLinesPath : LineBoxesPath;
if (m_lineLayoutPath == SimpleLinesPath) {
deleteLineBoxesBeforeSimpleLineLayout();
layoutSimpleLines(repaintLogicalTop, repaintLogicalBottom);
return;
}
m_simpleLineLayout = nullptr;
layoutLineBoxes(relayoutChildren, repaintLogicalTop, repaintLogicalBottom);
}
void RenderBlockFlow::layoutBlockChild(RenderBox& child, MarginInfo& marginInfo, LayoutUnit& previousFloatLogicalBottom, LayoutUnit& maxFloatLogicalBottom)
{
LayoutUnit oldPosMarginBefore = maxPositiveMarginBefore();
LayoutUnit oldNegMarginBefore = maxNegativeMarginBefore();
// The child is a normal flow object. Compute the margins we will use for collapsing now.
child.computeAndSetBlockDirectionMargins(this);
// Try to guess our correct logical top position. In most cases this guess will
// be correct. Only if we're wrong (when we compute the real logical top position)
// will we have to potentially relayout.
LayoutUnit estimateWithoutPagination;
LayoutUnit logicalTopEstimate = estimateLogicalTopPosition(child, marginInfo, estimateWithoutPagination);
// Cache our old rect so that we can dirty the proper repaint rects if the child moves.
LayoutRect oldRect = child.frameRect();
LayoutUnit oldLogicalTop = logicalTopForChild(child);
#if !ASSERT_DISABLED
LayoutSize oldLayoutDelta = view().layoutDelta();
#endif
// Go ahead and position the child as though it didn't collapse with the top.
setLogicalTopForChild(child, logicalTopEstimate, ApplyLayoutDelta);
estimateRegionRangeForBoxChild(child);
RenderBlockFlow* childBlockFlow = child.isRenderBlockFlow() ? toRenderBlockFlow(&child) : nullptr;
bool markDescendantsWithFloats = false;
if (logicalTopEstimate != oldLogicalTop && !child.avoidsFloats() && childBlockFlow && childBlockFlow->containsFloats())
markDescendantsWithFloats = true;
#if ENABLE(SUBPIXEL_LAYOUT)
else if (UNLIKELY(logicalTopEstimate.mightBeSaturated()))
// logicalTopEstimate, returned by estimateLogicalTopPosition, might be saturated for
// very large elements. If it does the comparison with oldLogicalTop might yield a
// false negative as adding and removing margins, borders etc from a saturated number
// might yield incorrect results. If this is the case always mark for layout.
markDescendantsWithFloats = true;
#endif
else if (!child.avoidsFloats() || child.shrinkToAvoidFloats()) {
// If an element might be affected by the presence of floats, then always mark it for
// layout.
LayoutUnit fb = std::max(previousFloatLogicalBottom, lowestFloatLogicalBottom());
if (fb > logicalTopEstimate)
markDescendantsWithFloats = true;
}
if (childBlockFlow) {
if (markDescendantsWithFloats)
childBlockFlow->markAllDescendantsWithFloatsForLayout();
if (!child.isWritingModeRoot())
previousFloatLogicalBottom = std::max(previousFloatLogicalBottom, oldLogicalTop + childBlockFlow->lowestFloatLogicalBottom());
}
if (!child.needsLayout())
child.markForPaginationRelayoutIfNeeded();
bool childHadLayout = child.everHadLayout();
bool childNeededLayout = child.needsLayout();
if (childNeededLayout)
child.layout();
// Cache if we are at the top of the block right now.
bool atBeforeSideOfBlock = marginInfo.atBeforeSideOfBlock();
// Now determine the correct ypos based off examination of collapsing margin
// values.
LayoutUnit logicalTopBeforeClear = collapseMargins(child, marginInfo);
// Now check for clear.
LayoutUnit logicalTopAfterClear = clearFloatsIfNeeded(child, marginInfo, oldPosMarginBefore, oldNegMarginBefore, logicalTopBeforeClear);
bool paginated = view().layoutState()->isPaginated();
if (paginated)
logicalTopAfterClear = adjustBlockChildForPagination(logicalTopAfterClear, estimateWithoutPagination, child, atBeforeSideOfBlock && logicalTopBeforeClear == logicalTopAfterClear);
setLogicalTopForChild(child, logicalTopAfterClear, ApplyLayoutDelta);
// Now we have a final top position. See if it really does end up being different from our estimate.
// clearFloatsIfNeeded can also mark the child as needing a layout even though we didn't move. This happens
// when collapseMargins dynamically adds overhanging floats because of a child with negative margins.
if (logicalTopAfterClear != logicalTopEstimate || child.needsLayout() || (paginated && childBlockFlow && childBlockFlow->shouldBreakAtLineToAvoidWidow())) {
if (child.shrinkToAvoidFloats()) {
// The child's width depends on the line width.
// When the child shifts to clear an item, its width can
// change (because it has more available line width).
// So go ahead and mark the item as dirty.
child.setChildNeedsLayout(MarkOnlyThis);
}
if (childBlockFlow) {
if (!child.avoidsFloats() && childBlockFlow->containsFloats())
childBlockFlow->markAllDescendantsWithFloatsForLayout();
if (!child.needsLayout())
child.markForPaginationRelayoutIfNeeded();
}
// Our guess was wrong. Make the child lay itself out again.
child.layoutIfNeeded();
}
if (updateRegionRangeForBoxChild(child)) {
child.setNeedsLayout(MarkOnlyThis);
child.layoutIfNeeded();
}
// We are no longer at the top of the block if we encounter a non-empty child.
// This has to be done after checking for clear, so that margins can be reset if a clear occurred.
if (marginInfo.atBeforeSideOfBlock() && !child.isSelfCollapsingBlock())
marginInfo.setAtBeforeSideOfBlock(false);
// Now place the child in the correct left position
determineLogicalLeftPositionForChild(child, ApplyLayoutDelta);
LayoutSize childOffset = child.location() - oldRect.location();
#if ENABLE(CSS_SHAPES)
relayoutShapeDescendantIfMoved(child.isRenderBlock() ? toRenderBlock(&child) : nullptr, childOffset);
#endif
// Update our height now that the child has been placed in the correct position.
setLogicalHeight(logicalHeight() + logicalHeightForChild(child));
if (mustSeparateMarginAfterForChild(child)) {
setLogicalHeight(logicalHeight() + marginAfterForChild(child));
marginInfo.clearMargin();
}
// If the child has overhanging floats that intrude into following siblings (or possibly out
// of this block), then the parent gets notified of the floats now.
if (childBlockFlow && childBlockFlow->containsFloats())
maxFloatLogicalBottom = std::max(maxFloatLogicalBottom, addOverhangingFloats(*childBlockFlow, !childNeededLayout));
if (childOffset.width() || childOffset.height()) {
view().addLayoutDelta(childOffset);
// If the child moved, we have to repaint it as well as any floating/positioned
// descendants. An exception is if we need a layout. In this case, we know we're going to
// repaint ourselves (and the child) anyway.
if (childHadLayout && !selfNeedsLayout() && child.checkForRepaintDuringLayout())
child.repaintDuringLayoutIfMoved(oldRect);
}
if (!childHadLayout && child.checkForRepaintDuringLayout()) {
child.repaint();
child.repaintOverhangingFloats(true);
}
if (paginated) {
// Check for an after page/column break.
LayoutUnit newHeight = applyAfterBreak(child, logicalHeight(), marginInfo);
if (newHeight != height())
setLogicalHeight(newHeight);
}
ASSERT(view().layoutDeltaMatches(oldLayoutDelta));
}
void RenderBlockFlow::adjustPositionedBlock(RenderBox& child, const MarginInfo& marginInfo)
{
bool isHorizontal = isHorizontalWritingMode();
bool hasStaticBlockPosition = child.style().hasStaticBlockPosition(isHorizontal);
LayoutUnit logicalTop = logicalHeight();
updateStaticInlinePositionForChild(child, logicalTop);
if (!marginInfo.canCollapseWithMarginBefore()) {
// Positioned blocks don't collapse margins, so add the margin provided by
// the container now. The child's own margin is added later when calculating its logical top.
LayoutUnit collapsedBeforePos = marginInfo.positiveMargin();
LayoutUnit collapsedBeforeNeg = marginInfo.negativeMargin();
logicalTop += collapsedBeforePos - collapsedBeforeNeg;
}
RenderLayer* childLayer = child.layer();
if (childLayer->staticBlockPosition() != logicalTop) {
childLayer->setStaticBlockPosition(logicalTop);
if (hasStaticBlockPosition)
child.setChildNeedsLayout(MarkOnlyThis);
}
}
LayoutUnit RenderBlockFlow::marginOffsetForSelfCollapsingBlock()
{
ASSERT(isSelfCollapsingBlock());
RenderBlockFlow* parentBlock = toRenderBlockFlow(parent());
if (parentBlock && style().clear() && parentBlock->getClearDelta(*this, logicalHeight()))
return marginValuesForChild(*this).positiveMarginBefore();
return LayoutUnit();
}
void RenderBlockFlow::adjustFloatingBlock(const MarginInfo& marginInfo)
{
// The float should be positioned taking into account the bottom margin
// of the previous flow. We add that margin into the height, get the
// float positioned properly, and then subtract the margin out of the
// height again. In the case of self-collapsing blocks, we always just
// use the top margins, since the self-collapsing block collapsed its
// own bottom margin into its top margin.
//
// Note also that the previous flow may collapse its margin into the top of
// our block. If this is the case, then we do not add the margin in to our
// height when computing the position of the float. This condition can be tested
// for by simply calling canCollapseWithMarginBefore. See
// http://www.hixie.ch/tests/adhoc/css/box/block/margin-collapse/046.html for
// an example of this scenario.
LayoutUnit marginOffset = marginInfo.canCollapseWithMarginBefore() ? LayoutUnit() : marginInfo.margin();
setLogicalHeight(logicalHeight() + marginOffset);
positionNewFloats();
setLogicalHeight(logicalHeight() - marginOffset);
}
void RenderBlockFlow::updateStaticInlinePositionForChild(RenderBox& child, LayoutUnit logicalTop)
{
if (child.style().isOriginalDisplayInlineType())
setStaticInlinePositionForChild(child, logicalTop, startAlignedOffsetForLine(logicalTop, false));
else
setStaticInlinePositionForChild(child, logicalTop, startOffsetForContent(logicalTop));
}
void RenderBlockFlow::setStaticInlinePositionForChild(RenderBox& child, LayoutUnit blockOffset, LayoutUnit inlinePosition)
{
if (flowThreadContainingBlock()) {
// Shift the inline position to exclude the region offset.
inlinePosition += startOffsetForContent() - startOffsetForContent(blockOffset);
}
child.layer()->setStaticInlinePosition(inlinePosition);
}
RenderBlockFlow::MarginValues RenderBlockFlow::marginValuesForChild(RenderBox& child) const
{
LayoutUnit childBeforePositive = 0;
LayoutUnit childBeforeNegative = 0;
LayoutUnit childAfterPositive = 0;
LayoutUnit childAfterNegative = 0;
LayoutUnit beforeMargin = 0;
LayoutUnit afterMargin = 0;
RenderBlockFlow* childRenderBlock = child.isRenderBlockFlow() ? toRenderBlockFlow(&child) : nullptr;
// If the child has the same directionality as we do, then we can just return its
// margins in the same direction.
if (!child.isWritingModeRoot()) {
if (childRenderBlock) {
childBeforePositive = childRenderBlock->maxPositiveMarginBefore();
childBeforeNegative = childRenderBlock->maxNegativeMarginBefore();
childAfterPositive = childRenderBlock->maxPositiveMarginAfter();
childAfterNegative = childRenderBlock->maxNegativeMarginAfter();
} else {
beforeMargin = child.marginBefore();
afterMargin = child.marginAfter();
}
} else if (child.isHorizontalWritingMode() == isHorizontalWritingMode()) {
// The child has a different directionality. If the child is parallel, then it's just
// flipped relative to us. We can use the margins for the opposite edges.
if (childRenderBlock) {
childBeforePositive = childRenderBlock->maxPositiveMarginAfter();
childBeforeNegative = childRenderBlock->maxNegativeMarginAfter();
childAfterPositive = childRenderBlock->maxPositiveMarginBefore();
childAfterNegative = childRenderBlock->maxNegativeMarginBefore();
} else {
beforeMargin = child.marginAfter();
afterMargin = child.marginBefore();
}
} else {
// The child is perpendicular to us, which means its margins don't collapse but are on the
// "logical left/right" sides of the child box. We can just return the raw margin in this case.
beforeMargin = marginBeforeForChild(child);
afterMargin = marginAfterForChild(child);
}
// Resolve uncollapsing margins into their positive/negative buckets.
if (beforeMargin) {
if (beforeMargin > 0)
childBeforePositive = beforeMargin;
else
childBeforeNegative = -beforeMargin;
}
if (afterMargin) {
if (afterMargin > 0)
childAfterPositive = afterMargin;
else
childAfterNegative = -afterMargin;
}
return MarginValues(childBeforePositive, childBeforeNegative, childAfterPositive, childAfterNegative);
}
LayoutUnit RenderBlockFlow::collapseMargins(RenderBox& child, MarginInfo& marginInfo)
{
bool childDiscardMarginBefore = mustDiscardMarginBeforeForChild(child);
bool childDiscardMarginAfter = mustDiscardMarginAfterForChild(child);
bool childIsSelfCollapsing = child.isSelfCollapsingBlock();
// The child discards the before margin when the the after margin has discard in the case of a self collapsing block.
childDiscardMarginBefore = childDiscardMarginBefore || (childDiscardMarginAfter && childIsSelfCollapsing);
// Get the four margin values for the child and cache them.
const MarginValues childMargins = marginValuesForChild(child);
// Get our max pos and neg top margins.
LayoutUnit posTop = childMargins.positiveMarginBefore();
LayoutUnit negTop = childMargins.negativeMarginBefore();
// For self-collapsing blocks, collapse our bottom margins into our
// top to get new posTop and negTop values.
if (childIsSelfCollapsing) {
posTop = std::max(posTop, childMargins.positiveMarginAfter());
negTop = std::max(negTop, childMargins.negativeMarginAfter());
}
// See if the top margin is quirky. We only care if this child has
// margins that will collapse with us.
bool topQuirk = hasMarginBeforeQuirk(child);
if (marginInfo.canCollapseWithMarginBefore()) {
if (!childDiscardMarginBefore && !marginInfo.discardMargin()) {
// This child is collapsing with the top of the
// block. If it has larger margin values, then we need to update
// our own maximal values.
if (!document().inQuirksMode() || !marginInfo.quirkContainer() || !topQuirk)
setMaxMarginBeforeValues(std::max(posTop, maxPositiveMarginBefore()), std::max(negTop, maxNegativeMarginBefore()));
// The minute any of the margins involved isn't a quirk, don't
// collapse it away, even if the margin is smaller (www.webreference.com
// has an example of this, a <dt> with 0.8em author-specified inside
// a <dl> inside a <td>.
if (!marginInfo.determinedMarginBeforeQuirk() && !topQuirk && (posTop - negTop)) {
setHasMarginBeforeQuirk(false);
marginInfo.setDeterminedMarginBeforeQuirk(true);
}
if (!marginInfo.determinedMarginBeforeQuirk() && topQuirk && !marginBefore())
// We have no top margin and our top child has a quirky margin.
// We will pick up this quirky margin and pass it through.
// This deals with the <td><div><p> case.
// Don't do this for a block that split two inlines though. You do
// still apply margins in this case.
setHasMarginBeforeQuirk(true);
} else
// The before margin of the container will also discard all the margins it is collapsing with.
setMustDiscardMarginBefore();
}
// Once we find a child with discardMarginBefore all the margins collapsing with us must also discard.
if (childDiscardMarginBefore) {
marginInfo.setDiscardMargin(true);
marginInfo.clearMargin();
}
if (marginInfo.quirkContainer() && marginInfo.atBeforeSideOfBlock() && (posTop - negTop))
marginInfo.setHasMarginBeforeQuirk(topQuirk);
LayoutUnit beforeCollapseLogicalTop = logicalHeight();
LayoutUnit logicalTop = beforeCollapseLogicalTop;
LayoutUnit clearanceForSelfCollapsingBlock;
RenderObject* prev = child.previousSibling();
// If the child's previous sibling is a self-collapsing block that cleared a float then its top border edge has been set at the bottom border edge
// of the float. Since we want to collapse the child's top margin with the self-collapsing block's top and bottom margins we need to adjust our parent's height to match the
// margin top of the self-collapsing block. If the resulting collapsed margin leaves the child still intruding into the float then we will want to clear it.
if (!marginInfo.canCollapseWithMarginBefore() && prev && prev->isRenderBlockFlow() && toRenderBlockFlow(prev)->isSelfCollapsingBlock()) {
clearanceForSelfCollapsingBlock = toRenderBlockFlow(prev)->marginOffsetForSelfCollapsingBlock();
setLogicalHeight(logicalHeight() - clearanceForSelfCollapsingBlock);
}
if (childIsSelfCollapsing) {
// For a self collapsing block both the before and after margins get discarded. The block doesn't contribute anything to the height of the block.
// Also, the child's top position equals the logical height of the container.
if (!childDiscardMarginBefore && !marginInfo.discardMargin()) {
// This child has no height. We need to compute our
// position before we collapse the child's margins together,
// so that we can get an accurate position for the zero-height block.
LayoutUnit collapsedBeforePos = std::max(marginInfo.positiveMargin(), childMargins.positiveMarginBefore());
LayoutUnit collapsedBeforeNeg = std::max(marginInfo.negativeMargin(), childMargins.negativeMarginBefore());
marginInfo.setMargin(collapsedBeforePos, collapsedBeforeNeg);
// Now collapse the child's margins together, which means examining our
// bottom margin values as well.
marginInfo.setPositiveMarginIfLarger(childMargins.positiveMarginAfter());
marginInfo.setNegativeMarginIfLarger(childMargins.negativeMarginAfter());
if (!marginInfo.canCollapseWithMarginBefore())
// We need to make sure that the position of the self-collapsing block
// is correct, since it could have overflowing content
// that needs to be positioned correctly (e.g., a block that
// had a specified height of 0 but that actually had subcontent).
logicalTop = logicalHeight() + collapsedBeforePos - collapsedBeforeNeg;
}
} else {
if (mustSeparateMarginBeforeForChild(child)) {
ASSERT(!marginInfo.discardMargin() || (marginInfo.discardMargin() && !marginInfo.margin()));
// If we are at the before side of the block and we collapse, ignore the computed margin
// and just add the child margin to the container height. This will correctly position
// the child inside the container.
LayoutUnit separateMargin = !marginInfo.canCollapseWithMarginBefore() ? marginInfo.margin() : LayoutUnit(0);
setLogicalHeight(logicalHeight() + separateMargin + marginBeforeForChild(child));
logicalTop = logicalHeight();
} else if (!marginInfo.discardMargin() && (!marginInfo.atBeforeSideOfBlock()
|| (!marginInfo.canCollapseMarginBeforeWithChildren()
&& (!document().inQuirksMode() || !marginInfo.quirkContainer() || !marginInfo.hasMarginBeforeQuirk())))) {
// We're collapsing with a previous sibling's margins and not
// with the top of the block.
setLogicalHeight(logicalHeight() + std::max(marginInfo.positiveMargin(), posTop) - std::max(marginInfo.negativeMargin(), negTop));
logicalTop = logicalHeight();
}
marginInfo.setDiscardMargin(childDiscardMarginAfter);
if (!marginInfo.discardMargin()) {
marginInfo.setPositiveMargin(childMargins.positiveMarginAfter());
marginInfo.setNegativeMargin(childMargins.negativeMarginAfter());
} else
marginInfo.clearMargin();
if (marginInfo.margin())
marginInfo.setHasMarginAfterQuirk(hasMarginAfterQuirk(child));
}
// If margins would pull us past the top of the next page, then we need to pull back and pretend like the margins
// collapsed into the page edge.
LayoutState* layoutState = view().layoutState();
if (layoutState->isPaginated() && layoutState->pageLogicalHeight() && logicalTop > beforeCollapseLogicalTop
&& hasNextPage(beforeCollapseLogicalTop)) {
LayoutUnit oldLogicalTop = logicalTop;
logicalTop = std::min(logicalTop, nextPageLogicalTop(beforeCollapseLogicalTop));
setLogicalHeight(logicalHeight() + (logicalTop - oldLogicalTop));
}
if (prev && prev->isRenderBlockFlow() && !prev->isFloatingOrOutOfFlowPositioned()) {
// If |child| is a self-collapsing block it may have collapsed into a previous sibling and although it hasn't reduced the height of the parent yet
// any floats from the parent will now overhang.
RenderBlockFlow& block = toRenderBlockFlow(*prev);
LayoutUnit oldLogicalHeight = logicalHeight();
setLogicalHeight(logicalTop);
if (block.containsFloats() && !block.avoidsFloats() && (block.logicalTop() + block.lowestFloatLogicalBottom()) > logicalTop)
addOverhangingFloats(block, false);
setLogicalHeight(oldLogicalHeight);
// If |child|'s previous sibling is a self-collapsing block that cleared a float and margin collapsing resulted in |child| moving up
// into the margin area of the self-collapsing block then the float it clears is now intruding into |child|. Layout again so that we can look for
// floats in the parent that overhang |child|'s new logical top.
bool logicalTopIntrudesIntoFloat = clearanceForSelfCollapsingBlock > 0 && logicalTop < beforeCollapseLogicalTop;
if (logicalTopIntrudesIntoFloat && containsFloats() && !child.avoidsFloats() && lowestFloatLogicalBottom() > logicalTop)
child.setNeedsLayout();
}
return logicalTop;
}
LayoutUnit RenderBlockFlow::clearFloatsIfNeeded(RenderBox& child, MarginInfo& marginInfo, LayoutUnit oldTopPosMargin, LayoutUnit oldTopNegMargin, LayoutUnit yPos)
{
LayoutUnit heightIncrease = getClearDelta(child, yPos);
if (!heightIncrease)
return yPos;
if (child.isSelfCollapsingBlock()) {
bool childDiscardMargin = mustDiscardMarginBeforeForChild(child) || mustDiscardMarginAfterForChild(child);
// For self-collapsing blocks that clear, they can still collapse their
// margins with following siblings. Reset the current margins to represent
// the self-collapsing block's margins only.
// If DISCARD is specified for -webkit-margin-collapse, reset the margin values.
MarginValues childMargins = marginValuesForChild(child);
if (!childDiscardMargin) {
marginInfo.setPositiveMargin(std::max(childMargins.positiveMarginBefore(), childMargins.positiveMarginAfter()));
marginInfo.setNegativeMargin(std::max(childMargins.negativeMarginBefore(), childMargins.negativeMarginAfter()));
} else
marginInfo.clearMargin();
marginInfo.setDiscardMargin(childDiscardMargin);
// CSS2.1 states:
// "If the top and bottom margins of an element with clearance are adjoining, its margins collapse with
// the adjoining margins of following siblings but that resulting margin does not collapse with the bottom margin of the parent block."
// So the parent's bottom margin cannot collapse through this block or any subsequent self-collapsing blocks. Check subsequent siblings
// for a block with height - if none is found then don't allow the margins to collapse with the parent.
bool wouldCollapseMarginsWithParent = marginInfo.canCollapseMarginAfterWithChildren();
for (RenderBox* curr = child.nextSiblingBox(); curr && wouldCollapseMarginsWithParent; curr = curr->nextSiblingBox()) {
if (!curr->isFloatingOrOutOfFlowPositioned() && !curr->isSelfCollapsingBlock())
wouldCollapseMarginsWithParent = false;
}
if (wouldCollapseMarginsWithParent)
marginInfo.setCanCollapseMarginAfterWithChildren(false);
// For now set the border-top of |child| flush with the bottom border-edge of the float so it can layout any floating or positioned children of
// its own at the correct vertical position. If subsequent siblings attempt to collapse with |child|'s margins in |collapseMargins| we will
// adjust the height of the parent to |child|'s margin top (which if it is positive sits up 'inside' the float it's clearing) so that all three
// margins can collapse at the correct vertical position.
// Per CSS2.1 we need to ensure that any negative margin-top clears |child| beyond the bottom border-edge of the float so that the top border edge of the child
// (i.e. its clearance) is at a position that satisfies the equation: "the amount of clearance is set so that clearance + margin-top = [height of float],
// i.e., clearance = [height of float] - margin-top".
setLogicalHeight(child.logicalTop() + childMargins.negativeMarginBefore());
} else
// Increase our height by the amount we had to clear.
setLogicalHeight(logicalHeight() + heightIncrease);
if (marginInfo.canCollapseWithMarginBefore()) {
// We can no longer collapse with the top of the block since a clear
// occurred. The empty blocks collapse into the cleared block.
// FIXME: This isn't quite correct. Need clarification for what to do
// if the height the cleared block is offset by is smaller than the
// margins involved.
setMaxMarginBeforeValues(oldTopPosMargin, oldTopNegMargin);
marginInfo.setAtBeforeSideOfBlock(false);
// In case the child discarded the before margin of the block we need to reset the mustDiscardMarginBefore flag to the initial value.
setMustDiscardMarginBefore(style().marginBeforeCollapse() == MDISCARD);
}
return yPos + heightIncrease;
}
void RenderBlockFlow::marginBeforeEstimateForChild(RenderBox& child, LayoutUnit& positiveMarginBefore, LayoutUnit& negativeMarginBefore, bool& discardMarginBefore) const
{
// Give up if in quirks mode and we're a body/table cell and the top margin of the child box is quirky.
// Give up if the child specified -webkit-margin-collapse: separate that prevents collapsing.
// FIXME: Use writing mode independent accessor for marginBeforeCollapse.
if ((document().inQuirksMode() && hasMarginAfterQuirk(child) && (isTableCell() || isBody())) || child.style().marginBeforeCollapse() == MSEPARATE)
return;
// The margins are discarded by a child that specified -webkit-margin-collapse: discard.
// FIXME: Use writing mode independent accessor for marginBeforeCollapse.
if (child.style().marginBeforeCollapse() == MDISCARD) {
positiveMarginBefore = 0;
negativeMarginBefore = 0;
discardMarginBefore = true;
return;
}
LayoutUnit beforeChildMargin = marginBeforeForChild(child);
positiveMarginBefore = std::max(positiveMarginBefore, beforeChildMargin);
negativeMarginBefore = std::max(negativeMarginBefore, -beforeChildMargin);
if (!child.isRenderBlockFlow())
return;
RenderBlockFlow& childBlock = toRenderBlockFlow(child);
if (childBlock.childrenInline() || childBlock.isWritingModeRoot())
return;
MarginInfo childMarginInfo(childBlock, childBlock.borderAndPaddingBefore(), childBlock.borderAndPaddingAfter());
if (!childMarginInfo.canCollapseMarginBeforeWithChildren())
return;
RenderBox* grandchildBox = childBlock.firstChildBox();
for (; grandchildBox; grandchildBox = grandchildBox->nextSiblingBox()) {
if (!grandchildBox->isFloatingOrOutOfFlowPositioned())
break;
}
// Give up if there is clearance on the box, since it probably won't collapse into us.
if (!grandchildBox || grandchildBox->style().clear() != CNONE)
return;
// Make sure to update the block margins now for the grandchild box so that we're looking at current values.
if (grandchildBox->needsLayout()) {
grandchildBox->computeAndSetBlockDirectionMargins(this);
if (grandchildBox->isRenderBlock()) {
RenderBlock* grandchildBlock = toRenderBlock(grandchildBox);
grandchildBlock->setHasMarginBeforeQuirk(grandchildBox->style().hasMarginBeforeQuirk());
grandchildBlock->setHasMarginAfterQuirk(grandchildBox->style().hasMarginAfterQuirk());
}
}
// Collapse the margin of the grandchild box with our own to produce an estimate.
childBlock.marginBeforeEstimateForChild(*grandchildBox, positiveMarginBefore, negativeMarginBefore, discardMarginBefore);
}
LayoutUnit RenderBlockFlow::estimateLogicalTopPosition(RenderBox& child, const MarginInfo& marginInfo, LayoutUnit& estimateWithoutPagination)
{
// FIXME: We need to eliminate the estimation of vertical position, because when it's wrong we sometimes trigger a pathological
// relayout if there are intruding floats.
LayoutUnit logicalTopEstimate = logicalHeight();
if (!marginInfo.canCollapseWithMarginBefore()) {
LayoutUnit positiveMarginBefore = 0;
LayoutUnit negativeMarginBefore = 0;
bool discardMarginBefore = false;
if (child.selfNeedsLayout()) {
// Try to do a basic estimation of how the collapse is going to go.
marginBeforeEstimateForChild(child, positiveMarginBefore, negativeMarginBefore, discardMarginBefore);
} else {
// Use the cached collapsed margin values from a previous layout. Most of the time they
// will be right.
MarginValues marginValues = marginValuesForChild(child);
positiveMarginBefore = std::max(positiveMarginBefore, marginValues.positiveMarginBefore());
negativeMarginBefore = std::max(negativeMarginBefore, marginValues.negativeMarginBefore());
discardMarginBefore = mustDiscardMarginBeforeForChild(child);
}
// Collapse the result with our current margins.
if (!discardMarginBefore)
logicalTopEstimate += std::max(marginInfo.positiveMargin(), positiveMarginBefore) - std::max(marginInfo.negativeMargin(), negativeMarginBefore);
}
// Adjust logicalTopEstimate down to the next page if the margins are so large that we don't fit on the current
// page.
LayoutState* layoutState = view().layoutState();
if (layoutState->isPaginated() && layoutState->pageLogicalHeight() && logicalTopEstimate > logicalHeight()
&& hasNextPage(logicalHeight()))
logicalTopEstimate = std::min(logicalTopEstimate, nextPageLogicalTop(logicalHeight()));
logicalTopEstimate += getClearDelta(child, logicalTopEstimate);
estimateWithoutPagination = logicalTopEstimate;
if (layoutState->isPaginated()) {
// If the object has a page or column break value of "before", then we should shift to the top of the next page.
logicalTopEstimate = applyBeforeBreak(child, logicalTopEstimate);
// For replaced elements and scrolled elements, we want to shift them to the next page if they don't fit on the current one.
logicalTopEstimate = adjustForUnsplittableChild(child, logicalTopEstimate);
if (!child.selfNeedsLayout() && child.isRenderBlock())
logicalTopEstimate += toRenderBlock(child).paginationStrut();
}
return logicalTopEstimate;
}
void RenderBlockFlow::setCollapsedBottomMargin(const MarginInfo& marginInfo)
{
if (marginInfo.canCollapseWithMarginAfter() && !marginInfo.canCollapseWithMarginBefore()) {
// Update the after side margin of the container to discard if the after margin of the last child also discards and we collapse with it.
// Don't update the max margin values because we won't need them anyway.
if (marginInfo.discardMargin()) {
setMustDiscardMarginAfter();
return;
}
// Update our max pos/neg bottom margins, since we collapsed our bottom margins
// with our children.
setMaxMarginAfterValues(std::max(maxPositiveMarginAfter(), marginInfo.positiveMargin()), std::max(maxNegativeMarginAfter(), marginInfo.negativeMargin()));
if (!marginInfo.hasMarginAfterQuirk())
setHasMarginAfterQuirk(false);
if (marginInfo.hasMarginAfterQuirk() && !marginAfter())
// We have no bottom margin and our last child has a quirky margin.
// We will pick up this quirky margin and pass it through.
// This deals with the <td><div><p> case.
setHasMarginAfterQuirk(true);
}
}
void RenderBlockFlow::handleAfterSideOfBlock(LayoutUnit beforeSide, LayoutUnit afterSide, MarginInfo& marginInfo)
{
marginInfo.setAtAfterSideOfBlock(true);
// If our last child was a self-collapsing block with clearance then our logical height is flush with the
// bottom edge of the float that the child clears. The correct vertical position for the margin-collapsing we want
// to perform now is at the child's margin-top - so adjust our height to that position.
RenderObject* lastBlock = lastChild();
if (lastBlock && lastBlock->isRenderBlockFlow() && toRenderBlockFlow(lastBlock)->isSelfCollapsingBlock())
setLogicalHeight(logicalHeight() - toRenderBlockFlow(lastBlock)->marginOffsetForSelfCollapsingBlock());
// If we can't collapse with children then go ahead and add in the bottom margin.
if (!marginInfo.discardMargin() && (!marginInfo.canCollapseWithMarginAfter() && !marginInfo.canCollapseWithMarginBefore()
&& (!document().inQuirksMode() || !marginInfo.quirkContainer() || !marginInfo.hasMarginAfterQuirk())))
setLogicalHeight(logicalHeight() + marginInfo.margin());
// Now add in our bottom border/padding.
setLogicalHeight(logicalHeight() + afterSide);
// Negative margins can cause our height to shrink below our minimal height (border/padding).
// If this happens, ensure that the computed height is increased to the minimal height.
setLogicalHeight(std::max(logicalHeight(), beforeSide + afterSide));
// Update our bottom collapsed margin info.
setCollapsedBottomMargin(marginInfo);
}
void RenderBlockFlow::setMaxMarginBeforeValues(LayoutUnit pos, LayoutUnit neg)
{
if (!hasRareBlockFlowData()) {
if (pos == RenderBlockFlowRareData::positiveMarginBeforeDefault(*this) && neg == RenderBlockFlowRareData::negativeMarginBeforeDefault(*this))
return;
materializeRareBlockFlowData();
}
rareBlockFlowData()->m_margins.setPositiveMarginBefore(pos);
rareBlockFlowData()->m_margins.setNegativeMarginBefore(neg);
}
void RenderBlockFlow::setMaxMarginAfterValues(LayoutUnit pos, LayoutUnit neg)
{
if (!hasRareBlockFlowData()) {
if (pos == RenderBlockFlowRareData::positiveMarginAfterDefault(*this) && neg == RenderBlockFlowRareData::negativeMarginAfterDefault(*this))
return;
materializeRareBlockFlowData();
}
rareBlockFlowData()->m_margins.setPositiveMarginAfter(pos);
rareBlockFlowData()->m_margins.setNegativeMarginAfter(neg);
}
void RenderBlockFlow::setMustDiscardMarginBefore(bool value)
{
if (style().marginBeforeCollapse() == MDISCARD) {
ASSERT(value);
return;
}
if (!hasRareBlockFlowData()) {
if (!value)
return;
materializeRareBlockFlowData();
}
rareBlockFlowData()->m_discardMarginBefore = value;
}
void RenderBlockFlow::setMustDiscardMarginAfter(bool value)
{
if (style().marginAfterCollapse() == MDISCARD) {
ASSERT(value);
return;
}
if (!hasRareBlockFlowData()) {
if (!value)
return;
materializeRareBlockFlowData();
}
rareBlockFlowData()->m_discardMarginAfter = value;
}
bool RenderBlockFlow::mustDiscardMarginBefore() const
{
return style().marginBeforeCollapse() == MDISCARD || (hasRareBlockFlowData() && rareBlockFlowData()->m_discardMarginBefore);
}
bool RenderBlockFlow::mustDiscardMarginAfter() const
{
return style().marginAfterCollapse() == MDISCARD || (hasRareBlockFlowData() && rareBlockFlowData()->m_discardMarginAfter);
}
bool RenderBlockFlow::mustDiscardMarginBeforeForChild(const RenderBox& child) const
{
ASSERT(!child.selfNeedsLayout());
if (!child.isWritingModeRoot())
return child.isRenderBlockFlow() ? toRenderBlockFlow(child).mustDiscardMarginBefore() : (child.style().marginBeforeCollapse() == MDISCARD);
if (child.isHorizontalWritingMode() == isHorizontalWritingMode())
return child.isRenderBlockFlow() ? toRenderBlockFlow(child).mustDiscardMarginAfter() : (child.style().marginAfterCollapse() == MDISCARD);
// FIXME: We return false here because the implementation is not geometrically complete. We have values only for before/after, not start/end.
// In case the boxes are perpendicular we assume the property is not specified.
return false;
}
bool RenderBlockFlow::mustDiscardMarginAfterForChild(const RenderBox& child) const
{
ASSERT(!child.selfNeedsLayout());
if (!child.isWritingModeRoot())
return child.isRenderBlockFlow() ? toRenderBlockFlow(child).mustDiscardMarginAfter() : (child.style().marginAfterCollapse() == MDISCARD);
if (child.isHorizontalWritingMode() == isHorizontalWritingMode())
return child.isRenderBlockFlow() ? toRenderBlockFlow(child).mustDiscardMarginBefore() : (child.style().marginBeforeCollapse() == MDISCARD);
// FIXME: See |mustDiscardMarginBeforeForChild| above.
return false;
}
bool RenderBlockFlow::mustSeparateMarginBeforeForChild(const RenderBox& child) const
{
ASSERT(!child.selfNeedsLayout());
const RenderStyle& childStyle = child.style();
if (!child.isWritingModeRoot())
return childStyle.marginBeforeCollapse() == MSEPARATE;
if (child.isHorizontalWritingMode() == isHorizontalWritingMode())
return childStyle.marginAfterCollapse() == MSEPARATE;
// FIXME: See |mustDiscardMarginBeforeForChild| above.
return false;
}
bool RenderBlockFlow::mustSeparateMarginAfterForChild(const RenderBox& child) const
{
ASSERT(!child.selfNeedsLayout());
const RenderStyle& childStyle = child.style();
if (!child.isWritingModeRoot())
return childStyle.marginAfterCollapse() == MSEPARATE;
if (child.isHorizontalWritingMode() == isHorizontalWritingMode())
return childStyle.marginBeforeCollapse() == MSEPARATE;
// FIXME: See |mustDiscardMarginBeforeForChild| above.
return false;
}
static bool inNormalFlow(RenderBox& child)
{
RenderBlock* curr = child.containingBlock();
while (curr && curr != &child.view()) {
if (curr->hasColumns() || curr->isRenderFlowThread())
return true;
if (curr->isFloatingOrOutOfFlowPositioned())
return false;
curr = curr->containingBlock();
}
return true;
}
LayoutUnit RenderBlockFlow::applyBeforeBreak(RenderBox& child, LayoutUnit logicalOffset)
{
// FIXME: Add page break checking here when we support printing.
bool checkColumnBreaks = view().layoutState()->isPaginatingColumns();
bool checkPageBreaks = !checkColumnBreaks && view().layoutState()->m_pageLogicalHeight; // FIXME: Once columns can print we have to check this.
RenderFlowThread* flowThread = flowThreadContainingBlock();
bool checkRegionBreaks = flowThread && flowThread->isRenderNamedFlowThread();
bool checkBeforeAlways = (checkColumnBreaks && child.style().columnBreakBefore() == PBALWAYS) || (checkPageBreaks && child.style().pageBreakBefore() == PBALWAYS)
|| (checkRegionBreaks && child.style().regionBreakBefore() == PBALWAYS);
if (checkBeforeAlways && inNormalFlow(child) && hasNextPage(logicalOffset, IncludePageBoundary)) {
if (checkColumnBreaks)
view().layoutState()->addForcedColumnBreak(&child, logicalOffset);
if (checkRegionBreaks) {
LayoutUnit offsetBreakAdjustment = 0;
if (flowThread->addForcedRegionBreak(this, offsetFromLogicalTopOfFirstPage() + logicalOffset, &child, true, &offsetBreakAdjustment))
return logicalOffset + offsetBreakAdjustment;
}
return nextPageLogicalTop(logicalOffset, IncludePageBoundary);
}
return logicalOffset;
}
LayoutUnit RenderBlockFlow::applyAfterBreak(RenderBox& child, LayoutUnit logicalOffset, MarginInfo& marginInfo)
{
// FIXME: Add page break checking here when we support printing.
bool checkColumnBreaks = view().layoutState()->isPaginatingColumns();
bool checkPageBreaks = !checkColumnBreaks && view().layoutState()->m_pageLogicalHeight; // FIXME: Once columns can print we have to check this.
RenderFlowThread* flowThread = flowThreadContainingBlock();
bool checkRegionBreaks = flowThread && flowThread->isRenderNamedFlowThread();
bool checkAfterAlways = (checkColumnBreaks && child.style().columnBreakAfter() == PBALWAYS) || (checkPageBreaks && child.style().pageBreakAfter() == PBALWAYS)
|| (checkRegionBreaks && child.style().regionBreakAfter() == PBALWAYS);
if (checkAfterAlways && inNormalFlow(child) && hasNextPage(logicalOffset, IncludePageBoundary)) {
LayoutUnit marginOffset = marginInfo.canCollapseWithMarginBefore() ? LayoutUnit() : marginInfo.margin();
// So our margin doesn't participate in the next collapsing steps.
marginInfo.clearMargin();
if (checkColumnBreaks)
view().layoutState()->addForcedColumnBreak(&child, logicalOffset);
if (checkRegionBreaks) {
LayoutUnit offsetBreakAdjustment = 0;
if (flowThread->addForcedRegionBreak(this, offsetFromLogicalTopOfFirstPage() + logicalOffset + marginOffset, &child, false, &offsetBreakAdjustment))
return logicalOffset + marginOffset + offsetBreakAdjustment;
}
return nextPageLogicalTop(logicalOffset, IncludePageBoundary);
}
return logicalOffset;
}
LayoutUnit RenderBlockFlow::adjustBlockChildForPagination(LayoutUnit logicalTopAfterClear, LayoutUnit estimateWithoutPagination, RenderBox& child, bool atBeforeSideOfBlock)
{
RenderBlock* childRenderBlock = child.isRenderBlock() ? toRenderBlock(&child) : nullptr;
if (estimateWithoutPagination != logicalTopAfterClear) {
// Our guess prior to pagination movement was wrong. Before we attempt to paginate, let's try again at the new
// position.
setLogicalHeight(logicalTopAfterClear);
setLogicalTopForChild(child, logicalTopAfterClear, ApplyLayoutDelta);
if (child.shrinkToAvoidFloats()) {
// The child's width depends on the line width.
// When the child shifts to clear an item, its width can
// change (because it has more available line width).
// So go ahead and mark the item as dirty.
child.setChildNeedsLayout(MarkOnlyThis);
}
if (childRenderBlock) {
if (!child.avoidsFloats() && childRenderBlock->containsFloats())
toRenderBlockFlow(childRenderBlock)->markAllDescendantsWithFloatsForLayout();
if (!child.needsLayout())
child.markForPaginationRelayoutIfNeeded();
}
// Our guess was wrong. Make the child lay itself out again.
child.layoutIfNeeded();
}
LayoutUnit oldTop = logicalTopAfterClear;
// If the object has a page or column break value of "before", then we should shift to the top of the next page.
LayoutUnit result = applyBeforeBreak(child, logicalTopAfterClear);
if (pageLogicalHeightForOffset(result)) {
LayoutUnit remainingLogicalHeight = pageRemainingLogicalHeightForOffset(result, ExcludePageBoundary);
LayoutUnit spaceShortage = child.logicalHeight() - remainingLogicalHeight;
if (spaceShortage > 0) {
// If the child crosses a column boundary, report a break, in case nothing inside it has already
// done so. The column balancer needs to know how much it has to stretch the columns to make more
// content fit. If no breaks are reported (but do occur), the balancer will have no clue. FIXME:
// This should be improved, though, because here we just pretend that the child is
// unsplittable. A splittable child, on the other hand, has break opportunities at every position
// where there's no child content, border or padding. In other words, we risk stretching more
// than necessary.
setPageBreak(result, spaceShortage);
}
}
// For replaced elements and scrolled elements, we want to shift them to the next page if they don't fit on the current one.
LayoutUnit logicalTopBeforeUnsplittableAdjustment = result;
LayoutUnit logicalTopAfterUnsplittableAdjustment = adjustForUnsplittableChild(child, result);
LayoutUnit paginationStrut = 0;
LayoutUnit unsplittableAdjustmentDelta = logicalTopAfterUnsplittableAdjustment - logicalTopBeforeUnsplittableAdjustment;
if (unsplittableAdjustmentDelta)
paginationStrut = unsplittableAdjustmentDelta;
else if (childRenderBlock && childRenderBlock->paginationStrut())
paginationStrut = childRenderBlock->paginationStrut();
if (paginationStrut) {
// We are willing to propagate out to our parent block as long as we were at the top of the block prior
// to collapsing our margins, and as long as we didn't clear or move as a result of other pagination.
if (atBeforeSideOfBlock && oldTop == result && !isOutOfFlowPositioned() && !isTableCell()) {
// FIXME: Should really check if we're exceeding the page height before propagating the strut, but we don't
// have all the information to do so (the strut only has the remaining amount to push). Gecko gets this wrong too
// and pushes to the next page anyway, so not too concerned about it.
setPaginationStrut(result + paginationStrut);
if (childRenderBlock)
childRenderBlock->setPaginationStrut(0);
} else
result += paginationStrut;
}
// Similar to how we apply clearance. Go ahead and boost height() to be the place where we're going to position the child.
setLogicalHeight(logicalHeight() + (result - oldTop));
// Return the final adjusted logical top.
return result;
}
static inline LayoutUnit calculateMinimumPageHeight(RenderStyle* renderStyle, RootInlineBox* lastLine, LayoutUnit lineTop, LayoutUnit lineBottom)
{
// We may require a certain minimum number of lines per page in order to satisfy
// orphans and widows, and that may affect the minimum page height.
unsigned lineCount = std::max<unsigned>(renderStyle->hasAutoOrphans() ? 1 : renderStyle->orphans(), renderStyle->hasAutoWidows() ? 1 : renderStyle->widows());
if (lineCount > 1) {
RootInlineBox* line = lastLine;
for (unsigned i = 1; i < lineCount && line->prevRootBox(); i++)
line = line->prevRootBox();
// FIXME: Paginating using line overflow isn't all fine. See FIXME in
// adjustLinePositionForPagination() for more details.
LayoutRect overflow = line->logicalVisualOverflowRect(line->lineTop(), line->lineBottom());
lineTop = std::min(line->lineTopWithLeading(), overflow.y());
}
return lineBottom - lineTop;
}
void RenderBlockFlow::adjustLinePositionForPagination(RootInlineBox* lineBox, LayoutUnit& delta, RenderFlowThread* flowThread)
{
// FIXME: For now we paginate using line overflow. This ensures that lines don't overlap at all when we
// put a strut between them for pagination purposes. However, this really isn't the desired rendering, since
// the line on the top of the next page will appear too far down relative to the same kind of line at the top
// of the first column.
//
// The rendering we would like to see is one where the lineTopWithLeading is at the top of the column, and any line overflow
// simply spills out above the top of the column. This effect would match what happens at the top of the first column.
// We can't achieve this rendering, however, until we stop columns from clipping to the column bounds (thus allowing
// for overflow to occur), and then cache visible overflow for each column rect.
//
// Furthermore, the paint we have to do when a column has overflow has to be special. We need to exclude
// content that paints in a previous column (and content that paints in the following column).
//
// For now we'll at least honor the lineTopWithLeading when paginating if it is above the logical top overflow. This will
// at least make positive leading work in typical cases.
//
// FIXME: Another problem with simply moving lines is that the available line width may change (because of floats).
// Technically if the location we move the line to has a different line width than our old position, then we need to dirty the
// line and all following lines.
LayoutRect logicalVisualOverflow = lineBox->logicalVisualOverflowRect(lineBox->lineTop(), lineBox->lineBottom());
LayoutUnit logicalOffset = std::min(lineBox->lineTopWithLeading(), logicalVisualOverflow.y());
LayoutUnit logicalBottom = std::max(lineBox->lineBottomWithLeading(), logicalVisualOverflow.maxY());
LayoutUnit lineHeight = logicalBottom - logicalOffset;
updateMinimumPageHeight(logicalOffset, calculateMinimumPageHeight(&style(), lineBox, logicalOffset, logicalBottom));
logicalOffset += delta;
lineBox->setPaginationStrut(0);
lineBox->setIsFirstAfterPageBreak(false);
LayoutUnit pageLogicalHeight = pageLogicalHeightForOffset(logicalOffset);
bool hasUniformPageLogicalHeight = !flowThread || flowThread->regionsHaveUniformLogicalHeight();
// If lineHeight is greater than pageLogicalHeight, but logicalVisualOverflow.height() still fits, we are
// still going to add a strut, so that the visible overflow fits on a single page.
if (!pageLogicalHeight || (hasUniformPageLogicalHeight && logicalVisualOverflow.height() > pageLogicalHeight)
|| !hasNextPage(logicalOffset))
// FIXME: In case the line aligns with the top of the page (or it's slightly shifted downwards) it will not be marked as the first line in the page.
// From here, the fix is not straightforward because it's not easy to always determine when the current line is the first in the page.
return;
LayoutUnit remainingLogicalHeight = pageRemainingLogicalHeightForOffset(logicalOffset, ExcludePageBoundary);
int lineIndex = lineCount(lineBox);
if (remainingLogicalHeight < lineHeight || (shouldBreakAtLineToAvoidWidow() && lineBreakToAvoidWidow() == lineIndex)) {
if (shouldBreakAtLineToAvoidWidow() && lineBreakToAvoidWidow() == lineIndex) {
clearShouldBreakAtLineToAvoidWidow();
setDidBreakAtLineToAvoidWidow();
}
// If we have a non-uniform page height, then we have to shift further possibly.
if (!hasUniformPageLogicalHeight && !pushToNextPageWithMinimumLogicalHeight(remainingLogicalHeight, logicalOffset, lineHeight))
return;
if (lineHeight > pageLogicalHeight) {
// Split the top margin in order to avoid splitting the visible part of the line.
remainingLogicalHeight -= std::min(lineHeight - pageLogicalHeight, std::max<LayoutUnit>(0, logicalVisualOverflow.y() - lineBox->lineTopWithLeading()));
}
LayoutUnit totalLogicalHeight = lineHeight + std::max<LayoutUnit>(0, logicalOffset);
LayoutUnit pageLogicalHeightAtNewOffset = hasUniformPageLogicalHeight ? pageLogicalHeight : pageLogicalHeightForOffset(logicalOffset + remainingLogicalHeight);
setPageBreak(logicalOffset, lineHeight - remainingLogicalHeight);
if (((lineBox == firstRootBox() && totalLogicalHeight < pageLogicalHeightAtNewOffset) || (!style().hasAutoOrphans() && style().orphans() >= lineIndex))
&& !isOutOfFlowPositioned() && !isTableCell())
setPaginationStrut(remainingLogicalHeight + std::max<LayoutUnit>(0, logicalOffset));
else {
delta += remainingLogicalHeight;
lineBox->setPaginationStrut(remainingLogicalHeight);
lineBox->setIsFirstAfterPageBreak(true);
}
} else if (remainingLogicalHeight == pageLogicalHeight && lineBox != firstRootBox())
lineBox->setIsFirstAfterPageBreak(true);
}
void RenderBlockFlow::setBreakAtLineToAvoidWidow(int lineToBreak)
{
ASSERT(lineToBreak >= 0);
ASSERT(!ensureRareBlockFlowData().m_didBreakAtLineToAvoidWidow);
ensureRareBlockFlowData().m_lineBreakToAvoidWidow = lineToBreak;
}
void RenderBlockFlow::setDidBreakAtLineToAvoidWidow()
{
ASSERT(!shouldBreakAtLineToAvoidWidow());
if (!hasRareBlockFlowData())
return;
rareBlockFlowData()->m_didBreakAtLineToAvoidWidow = true;
}
void RenderBlockFlow::clearDidBreakAtLineToAvoidWidow()
{
if (!hasRareBlockFlowData())
return;
rareBlockFlowData()->m_didBreakAtLineToAvoidWidow = false;
}
void RenderBlockFlow::clearShouldBreakAtLineToAvoidWidow() const
{
ASSERT(shouldBreakAtLineToAvoidWidow());
if (!hasRareBlockFlowData())
return;
rareBlockFlowData()->m_lineBreakToAvoidWidow = -1;
}
bool RenderBlockFlow::relayoutToAvoidWidows(LayoutStateMaintainer& statePusher)
{
if (!shouldBreakAtLineToAvoidWidow())
return false;
statePusher.pop();
setEverHadLayout(true);
layoutBlock(false);
return true;
}
bool RenderBlockFlow::hasNextPage(LayoutUnit logicalOffset, PageBoundaryRule pageBoundaryRule) const
{
ASSERT(view().layoutState() && view().layoutState()->isPaginated());
RenderFlowThread* flowThread = flowThreadContainingBlock();
if (!flowThread)
return true; // Printing and multi-column both make new pages to accommodate content.
// See if we're in the last region.
LayoutUnit pageOffset = offsetFromLogicalTopOfFirstPage() + logicalOffset;
RenderRegion* region = flowThread->regionAtBlockOffset(this, pageOffset, true);
if (!region)
return false;
if (region->isLastRegion())
return region->isRenderRegionSet() || region->style().regionFragment() == BreakRegionFragment
|| (pageBoundaryRule == IncludePageBoundary && pageOffset == region->logicalTopForFlowThreadContent());
RenderRegion* startRegion = 0;
RenderRegion* endRegion = 0;
flowThread->getRegionRangeForBox(this, startRegion, endRegion);
if (region == endRegion)
return false;
return true;
}
LayoutUnit RenderBlockFlow::adjustForUnsplittableChild(RenderBox& child, LayoutUnit logicalOffset, bool includeMargins)
{
bool checkColumnBreaks = view().layoutState()->isPaginatingColumns();
bool checkPageBreaks = !checkColumnBreaks && view().layoutState()->m_pageLogicalHeight;
RenderFlowThread* flowThread = flowThreadContainingBlock();
bool checkRegionBreaks = flowThread && flowThread->isRenderNamedFlowThread();
bool isUnsplittable = child.isUnsplittableForPagination() || (checkColumnBreaks && child.style().columnBreakInside() == PBAVOID)
|| (checkPageBreaks && child.style().pageBreakInside() == PBAVOID)
|| (checkRegionBreaks && child.style().regionBreakInside() == PBAVOID);
if (!isUnsplittable)
return logicalOffset;
LayoutUnit childLogicalHeight = logicalHeightForChild(child) + (includeMargins ? marginBeforeForChild(child) + marginAfterForChild(child) : LayoutUnit());
LayoutUnit pageLogicalHeight = pageLogicalHeightForOffset(logicalOffset);
bool hasUniformPageLogicalHeight = !flowThread || flowThread->regionsHaveUniformLogicalHeight();
updateMinimumPageHeight(logicalOffset, childLogicalHeight);
if (!pageLogicalHeight || (hasUniformPageLogicalHeight && childLogicalHeight > pageLogicalHeight)
|| !hasNextPage(logicalOffset))
return logicalOffset;
LayoutUnit remainingLogicalHeight = pageRemainingLogicalHeightForOffset(logicalOffset, ExcludePageBoundary);
if (remainingLogicalHeight < childLogicalHeight) {
if (!hasUniformPageLogicalHeight && !pushToNextPageWithMinimumLogicalHeight(remainingLogicalHeight, logicalOffset, childLogicalHeight))
return logicalOffset;
return logicalOffset + remainingLogicalHeight;
}
return logicalOffset;
}
bool RenderBlockFlow::pushToNextPageWithMinimumLogicalHeight(LayoutUnit& adjustment, LayoutUnit logicalOffset, LayoutUnit minimumLogicalHeight) const
{
bool checkRegion = false;
for (LayoutUnit pageLogicalHeight = pageLogicalHeightForOffset(logicalOffset + adjustment); pageLogicalHeight;
pageLogicalHeight = pageLogicalHeightForOffset(logicalOffset + adjustment)) {
if (minimumLogicalHeight <= pageLogicalHeight)
return true;
if (!hasNextPage(logicalOffset + adjustment))
return false;
adjustment += pageLogicalHeight;
checkRegion = true;
}
return !checkRegion;
}
void RenderBlockFlow::setPageBreak(LayoutUnit offset, LayoutUnit spaceShortage)
{
if (RenderFlowThread* flowThread = flowThreadContainingBlock())
flowThread->setPageBreak(this, offsetFromLogicalTopOfFirstPage() + offset, spaceShortage);
}
void RenderBlockFlow::updateMinimumPageHeight(LayoutUnit offset, LayoutUnit minHeight)
{
if (RenderFlowThread* flowThread = flowThreadContainingBlock())
flowThread->updateMinimumPageHeight(this, offsetFromLogicalTopOfFirstPage() + offset, minHeight);
else if (ColumnInfo* colInfo = view().layoutState()->m_columnInfo)
colInfo->updateMinimumColumnHeight(minHeight);
}
LayoutUnit RenderBlockFlow::nextPageLogicalTop(LayoutUnit logicalOffset, PageBoundaryRule pageBoundaryRule) const
{
LayoutUnit pageLogicalHeight = pageLogicalHeightForOffset(logicalOffset);
if (!pageLogicalHeight)
return logicalOffset;
// The logicalOffset is in our coordinate space. We can add in our pushed offset.
LayoutUnit remainingLogicalHeight = pageRemainingLogicalHeightForOffset(logicalOffset);
if (pageBoundaryRule == ExcludePageBoundary)
return logicalOffset + (remainingLogicalHeight ? remainingLogicalHeight : pageLogicalHeight);
return logicalOffset + remainingLogicalHeight;
}
LayoutUnit RenderBlockFlow::pageLogicalTopForOffset(LayoutUnit offset) const
{
LayoutUnit firstPageLogicalTop = isHorizontalWritingMode() ? view().layoutState()->m_pageOffset.height() : view().layoutState()->m_pageOffset.width();
LayoutUnit blockLogicalTop = isHorizontalWritingMode() ? view().layoutState()->m_layoutOffset.height() : view().layoutState()->m_layoutOffset.width();
LayoutUnit cumulativeOffset = offset + blockLogicalTop;
RenderFlowThread* flowThread = flowThreadContainingBlock();
if (!flowThread) {
LayoutUnit pageLogicalHeight = view().layoutState()->pageLogicalHeight();
if (!pageLogicalHeight)
return 0;
return cumulativeOffset - roundToInt(cumulativeOffset - firstPageLogicalTop) % roundToInt(pageLogicalHeight);
}
return flowThread->pageLogicalTopForOffset(cumulativeOffset);
}
LayoutUnit RenderBlockFlow::pageLogicalHeightForOffset(LayoutUnit offset) const
{
RenderFlowThread* flowThread = flowThreadContainingBlock();
if (!flowThread)
return view().layoutState()->m_pageLogicalHeight;
return flowThread->pageLogicalHeightForOffset(offset + offsetFromLogicalTopOfFirstPage());
}
LayoutUnit RenderBlockFlow::pageRemainingLogicalHeightForOffset(LayoutUnit offset, PageBoundaryRule pageBoundaryRule) const
{
offset += offsetFromLogicalTopOfFirstPage();
RenderFlowThread* flowThread = flowThreadContainingBlock();
if (!flowThread) {
LayoutUnit pageLogicalHeight = view().layoutState()->m_pageLogicalHeight;
LayoutUnit remainingHeight = pageLogicalHeight - intMod(offset, pageLogicalHeight);
if (pageBoundaryRule == IncludePageBoundary) {
// If includeBoundaryPoint is true the line exactly on the top edge of a
// column will act as being part of the previous column.
remainingHeight = intMod(remainingHeight, pageLogicalHeight);
}
return remainingHeight;
}
return flowThread->pageRemainingLogicalHeightForOffset(offset, pageBoundaryRule);
}
void RenderBlockFlow::layoutLineGridBox()
{
if (style().lineGrid() == RenderStyle::initialLineGrid()) {
setLineGridBox(0);
return;
}
setLineGridBox(0);
auto lineGridBox = std::make_unique<RootInlineBox>(*this);
lineGridBox->setHasTextChildren(); // Needed to make the line ascent/descent actually be honored in quirks mode.
lineGridBox->setConstructed();
GlyphOverflowAndFallbackFontsMap textBoxDataMap;
VerticalPositionCache verticalPositionCache;
lineGridBox->alignBoxesInBlockDirection(logicalHeight(), textBoxDataMap, verticalPositionCache);
setLineGridBox(std::move(lineGridBox));
// FIXME: If any of the characteristics of the box change compared to the old one, then we need to do a deep dirtying
// (similar to what happens when the page height changes). Ideally, though, we only do this if someone is actually snapping
// to this grid.
}
bool RenderBlockFlow::containsFloat(RenderBox& renderer) const
{
return m_floatingObjects && m_floatingObjects->set().contains<RenderBox&, FloatingObjectHashTranslator>(renderer);
}
void RenderBlockFlow::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle)
{
RenderBlock::styleDidChange(diff, oldStyle);
// After our style changed, if we lose our ability to propagate floats into next sibling
// blocks, then we need to find the top most parent containing that overhanging float and
// then mark its descendants with floats for layout and clear all floats from its next
// sibling blocks that exist in our floating objects list. See bug 56299 and 62875.
bool canPropagateFloatIntoSibling = !isFloatingOrOutOfFlowPositioned() && !avoidsFloats();
if (diff == StyleDifferenceLayout && s_canPropagateFloatIntoSibling && !canPropagateFloatIntoSibling && hasOverhangingFloats()) {
RenderBlockFlow* parentBlock = this;
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
auto ancestors = ancestorsOfType<RenderBlockFlow>(*this);
for (auto ancestor = ancestors.begin(), end = ancestors.end(); ancestor != end; ++ancestor) {
if (ancestor->isRenderView())
break;
if (ancestor->hasOverhangingFloats()) {
for (auto it = floatingObjectSet.begin(), end = floatingObjectSet.end(); it != end; ++it) {
RenderBox& renderer = (*it)->renderer();
if (ancestor->hasOverhangingFloat(renderer)) {
parentBlock = &*ancestor;
break;
}
}
}
}
parentBlock->markAllDescendantsWithFloatsForLayout();
parentBlock->markSiblingsWithFloatsForLayout();
}
if (auto fragment = renderNamedFlowFragment())
fragment->setStyle(RenderNamedFlowFragment::createStyle(style()));
if (diff >= StyleDifferenceRepaint)
invalidateLineLayoutPath();
}
void RenderBlockFlow::styleWillChange(StyleDifference diff, const RenderStyle& newStyle)
{
const RenderStyle* oldStyle = hasInitializedStyle() ? &style() : nullptr;
s_canPropagateFloatIntoSibling = oldStyle ? !isFloatingOrOutOfFlowPositioned() && !avoidsFloats() : false;
if (oldStyle && parent() && diff == StyleDifferenceLayout && oldStyle->position() != newStyle.position()) {
if (containsFloats() && !isFloating() && !isOutOfFlowPositioned() && newStyle.hasOutOfFlowPosition())
markAllDescendantsWithFloatsForLayout();
}
RenderBlock::styleWillChange(diff, newStyle);
}
void RenderBlockFlow::deleteLines()
{
if (containsFloats())
m_floatingObjects->clearLineBoxTreePointers();
if (m_simpleLineLayout) {
ASSERT(!m_lineBoxes.firstLineBox());
m_simpleLineLayout = nullptr;
} else
m_lineBoxes.deleteLineBoxTree();
RenderBlock::deleteLines();
}
void RenderBlockFlow::moveAllChildrenIncludingFloatsTo(RenderBlock* toBlock, bool fullRemoveInsert)
{
RenderBlockFlow* toBlockFlow = toRenderBlockFlow(toBlock);
moveAllChildrenTo(toBlockFlow, fullRemoveInsert);
// When a portion of the render tree is being detached, anonymous blocks
// will be combined as their children are deleted. In this process, the
// anonymous block later in the tree is merged into the one preceeding it.
// It can happen that the later block (this) contains floats that the
// previous block (toBlockFlow) did not contain, and thus are not in the
// floating objects list for toBlockFlow. This can result in toBlockFlow
// containing floats that are not in it's floating objects list, but are in
// the floating objects lists of siblings and parents. This can cause
// problems when the float itself is deleted, since the deletion code
// assumes that if a float is not in it's containing block's floating
// objects list, it isn't in any floating objects list. In order to
// preserve this condition (removing it has serious performance
// implications), we need to copy the floating objects from the old block
// (this) to the new block (toBlockFlow). The float's metrics will likely
// all be wrong, but since toBlockFlow is already marked for layout, this
// will get fixed before anything gets displayed.
// See bug https://bugs.webkit.org/show_bug.cgi?id=115566
if (m_floatingObjects) {
if (!toBlockFlow->m_floatingObjects)
toBlockFlow->createFloatingObjects();
const FloatingObjectSet& fromFloatingObjectSet = m_floatingObjects->set();
auto end = fromFloatingObjectSet.end();
for (auto it = fromFloatingObjectSet.begin(); it != end; ++it) {
FloatingObject* floatingObject = it->get();
// Don't insert the object again if it's already in the list
if (toBlockFlow->containsFloat(floatingObject->renderer()))
continue;
toBlockFlow->m_floatingObjects->add(floatingObject->unsafeClone());
}
}
}
void RenderBlockFlow::addOverflowFromFloats()
{
if (!m_floatingObjects)
return;
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
auto end = floatingObjectSet.end();
for (auto it = floatingObjectSet.begin(); it != end; ++it) {
FloatingObject* r = it->get();
if (r->isDescendant())
addOverflowFromChild(&r->renderer(), IntSize(xPositionForFloatIncludingMargin(r), yPositionForFloatIncludingMargin(r)));
}
}
void RenderBlockFlow::computeOverflow(LayoutUnit oldClientAfterEdge, bool recomputeFloats)
{
RenderBlock::computeOverflow(oldClientAfterEdge, recomputeFloats);
if (!hasColumns() && (recomputeFloats || isRoot() || expandsToEncloseOverhangingFloats() || hasSelfPaintingLayer()))
addOverflowFromFloats();
}
void RenderBlockFlow::repaintOverhangingFloats(bool paintAllDescendants)
{
// Repaint any overhanging floats (if we know we're the one to paint them).
// Otherwise, bail out.
if (!hasOverhangingFloats())
return;
// FIXME: Avoid disabling LayoutState. At the very least, don't disable it for floats originating
// in this block. Better yet would be to push extra state for the containers of other floats.
LayoutStateDisabler layoutStateDisabler(&view());
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
auto end = floatingObjectSet.end();
for (auto it = floatingObjectSet.begin(); it != end; ++it) {
FloatingObject* floatingObject = it->get();
// Only repaint the object if it is overhanging, is not in its own layer, and
// is our responsibility to paint (m_shouldPaint is set). When paintAllDescendants is true, the latter
// condition is replaced with being a descendant of us.
if (logicalBottomForFloat(floatingObject) > logicalHeight()
&& !floatingObject->renderer().hasSelfPaintingLayer()
&& (floatingObject->shouldPaint() || (paintAllDescendants && floatingObject->renderer().isDescendantOf(this)))) {
floatingObject->renderer().repaint();
floatingObject->renderer().repaintOverhangingFloats(false);
}
}
}
void RenderBlockFlow::paintFloats(PaintInfo& paintInfo, const LayoutPoint& paintOffset, bool preservePhase)
{
if (!m_floatingObjects)
return;
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
auto end = floatingObjectSet.end();
for (auto it = floatingObjectSet.begin(); it != end; ++it) {
FloatingObject* r = it->get();
// Only paint the object if our m_shouldPaint flag is set.
if (r->shouldPaint() && !r->renderer().hasSelfPaintingLayer()) {
PaintInfo currentPaintInfo(paintInfo);
currentPaintInfo.phase = preservePhase ? paintInfo.phase : PaintPhaseBlockBackground;
// FIXME: LayoutPoint version of xPositionForFloatIncludingMargin would make this much cleaner.
LayoutPoint childPoint = flipFloatForWritingModeForChild(r, LayoutPoint(paintOffset.x() + xPositionForFloatIncludingMargin(r) - r->renderer().x(), paintOffset.y() + yPositionForFloatIncludingMargin(r) - r->renderer().y()));
r->renderer().paint(currentPaintInfo, childPoint);
if (!preservePhase) {
currentPaintInfo.phase = PaintPhaseChildBlockBackgrounds;
r->renderer().paint(currentPaintInfo, childPoint);
currentPaintInfo.phase = PaintPhaseFloat;
r->renderer().paint(currentPaintInfo, childPoint);
currentPaintInfo.phase = PaintPhaseForeground;
r->renderer().paint(currentPaintInfo, childPoint);
currentPaintInfo.phase = PaintPhaseOutline;
r->renderer().paint(currentPaintInfo, childPoint);
}
}
}
}
void RenderBlockFlow::clipOutFloatingObjects(RenderBlock& rootBlock, const PaintInfo* paintInfo, const LayoutPoint& rootBlockPhysicalPosition, const LayoutSize& offsetFromRootBlock)
{
if (m_floatingObjects) {
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
auto end = floatingObjectSet.end();
for (auto it = floatingObjectSet.begin(); it != end; ++it) {
FloatingObject* floatingObject = it->get();
LayoutRect floatBox(offsetFromRootBlock.width() + xPositionForFloatIncludingMargin(floatingObject),
offsetFromRootBlock.height() + yPositionForFloatIncludingMargin(floatingObject),
floatingObject->renderer().width(), floatingObject->renderer().height());
rootBlock.flipForWritingMode(floatBox);
floatBox.move(rootBlockPhysicalPosition.x(), rootBlockPhysicalPosition.y());
paintInfo->context->clipOut(pixelSnappedIntRect(floatBox));
}
}
}
void RenderBlockFlow::createFloatingObjects()
{
m_floatingObjects = adoptPtr(new FloatingObjects(*this));
}
void RenderBlockFlow::removeFloatingObjects()
{
if (!m_floatingObjects)
return;
m_floatingObjects->clear();
}
FloatingObject* RenderBlockFlow::insertFloatingObject(RenderBox& floatBox)
{
ASSERT(floatBox.isFloating());
// Create the list of special objects if we don't aleady have one
if (!m_floatingObjects)
createFloatingObjects();
else {
// Don't insert the floatingObject again if it's already in the list
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
auto it = floatingObjectSet.find<RenderBox&, FloatingObjectHashTranslator>(floatBox);
if (it != floatingObjectSet.end())
return it->get();
}
// Create the special floatingObject entry & append it to the list
std::unique_ptr<FloatingObject> floatingObject = FloatingObject::create(floatBox);
// Our location is irrelevant if we're unsplittable or no pagination is in effect.
// Just go ahead and lay out the float.
bool isChildRenderBlock = floatBox.isRenderBlock();
if (isChildRenderBlock && !floatBox.needsLayout() && view().layoutState()->pageLogicalHeightChanged())
floatBox.setChildNeedsLayout(MarkOnlyThis);
bool needsBlockDirectionLocationSetBeforeLayout = isChildRenderBlock && view().layoutState()->needsBlockDirectionLocationSetBeforeLayout();
if (!needsBlockDirectionLocationSetBeforeLayout || isWritingModeRoot()) // We are unsplittable if we're a block flow root.
floatBox.layoutIfNeeded();
else {
floatBox.updateLogicalWidth();
floatBox.computeAndSetBlockDirectionMargins(this);
}
setLogicalWidthForFloat(floatingObject.get(), logicalWidthForChild(floatBox) + marginStartForChild(floatBox) + marginEndForChild(floatBox));
return m_floatingObjects->add(std::move(floatingObject));
}
void RenderBlockFlow::removeFloatingObject(RenderBox& floatBox)
{
if (m_floatingObjects) {
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
auto it = floatingObjectSet.find<RenderBox&, FloatingObjectHashTranslator>(floatBox);
if (it != floatingObjectSet.end()) {
FloatingObject* floatingObject = it->get();
if (childrenInline()) {
LayoutUnit logicalTop = logicalTopForFloat(floatingObject);
LayoutUnit logicalBottom = logicalBottomForFloat(floatingObject);
// Fix for https://bugs.webkit.org/show_bug.cgi?id=54995.
if (logicalBottom < 0 || logicalBottom < logicalTop || logicalTop == LayoutUnit::max())
logicalBottom = LayoutUnit::max();
else {
// Special-case zero- and less-than-zero-height floats: those don't touch
// the line that they're on, but it still needs to be dirtied. This is
// accomplished by pretending they have a height of 1.
logicalBottom = std::max(logicalBottom, logicalTop + 1);
}
if (floatingObject->originatingLine()) {
if (!selfNeedsLayout()) {
ASSERT(&floatingObject->originatingLine()->renderer() == this);
floatingObject->originatingLine()->markDirty();
}
#if !ASSERT_DISABLED
floatingObject->setOriginatingLine(0);
#endif
}
markLinesDirtyInBlockRange(0, logicalBottom);
}
m_floatingObjects->remove(floatingObject);
}
}
}
void RenderBlockFlow::removeFloatingObjectsBelow(FloatingObject* lastFloat, int logicalOffset)
{
if (!containsFloats())
return;
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObject* curr = floatingObjectSet.last().get();
while (curr != lastFloat && (!curr->isPlaced() || logicalTopForFloat(curr) >= logicalOffset)) {
m_floatingObjects->remove(curr);
if (floatingObjectSet.isEmpty())
break;
curr = floatingObjectSet.last().get();
}
}
LayoutUnit RenderBlockFlow::logicalLeftOffsetForPositioningFloat(LayoutUnit logicalTop, LayoutUnit fixedOffset, bool applyTextIndent, LayoutUnit* heightRemaining) const
{
LayoutUnit offset = fixedOffset;
if (m_floatingObjects && m_floatingObjects->hasLeftObjects())
offset = m_floatingObjects->logicalLeftOffsetForPositioningFloat(fixedOffset, logicalTop, heightRemaining);
return adjustLogicalLeftOffsetForLine(offset, applyTextIndent);
}
LayoutUnit RenderBlockFlow::logicalRightOffsetForPositioningFloat(LayoutUnit logicalTop, LayoutUnit fixedOffset, bool applyTextIndent, LayoutUnit* heightRemaining) const
{
LayoutUnit offset = fixedOffset;
if (m_floatingObjects && m_floatingObjects->hasRightObjects())
offset = m_floatingObjects->logicalRightOffsetForPositioningFloat(fixedOffset, logicalTop, heightRemaining);
return adjustLogicalRightOffsetForLine(offset, applyTextIndent);
}
LayoutPoint RenderBlockFlow::computeLogicalLocationForFloat(const FloatingObject* floatingObject, LayoutUnit logicalTopOffset) const
{
RenderBox& childBox = floatingObject->renderer();
LayoutUnit logicalLeftOffset = logicalLeftOffsetForContent(logicalTopOffset); // Constant part of left offset.
LayoutUnit logicalRightOffset; // Constant part of right offset.
#if ENABLE(CSS_SHAPES)
// FIXME Bug 102948: This only works for shape outside directly set on this block.
ShapeInsideInfo* shapeInsideInfo = this->layoutShapeInsideInfo();
// FIXME: Implement behavior for right floats.
if (shapeInsideInfo) {
LayoutSize floatLogicalSize = logicalSizeForFloat(floatingObject);
// floatingObject's logicalSize doesn't contain the actual height at this point, so we need to calculate it
floatLogicalSize.setHeight(logicalHeightForChild(childBox) + marginBeforeForChild(childBox) + marginAfterForChild(childBox));
// FIXME: If the float doesn't fit in the shape we should push it under the content box
logicalTopOffset = shapeInsideInfo->computeFirstFitPositionForFloat(floatLogicalSize);
if (logicalHeight() > logicalTopOffset)
logicalTopOffset = logicalHeight();
SegmentList segments = shapeInsideInfo->computeSegmentsForLine(logicalTopOffset, floatLogicalSize.height());
// FIXME Bug 102949: Add support for shapes with multiple segments.
if (segments.size() == 1) {
// The segment offsets are relative to the content box.
logicalRightOffset = logicalLeftOffset + segments[0].logicalRight;
logicalLeftOffset += segments[0].logicalLeft;
}
} else
#endif
logicalRightOffset = logicalRightOffsetForContent(logicalTopOffset);
LayoutUnit floatLogicalWidth = std::min(logicalWidthForFloat(floatingObject), logicalRightOffset - logicalLeftOffset); // The width we look for.
LayoutUnit floatLogicalLeft;
bool insideFlowThread = flowThreadContainingBlock();
if (childBox.style().floating() == LeftFloat) {
LayoutUnit heightRemainingLeft = 1;
LayoutUnit heightRemainingRight = 1;
floatLogicalLeft = logicalLeftOffsetForPositioningFloat(logicalTopOffset, logicalLeftOffset, false, &heightRemainingLeft);
while (logicalRightOffsetForPositioningFloat(logicalTopOffset, logicalRightOffset, false, &heightRemainingRight) - floatLogicalLeft < floatLogicalWidth) {
logicalTopOffset += std::min(heightRemainingLeft, heightRemainingRight);
floatLogicalLeft = logicalLeftOffsetForPositioningFloat(logicalTopOffset, logicalLeftOffset, false, &heightRemainingLeft);
if (insideFlowThread) {
// Have to re-evaluate all of our offsets, since they may have changed.
logicalRightOffset = logicalRightOffsetForContent(logicalTopOffset); // Constant part of right offset.
logicalLeftOffset = logicalLeftOffsetForContent(logicalTopOffset); // Constant part of left offset.
floatLogicalWidth = std::min(logicalWidthForFloat(floatingObject), logicalRightOffset - logicalLeftOffset);
}
}
floatLogicalLeft = std::max(logicalLeftOffset - borderAndPaddingLogicalLeft(), floatLogicalLeft);
} else {
LayoutUnit heightRemainingLeft = 1;
LayoutUnit heightRemainingRight = 1;
floatLogicalLeft = logicalRightOffsetForPositioningFloat(logicalTopOffset, logicalRightOffset, false, &heightRemainingRight);
while (floatLogicalLeft - logicalLeftOffsetForPositioningFloat(logicalTopOffset, logicalLeftOffset, false, &heightRemainingLeft) < floatLogicalWidth) {
logicalTopOffset += std::min(heightRemainingLeft, heightRemainingRight);
floatLogicalLeft = logicalRightOffsetForPositioningFloat(logicalTopOffset, logicalRightOffset, false, &heightRemainingRight);
if (insideFlowThread) {
// Have to re-evaluate all of our offsets, since they may have changed.
logicalRightOffset = logicalRightOffsetForContent(logicalTopOffset); // Constant part of right offset.
logicalLeftOffset = logicalLeftOffsetForContent(logicalTopOffset); // Constant part of left offset.
floatLogicalWidth = std::min(logicalWidthForFloat(floatingObject), logicalRightOffset - logicalLeftOffset);
}
}
// Use the original width of the float here, since the local variable
// |floatLogicalWidth| was capped to the available line width. See
// fast/block/float/clamped-right-float.html.
floatLogicalLeft -= logicalWidthForFloat(floatingObject);
}
return LayoutPoint(floatLogicalLeft, logicalTopOffset);
}
bool RenderBlockFlow::positionNewFloats()
{
if (!m_floatingObjects)
return false;
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
if (floatingObjectSet.isEmpty())
return false;
// If all floats have already been positioned, then we have no work to do.
if (floatingObjectSet.last()->isPlaced())
return false;
// Move backwards through our floating object list until we find a float that has
// already been positioned. Then we'll be able to move forward, positioning all of
// the new floats that need it.
auto it = floatingObjectSet.end();
--it; // Go to last item.
auto begin = floatingObjectSet.begin();
FloatingObject* lastPlacedFloatingObject = 0;
while (it != begin) {
--it;
if ((*it)->isPlaced()) {
lastPlacedFloatingObject = it->get();
++it;
break;
}
}
LayoutUnit logicalTop = logicalHeight();
// The float cannot start above the top position of the last positioned float.
if (lastPlacedFloatingObject)
logicalTop = std::max(logicalTopForFloat(lastPlacedFloatingObject), logicalTop);
auto end = floatingObjectSet.end();
// Now walk through the set of unpositioned floats and place them.
for (; it != end; ++it) {
FloatingObject* floatingObject = it->get();
// The containing block is responsible for positioning floats, so if we have floats in our
// list that come from somewhere else, do not attempt to position them.
if (floatingObject->renderer().containingBlock() != this)
continue;
RenderBox& childBox = floatingObject->renderer();
LayoutUnit childLogicalLeftMargin = style().isLeftToRightDirection() ? marginStartForChild(childBox) : marginEndForChild(childBox);
LayoutRect oldRect = childBox.frameRect();
if (childBox.style().clear() & CLEFT)
logicalTop = std::max(lowestFloatLogicalBottom(FloatingObject::FloatLeft), logicalTop);
if (childBox.style().clear() & CRIGHT)
logicalTop = std::max(lowestFloatLogicalBottom(FloatingObject::FloatRight), logicalTop);
LayoutPoint floatLogicalLocation = computeLogicalLocationForFloat(floatingObject, logicalTop);
setLogicalLeftForFloat(floatingObject, floatLogicalLocation.x());
setLogicalLeftForChild(childBox, floatLogicalLocation.x() + childLogicalLeftMargin);
setLogicalTopForChild(childBox, floatLogicalLocation.y() + marginBeforeForChild(childBox));
estimateRegionRangeForBoxChild(childBox);
LayoutState* layoutState = view().layoutState();
bool isPaginated = layoutState->isPaginated();
if (isPaginated && !childBox.needsLayout())
childBox.markForPaginationRelayoutIfNeeded();
childBox.layoutIfNeeded();
if (isPaginated) {
// If we are unsplittable and don't fit, then we need to move down.
// We include our margins as part of the unsplittable area.
LayoutUnit newLogicalTop = adjustForUnsplittableChild(childBox, floatLogicalLocation.y(), true);
// See if we have a pagination strut that is making us move down further.
// Note that an unsplittable child can't also have a pagination strut, so this is
// exclusive with the case above.
RenderBlock* childBlock = childBox.isRenderBlock() ? toRenderBlock(&childBox) : nullptr;
if (childBlock && childBlock->paginationStrut()) {
newLogicalTop += childBlock->paginationStrut();
childBlock->setPaginationStrut(0);
}
if (newLogicalTop != floatLogicalLocation.y()) {
floatingObject->setPaginationStrut(newLogicalTop - floatLogicalLocation.y());
floatLogicalLocation = computeLogicalLocationForFloat(floatingObject, newLogicalTop);
setLogicalLeftForFloat(floatingObject, floatLogicalLocation.x());
setLogicalLeftForChild(childBox, floatLogicalLocation.x() + childLogicalLeftMargin);
setLogicalTopForChild(childBox, floatLogicalLocation.y() + marginBeforeForChild(childBox));
if (childBlock)
childBlock->setChildNeedsLayout(MarkOnlyThis);
childBox.layoutIfNeeded();
}
if (updateRegionRangeForBoxChild(childBox)) {
childBox.setNeedsLayout(MarkOnlyThis);
childBox.layoutIfNeeded();
}
}
setLogicalTopForFloat(floatingObject, floatLogicalLocation.y());
setLogicalHeightForFloat(floatingObject, logicalHeightForChild(childBox) + marginBeforeForChild(childBox) + marginAfterForChild(childBox));
m_floatingObjects->addPlacedObject(floatingObject);
#if ENABLE(CSS_SHAPES)
if (ShapeOutsideInfo* shapeOutside = childBox.shapeOutsideInfo())
shapeOutside->setShapeSize(logicalWidthForChild(childBox), logicalHeightForChild(childBox));
#endif
// If the child moved, we have to repaint it.
if (childBox.checkForRepaintDuringLayout())
childBox.repaintDuringLayoutIfMoved(oldRect);
}
return true;
}
void RenderBlockFlow::newLine(EClear clear)
{
positionNewFloats();
// set y position
LayoutUnit newY = 0;
switch (clear) {
case CLEFT:
newY = lowestFloatLogicalBottom(FloatingObject::FloatLeft);
break;
case CRIGHT:
newY = lowestFloatLogicalBottom(FloatingObject::FloatRight);
break;
case CBOTH:
newY = lowestFloatLogicalBottom();
default:
break;
}
if (height() < newY)
setLogicalHeight(newY);
}
LayoutUnit RenderBlockFlow::logicalLeftFloatOffsetForLine(LayoutUnit logicalTop, LayoutUnit fixedOffset, LayoutUnit logicalHeight) const
{
if (m_floatingObjects && m_floatingObjects->hasLeftObjects())
return m_floatingObjects->logicalLeftOffset(fixedOffset, logicalTop, logicalHeight);
return fixedOffset;
}
LayoutUnit RenderBlockFlow::logicalRightFloatOffsetForLine(LayoutUnit logicalTop, LayoutUnit fixedOffset, LayoutUnit logicalHeight) const
{
if (m_floatingObjects && m_floatingObjects->hasRightObjects())
return m_floatingObjects->logicalRightOffset(fixedOffset, logicalTop, logicalHeight);
return fixedOffset;
}
LayoutUnit RenderBlockFlow::nextFloatLogicalBottomBelow(LayoutUnit logicalHeight) const
{
if (!m_floatingObjects)
return logicalHeight;
return m_floatingObjects->findNextFloatLogicalBottomBelow(logicalHeight);
}
LayoutUnit RenderBlockFlow::nextFloatLogicalBottomBelowForBlock(LayoutUnit logicalHeight) const
{
if (!m_floatingObjects)
return logicalHeight;
return m_floatingObjects->findNextFloatLogicalBottomBelowForBlock(logicalHeight);
}
LayoutUnit RenderBlockFlow::lowestFloatLogicalBottom(FloatingObject::Type floatType) const
{
if (!m_floatingObjects)
return 0;
LayoutUnit lowestFloatBottom = 0;
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
auto end = floatingObjectSet.end();
for (auto it = floatingObjectSet.begin(); it != end; ++it) {
FloatingObject* floatingObject = it->get();
if (floatingObject->isPlaced() && floatingObject->type() & floatType)
lowestFloatBottom = std::max(lowestFloatBottom, logicalBottomForFloat(floatingObject));
}
return lowestFloatBottom;
}
LayoutUnit RenderBlockFlow::addOverhangingFloats(RenderBlockFlow& child, bool makeChildPaintOtherFloats)
{
// Prevent floats from being added to the canvas by the root element, e.g., <html>.
if (child.hasOverflowClip() || !child.containsFloats() || child.isRoot() || child.hasColumns() || child.isWritingModeRoot())
return 0;
LayoutUnit childLogicalTop = child.logicalTop();
LayoutUnit childLogicalLeft = child.logicalLeft();
LayoutUnit lowestFloatLogicalBottom = 0;
// Floats that will remain the child's responsibility to paint should factor into its
// overflow.
auto childEnd = child.m_floatingObjects->set().end();
for (auto childIt = child.m_floatingObjects->set().begin(); childIt != childEnd; ++childIt) {
FloatingObject* floatingObject = childIt->get();
LayoutUnit floatLogicalBottom = std::min(logicalBottomForFloat(floatingObject), LayoutUnit::max() - childLogicalTop);
LayoutUnit logicalBottom = childLogicalTop + floatLogicalBottom;
lowestFloatLogicalBottom = std::max(lowestFloatLogicalBottom, logicalBottom);
if (logicalBottom > logicalHeight()) {
// If the object is not in the list, we add it now.
if (!containsFloat(floatingObject->renderer())) {
LayoutSize offset = isHorizontalWritingMode() ? LayoutSize(-childLogicalLeft, -childLogicalTop) : LayoutSize(-childLogicalTop, -childLogicalLeft);
bool shouldPaint = false;
// The nearest enclosing layer always paints the float (so that zindex and stacking
// behaves properly). We always want to propagate the desire to paint the float as
// far out as we can, to the outermost block that overlaps the float, stopping only
// if we hit a self-painting layer boundary.
if (floatingObject->renderer().enclosingFloatPaintingLayer() == enclosingFloatPaintingLayer()) {
floatingObject->setShouldPaint(false);
shouldPaint = true;
}
// We create the floating object list lazily.
if (!m_floatingObjects)
createFloatingObjects();
m_floatingObjects->add(floatingObject->copyToNewContainer(offset, shouldPaint, true));
}
} else {
if (makeChildPaintOtherFloats && !floatingObject->shouldPaint() && !floatingObject->renderer().hasSelfPaintingLayer()
&& floatingObject->renderer().isDescendantOf(&child) && floatingObject->renderer().enclosingFloatPaintingLayer() == child.enclosingFloatPaintingLayer()) {
// The float is not overhanging from this block, so if it is a descendant of the child, the child should
// paint it (the other case is that it is intruding into the child), unless it has its own layer or enclosing
// layer.
// If makeChildPaintOtherFloats is false, it means that the child must already know about all the floats
// it should paint.
floatingObject->setShouldPaint(true);
}
// Since the float doesn't overhang, it didn't get put into our list. We need to go ahead and add its overflow in to the
// child now.
if (floatingObject->isDescendant())
child.addOverflowFromChild(&floatingObject->renderer(), LayoutSize(xPositionForFloatIncludingMargin(floatingObject), yPositionForFloatIncludingMargin(floatingObject)));
}
}
return lowestFloatLogicalBottom;
}
bool RenderBlockFlow::hasOverhangingFloat(RenderBox& renderer)
{
if (!m_floatingObjects || hasColumns() || !parent())
return false;
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
auto it = floatingObjectSet.find<RenderBox&, FloatingObjectHashTranslator>(renderer);
if (it == floatingObjectSet.end())
return false;
return logicalBottomForFloat(it->get()) > logicalHeight();
}
void RenderBlockFlow::addIntrudingFloats(RenderBlockFlow* prev, LayoutUnit logicalLeftOffset, LayoutUnit logicalTopOffset)
{
ASSERT(!avoidsFloats());
// If the parent or previous sibling doesn't have any floats to add, don't bother.
if (!prev->m_floatingObjects)
return;
logicalLeftOffset += marginLogicalLeft();
const FloatingObjectSet& prevSet = prev->m_floatingObjects->set();
auto prevEnd = prevSet.end();
for (auto prevIt = prevSet.begin(); prevIt != prevEnd; ++prevIt) {
FloatingObject* floatingObject = prevIt->get();
if (logicalBottomForFloat(floatingObject) > logicalTopOffset) {
if (!m_floatingObjects || !m_floatingObjects->set().contains<FloatingObject&, FloatingObjectHashTranslator>(*floatingObject)) {
// We create the floating object list lazily.
if (!m_floatingObjects)
createFloatingObjects();
// Applying the child's margin makes no sense in the case where the child was passed in.
// since this margin was added already through the modification of the |logicalLeftOffset| variable
// above. |logicalLeftOffset| will equal the margin in this case, so it's already been taken
// into account. Only apply this code if prev is the parent, since otherwise the left margin
// will get applied twice.
LayoutSize offset = isHorizontalWritingMode()
? LayoutSize(logicalLeftOffset - (prev != parent() ? prev->marginLeft() : LayoutUnit()), logicalTopOffset)
: LayoutSize(logicalTopOffset, logicalLeftOffset - (prev != parent() ? prev->marginTop() : LayoutUnit()));
m_floatingObjects->add(floatingObject->copyToNewContainer(offset));
}
}
}
}
void RenderBlockFlow::markAllDescendantsWithFloatsForLayout(RenderBox* floatToRemove, bool inLayout)
{
if (!everHadLayout() && !containsFloats())
return;
MarkingBehavior markParents = inLayout ? MarkOnlyThis : MarkContainingBlockChain;
setChildNeedsLayout(markParents);
if (floatToRemove)
removeFloatingObject(*floatToRemove);
// Iterate over our children and mark them as needed.
if (!childrenInline()) {
for (RenderObject* child = firstChild(); child; child = child->nextSibling()) {
if ((!floatToRemove && child->isFloatingOrOutOfFlowPositioned()) || !child->isRenderBlock())
continue;
if (!child->isRenderBlockFlow()) {
RenderBlock* childBlock = toRenderBlock(child);
if (childBlock->shrinkToAvoidFloats() && childBlock->everHadLayout())
childBlock->setChildNeedsLayout(markParents);
continue;
}
RenderBlockFlow* childBlock = toRenderBlockFlow(child);
if ((floatToRemove ? childBlock->containsFloat(*floatToRemove) : childBlock->containsFloats()) || childBlock->shrinkToAvoidFloats())
childBlock->markAllDescendantsWithFloatsForLayout(floatToRemove, inLayout);
}
}
}
void RenderBlockFlow::markSiblingsWithFloatsForLayout(RenderBox* floatToRemove)
{
if (!m_floatingObjects)
return;
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
auto end = floatingObjectSet.end();
for (RenderObject* next = nextSibling(); next; next = next->nextSibling()) {
if (!next->isRenderBlockFlow() || next->isFloatingOrOutOfFlowPositioned() || toRenderBlock(next)->avoidsFloats())
continue;
RenderBlockFlow* nextBlock = toRenderBlockFlow(next);
for (auto it = floatingObjectSet.begin(); it != end; ++it) {
RenderBox& floatingBox = (*it)->renderer();
if (floatToRemove && &floatingBox != floatToRemove)
continue;
if (nextBlock->containsFloat(floatingBox))
nextBlock->markAllDescendantsWithFloatsForLayout(&floatingBox);
}
}
}
LayoutPoint RenderBlockFlow::flipFloatForWritingModeForChild(const FloatingObject* child, const LayoutPoint& point) const
{
if (!style().isFlippedBlocksWritingMode())
return point;
// This is similar to RenderBox::flipForWritingModeForChild. We have to subtract out our left/top offsets twice, since
// it's going to get added back in. We hide this complication here so that the calling code looks normal for the unflipped
// case.
if (isHorizontalWritingMode())
return LayoutPoint(point.x(), point.y() + height() - child->renderer().height() - 2 * yPositionForFloatIncludingMargin(child));
return LayoutPoint(point.x() + width() - child->renderer().width() - 2 * xPositionForFloatIncludingMargin(child), point.y());
}
LayoutUnit RenderBlockFlow::getClearDelta(RenderBox& child, LayoutUnit logicalTop)
{
// There is no need to compute clearance if we have no floats.
if (!containsFloats())
return 0;
// At least one float is present. We need to perform the clearance computation.
bool clearSet = child.style().clear() != CNONE;
LayoutUnit logicalBottom = 0;
switch (child.style().clear()) {
case CNONE:
break;
case CLEFT:
logicalBottom = lowestFloatLogicalBottom(FloatingObject::FloatLeft);
break;
case CRIGHT:
logicalBottom = lowestFloatLogicalBottom(FloatingObject::FloatRight);
break;
case CBOTH:
logicalBottom = lowestFloatLogicalBottom();
break;
}
// We also clear floats if we are too big to sit on the same line as a float (and wish to avoid floats by default).
LayoutUnit result = clearSet ? std::max<LayoutUnit>(0, logicalBottom - logicalTop) : LayoutUnit();
if (!result && child.avoidsFloats()) {
LayoutUnit newLogicalTop = logicalTop;
while (true) {
LayoutUnit availableLogicalWidthAtNewLogicalTopOffset = availableLogicalWidthForLine(newLogicalTop, false, logicalHeightForChild(child));
if (availableLogicalWidthAtNewLogicalTopOffset == availableLogicalWidthForContent(newLogicalTop))
return newLogicalTop - logicalTop;
RenderRegion* region = regionAtBlockOffset(logicalTopForChild(child));
LayoutRect borderBox = child.borderBoxRectInRegion(region, DoNotCacheRenderBoxRegionInfo);
LayoutUnit childLogicalWidthAtOldLogicalTopOffset = isHorizontalWritingMode() ? borderBox.width() : borderBox.height();
// FIXME: None of this is right for perpendicular writing-mode children.
LayoutUnit childOldLogicalWidth = child.logicalWidth();
LayoutUnit childOldMarginLeft = child.marginLeft();
LayoutUnit childOldMarginRight = child.marginRight();
LayoutUnit childOldLogicalTop = child.logicalTop();
child.setLogicalTop(newLogicalTop);
child.updateLogicalWidth();
region = regionAtBlockOffset(logicalTopForChild(child));
borderBox = child.borderBoxRectInRegion(region, DoNotCacheRenderBoxRegionInfo);
LayoutUnit childLogicalWidthAtNewLogicalTopOffset = isHorizontalWritingMode() ? borderBox.width() : borderBox.height();
child.setLogicalTop(childOldLogicalTop);
child.setLogicalWidth(childOldLogicalWidth);
child.setMarginLeft(childOldMarginLeft);
child.setMarginRight(childOldMarginRight);
if (childLogicalWidthAtNewLogicalTopOffset <= availableLogicalWidthAtNewLogicalTopOffset) {
// Even though we may not be moving, if the logical width did shrink because of the presence of new floats, then
// we need to force a relayout as though we shifted. This happens because of the dynamic addition of overhanging floats
// from previous siblings when negative margins exist on a child (see the addOverhangingFloats call at the end of collapseMargins).
if (childLogicalWidthAtOldLogicalTopOffset != childLogicalWidthAtNewLogicalTopOffset)
child.setChildNeedsLayout(MarkOnlyThis);
return newLogicalTop - logicalTop;
}
newLogicalTop = nextFloatLogicalBottomBelowForBlock(newLogicalTop);
ASSERT(newLogicalTop >= logicalTop);
if (newLogicalTop < logicalTop)
break;
}
ASSERT_NOT_REACHED();
}
return result;
}
bool RenderBlockFlow::hitTestFloats(const HitTestRequest& request, HitTestResult& result, const HitTestLocation& locationInContainer, const LayoutPoint& accumulatedOffset)
{
if (!m_floatingObjects)
return false;
LayoutPoint adjustedLocation = accumulatedOffset;
if (isRenderView())
adjustedLocation += toLayoutSize(toRenderView(*this).frameView().scrollPosition());
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
auto begin = floatingObjectSet.begin();
for (auto it = floatingObjectSet.end(); it != begin;) {
--it;
FloatingObject* floatingObject = it->get();
if (floatingObject->shouldPaint() && !floatingObject->renderer().hasSelfPaintingLayer()) {
LayoutUnit xOffset = xPositionForFloatIncludingMargin(floatingObject) - floatingObject->renderer().x();
LayoutUnit yOffset = yPositionForFloatIncludingMargin(floatingObject) - floatingObject->renderer().y();
LayoutPoint childPoint = flipFloatForWritingModeForChild(floatingObject, adjustedLocation + LayoutSize(xOffset, yOffset));
if (floatingObject->renderer().hitTest(request, result, locationInContainer, childPoint)) {
updateHitTestResult(result, locationInContainer.point() - toLayoutSize(childPoint));
return true;
}
}
}
return false;
}
bool RenderBlockFlow::hitTestInlineChildren(const HitTestRequest& request, HitTestResult& result, const HitTestLocation& locationInContainer, const LayoutPoint& accumulatedOffset, HitTestAction hitTestAction)
{
ASSERT(childrenInline());
if (m_simpleLineLayout)
return SimpleLineLayout::hitTestFlow(*this, *m_simpleLineLayout, request, result, locationInContainer, accumulatedOffset, hitTestAction);
return m_lineBoxes.hitTest(this, request, result, locationInContainer, accumulatedOffset, hitTestAction);
}
void RenderBlockFlow::adjustForBorderFit(LayoutUnit x, LayoutUnit& left, LayoutUnit& right) const
{
if (style().visibility() != VISIBLE)
return;
// We don't deal with relative positioning. Our assumption is that you shrink to fit the lines without accounting
// for either overflow or translations via relative positioning.
if (childrenInline()) {
const_cast<RenderBlockFlow&>(*this).ensureLineBoxes();
for (auto box = firstRootBox(); box; box = box->nextRootBox()) {
if (box->firstChild())
left = std::min(left, x + static_cast<LayoutUnit>(box->firstChild()->x()));
if (box->lastChild())
right = std::max(right, x + static_cast<LayoutUnit>(ceilf(box->lastChild()->logicalRight())));
}
} else {
for (RenderBox* obj = firstChildBox(); obj; obj = obj->nextSiblingBox()) {
if (!obj->isFloatingOrOutOfFlowPositioned()) {
if (obj->isRenderBlockFlow() && !obj->hasOverflowClip())
toRenderBlockFlow(obj)->adjustForBorderFit(x + obj->x(), left, right);
else if (obj->style().visibility() == VISIBLE) {
// We are a replaced element or some kind of non-block-flow object.
left = std::min(left, x + obj->x());
right = std::max(right, x + obj->x() + obj->width());
}
}
}
}
if (m_floatingObjects) {
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
auto end = floatingObjectSet.end();
for (auto it = floatingObjectSet.begin(); it != end; ++it) {
FloatingObject* r = it->get();
// Only examine the object if our m_shouldPaint flag is set.
if (r->shouldPaint()) {
LayoutUnit floatLeft = xPositionForFloatIncludingMargin(r) - r->renderer().x();
LayoutUnit floatRight = floatLeft + r->renderer().width();
left = std::min(left, floatLeft);
right = std::max(right, floatRight);
}
}
}
}
void RenderBlockFlow::fitBorderToLinesIfNeeded()
{
if (style().borderFit() == BorderFitBorder || hasOverrideWidth())
return;
// Walk any normal flow lines to snugly fit.
LayoutUnit left = LayoutUnit::max();
LayoutUnit right = LayoutUnit::min();
LayoutUnit oldWidth = contentWidth();
adjustForBorderFit(0, left, right);
// Clamp to our existing edges. We can never grow. We only shrink.
LayoutUnit leftEdge = borderLeft() + paddingLeft();
LayoutUnit rightEdge = leftEdge + oldWidth;
left = std::min(rightEdge, std::max(leftEdge, left));
right = std::max(leftEdge, std::min(rightEdge, right));
LayoutUnit newContentWidth = right - left;
if (newContentWidth == oldWidth)
return;
setOverrideLogicalContentWidth(newContentWidth);
layoutBlock(false);
clearOverrideLogicalContentWidth();
}
void RenderBlockFlow::markLinesDirtyInBlockRange(LayoutUnit logicalTop, LayoutUnit logicalBottom, RootInlineBox* highest)
{
if (logicalTop >= logicalBottom)
return;
RootInlineBox* lowestDirtyLine = lastRootBox();
RootInlineBox* afterLowest = lowestDirtyLine;
while (lowestDirtyLine && lowestDirtyLine->lineBottomWithLeading() >= logicalBottom && logicalBottom < LayoutUnit::max()) {
afterLowest = lowestDirtyLine;
lowestDirtyLine = lowestDirtyLine->prevRootBox();
}
while (afterLowest && afterLowest != highest && (afterLowest->lineBottomWithLeading() >= logicalTop || afterLowest->lineBottomWithLeading() < 0)) {
afterLowest->markDirty();
afterLowest = afterLowest->prevRootBox();
}
}
int RenderBlockFlow::firstLineBaseline() const
{
if (isWritingModeRoot() && !isRubyRun())
return -1;
if (!childrenInline())
return RenderBlock::firstLineBaseline();
if (!hasLines())
return -1;
if (m_simpleLineLayout)
return SimpleLineLayout::computeFlowFirstLineBaseline(*this, *m_simpleLineLayout);
ASSERT(firstRootBox());
return firstRootBox()->logicalTop() + firstLineStyle().fontMetrics().ascent(firstRootBox()->baselineType());
}
int RenderBlockFlow::inlineBlockBaseline(LineDirectionMode lineDirection) const
{
if (isWritingModeRoot() && !isRubyRun())
return -1;
if (!childrenInline())
return RenderBlock::inlineBlockBaseline(lineDirection);
if (!hasLines()) {
if (!hasLineIfEmpty())
return -1;
const FontMetrics& fontMetrics = firstLineStyle().fontMetrics();
return fontMetrics.ascent()
+ (lineHeight(true, lineDirection, PositionOfInteriorLineBoxes) - fontMetrics.height()) / 2
+ (lineDirection == HorizontalLine ? borderTop() + paddingTop() : borderRight() + paddingRight());
}
if (m_simpleLineLayout)
return SimpleLineLayout::computeFlowLastLineBaseline(*this, *m_simpleLineLayout);
bool isFirstLine = lastRootBox() == firstRootBox();
const RenderStyle& style = isFirstLine ? firstLineStyle() : this->style();
return lastRootBox()->logicalTop() + style.fontMetrics().ascent(lastRootBox()->baselineType());
}
GapRects RenderBlockFlow::inlineSelectionGaps(RenderBlock& rootBlock, const LayoutPoint& rootBlockPhysicalPosition, const LayoutSize& offsetFromRootBlock,
LayoutUnit& lastLogicalTop, LayoutUnit& lastLogicalLeft, LayoutUnit& lastLogicalRight, const LogicalSelectionOffsetCaches& cache, const PaintInfo* paintInfo)
{
ASSERT(!m_simpleLineLayout);
GapRects result;
bool containsStart = selectionState() == SelectionStart || selectionState() == SelectionBoth;
if (!hasLines()) {
if (containsStart) {
// Go ahead and update our lastLogicalTop to be the bottom of the block. <hr>s or empty blocks with height can trip this
// case.
lastLogicalTop = blockDirectionOffset(rootBlock, offsetFromRootBlock) + logicalHeight();
lastLogicalLeft = logicalLeftSelectionOffset(rootBlock, logicalHeight(), cache);
lastLogicalRight = logicalRightSelectionOffset(rootBlock, logicalHeight(), cache);
}
return result;
}
RootInlineBox* lastSelectedLine = 0;
RootInlineBox* curr;
for (curr = firstRootBox(); curr && !curr->hasSelectedChildren(); curr = curr->nextRootBox()) { }
// Now paint the gaps for the lines.
for (; curr && curr->hasSelectedChildren(); curr = curr->nextRootBox()) {
LayoutUnit selTop = curr->selectionTopAdjustedForPrecedingBlock();
LayoutUnit selHeight = curr->selectionHeightAdjustedForPrecedingBlock();
if (!containsStart && !lastSelectedLine &&
selectionState() != SelectionStart && selectionState() != SelectionBoth)
result.uniteCenter(blockSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, lastLogicalTop, lastLogicalLeft, lastLogicalRight, selTop, cache, paintInfo));
LayoutRect logicalRect(curr->logicalLeft(), selTop, curr->logicalWidth(), selTop + selHeight);
logicalRect.move(isHorizontalWritingMode() ? offsetFromRootBlock : offsetFromRootBlock.transposedSize());
LayoutRect physicalRect = rootBlock.logicalRectToPhysicalRect(rootBlockPhysicalPosition, logicalRect);
if (!paintInfo || (isHorizontalWritingMode() && physicalRect.y() < paintInfo->rect.maxY() && physicalRect.maxY() > paintInfo->rect.y())
|| (!isHorizontalWritingMode() && physicalRect.x() < paintInfo->rect.maxX() && physicalRect.maxX() > paintInfo->rect.x()))
result.unite(curr->lineSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, selTop, selHeight, cache, paintInfo));
lastSelectedLine = curr;
}
if (containsStart && !lastSelectedLine)
// VisibleSelection must start just after our last line.
lastSelectedLine = lastRootBox();
if (lastSelectedLine && selectionState() != SelectionEnd && selectionState() != SelectionBoth) {
// Go ahead and update our lastY to be the bottom of the last selected line.
lastLogicalTop = blockDirectionOffset(rootBlock, offsetFromRootBlock) + lastSelectedLine->selectionBottom();
lastLogicalLeft = logicalLeftSelectionOffset(rootBlock, lastSelectedLine->selectionBottom(), cache);
lastLogicalRight = logicalRightSelectionOffset(rootBlock, lastSelectedLine->selectionBottom(), cache);
}
return result;
}
void RenderBlockFlow::createRenderNamedFlowFragmentIfNeeded()
{
if (!document().cssRegionsEnabled() || renderNamedFlowFragment() || isRenderNamedFlowFragment())
return;
if (style().isDisplayRegionType() && style().hasFlowFrom()) {
RenderNamedFlowFragment* flowFragment = new RenderNamedFlowFragment(document(), RenderNamedFlowFragment::createStyle(style()));
flowFragment->initializeStyle();
setRenderNamedFlowFragment(flowFragment);
addChild(renderNamedFlowFragment());
}
}
bool RenderBlockFlow::canHaveChildren() const
{
return !renderNamedFlowFragment() ? RenderBlock::canHaveChildren() : renderNamedFlowFragment()->canHaveChildren();
}
bool RenderBlockFlow::canHaveGeneratedChildren() const
{
return !renderNamedFlowFragment() ? RenderBlock::canHaveGeneratedChildren() : renderNamedFlowFragment()->canHaveGeneratedChildren();
}
bool RenderBlockFlow::namedFlowFragmentNeedsUpdate() const
{
if (!isRenderNamedFlowFragmentContainer())
return false;
return hasRelativeLogicalHeight() && !isRenderView();
}
void RenderBlockFlow::updateLogicalHeight()
{
RenderBlock::updateLogicalHeight();
if (renderNamedFlowFragment())
renderNamedFlowFragment()->setLogicalHeight(std::max<LayoutUnit>(0, logicalHeight() - borderAndPaddingLogicalHeight()));
}
void RenderBlockFlow::setRenderNamedFlowFragment(RenderNamedFlowFragment* flowFragment)
{
RenderBlockFlowRareData& rareData = ensureRareBlockFlowData();
if (rareData.m_renderNamedFlowFragment)
rareData.m_renderNamedFlowFragment->destroy();
rareData.m_renderNamedFlowFragment = flowFragment;
}
static bool shouldCheckLines(RenderObject& obj)
{
return !obj.isFloatingOrOutOfFlowPositioned() && !obj.isRunIn() && obj.isRenderBlockFlow() && obj.style().height().isAuto() && (!obj.isDeprecatedFlexibleBox() || obj.style().boxOrient() == VERTICAL);
}
RootInlineBox* RenderBlockFlow::lineAtIndex(int i) const
{
ASSERT(i >= 0);
if (style().visibility() != VISIBLE)
return nullptr;
if (childrenInline()) {
for (auto box = firstRootBox(); box; box = box->nextRootBox()) {
if (!i--)
return box;
}
} else {
for (auto child = firstChild(); child; child = child->nextSibling()) {
if (!shouldCheckLines(*child))
continue;
if (RootInlineBox* box = toRenderBlockFlow(child)->lineAtIndex(i))
return box;
}
}
return nullptr;
}
int RenderBlockFlow::lineCount(const RootInlineBox* stopRootInlineBox, bool* found) const
{
if (style().visibility() != VISIBLE)
return 0;
int count = 0;
if (childrenInline()) {
for (auto box = firstRootBox(); box; box = box->nextRootBox()) {
count++;
if (box == stopRootInlineBox) {
if (found)
*found = true;
break;
}
}
} else {
for (auto child = firstChild(); child; child = child->nextSibling()) {
if (shouldCheckLines(*child)) {
bool recursiveFound = false;
count += toRenderBlockFlow(child)->lineCount(stopRootInlineBox, &recursiveFound);
if (recursiveFound) {
if (found)
*found = true;
break;
}
}
}
}
return count;
}
static int getHeightForLineCount(const RenderBlockFlow& block, int lineCount, bool includeBottom, int& count)
{
if (block.style().visibility() != VISIBLE)
return -1;
if (block.childrenInline()) {
for (auto box = block.firstRootBox(); box; box = box->nextRootBox()) {
if (++count == lineCount)
return box->lineBottom() + (includeBottom ? (block.borderBottom() + block.paddingBottom()) : LayoutUnit());
}
} else {
RenderBox* normalFlowChildWithoutLines = 0;
for (auto obj = block.firstChildBox(); obj; obj = obj->nextSiblingBox()) {
if (shouldCheckLines(*obj)) {
int result = getHeightForLineCount(toRenderBlockFlow(*obj), lineCount, false, count);
if (result != -1)
return result + obj->y() + (includeBottom ? (block.borderBottom() + block.paddingBottom()) : LayoutUnit());
} else if (!obj->isFloatingOrOutOfFlowPositioned() && !obj->isRunIn())
normalFlowChildWithoutLines = obj;
}
if (normalFlowChildWithoutLines && !lineCount)
return normalFlowChildWithoutLines->y() + normalFlowChildWithoutLines->height();
}
return -1;
}
int RenderBlockFlow::heightForLineCount(int lineCount)
{
int count = 0;
return getHeightForLineCount(*this, lineCount, true, count);
}
void RenderBlockFlow::clearTruncation()
{
if (style().visibility() != VISIBLE)
return;
if (childrenInline() && hasMarkupTruncation()) {
ensureLineBoxes();
setHasMarkupTruncation(false);
for (auto box = firstRootBox(); box; box = box->nextRootBox())
box->clearTruncation();
} else {
for (auto child = firstChild(); child; child = child->nextSibling()) {
if (shouldCheckLines(*child))
toRenderBlockFlow(child)->clearTruncation();
}
}
}
bool RenderBlockFlow::containsNonZeroBidiLevel() const
{
for (auto root = firstRootBox(); root; root = root->nextRootBox()) {
for (auto box = root->firstLeafChild(); box; box = box->nextLeafChild()) {
if (box->bidiLevel())
return true;
}
}
return false;
}
Position RenderBlockFlow::positionForBox(InlineBox *box, bool start) const
{
if (!box)
return Position();
if (!box->renderer().nonPseudoNode())
return createLegacyEditingPosition(nonPseudoElement(), start ? caretMinOffset() : caretMaxOffset());
if (!box->isInlineTextBox())
return createLegacyEditingPosition(box->renderer().nonPseudoNode(), start ? box->renderer().caretMinOffset() : box->renderer().caretMaxOffset());
InlineTextBox* textBox = toInlineTextBox(box);
return createLegacyEditingPosition(box->renderer().nonPseudoNode(), start ? textBox->start() : textBox->start() + textBox->len());
}
VisiblePosition RenderBlockFlow::positionForPointWithInlineChildren(const LayoutPoint& pointInLogicalContents)
{
ASSERT(childrenInline());
ensureLineBoxes();
if (!firstRootBox())
return createVisiblePosition(0, DOWNSTREAM);
bool linesAreFlipped = style().isFlippedLinesWritingMode();
bool blocksAreFlipped = style().isFlippedBlocksWritingMode();
// look for the closest line box in the root box which is at the passed-in y coordinate
InlineBox* closestBox = 0;
RootInlineBox* firstRootBoxWithChildren = 0;
RootInlineBox* lastRootBoxWithChildren = 0;
for (RootInlineBox* root = firstRootBox(); root; root = root->nextRootBox()) {
if (!root->firstLeafChild())
continue;
if (!firstRootBoxWithChildren)
firstRootBoxWithChildren = root;
if (!linesAreFlipped && root->isFirstAfterPageBreak() && (pointInLogicalContents.y() < root->lineTopWithLeading()
|| (blocksAreFlipped && pointInLogicalContents.y() == root->lineTopWithLeading())))
break;
lastRootBoxWithChildren = root;
// check if this root line box is located at this y coordinate
if (pointInLogicalContents.y() < root->selectionBottom() || (blocksAreFlipped && pointInLogicalContents.y() == root->selectionBottom())) {
if (linesAreFlipped) {
RootInlineBox* nextRootBoxWithChildren = root->nextRootBox();
while (nextRootBoxWithChildren && !nextRootBoxWithChildren->firstLeafChild())
nextRootBoxWithChildren = nextRootBoxWithChildren->nextRootBox();
if (nextRootBoxWithChildren && nextRootBoxWithChildren->isFirstAfterPageBreak() && (pointInLogicalContents.y() > nextRootBoxWithChildren->lineTopWithLeading()
|| (!blocksAreFlipped && pointInLogicalContents.y() == nextRootBoxWithChildren->lineTopWithLeading())))
continue;
}
closestBox = root->closestLeafChildForLogicalLeftPosition(pointInLogicalContents.x());
if (closestBox)
break;
}
}
bool moveCaretToBoundary = frame().editor().behavior().shouldMoveCaretToHorizontalBoundaryWhenPastTopOrBottom();
if (!moveCaretToBoundary && !closestBox && lastRootBoxWithChildren) {
// y coordinate is below last root line box, pretend we hit it
closestBox = lastRootBoxWithChildren->closestLeafChildForLogicalLeftPosition(pointInLogicalContents.x());
}
if (closestBox) {
if (moveCaretToBoundary) {
LayoutUnit firstRootBoxWithChildrenTop = std::min<LayoutUnit>(firstRootBoxWithChildren->selectionTop(), firstRootBoxWithChildren->logicalTop());
if (pointInLogicalContents.y() < firstRootBoxWithChildrenTop
|| (blocksAreFlipped && pointInLogicalContents.y() == firstRootBoxWithChildrenTop)) {
InlineBox* box = firstRootBoxWithChildren->firstLeafChild();
if (box->isLineBreak()) {
if (InlineBox* newBox = box->nextLeafChildIgnoringLineBreak())
box = newBox;
}
// y coordinate is above first root line box, so return the start of the first
return VisiblePosition(positionForBox(box, true), DOWNSTREAM);
}
}
// pass the box a top position that is inside it
LayoutPoint point(pointInLogicalContents.x(), closestBox->root().blockDirectionPointInLine());
if (!isHorizontalWritingMode())
point = point.transposedPoint();
if (closestBox->renderer().isReplaced())
return positionForPointRespectingEditingBoundaries(*this, toRenderBox(closestBox->renderer()), point);
return closestBox->renderer().positionForPoint(point);
}
if (lastRootBoxWithChildren) {
// We hit this case for Mac behavior when the Y coordinate is below the last box.
ASSERT(moveCaretToBoundary);
InlineBox* logicallyLastBox;
if (lastRootBoxWithChildren->getLogicalEndBoxWithNode(logicallyLastBox))
return VisiblePosition(positionForBox(logicallyLastBox, false), DOWNSTREAM);
}
// Can't reach this. We have a root line box, but it has no kids.
// FIXME: This should ASSERT_NOT_REACHED(), but clicking on placeholder text
// seems to hit this code path.
return createVisiblePosition(0, DOWNSTREAM);
}
VisiblePosition RenderBlockFlow::positionForPoint(const LayoutPoint& point)
{
if (auto fragment = renderNamedFlowFragment())
return fragment->positionForPoint(point);
return RenderBlock::positionForPoint(point);
}
void RenderBlockFlow::addFocusRingRectsForInlineChildren(Vector<IntRect>& rects, const LayoutPoint& additionalOffset, const RenderLayerModelObject*)
{
ASSERT(childrenInline());
ensureLineBoxes();
for (RootInlineBox* curr = firstRootBox(); curr; curr = curr->nextRootBox()) {
LayoutUnit top = std::max<LayoutUnit>(curr->lineTop(), curr->top());
LayoutUnit bottom = std::min<LayoutUnit>(curr->lineBottom(), curr->top() + curr->height());
LayoutRect rect(additionalOffset.x() + curr->x(), additionalOffset.y() + top, curr->width(), bottom - top);
if (!rect.isEmpty())
rects.append(pixelSnappedIntRect(rect));
}
}
void RenderBlockFlow::paintInlineChildren(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
ASSERT(childrenInline());
if (m_simpleLineLayout) {
SimpleLineLayout::paintFlow(*this, *m_simpleLineLayout, paintInfo, paintOffset);
return;
}
m_lineBoxes.paint(this, paintInfo, paintOffset);
}
bool RenderBlockFlow::relayoutForPagination(bool hasSpecifiedPageLogicalHeight, LayoutUnit pageLogicalHeight, LayoutStateMaintainer& statePusher)
{
if (!hasColumns())
return false;
RefPtr<RenderOverflow> savedOverflow = m_overflow.release();
if (childrenInline())
addOverflowFromInlineChildren();
else
addOverflowFromBlockChildren();
LayoutUnit layoutOverflowLogicalBottom = (isHorizontalWritingMode() ? layoutOverflowRect().maxY() : layoutOverflowRect().maxX()) - borderAndPaddingBefore();
// FIXME: We don't balance properly at all in the presence of forced page breaks. We need to understand what
// the distance between forced page breaks is so that we can avoid making the minimum column height too tall.
ColumnInfo* colInfo = columnInfo();
if (!hasSpecifiedPageLogicalHeight) {
LayoutUnit columnHeight = pageLogicalHeight;
int minColumnCount = colInfo->forcedBreaks() + 1;
int desiredColumnCount = colInfo->desiredColumnCount();
if (minColumnCount >= desiredColumnCount) {
// The forced page breaks are in control of the balancing. Just set the column height to the
// maximum page break distance.
if (!pageLogicalHeight) {
LayoutUnit distanceBetweenBreaks = std::max<LayoutUnit>(colInfo->maximumDistanceBetweenForcedBreaks(),
view().layoutState()->pageLogicalOffset(this, borderAndPaddingBefore() + layoutOverflowLogicalBottom) - colInfo->forcedBreakOffset());
columnHeight = std::max(colInfo->minimumColumnHeight(), distanceBetweenBreaks);
}
} else if (layoutOverflowLogicalBottom > boundedMultiply(pageLogicalHeight, desiredColumnCount)) {
// Now that we know the intrinsic height of the columns, we have to rebalance them.
columnHeight = std::max<LayoutUnit>(colInfo->minimumColumnHeight(), ceilf((float)layoutOverflowLogicalBottom / desiredColumnCount));
}
if (columnHeight && columnHeight != pageLogicalHeight) {
statePusher.pop();
setEverHadLayout(true);
layoutBlock(false, columnHeight);
return true;
}
}
if (pageLogicalHeight)
colInfo->setColumnCountAndHeight(ceilf((float)layoutOverflowLogicalBottom / pageLogicalHeight), pageLogicalHeight);
if (columnCount(colInfo)) {
setLogicalHeight(borderAndPaddingBefore() + colInfo->columnHeight() + borderAndPaddingAfter() + scrollbarLogicalHeight());
clearOverflow();
} else
m_overflow = savedOverflow.release();
return false;
}
bool RenderBlockFlow::hasLines() const
{
ASSERT(childrenInline());
if (m_simpleLineLayout)
return m_simpleLineLayout->lineCount();
return lineBoxes().firstLineBox();
}
void RenderBlockFlow::layoutSimpleLines(LayoutUnit& repaintLogicalTop, LayoutUnit& repaintLogicalBottom)
{
ASSERT(!m_lineBoxes.firstLineBox());
m_simpleLineLayout = SimpleLineLayout::create(*this);
LayoutUnit lineLayoutHeight = SimpleLineLayout::computeFlowHeight(*this, *m_simpleLineLayout);
LayoutUnit lineLayoutTop = borderAndPaddingBefore();
repaintLogicalTop = lineLayoutTop;
repaintLogicalBottom = lineLayoutTop + lineLayoutHeight;
setLogicalHeight(lineLayoutTop + lineLayoutHeight + borderAndPaddingAfter());
}
void RenderBlockFlow::deleteLineBoxesBeforeSimpleLineLayout()
{
ASSERT(m_lineLayoutPath == SimpleLinesPath);
lineBoxes().deleteLineBoxes();
toRenderText(firstChild())->deleteLineBoxesBeforeSimpleLineLayout();
}
void RenderBlockFlow::ensureLineBoxes()
{
m_lineLayoutPath = ForceLineBoxesPath;
if (!m_simpleLineLayout)
return;
m_simpleLineLayout = nullptr;
#if !ASSERT_DISABLED
LayoutUnit oldHeight = logicalHeight();
#endif
bool didNeedLayout = needsLayout();
bool relayoutChildren = false;
LayoutUnit repaintLogicalTop;
LayoutUnit repaintLogicalBottom;
layoutLineBoxes(relayoutChildren, repaintLogicalTop, repaintLogicalBottom);
updateLogicalHeight();
ASSERT(didNeedLayout || logicalHeight() == oldHeight);
if (!didNeedLayout)
clearNeedsLayout();
}
#ifndef NDEBUG
void RenderBlockFlow::showLineTreeAndMark(const InlineBox* markedBox1, const char* markedLabel1, const InlineBox* markedBox2, const char* markedLabel2, const RenderObject* obj) const
{
RenderBlock::showLineTreeAndMark(markedBox1, markedLabel1, markedBox2, markedLabel2, obj);
for (const RootInlineBox* root = firstRootBox(); root; root = root->nextRootBox())
root->showLineTreeAndMark(markedBox1, markedLabel1, markedBox2, markedLabel2, obj, 1);
}
#endif
RenderBlockFlow::RenderBlockFlowRareData& RenderBlockFlow::ensureRareBlockFlowData()
{
if (hasRareBlockFlowData())
return *m_rareBlockFlowData;
materializeRareBlockFlowData();
return *m_rareBlockFlowData;
}
void RenderBlockFlow::materializeRareBlockFlowData()
{
ASSERT(!hasRareBlockFlowData());
m_rareBlockFlowData = std::make_unique<RenderBlockFlow::RenderBlockFlowRareData>(*this);
}
}
// namespace WebCore