blob: 1707685b44f3c4f400db3283237e94c4e674dfa1 [file] [log] [blame]
/*
* Copyright (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 1999 Antti Koivisto (koivisto@kde.org)
* (C) 2007 David Smith (catfish.man@gmail.com)
* Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Apple Inc. All rights reserved.
* Copyright (C) Research In Motion Limited 2010. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include "config.h"
#include "RenderBlock.h"
#include "AXObjectCache.h"
#include "ColumnInfo.h"
#include "Document.h"
#include "Editor.h"
#include "Element.h"
#include "FloatQuad.h"
#include "Frame.h"
#include "FrameSelection.h"
#include "FrameView.h"
#include "GraphicsContext.h"
#include "HTMLInputElement.h"
#include "HTMLNames.h"
#include "HitTestLocation.h"
#include "HitTestResult.h"
#include "InlineElementBox.h"
#include "InlineIterator.h"
#include "InlineTextBox.h"
#include "LayoutRepainter.h"
#include "LogicalSelectionOffsetCaches.h"
#include "OverflowEvent.h"
#include "Page.h"
#include "PaintInfo.h"
#include "RenderBlockFlow.h"
#include "RenderBoxRegionInfo.h"
#include "RenderCombineText.h"
#include "RenderDeprecatedFlexibleBox.h"
#include "RenderFlexibleBox.h"
#include "RenderInline.h"
#include "RenderIterator.h"
#include "RenderLayer.h"
#include "RenderMarquee.h"
#include "RenderNamedFlowFragment.h"
#include "RenderNamedFlowThread.h"
#include "RenderRegion.h"
#include "RenderTableCell.h"
#include "RenderTextFragment.h"
#include "RenderTheme.h"
#include "RenderView.h"
#include "SVGTextRunRenderingContext.h"
#include "Settings.h"
#include "ShadowRoot.h"
#include "TransformState.h"
#include <wtf/StackStats.h>
#include <wtf/TemporaryChange.h>
#if ENABLE(CSS_SHAPES)
#include "ShapeInsideInfo.h"
#include "ShapeOutsideInfo.h"
#endif
#if ENABLE(IOS_TEXT_AUTOSIZING)
#include "HTMLElement.h"
#endif
using namespace WTF;
using namespace Unicode;
namespace WebCore {
using namespace HTMLNames;
struct SameSizeAsRenderBlock : public RenderBox {
uint32_t bitfields;
};
COMPILE_ASSERT(sizeof(RenderBlock) == sizeof(SameSizeAsRenderBlock), RenderBlock_should_stay_small);
typedef WTF::HashMap<const RenderBox*, OwnPtr<ColumnInfo>> ColumnInfoMap;
static ColumnInfoMap* gColumnInfoMap = 0;
static TrackedDescendantsMap* gPositionedDescendantsMap = 0;
static TrackedDescendantsMap* gPercentHeightDescendantsMap = 0;
static TrackedContainerMap* gPositionedContainerMap = 0;
static TrackedContainerMap* gPercentHeightContainerMap = 0;
typedef WTF::HashMap<RenderBlock*, OwnPtr<ListHashSet<RenderInline*>>> ContinuationOutlineTableMap;
typedef WTF::HashSet<RenderBlock*> DelayedUpdateScrollInfoSet;
static int gDelayUpdateScrollInfo = 0;
static DelayedUpdateScrollInfoSet* gDelayedUpdateScrollInfoSet = 0;
static bool gColumnFlowSplitEnabled = true;
// Allocated only when some of these fields have non-default values
struct RenderBlockRareData {
WTF_MAKE_NONCOPYABLE(RenderBlockRareData); WTF_MAKE_FAST_ALLOCATED;
public:
RenderBlockRareData()
: m_paginationStrut(0)
, m_pageLogicalOffset(0)
{
}
LayoutUnit m_paginationStrut;
LayoutUnit m_pageLogicalOffset;
#if ENABLE(CSS_SHAPES)
OwnPtr<ShapeInsideInfo> m_shapeInsideInfo;
#endif
};
typedef HashMap<const RenderBlock*, std::unique_ptr<RenderBlockRareData>> RenderBlockRareDataMap;
static RenderBlockRareDataMap* gRareDataMap = 0;
// This class helps dispatching the 'overflow' event on layout change. overflow can be set on RenderBoxes, yet the existing code
// only works on RenderBlocks. If this change, this class should be shared with other RenderBoxes.
class OverflowEventDispatcher {
WTF_MAKE_NONCOPYABLE(OverflowEventDispatcher);
public:
OverflowEventDispatcher(const RenderBlock* block)
: m_block(block)
, m_hadHorizontalLayoutOverflow(false)
, m_hadVerticalLayoutOverflow(false)
{
m_shouldDispatchEvent = !m_block->isAnonymous() && m_block->hasOverflowClip() && m_block->document().hasListenerType(Document::OVERFLOWCHANGED_LISTENER);
if (m_shouldDispatchEvent) {
m_hadHorizontalLayoutOverflow = m_block->hasHorizontalLayoutOverflow();
m_hadVerticalLayoutOverflow = m_block->hasVerticalLayoutOverflow();
}
}
~OverflowEventDispatcher()
{
if (!m_shouldDispatchEvent)
return;
bool hasHorizontalLayoutOverflow = m_block->hasHorizontalLayoutOverflow();
bool hasVerticalLayoutOverflow = m_block->hasVerticalLayoutOverflow();
bool horizontalLayoutOverflowChanged = hasHorizontalLayoutOverflow != m_hadHorizontalLayoutOverflow;
bool verticalLayoutOverflowChanged = hasVerticalLayoutOverflow != m_hadVerticalLayoutOverflow;
if (horizontalLayoutOverflowChanged || verticalLayoutOverflowChanged)
m_block->view().frameView().scheduleEvent(OverflowEvent::create(horizontalLayoutOverflowChanged, hasHorizontalLayoutOverflow, verticalLayoutOverflowChanged, hasVerticalLayoutOverflow), m_block->element());
}
private:
const RenderBlock* m_block;
bool m_shouldDispatchEvent;
bool m_hadHorizontalLayoutOverflow;
bool m_hadVerticalLayoutOverflow;
};
RenderBlock::RenderBlock(Element& element, PassRef<RenderStyle> style, unsigned baseTypeFlags)
: RenderBox(element, std::move(style), baseTypeFlags | RenderBlockFlag)
, m_lineHeight(-1)
, m_hasMarginBeforeQuirk(false)
, m_hasMarginAfterQuirk(false)
, m_beingDestroyed(false)
, m_hasMarkupTruncation(false)
, m_hasBorderOrPaddingLogicalWidthChanged(false)
, m_lineLayoutPath(UndeterminedPath)
#if ENABLE(IOS_TEXT_AUTOSIZING)
, m_widthForTextAutosizing(-1)
, m_lineCountForTextAutosizing(NOT_SET)
#endif
{
}
RenderBlock::RenderBlock(Document& document, PassRef<RenderStyle> style, unsigned baseTypeFlags)
: RenderBox(document, std::move(style), baseTypeFlags | RenderBlockFlag)
, m_lineHeight(-1)
, m_hasMarginBeforeQuirk(false)
, m_hasMarginAfterQuirk(false)
, m_beingDestroyed(false)
, m_hasMarkupTruncation(false)
, m_hasBorderOrPaddingLogicalWidthChanged(false)
, m_lineLayoutPath(UndeterminedPath)
#if ENABLE(IOS_TEXT_AUTOSIZING)
, m_widthForTextAutosizing(-1)
, m_lineCountForTextAutosizing(NOT_SET)
#endif
{
}
static void removeBlockFromDescendantAndContainerMaps(RenderBlock* block, TrackedDescendantsMap*& descendantMap, TrackedContainerMap*& containerMap)
{
if (OwnPtr<TrackedRendererListHashSet> descendantSet = descendantMap->take(block)) {
TrackedRendererListHashSet::iterator end = descendantSet->end();
for (TrackedRendererListHashSet::iterator descendant = descendantSet->begin(); descendant != end; ++descendant) {
TrackedContainerMap::iterator it = containerMap->find(*descendant);
ASSERT(it != containerMap->end());
if (it == containerMap->end())
continue;
HashSet<RenderBlock*>* containerSet = it->value.get();
ASSERT(containerSet->contains(block));
containerSet->remove(block);
if (containerSet->isEmpty())
containerMap->remove(it);
}
}
}
RenderBlock::~RenderBlock()
{
if (hasColumns())
gColumnInfoMap->take(this);
if (gRareDataMap)
gRareDataMap->remove(this);
if (gPercentHeightDescendantsMap)
removeBlockFromDescendantAndContainerMaps(this, gPercentHeightDescendantsMap, gPercentHeightContainerMap);
if (gPositionedDescendantsMap)
removeBlockFromDescendantAndContainerMaps(this, gPositionedDescendantsMap, gPositionedContainerMap);
}
bool RenderBlock::hasRareData() const
{
return gRareDataMap ? gRareDataMap->contains(this) : false;
}
void RenderBlock::willBeDestroyed()
{
// Mark as being destroyed to avoid trouble with merges in removeChild().
m_beingDestroyed = true;
if (!documentBeingDestroyed()) {
if (firstChild() && firstChild()->isRunIn())
moveRunInToOriginalPosition(*firstChild());
}
// Make sure to destroy anonymous children first while they are still connected to the rest of the tree, so that they will
// properly dirty line boxes that they are removed from. Effects that do :before/:after only on hover could crash otherwise.
destroyLeftoverChildren();
// Destroy our continuation before anything other than anonymous children.
// The reason we don't destroy it before anonymous children is that they may
// have continuations of their own that are anonymous children of our continuation.
RenderBoxModelObject* continuation = this->continuation();
if (continuation) {
continuation->destroy();
setContinuation(0);
}
if (!documentBeingDestroyed()) {
if (parent())
parent()->dirtyLinesFromChangedChild(this);
}
removeFromDelayedUpdateScrollInfoSet();
RenderBox::willBeDestroyed();
}
void RenderBlock::styleWillChange(StyleDifference diff, const RenderStyle& newStyle)
{
const RenderStyle* oldStyle = hasInitializedStyle() ? &style() : nullptr;
setReplaced(newStyle.isDisplayInlineType());
if (oldStyle && parent() && diff == StyleDifferenceLayout && oldStyle->position() != newStyle.position()) {
if (newStyle.position() == StaticPosition)
// Clear our positioned objects list. Our absolutely positioned descendants will be
// inserted into our containing block's positioned objects list during layout.
removePositionedObjects(0, NewContainingBlock);
else if (oldStyle->position() == StaticPosition) {
// Remove our absolutely positioned descendants from their current containing block.
// They will be inserted into our positioned objects list during layout.
auto cb = parent();
while (cb && (cb->style().position() == StaticPosition || (cb->isInline() && !cb->isReplaced())) && !cb->isRenderView()) {
if (cb->style().position() == RelativePosition && cb->isInline() && !cb->isReplaced()) {
cb = cb->containingBlock();
break;
}
cb = cb->parent();
}
if (cb->isRenderBlock())
toRenderBlock(cb)->removePositionedObjects(this, NewContainingBlock);
}
}
RenderBox::styleWillChange(diff, newStyle);
}
static bool borderOrPaddingLogicalWidthChanged(const RenderStyle* oldStyle, const RenderStyle* newStyle)
{
if (newStyle->isHorizontalWritingMode())
return oldStyle->borderLeftWidth() != newStyle->borderLeftWidth()
|| oldStyle->borderRightWidth() != newStyle->borderRightWidth()
|| oldStyle->paddingLeft() != newStyle->paddingLeft()
|| oldStyle->paddingRight() != newStyle->paddingRight();
return oldStyle->borderTopWidth() != newStyle->borderTopWidth()
|| oldStyle->borderBottomWidth() != newStyle->borderBottomWidth()
|| oldStyle->paddingTop() != newStyle->paddingTop()
|| oldStyle->paddingBottom() != newStyle->paddingBottom();
}
void RenderBlock::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle)
{
RenderBox::styleDidChange(diff, oldStyle);
RenderStyle& newStyle = style();
#if ENABLE(CSS_SHAPES)
updateShapeInsideInfoAfterStyleChange(newStyle.resolvedShapeInside(), oldStyle ? oldStyle->resolvedShapeInside() : 0);
#endif
if (!isAnonymousBlock()) {
// Ensure that all of our continuation blocks pick up the new style.
for (RenderBlock* currCont = blockElementContinuation(); currCont; currCont = currCont->blockElementContinuation()) {
RenderBoxModelObject* nextCont = currCont->continuation();
currCont->setContinuation(0);
currCont->setStyle(newStyle);
currCont->setContinuation(nextCont);
}
}
propagateStyleToAnonymousChildren(PropagateToBlockChildrenOnly);
m_lineHeight = -1;
// It's possible for our border/padding to change, but for the overall logical width of the block to
// end up being the same. We keep track of this change so in layoutBlock, we can know to set relayoutChildren=true.
m_hasBorderOrPaddingLogicalWidthChanged = oldStyle && diff == StyleDifferenceLayout && needsLayout() && borderOrPaddingLogicalWidthChanged(oldStyle, &newStyle);
}
RenderBlock* RenderBlock::continuationBefore(RenderObject* beforeChild)
{
if (beforeChild && beforeChild->parent() == this)
return this;
RenderBlock* curr = toRenderBlock(continuation());
RenderBlock* nextToLast = this;
RenderBlock* last = this;
while (curr) {
if (beforeChild && beforeChild->parent() == curr) {
if (curr->firstChild() == beforeChild)
return last;
return curr;
}
nextToLast = last;
last = curr;
curr = toRenderBlock(curr->continuation());
}
if (!beforeChild && !last->firstChild())
return nextToLast;
return last;
}
void RenderBlock::addChildToContinuation(RenderObject* newChild, RenderObject* beforeChild)
{
RenderBlock* flow = continuationBefore(beforeChild);
ASSERT(!beforeChild || beforeChild->parent()->isAnonymousColumnSpanBlock() || beforeChild->parent()->isRenderBlock());
RenderBoxModelObject* beforeChildParent = 0;
if (beforeChild)
beforeChildParent = toRenderBoxModelObject(beforeChild->parent());
else {
RenderBoxModelObject* cont = flow->continuation();
if (cont)
beforeChildParent = cont;
else
beforeChildParent = flow;
}
if (newChild->isFloatingOrOutOfFlowPositioned()) {
beforeChildParent->addChildIgnoringContinuation(newChild, beforeChild);
return;
}
// A continuation always consists of two potential candidates: a block or an anonymous
// column span box holding column span children.
bool childIsNormal = newChild->isInline() || !newChild->style().columnSpan();
bool bcpIsNormal = beforeChildParent->isInline() || !beforeChildParent->style().columnSpan();
bool flowIsNormal = flow->isInline() || !flow->style().columnSpan();
if (flow == beforeChildParent) {
flow->addChildIgnoringContinuation(newChild, beforeChild);
return;
}
// The goal here is to match up if we can, so that we can coalesce and create the
// minimal # of continuations needed for the inline.
if (childIsNormal == bcpIsNormal) {
beforeChildParent->addChildIgnoringContinuation(newChild, beforeChild);
return;
}
if (flowIsNormal == childIsNormal) {
flow->addChildIgnoringContinuation(newChild, 0); // Just treat like an append.
return;
}
beforeChildParent->addChildIgnoringContinuation(newChild, beforeChild);
}
void RenderBlock::addChildToAnonymousColumnBlocks(RenderObject* newChild, RenderObject* beforeChild)
{
ASSERT(!continuation()); // We don't yet support column spans that aren't immediate children of the multi-column block.
// The goal is to locate a suitable box in which to place our child.
RenderBlock* beforeChildParent = 0;
if (beforeChild) {
RenderObject* curr = beforeChild;
while (curr && curr->parent() != this)
curr = curr->parent();
beforeChildParent = toRenderBlock(curr);
ASSERT(beforeChildParent);
ASSERT(beforeChildParent->isAnonymousColumnsBlock() || beforeChildParent->isAnonymousColumnSpanBlock());
} else
beforeChildParent = toRenderBlock(lastChild());
// If the new child is floating or positioned it can just go in that block.
if (newChild->isFloatingOrOutOfFlowPositioned()) {
beforeChildParent->addChildIgnoringAnonymousColumnBlocks(newChild, beforeChild);
return;
}
// See if the child can be placed in the box.
bool newChildHasColumnSpan = !newChild->isInline() && newChild->style().columnSpan();
bool beforeChildParentHoldsColumnSpans = beforeChildParent->isAnonymousColumnSpanBlock();
if (newChildHasColumnSpan == beforeChildParentHoldsColumnSpans) {
beforeChildParent->addChildIgnoringAnonymousColumnBlocks(newChild, beforeChild);
return;
}
if (!beforeChild) {
// Create a new block of the correct type.
RenderBlock* newBox = newChildHasColumnSpan ? createAnonymousColumnSpanBlock() : createAnonymousColumnsBlock();
insertChildInternal(newBox, nullptr, NotifyChildren);
newBox->addChildIgnoringAnonymousColumnBlocks(newChild, 0);
return;
}
RenderObject* immediateChild = beforeChild;
bool isPreviousBlockViable = true;
while (immediateChild->parent() != this) {
if (isPreviousBlockViable)
isPreviousBlockViable = !immediateChild->previousSibling();
immediateChild = immediateChild->parent();
}
if (isPreviousBlockViable && immediateChild->previousSibling()) {
toRenderBlock(immediateChild->previousSibling())->addChildIgnoringAnonymousColumnBlocks(newChild, 0); // Treat like an append.
return;
}
// Split our anonymous blocks.
RenderObject* newBeforeChild = splitAnonymousBoxesAroundChild(beforeChild);
// Create a new anonymous box of the appropriate type.
RenderBlock* newBox = newChildHasColumnSpan ? createAnonymousColumnSpanBlock() : createAnonymousColumnsBlock();
insertChildInternal(newBox, newBeforeChild, NotifyChildren);
newBox->addChildIgnoringAnonymousColumnBlocks(newChild, 0);
return;
}
RenderBlock* RenderBlock::containingColumnsBlock(bool allowAnonymousColumnBlock)
{
RenderBlock* firstChildIgnoringAnonymousWrappers = 0;
for (RenderElement* curr = this; curr; curr = curr->parent()) {
if (!curr->isRenderBlock() || curr->isFloatingOrOutOfFlowPositioned() || curr->isTableCell() || curr->isRoot() || curr->isRenderView() || curr->hasOverflowClip()
|| curr->isInlineBlockOrInlineTable())
return 0;
// FIXME: Tables, RenderButtons, and RenderListItems all do special management
// of their children that breaks when the flow is split through them. Disabling
// multi-column for them to avoid this problem.
if (curr->isTable() || curr->isRenderButton() || curr->isListItem())
return 0;
RenderBlock* currBlock = toRenderBlock(curr);
if (!currBlock->createsAnonymousWrapper())
firstChildIgnoringAnonymousWrappers = currBlock;
if (currBlock->style().specifiesColumns() && (allowAnonymousColumnBlock || !currBlock->isAnonymousColumnsBlock()))
return firstChildIgnoringAnonymousWrappers;
if (currBlock->isAnonymousColumnSpanBlock())
return 0;
}
return 0;
}
RenderBlock* RenderBlock::clone() const
{
RenderBlock* cloneBlock;
if (isAnonymousBlock()) {
cloneBlock = createAnonymousBlock();
cloneBlock->setChildrenInline(childrenInline());
} else {
auto cloneRenderer = element()->createRenderer(style());
cloneBlock = toRenderBlock(cloneRenderer);
cloneBlock->initializeStyle();
// This takes care of setting the right value of childrenInline in case
// generated content is added to cloneBlock and 'this' does not have
// generated content added yet.
cloneBlock->setChildrenInline(cloneBlock->firstChild() ? cloneBlock->firstChild()->isInline() : childrenInline());
}
cloneBlock->setFlowThreadState(flowThreadState());
return cloneBlock;
}
void RenderBlock::splitBlocks(RenderBlock* fromBlock, RenderBlock* toBlock,
RenderBlock* middleBlock,
RenderObject* beforeChild, RenderBoxModelObject* oldCont)
{
// Create a clone of this inline.
RenderBlock* cloneBlock = clone();
if (!isAnonymousBlock())
cloneBlock->setContinuation(oldCont);
if (!beforeChild && isAfterContent(lastChild()))
beforeChild = lastChild();
// If we are moving inline children from |this| to cloneBlock, then we need
// to clear our line box tree.
if (beforeChild && childrenInline())
deleteLines();
// Now take all of the children from beforeChild to the end and remove
// them from |this| and place them in the clone.
moveChildrenTo(cloneBlock, beforeChild, 0, true);
// Hook |clone| up as the continuation of the middle block.
if (!cloneBlock->isAnonymousBlock())
middleBlock->setContinuation(cloneBlock);
// We have been reparented and are now under the fromBlock. We need
// to walk up our block parent chain until we hit the containing anonymous columns block.
// Once we hit the anonymous columns block we're done.
RenderBoxModelObject* curr = toRenderBoxModelObject(parent());
RenderBoxModelObject* currChild = this;
RenderObject* currChildNextSibling = currChild->nextSibling();
while (curr && curr != fromBlock) {
ASSERT_WITH_SECURITY_IMPLICATION(curr->isRenderBlock());
RenderBlock* blockCurr = toRenderBlock(curr);
// Create a new clone.
RenderBlock* cloneChild = cloneBlock;
cloneBlock = blockCurr->clone();
// Insert our child clone as the first child.
cloneBlock->addChildIgnoringContinuation(cloneChild, 0);
// Hook the clone up as a continuation of |curr|. Note we do encounter
// anonymous blocks possibly as we walk up the block chain. When we split an
// anonymous block, there's no need to do any continuation hookup, since we haven't
// actually split a real element.
if (!blockCurr->isAnonymousBlock()) {
oldCont = blockCurr->continuation();
blockCurr->setContinuation(cloneBlock);
cloneBlock->setContinuation(oldCont);
}
// Now we need to take all of the children starting from the first child
// *after* currChild and append them all to the clone.
blockCurr->moveChildrenTo(cloneBlock, currChildNextSibling, 0, true);
// Keep walking up the chain.
currChild = curr;
currChildNextSibling = currChild->nextSibling();
curr = toRenderBoxModelObject(curr->parent());
}
// Now we are at the columns block level. We need to put the clone into the toBlock.
toBlock->insertChildInternal(cloneBlock, nullptr, NotifyChildren);
// Now take all the children after currChild and remove them from the fromBlock
// and put them in the toBlock.
fromBlock->moveChildrenTo(toBlock, currChildNextSibling, 0, true);
}
void RenderBlock::splitFlow(RenderObject* beforeChild, RenderBlock* newBlockBox,
RenderObject* newChild, RenderBoxModelObject* oldCont)
{
RenderBlock* pre = 0;
RenderBlock* block = containingColumnsBlock();
// Delete our line boxes before we do the inline split into continuations.
block->deleteLines();
bool madeNewBeforeBlock = false;
if (block->isAnonymousColumnsBlock()) {
// We can reuse this block and make it the preBlock of the next continuation.
pre = block;
pre->removePositionedObjects(0);
// FIXME-BLOCKFLOW remove this when splitFlow is moved to RenderBlockFlow.
if (pre->isRenderBlockFlow())
toRenderBlockFlow(pre)->removeFloatingObjects();
block = toRenderBlock(block->parent());
} else {
// No anonymous block available for use. Make one.
pre = block->createAnonymousColumnsBlock();
pre->setChildrenInline(false);
madeNewBeforeBlock = true;
}
RenderBlock* post = block->createAnonymousColumnsBlock();
post->setChildrenInline(false);
RenderObject* boxFirst = madeNewBeforeBlock ? block->firstChild() : pre->nextSibling();
if (madeNewBeforeBlock)
block->insertChildInternal(pre, boxFirst, NotifyChildren);
block->insertChildInternal(newBlockBox, boxFirst, NotifyChildren);
block->insertChildInternal(post, boxFirst, NotifyChildren);
block->setChildrenInline(false);
if (madeNewBeforeBlock)
block->moveChildrenTo(pre, boxFirst, 0, true);
splitBlocks(pre, post, newBlockBox, beforeChild, oldCont);
// We already know the newBlockBox isn't going to contain inline kids, so avoid wasting
// time in makeChildrenNonInline by just setting this explicitly up front.
newBlockBox->setChildrenInline(false);
// We delayed adding the newChild until now so that the |newBlockBox| would be fully
// connected, thus allowing newChild access to a renderArena should it need
// to wrap itself in additional boxes (e.g., table construction).
newBlockBox->addChild(newChild);
// Always just do a full layout in order to ensure that line boxes (especially wrappers for images)
// get deleted properly. Because objects moves from the pre block into the post block, we want to
// make new line boxes instead of leaving the old line boxes around.
pre->setNeedsLayoutAndPrefWidthsRecalc();
block->setNeedsLayoutAndPrefWidthsRecalc();
post->setNeedsLayoutAndPrefWidthsRecalc();
}
void RenderBlock::makeChildrenAnonymousColumnBlocks(RenderObject* beforeChild, RenderBlock* newBlockBox, RenderObject* newChild)
{
RenderBlock* pre = 0;
RenderBlock* post = 0;
RenderBlock* block = this; // Eventually block will not just be |this|, but will also be a block nested inside |this|. Assign to a variable
// so that we don't have to patch all of the rest of the code later on.
// Delete the block's line boxes before we do the split.
block->deleteLines();
if (beforeChild && beforeChild->parent() != this)
beforeChild = splitAnonymousBoxesAroundChild(beforeChild);
if (beforeChild != firstChild()) {
pre = block->createAnonymousColumnsBlock();
pre->setChildrenInline(block->childrenInline());
}
if (beforeChild) {
post = block->createAnonymousColumnsBlock();
post->setChildrenInline(block->childrenInline());
}
RenderObject* boxFirst = block->firstChild();
if (pre)
block->insertChildInternal(pre, boxFirst, NotifyChildren);
block->insertChildInternal(newBlockBox, boxFirst, NotifyChildren);
if (post)
block->insertChildInternal(post, boxFirst, NotifyChildren);
block->setChildrenInline(false);
// The pre/post blocks always have layers, so we know to always do a full insert/remove (so we pass true as the last argument).
block->moveChildrenTo(pre, boxFirst, beforeChild, true);
block->moveChildrenTo(post, beforeChild, 0, true);
// We already know the newBlockBox isn't going to contain inline kids, so avoid wasting
// time in makeChildrenNonInline by just setting this explicitly up front.
newBlockBox->setChildrenInline(false);
// We delayed adding the newChild until now so that the |newBlockBox| would be fully
// connected, thus allowing newChild access to a renderArena should it need
// to wrap itself in additional boxes (e.g., table construction).
newBlockBox->addChild(newChild);
// Always just do a full layout in order to ensure that line boxes (especially wrappers for images)
// get deleted properly. Because objects moved from the pre block into the post block, we want to
// make new line boxes instead of leaving the old line boxes around.
if (pre)
pre->setNeedsLayoutAndPrefWidthsRecalc();
block->setNeedsLayoutAndPrefWidthsRecalc();
if (post)
post->setNeedsLayoutAndPrefWidthsRecalc();
}
RenderBlock* RenderBlock::columnsBlockForSpanningElement(RenderObject* newChild)
{
// FIXME: This function is the gateway for the addition of column-span support. It will
// be added to in three stages:
// (1) Immediate children of a multi-column block can span.
// (2) Nested block-level children with only block-level ancestors between them and the multi-column block can span.
// (3) Nested children with block or inline ancestors between them and the multi-column block can span (this is when we
// cross the streams and have to cope with both types of continuations mixed together).
// This function currently supports (1) and (2).
RenderBlock* columnsBlockAncestor = 0;
if (!newChild->isText() && newChild->style().columnSpan() && !newChild->isBeforeOrAfterContent()
&& !newChild->isFloatingOrOutOfFlowPositioned() && !newChild->isInline() && !isAnonymousColumnSpanBlock()) {
columnsBlockAncestor = containingColumnsBlock(false);
if (columnsBlockAncestor) {
// Make sure that none of the parent ancestors have a continuation.
// If yes, we do not want split the block into continuations.
RenderElement* curr = this;
while (curr && curr != columnsBlockAncestor) {
if (curr->isRenderBlock() && toRenderBlock(curr)->continuation()) {
columnsBlockAncestor = 0;
break;
}
curr = curr->parent();
}
}
}
return columnsBlockAncestor;
}
void RenderBlock::addChildIgnoringAnonymousColumnBlocks(RenderObject* newChild, RenderObject* beforeChild)
{
if (beforeChild && beforeChild->parent() != this) {
RenderElement* beforeChildContainer = beforeChild->parent();
while (beforeChildContainer->parent() != this)
beforeChildContainer = beforeChildContainer->parent();
ASSERT(beforeChildContainer);
if (beforeChildContainer->isAnonymous()) {
// If the requested beforeChild is not one of our children, then this is because
// there is an anonymous container within this object that contains the beforeChild.
RenderElement* beforeChildAnonymousContainer = beforeChildContainer;
if (beforeChildAnonymousContainer->isAnonymousBlock()
#if ENABLE(FULLSCREEN_API)
// Full screen renderers and full screen placeholders act as anonymous blocks, not tables:
|| beforeChildAnonymousContainer->isRenderFullScreen()
|| beforeChildAnonymousContainer->isRenderFullScreenPlaceholder()
#endif
) {
// Insert the child into the anonymous block box instead of here.
if (newChild->isInline() || beforeChild->parent()->firstChild() != beforeChild)
beforeChild->parent()->addChild(newChild, beforeChild);
else
addChild(newChild, beforeChild->parent());
return;
}
ASSERT(beforeChildAnonymousContainer->isTable());
if (newChild->isTablePart()) {
// Insert into the anonymous table.
beforeChildAnonymousContainer->addChild(newChild, beforeChild);
return;
}
beforeChild = splitAnonymousBoxesAroundChild(beforeChild);
ASSERT(beforeChild->parent() == this);
if (beforeChild->parent() != this) {
// We should never reach here. If we do, we need to use the
// safe fallback to use the topmost beforeChild container.
beforeChild = beforeChildContainer;
}
} else {
// We will reach here when beforeChild is a run-in element.
// If run-in element precedes a block-level element, it becomes the
// the first inline child of that block level element. The insertion
// point will be before that block-level element.
ASSERT(beforeChild->isRunIn());
beforeChild = beforeChildContainer;
}
}
// Nothing goes before the intruded run-in.
if (beforeChild && beforeChild->isRunIn() && runInIsPlacedIntoSiblingBlock(*beforeChild))
beforeChild = beforeChild->nextSibling();
// Check for a spanning element in columns.
if (gColumnFlowSplitEnabled) {
RenderBlock* columnsBlockAncestor = columnsBlockForSpanningElement(newChild);
if (columnsBlockAncestor) {
TemporaryChange<bool> columnFlowSplitEnabled(gColumnFlowSplitEnabled, false);
// We are placing a column-span element inside a block.
RenderBlock* newBox = createAnonymousColumnSpanBlock();
if (columnsBlockAncestor != this && !isRenderFlowThread()) {
// We are nested inside a multi-column element and are being split by the span. We have to break up
// our block into continuations.
RenderBoxModelObject* oldContinuation = continuation();
// When we split an anonymous block, there's no need to do any continuation hookup,
// since we haven't actually split a real element.
if (!isAnonymousBlock())
setContinuation(newBox);
splitFlow(beforeChild, newBox, newChild, oldContinuation);
return;
}
// We have to perform a split of this block's children. This involves creating an anonymous block box to hold
// the column-spanning |newChild|. We take all of the children from before |newChild| and put them into
// one anonymous columns block, and all of the children after |newChild| go into another anonymous block.
makeChildrenAnonymousColumnBlocks(beforeChild, newBox, newChild);
return;
}
}
bool madeBoxesNonInline = false;
// A block has to either have all of its children inline, or all of its children as blocks.
// So, if our children are currently inline and a block child has to be inserted, we move all our
// inline children into anonymous block boxes.
if (childrenInline() && !newChild->isInline() && !newChild->isFloatingOrOutOfFlowPositioned()) {
// This is a block with inline content. Wrap the inline content in anonymous blocks.
makeChildrenNonInline(beforeChild);
madeBoxesNonInline = true;
if (beforeChild && beforeChild->parent() != this) {
beforeChild = beforeChild->parent();
ASSERT(beforeChild->isAnonymousBlock());
ASSERT(beforeChild->parent() == this);
}
} else if (!childrenInline() && (newChild->isFloatingOrOutOfFlowPositioned() || newChild->isInline())) {
// If we're inserting an inline child but all of our children are blocks, then we have to make sure
// it is put into an anomyous block box. We try to use an existing anonymous box if possible, otherwise
// a new one is created and inserted into our list of children in the appropriate position.
RenderObject* afterChild = beforeChild ? beforeChild->previousSibling() : lastChild();
if (afterChild && afterChild->isAnonymousBlock()) {
toRenderBlock(afterChild)->addChild(newChild);
return;
}
if (newChild->isInline()) {
// No suitable existing anonymous box - create a new one.
RenderBlock* newBox = createAnonymousBlock();
RenderBox::addChild(newBox, beforeChild);
newBox->addChild(newChild);
return;
}
}
invalidateLineLayoutPath();
RenderBox::addChild(newChild, beforeChild);
// Handle placement of run-ins.
placeRunInIfNeeded(*newChild);
if (madeBoxesNonInline && parent() && isAnonymousBlock() && parent()->isRenderBlock())
toRenderBlock(parent())->removeLeftoverAnonymousBlock(this);
// this object may be dead here
}
void RenderBlock::addChild(RenderObject* newChild, RenderObject* beforeChild)
{
if (continuation() && !isAnonymousBlock())
addChildToContinuation(newChild, beforeChild);
else
addChildIgnoringContinuation(newChild, beforeChild);
}
void RenderBlock::addChildIgnoringContinuation(RenderObject* newChild, RenderObject* beforeChild)
{
if (!isAnonymousBlock() && firstChild() && (firstChild()->isAnonymousColumnsBlock() || firstChild()->isAnonymousColumnSpanBlock()))
addChildToAnonymousColumnBlocks(newChild, beforeChild);
else
addChildIgnoringAnonymousColumnBlocks(newChild, beforeChild);
}
static void getInlineRun(RenderObject* start, RenderObject* boundary,
RenderObject*& inlineRunStart,
RenderObject*& inlineRunEnd)
{
// Beginning at |start| we find the largest contiguous run of inlines that
// we can. We denote the run with start and end points, |inlineRunStart|
// and |inlineRunEnd|. Note that these two values may be the same if
// we encounter only one inline.
//
// We skip any non-inlines we encounter as long as we haven't found any
// inlines yet.
//
// |boundary| indicates a non-inclusive boundary point. Regardless of whether |boundary|
// is inline or not, we will not include it in a run with inlines before it. It's as though we encountered
// a non-inline.
// Start by skipping as many non-inlines as we can.
RenderObject * curr = start;
bool sawInline;
do {
while (curr && !(curr->isInline() || curr->isFloatingOrOutOfFlowPositioned()))
curr = curr->nextSibling();
inlineRunStart = inlineRunEnd = curr;
if (!curr)
return; // No more inline children to be found.
sawInline = curr->isInline();
curr = curr->nextSibling();
while (curr && (curr->isInline() || curr->isFloatingOrOutOfFlowPositioned()) && (curr != boundary)) {
inlineRunEnd = curr;
if (curr->isInline())
sawInline = true;
curr = curr->nextSibling();
}
} while (!sawInline);
}
void RenderBlock::deleteLines()
{
if (AXObjectCache* cache = document().existingAXObjectCache())
cache->recomputeIsIgnored(this);
}
void RenderBlock::invalidateLineLayoutPath()
{
if (m_lineLayoutPath == ForceLineBoxesPath)
return;
m_lineLayoutPath = UndeterminedPath;
}
void RenderBlock::makeChildrenNonInline(RenderObject* insertionPoint)
{
// makeChildrenNonInline takes a block whose children are *all* inline and it
// makes sure that inline children are coalesced under anonymous
// blocks. If |insertionPoint| is defined, then it represents the insertion point for
// the new block child that is causing us to have to wrap all the inlines. This
// means that we cannot coalesce inlines before |insertionPoint| with inlines following
// |insertionPoint|, because the new child is going to be inserted in between the inlines,
// splitting them.
ASSERT(isInlineBlockOrInlineTable() || !isInline());
ASSERT(!insertionPoint || insertionPoint->parent() == this);
setChildrenInline(false);
RenderObject* child = firstChild();
if (!child)
return;
deleteLines();
// Since we are going to have block children, we have to move
// back the run-in to its original place.
if (child->isRunIn()) {
moveRunInToOriginalPosition(*child);
child = firstChild();
}
while (child) {
RenderObject* inlineRunStart;
RenderObject* inlineRunEnd;
getInlineRun(child, insertionPoint, inlineRunStart, inlineRunEnd);
if (!inlineRunStart)
break;
child = inlineRunEnd->nextSibling();
RenderBlock* block = createAnonymousBlock();
insertChildInternal(block, inlineRunStart, NotifyChildren);
moveChildrenTo(block, inlineRunStart, child);
}
#ifndef NDEBUG
for (RenderObject* c = firstChild(); c; c = c->nextSibling())
ASSERT(!c->isInline());
#endif
repaint();
}
void RenderBlock::removeLeftoverAnonymousBlock(RenderBlock* child)
{
ASSERT(child->isAnonymousBlock());
ASSERT(!child->childrenInline());
if (child->continuation() || (child->firstChild() && (child->isAnonymousColumnSpanBlock() || child->isAnonymousColumnsBlock())))
return;
RenderObject* firstAnChild = child->firstChild();
RenderObject* lastAnChild = child->lastChild();
if (firstAnChild) {
RenderObject* o = firstAnChild;
while (o) {
o->setParent(this);
o = o->nextSibling();
}
firstAnChild->setPreviousSibling(child->previousSibling());
lastAnChild->setNextSibling(child->nextSibling());
if (child->previousSibling())
child->previousSibling()->setNextSibling(firstAnChild);
if (child->nextSibling())
child->nextSibling()->setPreviousSibling(lastAnChild);
if (child == firstChild())
setFirstChild(firstAnChild);
if (child == lastChild())
setLastChild(lastAnChild);
} else {
if (child == firstChild())
setFirstChild(child->nextSibling());
if (child == lastChild())
setLastChild(child->previousSibling());
if (child->previousSibling())
child->previousSibling()->setNextSibling(child->nextSibling());
if (child->nextSibling())
child->nextSibling()->setPreviousSibling(child->previousSibling());
}
child->setFirstChild(0);
child->m_next = 0;
// Remove all the information in the flow thread associated with the leftover anonymous block.
child->removeFromRenderFlowThread();
child->setParent(0);
child->setPreviousSibling(0);
child->setNextSibling(0);
child->destroy();
}
static bool canMergeAnonymousBlock(RenderBlock* anonymousBlock)
{
if (anonymousBlock->beingDestroyed() || anonymousBlock->continuation())
return false;
if (anonymousBlock->isRubyRun() || anonymousBlock->isRubyBase())
return false;
return true;
}
static bool canMergeContiguousAnonymousBlocks(RenderObject& oldChild, RenderObject* previous, RenderObject* next)
{
if (oldChild.documentBeingDestroyed() || oldChild.isInline() || oldChild.virtualContinuation())
return false;
if (previous) {
if (!previous->isAnonymousBlock())
return false;
RenderBlock* previousAnonymousBlock = toRenderBlock(previous);
if (!canMergeAnonymousBlock(previousAnonymousBlock))
return false;
// FIXME: This check isn't required when inline run-ins can't be split into continuations.
RenderObject* child = previousAnonymousBlock->firstChild();
if (child && child->isInline() && child->isRunIn())
return false;
}
if (next) {
if (!next->isAnonymousBlock())
return false;
RenderBlock* nextAnonymousBlock = toRenderBlock(next);
if (!canMergeAnonymousBlock(nextAnonymousBlock))
return false;
}
if (!previous || !next)
return true;
// Make sure the types of the anonymous blocks match up.
return previous->isAnonymousColumnsBlock() == next->isAnonymousColumnsBlock()
&& previous->isAnonymousColumnSpanBlock() == next->isAnonymousColumnSpanBlock();
}
void RenderBlock::collapseAnonymousBoxChild(RenderBlock* parent, RenderBlock* child)
{
parent->setNeedsLayoutAndPrefWidthsRecalc();
parent->setChildrenInline(child->childrenInline());
RenderObject* nextSibling = child->nextSibling();
RenderFlowThread* childFlowThread = child->flowThreadContainingBlock();
CurrentRenderFlowThreadMaintainer flowThreadMaintainer(childFlowThread);
parent->removeChildInternal(*child, child->hasLayer() ? NotifyChildren : DontNotifyChildren);
child->moveAllChildrenTo(parent, nextSibling, child->hasLayer());
// Delete the now-empty block's lines and nuke it.
child->deleteLines();
if (childFlowThread && childFlowThread->isRenderNamedFlowThread())
toRenderNamedFlowThread(childFlowThread)->removeFlowChildInfo(child);
child->destroy();
}
void RenderBlock::removeChild(RenderObject& oldChild)
{
// No need to waste time in merging or removing empty anonymous blocks.
// We can just bail out if our document is getting destroyed.
if (documentBeingDestroyed()) {
RenderBox::removeChild(oldChild);
return;
}
// This protects against column split flows when anonymous blocks are getting merged.
TemporaryChange<bool> columnFlowSplitEnabled(gColumnFlowSplitEnabled, false);
// If this child is a block, and if our previous and next siblings are
// both anonymous blocks with inline content, then we can go ahead and
// fold the inline content back together.
RenderObject* prev = oldChild.previousSibling();
RenderObject* next = oldChild.nextSibling();
bool canMergeAnonymousBlocks = canMergeContiguousAnonymousBlocks(oldChild, prev, next);
if (canMergeAnonymousBlocks && prev && next) {
prev->setNeedsLayoutAndPrefWidthsRecalc();
RenderBlock* nextBlock = toRenderBlock(next);
RenderBlock* prevBlock = toRenderBlock(prev);
if (prev->childrenInline() != next->childrenInline()) {
RenderBlock* inlineChildrenBlock = prev->childrenInline() ? prevBlock : nextBlock;
RenderBlock* blockChildrenBlock = prev->childrenInline() ? nextBlock : prevBlock;
// Place the inline children block inside of the block children block instead of deleting it.
// In order to reuse it, we have to reset it to just be a generic anonymous block. Make sure
// to clear out inherited column properties by just making a new style, and to also clear the
// column span flag if it is set.
ASSERT(!inlineChildrenBlock->continuation());
// Cache this value as it might get changed in setStyle() call.
bool inlineChildrenBlockHasLayer = inlineChildrenBlock->hasLayer();
inlineChildrenBlock->setStyle(RenderStyle::createAnonymousStyleWithDisplay(&style(), BLOCK));
removeChildInternal(*inlineChildrenBlock, inlineChildrenBlockHasLayer ? NotifyChildren : DontNotifyChildren);
// Now just put the inlineChildrenBlock inside the blockChildrenBlock.
RenderObject* beforeChild = prev == inlineChildrenBlock ? blockChildrenBlock->firstChild() : nullptr;
blockChildrenBlock->insertChildInternal(inlineChildrenBlock, beforeChild,
(inlineChildrenBlockHasLayer || blockChildrenBlock->hasLayer()) ? NotifyChildren : DontNotifyChildren);
next->setNeedsLayoutAndPrefWidthsRecalc();
// inlineChildrenBlock got reparented to blockChildrenBlock, so it is no longer a child
// of "this". we null out prev or next so that is not used later in the function.
if (inlineChildrenBlock == prevBlock)
prev = 0;
else
next = 0;
} else {
// Take all the children out of the |next| block and put them in
// the |prev| block.
nextBlock->moveAllChildrenIncludingFloatsTo(prevBlock, nextBlock->hasLayer() || prevBlock->hasLayer());
// Delete the now-empty block's lines and nuke it.
nextBlock->deleteLines();
nextBlock->destroy();
next = 0;
}
}
invalidateLineLayoutPath();
RenderBox::removeChild(oldChild);
RenderObject* child = prev ? prev : next;
if (canMergeAnonymousBlocks && child && !child->previousSibling() && !child->nextSibling() && canCollapseAnonymousBlockChild()) {
// The removal has knocked us down to containing only a single anonymous
// box. We can go ahead and pull the content right back up into our
// box.
collapseAnonymousBoxChild(this, toRenderBlock(child));
} else if (((prev && prev->isAnonymousBlock()) || (next && next->isAnonymousBlock())) && canCollapseAnonymousBlockChild()) {
// It's possible that the removal has knocked us down to a single anonymous
// block with pseudo-style element siblings (e.g. first-letter). If these
// are floating, then we need to pull the content up also.
RenderBlock* anonBlock = toRenderBlock((prev && prev->isAnonymousBlock()) ? prev : next);
if ((anonBlock->previousSibling() || anonBlock->nextSibling())
&& (!anonBlock->previousSibling() || (anonBlock->previousSibling()->style().styleType() != NOPSEUDO && anonBlock->previousSibling()->isFloating() && !anonBlock->previousSibling()->previousSibling()))
&& (!anonBlock->nextSibling() || (anonBlock->nextSibling()->style().styleType() != NOPSEUDO && anonBlock->nextSibling()->isFloating() && !anonBlock->nextSibling()->nextSibling()))) {
collapseAnonymousBoxChild(this, anonBlock);
}
}
if (!firstChild()) {
// If this was our last child be sure to clear out our line boxes.
if (childrenInline())
deleteLines();
// If we are an empty anonymous block in the continuation chain,
// we need to remove ourself and fix the continuation chain.
if (!beingDestroyed() && isAnonymousBlockContinuation() && !oldChild.isListMarker()) {
auto containingBlockIgnoringAnonymous = containingBlock();
while (containingBlockIgnoringAnonymous && containingBlockIgnoringAnonymous->isAnonymousBlock())
containingBlockIgnoringAnonymous = containingBlockIgnoringAnonymous->containingBlock();
for (RenderObject* curr = this; curr; curr = curr->previousInPreOrder(containingBlockIgnoringAnonymous)) {
if (curr->virtualContinuation() != this)
continue;
// Found our previous continuation. We just need to point it to
// |this|'s next continuation.
RenderBoxModelObject* nextContinuation = continuation();
if (curr->isRenderInline())
toRenderInline(curr)->setContinuation(nextContinuation);
else if (curr->isRenderBlock())
toRenderBlock(curr)->setContinuation(nextContinuation);
else
ASSERT_NOT_REACHED();
break;
}
setContinuation(0);
destroy();
}
}
}
bool RenderBlock::isSelfCollapsingBlock() const
{
// We are not self-collapsing if we
// (a) have a non-zero height according to layout (an optimization to avoid wasting time)
// (b) are a table,
// (c) have border/padding,
// (d) have a min-height
// (e) have specified that one of our margins can't collapse using a CSS extension
if (logicalHeight() > 0
|| isTable() || borderAndPaddingLogicalHeight()
|| style().logicalMinHeight().isPositive()
|| style().marginBeforeCollapse() == MSEPARATE || style().marginAfterCollapse() == MSEPARATE)
return false;
Length logicalHeightLength = style().logicalHeight();
bool hasAutoHeight = logicalHeightLength.isAuto();
if (logicalHeightLength.isPercent() && !document().inQuirksMode()) {
hasAutoHeight = true;
for (RenderBlock* cb = containingBlock(); !cb->isRenderView(); cb = cb->containingBlock()) {
if (cb->style().logicalHeight().isFixed() || cb->isTableCell())
hasAutoHeight = false;
}
}
// If the height is 0 or auto, then whether or not we are a self-collapsing block depends
// on whether we have content that is all self-collapsing or not.
if (hasAutoHeight || ((logicalHeightLength.isFixed() || logicalHeightLength.isPercent()) && logicalHeightLength.isZero())) {
// If the block has inline children, see if we generated any line boxes. If we have any
// line boxes, then we can't be self-collapsing, since we have content.
if (childrenInline())
return !hasLines();
// Whether or not we collapse is dependent on whether all our normal flow children
// are also self-collapsing.
for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
if (child->isFloatingOrOutOfFlowPositioned())
continue;
if (!child->isSelfCollapsingBlock())
return false;
}
return true;
}
return false;
}
void RenderBlock::startDelayUpdateScrollInfo()
{
if (gDelayUpdateScrollInfo == 0) {
ASSERT(!gDelayedUpdateScrollInfoSet);
gDelayedUpdateScrollInfoSet = new DelayedUpdateScrollInfoSet;
}
ASSERT(gDelayedUpdateScrollInfoSet);
++gDelayUpdateScrollInfo;
}
void RenderBlock::finishDelayUpdateScrollInfo()
{
--gDelayUpdateScrollInfo;
ASSERT(gDelayUpdateScrollInfo >= 0);
if (gDelayUpdateScrollInfo == 0) {
ASSERT(gDelayedUpdateScrollInfoSet);
OwnPtr<DelayedUpdateScrollInfoSet> infoSet(adoptPtr(gDelayedUpdateScrollInfoSet));
gDelayedUpdateScrollInfoSet = 0;
for (DelayedUpdateScrollInfoSet::iterator it = infoSet->begin(); it != infoSet->end(); ++it) {
RenderBlock* block = *it;
if (block->hasOverflowClip()) {
block->layer()->updateScrollInfoAfterLayout();
block->clearLayoutOverflow();
}
}
}
}
void RenderBlock::removeFromDelayedUpdateScrollInfoSet()
{
if (UNLIKELY(gDelayedUpdateScrollInfoSet != 0))
gDelayedUpdateScrollInfoSet->remove(this);
}
void RenderBlock::updateScrollInfoAfterLayout()
{
if (hasOverflowClip()) {
if (style().isFlippedBlocksWritingMode()) {
// FIXME: https://bugs.webkit.org/show_bug.cgi?id=97937
// Workaround for now. We cannot delay the scroll info for overflow
// for items with opposite writing directions, as the contents needs
// to overflow in that direction
layer()->updateScrollInfoAfterLayout();
return;
}
if (gDelayUpdateScrollInfo)
gDelayedUpdateScrollInfoSet->add(this);
else
layer()->updateScrollInfoAfterLayout();
}
}
void RenderBlock::layout()
{
StackStats::LayoutCheckPoint layoutCheckPoint;
OverflowEventDispatcher dispatcher(this);
// Update our first letter info now.
updateFirstLetter();
// Table cells call layoutBlock directly, so don't add any logic here. Put code into
// layoutBlock().
layoutBlock(false);
// It's safe to check for control clip here, since controls can never be table cells.
// If we have a lightweight clip, there can never be any overflow from children.
if (hasControlClip() && m_overflow && !gDelayUpdateScrollInfo)
clearLayoutOverflow();
invalidateBackgroundObscurationStatus();
}
static RenderBlockRareData* getRareData(const RenderBlock* block)
{
return gRareDataMap ? gRareDataMap->get(block) : 0;
}
static RenderBlockRareData& ensureRareData(const RenderBlock* block)
{
if (!gRareDataMap)
gRareDataMap = new RenderBlockRareDataMap;
auto& rareData = gRareDataMap->add(block, nullptr).iterator->value;
if (!rareData)
rareData = std::make_unique<RenderBlockRareData>();
return *rareData.get();
}
#if ENABLE(CSS_SHAPES)
void RenderBlock::relayoutShapeDescendantIfMoved(RenderBlock* child, LayoutSize offset)
{
LayoutUnit left = isHorizontalWritingMode() ? offset.width() : offset.height();
if (!left || !child || child->shapeInsideInfo() || !layoutShapeInsideInfo())
return;
// Propagate layout markers only up to the child, as we are still in the middle
// of a layout pass
child->setNormalChildNeedsLayoutBit(true);
child->markShapeInsideDescendantsForLayout();
child->layoutIfNeeded();
}
LayoutSize RenderBlock::logicalOffsetFromShapeAncestorContainer(const RenderBlock* container) const
{
const RenderBlock* currentBlock = this;
LayoutRect blockRect(currentBlock->borderBoxRect());
while (currentBlock && !currentBlock->isRenderFlowThread() && currentBlock != container) {
RenderBlock* containerBlock = currentBlock->containingBlock();
ASSERT(containerBlock);
if (!containerBlock)
return LayoutSize();
if (containerBlock->style().writingMode() != currentBlock->style().writingMode()) {
// We have to put the block rect in container coordinates
// and we have to take into account both the container and current block flipping modes
// Bug 118073: Flipping inline and block directions at the same time will not work,
// as one of the flipped dimensions will not yet have been set to its final size
if (containerBlock->style().isFlippedBlocksWritingMode()) {
if (containerBlock->isHorizontalWritingMode())
blockRect.setY(currentBlock->height() - blockRect.maxY());
else
blockRect.setX(currentBlock->width() - blockRect.maxX());
}
currentBlock->flipForWritingMode(blockRect);
}
blockRect.moveBy(currentBlock->location());
currentBlock = containerBlock;
}
LayoutSize result = isHorizontalWritingMode() ? LayoutSize(blockRect.x(), blockRect.y()) : LayoutSize(blockRect.y(), blockRect.x());
return result;
}
void RenderBlock::imageChanged(WrappedImagePtr image, const IntRect*)
{
RenderBox::imageChanged(image);
if (!parent() || !everHadLayout())
return;
ShapeValue* shapeValue = style().shapeInside();
if (shapeValue && shapeValue->image() && shapeValue->image()->data() == image) {
ShapeInsideInfo* shapeInsideInfo = ensureShapeInsideInfo();
shapeInsideInfo->dirtyShapeSize();
markShapeInsideDescendantsForLayout();
}
ShapeValue* shapeOutsideValue = style().shapeOutside();
if (isFloating() && shapeOutsideValue && shapeOutsideValue->image() && shapeOutsideValue->image()->data() == image)
parent()->setNeedsLayoutAndPrefWidthsRecalc();
}
void RenderBlock::updateShapeInsideInfoAfterStyleChange(const ShapeValue* shapeInside, const ShapeValue* oldShapeInside)
{
// FIXME: A future optimization would do a deep comparison for equality.
if (shapeInside == oldShapeInside)
return;
if (shapeInside) {
ShapeInsideInfo* shapeInsideInfo = ensureShapeInsideInfo();
shapeInsideInfo->dirtyShapeSize();
} else
setShapeInsideInfo(nullptr);
markShapeInsideDescendantsForLayout();
}
ShapeInsideInfo* RenderBlock::ensureShapeInsideInfo()
{
RenderBlockRareData& rareData = ensureRareData(this);
if (!rareData.m_shapeInsideInfo)
setShapeInsideInfo(ShapeInsideInfo::createInfo(this));
return rareData.m_shapeInsideInfo.get();
}
ShapeInsideInfo* RenderBlock::shapeInsideInfo() const
{
RenderBlockRareData* rareData = getRareData(this);
if (!rareData || !rareData->m_shapeInsideInfo)
return 0;
return ShapeInsideInfo::isEnabledFor(this) ? rareData->m_shapeInsideInfo.get() : 0;
}
void RenderBlock::setShapeInsideInfo(PassOwnPtr<ShapeInsideInfo> value)
{
ensureRareData(this).m_shapeInsideInfo = value;
}
void RenderBlock::markShapeInsideDescendantsForLayout()
{
if (!everHadLayout())
return;
if (childrenInline()) {
setNeedsLayout();
invalidateLineLayoutPath();
return;
}
auto blockChildren = childrenOfType<RenderBlock>(*this);
for (auto childBlock = blockChildren.begin(), end = blockChildren.end(); childBlock != end; ++childBlock)
childBlock->markShapeInsideDescendantsForLayout();
}
ShapeInsideInfo* RenderBlock::layoutShapeInsideInfo() const
{
// This may be called outside layout when switching from SimpleLineLayout to line boxes. This case never has shape info.
if (!view().layoutState())
return nullptr;
ShapeInsideInfo* shapeInsideInfo = view().layoutState()->shapeInsideInfo();
if (!shapeInsideInfo && flowThreadContainingBlock() && allowsShapeInsideInfoSharing()) {
LayoutUnit lineHeight = this->lineHeight(false, isHorizontalWritingMode() ? HorizontalLine : VerticalLine, PositionOfInteriorLineBoxes);
// regionAtBlockOffset returns regions like an array first={0,N-1}, second={N,M-1}, ...
LayoutUnit offset = logicalHeight() + lineHeight - LayoutUnit(1);
RenderRegion* region = regionAtBlockOffset(offset);
if (region && region->logicalHeight())
shapeInsideInfo = region->shapeInsideInfo();
}
return shapeInsideInfo;
}
static inline bool shapeInfoRequiresRelayout(const RenderBlock* block)
{
ShapeInsideInfo* info = block->shapeInsideInfo();
if (info)
info->setNeedsLayout(info->shapeSizeDirty());
else
info = block->layoutShapeInsideInfo();
return info && info->needsLayout();
}
void RenderBlock::computeShapeSize()
{
ShapeInsideInfo* shapeInsideInfo = this->shapeInsideInfo();
if (!shapeInsideInfo)
return;
if (isRenderNamedFlowFragment()) {
ShapeInsideInfo* parentShapeInsideInfo = toRenderBlock(parent())->shapeInsideInfo();
ASSERT(parentShapeInsideInfo);
shapeInsideInfo->setShapeSize(parentShapeInsideInfo->shapeSize().width(), parentShapeInsideInfo->shapeSize().height());
} else {
bool percentageLogicalHeightResolvable = percentageLogicalHeightIsResolvableFromBlock(this, false);
shapeInsideInfo->setShapeSize(logicalWidth(), percentageLogicalHeightResolvable ? logicalHeight() : LayoutUnit());
}
}
#endif
bool RenderBlock::updateShapesBeforeBlockLayout()
{
#if ENABLE(CSS_SHAPES)
if (!flowThreadContainingBlock() && !shapeInsideInfo())
return shapeInfoRequiresRelayout(this);
LayoutUnit oldHeight = logicalHeight();
LayoutUnit oldTop = logicalTop();
// Compute the maximum logical height content may cause this block to expand to
// FIXME: These should eventually use the const computeLogicalHeight rather than updateLogicalHeight
setLogicalHeight(RenderFlowThread::maxLogicalHeight());
updateLogicalHeight();
computeShapeSize();
setLogicalHeight(oldHeight);
setLogicalTop(oldTop);
return shapeInfoRequiresRelayout(this);
#else
return false;
#endif
}
void RenderBlock::updateShapesAfterBlockLayout(bool heightChanged)
{
#if ENABLE(CSS_SHAPES)
// A previous sibling has changed dimension, so we need to relayout the shape with the content
ShapeInsideInfo* shapeInsideInfo = layoutShapeInsideInfo();
if (heightChanged && shapeInsideInfo)
shapeInsideInfo->dirtyShapeSize();
#else
UNUSED_PARAM(heightChanged);
#endif
}
void RenderBlock::prepareShapesAndPaginationBeforeBlockLayout(bool& relayoutChildren)
{
// Regions changing widths can force us to relayout our children.
RenderFlowThread* flowThread = flowThreadContainingBlock();
if (updateShapesBeforeBlockLayout())
relayoutChildren = true;
if (flowThread)
flowThread->logicalWidthChangedInRegionsForBlock(this, relayoutChildren);
}
bool RenderBlock::updateLogicalWidthAndColumnWidth()
{
LayoutUnit oldWidth = logicalWidth();
LayoutUnit oldColumnWidth = desiredColumnWidth();
updateLogicalWidth();
calcColumnWidth();
bool hasBorderOrPaddingLogicalWidthChanged = m_hasBorderOrPaddingLogicalWidthChanged;
m_hasBorderOrPaddingLogicalWidthChanged = false;
return oldWidth != logicalWidth() || oldColumnWidth != desiredColumnWidth() || hasBorderOrPaddingLogicalWidthChanged;
}
void RenderBlock::checkForPaginationLogicalHeightChange(LayoutUnit& pageLogicalHeight, bool& pageLogicalHeightChanged, bool& hasSpecifiedPageLogicalHeight)
{
ColumnInfo* colInfo = columnInfo();
if (hasColumns()) {
if (!pageLogicalHeight) {
// We need to go ahead and set our explicit page height if one exists, so that we can
// avoid doing two layout passes.
updateLogicalHeight();
LayoutUnit columnHeight = isRenderView() ? view().pageOrViewLogicalHeight() : contentLogicalHeight();
if (columnHeight > 0) {
pageLogicalHeight = columnHeight;
hasSpecifiedPageLogicalHeight = true;
}
setLogicalHeight(0);
}
if (colInfo->columnHeight() != pageLogicalHeight && everHadLayout())
pageLogicalHeightChanged = true;
colInfo->setColumnHeight(pageLogicalHeight);
if (!hasSpecifiedPageLogicalHeight && !pageLogicalHeight)
colInfo->clearForcedBreaks();
colInfo->setPaginationUnit(paginationUnit());
} else if (isRenderFlowThread()) {
pageLogicalHeight = 1; // This is just a hack to always make sure we have a page logical height.
pageLogicalHeightChanged = toRenderFlowThread(this)->pageLogicalSizeChanged();
}
}
void RenderBlock::layoutBlock(bool, LayoutUnit)
{
ASSERT_NOT_REACHED();
clearNeedsLayout();
}
void RenderBlock::addOverflowFromChildren()
{
if (!hasColumns()) {
if (childrenInline())
addOverflowFromInlineChildren();
else
addOverflowFromBlockChildren();
// If this block is flowed inside a flow thread, make sure its overflow is propagated to the containing regions.
if (m_overflow) {
if (RenderFlowThread* containingFlowThread = flowThreadContainingBlock())
containingFlowThread->addRegionsVisualOverflow(this, m_overflow->visualOverflowRect());
}
} else {
ColumnInfo* colInfo = columnInfo();
if (columnCount(colInfo)) {
LayoutRect lastRect = columnRectAt(colInfo, columnCount(colInfo) - 1);
addLayoutOverflow(lastRect);
if (!hasOverflowClip())
addVisualOverflow(lastRect);
}
}
}
void RenderBlock::computeOverflow(LayoutUnit oldClientAfterEdge, bool)
{
clearOverflow();
// Add overflow from children.
addOverflowFromChildren();
// Add in the overflow from positioned objects.
addOverflowFromPositionedObjects();
if (hasOverflowClip()) {
// When we have overflow clip, propagate the original spillout since it will include collapsed bottom margins
// and bottom padding. Set the axis we don't care about to be 1, since we want this overflow to always
// be considered reachable.
LayoutRect clientRect(clientBoxRect());
LayoutRect rectToApply;
if (isHorizontalWritingMode())
rectToApply = LayoutRect(clientRect.x(), clientRect.y(), 1, std::max<LayoutUnit>(0, oldClientAfterEdge - clientRect.y()));
else
rectToApply = LayoutRect(clientRect.x(), clientRect.y(), std::max<LayoutUnit>(0, oldClientAfterEdge - clientRect.x()), 1);
addLayoutOverflow(rectToApply);
if (hasRenderOverflow())
m_overflow->setLayoutClientAfterEdge(oldClientAfterEdge);
}
// Add visual overflow from box-shadow and border-image-outset.
addVisualEffectOverflow();
// Add visual overflow from theme.
addVisualOverflowFromTheme();
if (isRenderNamedFlowThread())
toRenderNamedFlowThread(this)->computeOversetStateForRegions(oldClientAfterEdge);
}
void RenderBlock::clearLayoutOverflow()
{
if (!m_overflow)
return;
if (visualOverflowRect() == borderBoxRect()) {
// FIXME: Implement complete solution for regions overflow.
clearOverflow();
return;
}
m_overflow->setLayoutOverflow(borderBoxRect());
}
void RenderBlock::addOverflowFromBlockChildren()
{
for (auto child = firstChildBox(); child; child = child->nextSiblingBox()) {
if (!child->isFloatingOrOutOfFlowPositioned())
addOverflowFromChild(child);
}
}
void RenderBlock::addOverflowFromPositionedObjects()
{
TrackedRendererListHashSet* positionedDescendants = positionedObjects();
if (!positionedDescendants)
return;
for (auto it = positionedDescendants->begin(), end = positionedDescendants->end(); it != end; ++it) {
RenderBox* positionedObject = *it;
// Fixed positioned elements don't contribute to layout overflow, since they don't scroll with the content.
if (positionedObject->style().position() != FixedPosition) {
LayoutUnit x = positionedObject->x();
if (style().shouldPlaceBlockDirectionScrollbarOnLogicalLeft())
x -= verticalScrollbarWidth();
addOverflowFromChild(positionedObject, LayoutSize(x, positionedObject->y()));
}
}
}
void RenderBlock::addVisualOverflowFromTheme()
{
if (!style().hasAppearance())
return;
IntRect inflatedRect = pixelSnappedBorderBoxRect();
theme()->adjustRepaintRect(this, inflatedRect);
addVisualOverflow(inflatedRect);
if (RenderFlowThread* flowThread = flowThreadContainingBlock())
flowThread->addRegionsVisualOverflowFromTheme(this);
}
bool RenderBlock::expandsToEncloseOverhangingFloats() const
{
return isInlineBlockOrInlineTable() || isFloatingOrOutOfFlowPositioned() || hasOverflowClip() || (parent() && parent()->isFlexibleBoxIncludingDeprecated())
|| hasColumns() || isTableCell() || isTableCaption() || isFieldset() || isWritingModeRoot() || isRoot();
}
static void destroyRunIn(RenderBoxModelObject& runIn)
{
ASSERT(runIn.isRunIn());
ASSERT(!runIn.firstChild());
// Delete our line box tree. This is needed as our children got moved
// and our line box tree is no longer valid.
if (runIn.isRenderBlock())
toRenderBlock(runIn).deleteLines();
else if (runIn.isRenderInline())
toRenderInline(runIn).deleteLines();
else
ASSERT_NOT_REACHED();
runIn.destroy();
}
void RenderBlock::placeRunInIfNeeded(RenderObject& newChild)
{
if (newChild.isRunIn())
moveRunInUnderSiblingBlockIfNeeded(newChild);
else if (RenderObject* prevSibling = newChild.previousSibling()) {
if (prevSibling->isRunIn())
moveRunInUnderSiblingBlockIfNeeded(*prevSibling);
}
}
RenderBoxModelObject& RenderBlock::createReplacementRunIn(RenderBoxModelObject& runIn)
{
ASSERT(runIn.isRunIn());
ASSERT(runIn.element());
RenderBoxModelObject* newRunIn = 0;
if (!runIn.isRenderBlockFlow())
newRunIn = new RenderBlockFlow(*runIn.element(), runIn.style());
else
newRunIn = new RenderInline(*runIn.element(), runIn.style());
runIn.element()->setRenderer(newRunIn);
newRunIn->initializeStyle();
runIn.moveAllChildrenTo(newRunIn, true);
return *newRunIn;
}
void RenderBlock::moveRunInUnderSiblingBlockIfNeeded(RenderObject& runIn)
{
ASSERT(runIn.isRunIn());
// See if we have inline children. If the children aren't inline,
// then just treat the run-in as a normal block.
if (!runIn.childrenInline())
return;
// FIXME: We don't handle non-block elements with run-in for now.
if (!runIn.isRenderBlockFlow())
return;
// FIXME: We don't support run-ins with or as part of a continuation
// as it makes the back-and-forth placing complex.
if (runIn.isElementContinuation() || runIn.virtualContinuation())
return;
// Check if this node is allowed to run-in. E.g. <select> expects its renderer to
// be a RenderListBox or RenderMenuList, and hence cannot be a RenderInline run-in.
if (!runIn.canBeReplacedWithInlineRunIn())
return;
RenderObject* curr = runIn.nextSibling();
if (!curr || !curr->isRenderBlock() || !curr->childrenInline())
return;
RenderBlock& nextSiblingBlock = toRenderBlock(*curr);
if (nextSiblingBlock.beingDestroyed())
return;
// Per CSS3, "A run-in cannot run in to a block that already starts with a
// run-in or that itself is a run-in".
if (nextSiblingBlock.isRunIn() || (nextSiblingBlock.firstChild() && nextSiblingBlock.firstChild()->isRunIn()))
return;
if (nextSiblingBlock.isAnonymous() || nextSiblingBlock.isFloatingOrOutOfFlowPositioned())
return;
RenderBoxModelObject& oldRunIn = toRenderBoxModelObject(runIn);
RenderBoxModelObject& newRunIn = createReplacementRunIn(oldRunIn);
destroyRunIn(oldRunIn);
// Now insert the new child under |curr| block. Use addChild instead of insertChildNode
// since it handles correct placement of the children, especially where we cannot insert
// anything before the first child. e.g. details tag. See https://bugs.webkit.org/show_bug.cgi?id=58228.
nextSiblingBlock.addChild(&newRunIn, nextSiblingBlock.firstChild());
// Make sure that |this| get a layout since its run-in child moved.
nextSiblingBlock.setNeedsLayoutAndPrefWidthsRecalc();
}
bool RenderBlock::runInIsPlacedIntoSiblingBlock(RenderObject& runIn)
{
ASSERT(runIn.isRunIn());
// If we don't have a parent, we can't be moved into our sibling block.
if (!parent())
return false;
// An intruded run-in needs to be an inline.
if (!runIn.isRenderInline())
return false;
return true;
}
void RenderBlock::moveRunInToOriginalPosition(RenderObject& runIn)
{
ASSERT(runIn.isRunIn());
if (!runInIsPlacedIntoSiblingBlock(runIn))
return;
// FIXME: Run-in that are now placed in sibling block can break up into continuation
// chains when new children are added to it. We cannot easily send them back to their
// original place since that requires writing integration logic with RenderInline::addChild
// and all other places that might cause continuations to be created (without blowing away
// |this|). Disabling this feature for now to prevent crashes.
if (runIn.isElementContinuation() || runIn.virtualContinuation())
return;
RenderBoxModelObject& oldRunIn = toRenderBoxModelObject(runIn);
RenderBoxModelObject& newRunIn = createReplacementRunIn(oldRunIn);
destroyRunIn(oldRunIn);
// Add the run-in block as our previous sibling.
parent()->addChild(&newRunIn, this);
// Make sure that the parent holding the new run-in gets layout.
parent()->setNeedsLayoutAndPrefWidthsRecalc();
}
LayoutUnit RenderBlock::computeStartPositionDeltaForChildAvoidingFloats(const RenderBox& child, LayoutUnit childMarginStart, RenderRegion* region)
{
LayoutUnit startPosition = startOffsetForContent(region);
// Add in our start margin.
LayoutUnit oldPosition = startPosition + childMarginStart;
LayoutUnit newPosition = oldPosition;
LayoutUnit blockOffset = logicalTopForChild(child);
if (region)
blockOffset = std::max(blockOffset, blockOffset + (region->logicalTopForFlowThreadContent() - offsetFromLogicalTopOfFirstPage()));
LayoutUnit startOff = startOffsetForLineInRegion(blockOffset, false, region, logicalHeightForChild(child));
if (style().textAlign() != WEBKIT_CENTER && !child.style().marginStartUsing(&style()).isAuto()) {
if (childMarginStart < 0)
startOff += childMarginStart;
newPosition = std::max(newPosition, startOff); // Let the float sit in the child's margin if it can fit.
} else if (startOff != startPosition)
newPosition = startOff + childMarginStart;
return newPosition - oldPosition;
}
void RenderBlock::determineLogicalLeftPositionForChild(RenderBox& child, ApplyLayoutDeltaMode applyDelta)
{
LayoutUnit startPosition = borderStart() + paddingStart();
if (style().shouldPlaceBlockDirectionScrollbarOnLogicalLeft())
startPosition -= verticalScrollbarWidth();
LayoutUnit totalAvailableLogicalWidth = borderAndPaddingLogicalWidth() + availableLogicalWidth();
// Add in our start margin.
LayoutUnit childMarginStart = marginStartForChild(child);
LayoutUnit newPosition = startPosition + childMarginStart;
// Some objects (e.g., tables, horizontal rules, overflow:auto blocks) avoid floats. They need
// to shift over as necessary to dodge any floats that might get in the way.
if (child.avoidsFloats() && containsFloats() && !flowThreadContainingBlock())
newPosition += computeStartPositionDeltaForChildAvoidingFloats(child, marginStartForChild(child));
setLogicalLeftForChild(child, style().isLeftToRightDirection() ? newPosition : totalAvailableLogicalWidth - newPosition - logicalWidthForChild(child), applyDelta);
}
void RenderBlock::setLogicalLeftForChild(RenderBox& child, LayoutUnit logicalLeft, ApplyLayoutDeltaMode applyDelta)
{
if (isHorizontalWritingMode()) {
if (applyDelta == ApplyLayoutDelta)
view().addLayoutDelta(LayoutSize(child.x() - logicalLeft, 0));
child.setX(logicalLeft);
} else {
if (applyDelta == ApplyLayoutDelta)
view().addLayoutDelta(LayoutSize(0, child.y() - logicalLeft));
child.setY(logicalLeft);
}
}
void RenderBlock::setLogicalTopForChild(RenderBox& child, LayoutUnit logicalTop, ApplyLayoutDeltaMode applyDelta)
{
if (isHorizontalWritingMode()) {
if (applyDelta == ApplyLayoutDelta)
view().addLayoutDelta(LayoutSize(0, child.y() - logicalTop));
child.setY(logicalTop);
} else {
if (applyDelta == ApplyLayoutDelta)
view().addLayoutDelta(LayoutSize(child.x() - logicalTop, 0));
child.setX(logicalTop);
}
}
void RenderBlock::updateBlockChildDirtyBitsBeforeLayout(bool relayoutChildren, RenderBox& child)
{
// FIXME: Technically percentage height objects only need a relayout if their percentage isn't going to be turned into
// an auto value. Add a method to determine this, so that we can avoid the relayout.
if (relayoutChildren || (child.hasRelativeLogicalHeight() && !isRenderView()) || child.hasViewportPercentageLogicalHeight())
child.setChildNeedsLayout(MarkOnlyThis);
// If relayoutChildren is set and the child has percentage padding or an embedded content box, we also need to invalidate the childs pref widths.
if (relayoutChildren && child.needsPreferredWidthsRecalculation())
child.setPreferredLogicalWidthsDirty(true, MarkOnlyThis);
}
void RenderBlock::dirtyForLayoutFromPercentageHeightDescendants()
{
if (!gPercentHeightDescendantsMap)
return;
TrackedRendererListHashSet* descendants = gPercentHeightDescendantsMap->get(this);
if (!descendants)
return;
for (auto it = descendants->begin(), end = descendants->end(); it != end; ++it) {
RenderBox* box = *it;
while (box != this) {
if (box->normalChildNeedsLayout())
break;
box->setChildNeedsLayout(MarkOnlyThis);
// If the width of an image is affected by the height of a child (e.g., an image with an aspect ratio),
// then we have to dirty preferred widths, since even enclosing blocks can become dirty as a result.
// (A horizontal flexbox that contains an inline image wrapped in an anonymous block for example.)
if (box->hasAspectRatio())
box->setPreferredLogicalWidthsDirty(true);
box = box->containingBlock();
ASSERT(box);
if (!box)
break;
}
}
}
void RenderBlock::simplifiedNormalFlowLayout()
{
if (childrenInline()) {
ListHashSet<RootInlineBox*> lineBoxes;
for (InlineWalker walker(*this); !walker.atEnd(); walker.advance()) {
RenderObject* o = walker.current();
if (!o->isOutOfFlowPositioned() && (o->isReplaced() || o->isFloating())) {
RenderBox& box = toRenderBox(*o);
box.layoutIfNeeded();
if (box.inlineBoxWrapper())
lineBoxes.add(&box.inlineBoxWrapper()->root());
} else if (o->isText() || (o->isRenderInline() && !walker.atEndOfInline()))
o->clearNeedsLayout();
}
// FIXME: Glyph overflow will get lost in this case, but not really a big deal.
// FIXME: Find a way to invalidate the knownToHaveNoOverflow flag on the InlineBoxes.
GlyphOverflowAndFallbackFontsMap textBoxDataMap;
for (auto it = lineBoxes.begin(), end = lineBoxes.end(); it != end; ++it) {
RootInlineBox* box = *it;
box->computeOverflow(box->lineTop(), box->lineBottom(), textBoxDataMap);
}
} else {
for (auto box = firstChildBox(); box; box = box->nextSiblingBox()) {
if (!box->isOutOfFlowPositioned())
box->layoutIfNeeded();
}
}
}
bool RenderBlock::simplifiedLayout()
{
if ((!posChildNeedsLayout() && !needsSimplifiedNormalFlowLayout()) || normalChildNeedsLayout() || selfNeedsLayout())
return false;
LayoutStateMaintainer statePusher(view(), *this, locationOffset(), hasColumns() || hasTransform() || hasReflection() || style().isFlippedBlocksWritingMode());
if (needsPositionedMovementLayout() && !tryLayoutDoingPositionedMovementOnly())
return false;
// Lay out positioned descendants or objects that just need to recompute overflow.
if (needsSimplifiedNormalFlowLayout())
simplifiedNormalFlowLayout();
// Make sure a forced break is applied after the content if we are a flow thread in a simplified layout.
// This ensures the size information is correctly computed for the last auto-height region receiving content.
if (isRenderFlowThread())
toRenderFlowThread(this)->applyBreakAfterContent(clientLogicalBottom());
// Lay out our positioned objects if our positioned child bit is set.
// Also, if an absolute position element inside a relative positioned container moves, and the absolute element has a fixed position
// child, neither the fixed element nor its container learn of the movement since posChildNeedsLayout() is only marked as far as the
// relative positioned container. So if we can have fixed pos objects in our positioned objects list check if any of them
// are statically positioned and thus need to move with their absolute ancestors.
bool canContainFixedPosObjects = canContainFixedPositionObjects();
if (posChildNeedsLayout() || canContainFixedPosObjects)
layoutPositionedObjects(false, !posChildNeedsLayout() && canContainFixedPosObjects);
// Recompute our overflow information.
// FIXME: We could do better here by computing a temporary overflow object from layoutPositionedObjects and only
// updating our overflow if we either used to have overflow or if the new temporary object has overflow.
// For now just always recompute overflow. This is no worse performance-wise than the old code that called rightmostPosition and
// lowestPosition on every relayout so it's not a regression.
// computeOverflow expects the bottom edge before we clamp our height. Since this information isn't available during
// simplifiedLayout, we cache the value in m_overflow.
LayoutUnit oldClientAfterEdge = hasRenderOverflow() ? m_overflow->layoutClientAfterEdge() : clientLogicalBottom();
computeOverflow(oldClientAfterEdge, true);
statePusher.pop();
updateLayerTransform();
updateScrollInfoAfterLayout();
clearNeedsLayout();
return true;
}
void RenderBlock::markFixedPositionObjectForLayoutIfNeeded(RenderObject& child)
{
if (child.style().position() != FixedPosition)
return;
bool hasStaticBlockPosition = child.style().hasStaticBlockPosition(isHorizontalWritingMode());
bool hasStaticInlinePosition = child.style().hasStaticInlinePosition(isHorizontalWritingMode());
if (!hasStaticBlockPosition && !hasStaticInlinePosition)
return;
auto o = child.parent();
while (o && !o->isRenderView() && o->style().position() != AbsolutePosition)
o = o->parent();
if (o->style().position() != AbsolutePosition)
return;
RenderBox& box = toRenderBox(child);
if (hasStaticInlinePosition) {
LogicalExtentComputedValues computedValues;
box.computeLogicalWidthInRegion(computedValues);
LayoutUnit newLeft = computedValues.m_position;
if (newLeft != box.logicalLeft())
box.setChildNeedsLayout(MarkOnlyThis);
} else if (hasStaticBlockPosition) {
LayoutUnit oldTop = box.logicalTop();
box.updateLogicalHeight();
if (box.logicalTop() != oldTop)
box.setChildNeedsLayout(MarkOnlyThis);
}
}
void RenderBlock::layoutPositionedObjects(bool relayoutChildren, bool fixedPositionObjectsOnly)
{
TrackedRendererListHashSet* positionedDescendants = positionedObjects();
if (!positionedDescendants)
return;
if (hasColumns())
view().layoutState()->clearPaginationInformation(); // Positioned objects are not part of the column flow, so they don't paginate with the columns.
for (auto it = positionedDescendants->begin(), end = positionedDescendants->end(); it != end; ++it) {
RenderBox& r = **it;
estimateRegionRangeForBoxChild(r);
// A fixed position element with an absolute positioned ancestor has no way of knowing if the latter has changed position. So
// if this is a fixed position element, mark it for layout if it has an abspos ancestor and needs to move with that ancestor, i.e.
// it has static position.
markFixedPositionObjectForLayoutIfNeeded(r);
if (fixedPositionObjectsOnly) {
r.layoutIfNeeded();
continue;
}
// When a non-positioned block element moves, it may have positioned children that are implicitly positioned relative to the
// non-positioned block. Rather than trying to detect all of these movement cases, we just always lay out positioned
// objects that are positioned implicitly like this. Such objects are rare, and so in typical DHTML menu usage (where everything is
// positioned explicitly) this should not incur a performance penalty.
if (relayoutChildren || (r.style().hasStaticBlockPosition(isHorizontalWritingMode()) && r.parent() != this))
r.setChildNeedsLayout(MarkOnlyThis);
// If relayoutChildren is set and the child has percentage padding or an embedded content box, we also need to invalidate the childs pref widths.
if (relayoutChildren && r.needsPreferredWidthsRecalculation())
r.setPreferredLogicalWidthsDirty(true, MarkOnlyThis);
if (!r.needsLayout())
r.markForPaginationRelayoutIfNeeded();
// We don't have to do a full layout. We just have to update our position. Try that first. If we have shrink-to-fit width
// and we hit the available width constraint, the layoutIfNeeded() will catch it and do a full layout.
if (r.needsPositionedMovementLayoutOnly() && r.tryLayoutDoingPositionedMovementOnly())
r.clearNeedsLayout();
// If we are paginated or in a line grid, go ahead and compute a vertical position for our object now.
// If it's wrong we'll lay out again.
LayoutUnit oldLogicalTop = 0;
bool needsBlockDirectionLocationSetBeforeLayout = r.needsLayout() && view().layoutState()->needsBlockDirectionLocationSetBeforeLayout();
if (needsBlockDirectionLocationSetBeforeLayout) {
if (isHorizontalWritingMode() == r.isHorizontalWritingMode())
r.updateLogicalHeight();
else
r.updateLogicalWidth();
oldLogicalTop = logicalTopForChild(r);
}
r.layoutIfNeeded();
// Lay out again if our estimate was wrong.
if (needsBlockDirectionLocationSetBeforeLayout && logicalTopForChild(r) != oldLogicalTop) {
r.setChildNeedsLayout(MarkOnlyThis);
r.layoutIfNeeded();
}
if (updateRegionRangeForBoxChild(r)) {
r.setNeedsLayout(MarkOnlyThis);
r.layoutIfNeeded();
}
}
if (hasColumns())
view().layoutState()->m_columnInfo = columnInfo(); // FIXME: Kind of gross. We just put this back into the layout state so that pop() will work.
}
void RenderBlock::markPositionedObjectsForLayout()
{
TrackedRendererListHashSet* positionedDescendants = positionedObjects();
if (!positionedDescendants)
return;
for (auto it = positionedDescendants->begin(), end = positionedDescendants->end(); it != end; ++it) {
RenderBox* r = *it;
r->setChildNeedsLayout();
}
}
void RenderBlock::markForPaginationRelayoutIfNeeded()
{
ASSERT(!needsLayout());
if (needsLayout())
return;
if (view().layoutState()->pageLogicalHeightChanged() || (view().layoutState()->pageLogicalHeight() && view().layoutState()->pageLogicalOffset(this, logicalTop()) != pageLogicalOffset()))
setChildNeedsLayout(MarkOnlyThis);
}
void RenderBlock::paint(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
LayoutPoint adjustedPaintOffset = paintOffset + location();
PaintPhase phase = paintInfo.phase;
// Check our region range to make sure we need to be painting in this region.
if (paintInfo.renderRegion && !paintInfo.renderRegion->flowThread()->objectShouldPaintInFlowRegion(this, paintInfo.renderRegion))
return;
// Check if we need to do anything at all.
// FIXME: Could eliminate the isRoot() check if we fix background painting so that the RenderView
// paints the root's background.
if (!isRoot()) {
LayoutRect overflowBox = overflowRectForPaintRejection(paintInfo.renderRegion);
flipForWritingMode(overflowBox);
overflowBox.inflate(maximalOutlineSize(paintInfo.phase));
overflowBox.moveBy(adjustedPaintOffset);
if (!overflowBox.intersects(paintInfo.rect))
return;
}
bool pushedClip = pushContentsClip(paintInfo, adjustedPaintOffset);
paintObject(paintInfo, adjustedPaintOffset);
if (pushedClip)
popContentsClip(paintInfo, phase, adjustedPaintOffset);
// Our scrollbar widgets paint exactly when we tell them to, so that they work properly with
// z-index. We paint after we painted the background/border, so that the scrollbars will
// sit above the background/border.
if (hasOverflowClip() && style().visibility() == VISIBLE && (phase == PaintPhaseBlockBackground || phase == PaintPhaseChildBlockBackground) && paintInfo.shouldPaintWithinRoot(*this) && !paintInfo.paintRootBackgroundOnly())
layer()->paintOverflowControls(paintInfo.context, roundedIntPoint(adjustedPaintOffset), paintInfo.rect);
}
void RenderBlock::paintColumnRules(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
if (paintInfo.context->paintingDisabled())
return;
const Color& ruleColor = style().visitedDependentColor(CSSPropertyWebkitColumnRuleColor);
bool ruleTransparent = style().columnRuleIsTransparent();
EBorderStyle ruleStyle = style().columnRuleStyle();
LayoutUnit ruleThickness = style().columnRuleWidth();
LayoutUnit colGap = columnGap();
bool renderRule = ruleStyle > BHIDDEN && !ruleTransparent;
if (!renderRule)
return;
ColumnInfo* colInfo = columnInfo();
unsigned colCount = columnCount(colInfo);
bool antialias = shouldAntialiasLines(paintInfo.context);
if (colInfo->progressionAxis() == ColumnInfo::InlineAxis) {
bool leftToRight = style().isLeftToRightDirection() ^ colInfo->progressionIsReversed();
LayoutUnit currLogicalLeftOffset = leftToRight ? LayoutUnit() : contentLogicalWidth();
LayoutUnit ruleAdd = logicalLeftOffsetForContent();
LayoutUnit ruleLogicalLeft = leftToRight ? LayoutUnit() : contentLogicalWidth();
LayoutUnit inlineDirectionSize = colInfo->desiredColumnWidth();
BoxSide boxSide = isHorizontalWritingMode()
? leftToRight ? BSLeft : BSRight
: leftToRight ? BSTop : BSBottom;
for (unsigned i = 0; i < colCount; i++) {
// Move to the next position.
if (leftToRight) {
ruleLogicalLeft += inlineDirectionSize + colGap / 2;
currLogicalLeftOffset += inlineDirectionSize + colGap;
} else {
ruleLogicalLeft -= (inlineDirectionSize + colGap / 2);
currLogicalLeftOffset -= (inlineDirectionSize + colGap);
}
// Now paint the column rule.
if (i < colCount - 1) {
LayoutUnit ruleLeft = isHorizontalWritingMode() ? paintOffset.x() + ruleLogicalLeft - ruleThickness / 2 + ruleAdd : paintOffset.x() + borderLeft() + paddingLeft();
LayoutUnit ruleRight = isHorizontalWritingMode() ? ruleLeft + ruleThickness : ruleLeft + contentWidth();
LayoutUnit ruleTop = isHorizontalWritingMode() ? paintOffset.y() + borderTop() + paddingTop() : paintOffset.y() + ruleLogicalLeft - ruleThickness / 2 + ruleAdd;
LayoutUnit ruleBottom = isHorizontalWritingMode() ? ruleTop + contentHeight() : ruleTop + ruleThickness;
IntRect pixelSnappedRuleRect = pixelSnappedIntRectFromEdges(ruleLeft, ruleTop, ruleRight, ruleBottom);
drawLineForBoxSide(paintInfo.context, pixelSnappedRuleRect.x(), pixelSnappedRuleRect.y(), pixelSnappedRuleRect.maxX(), pixelSnappedRuleRect.maxY(), boxSide, ruleColor, ruleStyle, 0, 0, antialias);
}
ruleLogicalLeft = currLogicalLeftOffset;
}
} else {
bool topToBottom = !style().isFlippedBlocksWritingMode() ^ colInfo->progressionIsReversed();
LayoutUnit ruleLeft = isHorizontalWritingMode()
? borderLeft() + paddingLeft()
: colGap / 2 - colGap - ruleThickness / 2 + (!colInfo->progressionIsReversed() ? borderAndPaddingBefore() : borderAndPaddingAfter());
LayoutUnit ruleWidth = isHorizontalWritingMode() ? contentWidth() : ruleThickness;
LayoutUnit ruleTop = isHorizontalWritingMode()
? colGap / 2 - colGap - ruleThickness / 2 + (!colInfo->progressionIsReversed() ? borderAndPaddingBefore() : borderAndPaddingAfter())
: borderStart() + paddingStart();
LayoutUnit ruleHeight = isHorizontalWritingMode() ? ruleThickness : contentHeight();
LayoutRect ruleRect(ruleLeft, ruleTop, ruleWidth, ruleHeight);
if (!topToBottom) {
if (isHorizontalWritingMode())
ruleRect.setY(height() - ruleRect.maxY());
else
ruleRect.setX(width() - ruleRect.maxX());
}
ruleRect.moveBy(paintOffset);
BoxSide boxSide = isHorizontalWritingMode()
? topToBottom ? BSTop : BSBottom
: topToBottom ? BSLeft : BSRight;
LayoutSize step(0, topToBottom ? colInfo->columnHeight() + colGap : -(colInfo->columnHeight() + colGap));
if (!isHorizontalWritingMode())
step = step.transposedSize();
for (unsigned i = 1; i < colCount; i++) {
ruleRect.move(step);
IntRect pixelSnappedRuleRect = pixelSnappedIntRect(ruleRect);
drawLineForBoxSide(paintInfo.context, pixelSnappedRuleRect.x(), pixelSnappedRuleRect.y(), pixelSnappedRuleRect.maxX(), pixelSnappedRuleRect.maxY(), boxSide, ruleColor, ruleStyle, 0, 0, antialias);
}
}
}
LayoutUnit RenderBlock::initialBlockOffsetForPainting() const
{
ColumnInfo* colInfo = columnInfo();
LayoutUnit result = 0;
if (colInfo->progressionAxis() == ColumnInfo::BlockAxis && colInfo->progressionIsReversed()) {
LayoutRect colRect = columnRectAt(colInfo, 0);
result = isHorizontalWritingMode() ? colRect.y() : colRect.x();
result -= borderAndPaddingBefore();
if (style().isFlippedBlocksWritingMode())
result = -result;
}
return result;
}
LayoutUnit RenderBlock::blockDeltaForPaintingNextColumn() const
{
ColumnInfo* colInfo = columnInfo();
LayoutUnit blockDelta = -colInfo->columnHeight();
LayoutUnit colGap = columnGap();
if (colInfo->progressionAxis() == ColumnInfo::BlockAxis) {
if (!colInfo->progressionIsReversed())
blockDelta = colGap;
else
blockDelta -= (colInfo->columnHeight() + colGap);
}
if (style().isFlippedBlocksWritingMode())
blockDelta = -blockDelta;
return blockDelta;
}
void RenderBlock::paintColumnContents(PaintInfo& paintInfo, const LayoutPoint& paintOffset, bool paintingFloats)
{
// We need to do multiple passes, breaking up our child painting into strips.
GraphicsContext* context = paintInfo.context;
ColumnInfo* colInfo = columnInfo();
unsigned colCount = columnCount(colInfo);
if (!colCount)
return;
LayoutUnit colGap = columnGap();
LayoutUnit currLogicalTopOffset = initialBlockOffsetForPainting();
LayoutUnit blockDelta = blockDeltaForPaintingNextColumn();
for (unsigned i = 0; i < colCount; i++) {
// For each rect, we clip to the rect, and then we adjust our coords.
LayoutRect colRect = columnRectAt(colInfo, i);
flipForWritingMode(colRect);
LayoutUnit logicalLeftOffset = (isHorizontalWritingMode() ? colRect.x() : colRect.y()) - logicalLeftOffsetForContent();
LayoutSize offset = isHorizontalWritingMode() ? LayoutSize(logicalLeftOffset, currLogicalTopOffset) : LayoutSize(currLogicalTopOffset, logicalLeftOffset);
colRect.moveBy(paintOffset);
PaintInfo info(paintInfo);
info.rect.intersect(pixelSnappedIntRect(colRect));
if (!info.rect.isEmpty()) {
GraphicsContextStateSaver stateSaver(*context);
LayoutRect clipRect(colRect);
if (i < colCount - 1) {
if (isHorizontalWritingMode())
clipRect.expand(colGap / 2, 0);
else
clipRect.expand(0, colGap / 2);
}
// Each strip pushes a clip, since column boxes are specified as being
// like overflow:hidden.
// FIXME: Content and column rules that extend outside column boxes at the edges of the multi-column element
// are clipped according to the 'overflow' property.
context->clip(pixelSnappedIntRect(clipRect));
// Adjust our x and y when painting.
LayoutPoint adjustedPaintOffset = paintOffset + offset;
if (paintingFloats)
paintFloats(info, adjustedPaintOffset, paintInfo.phase == PaintPhaseSelection || paintInfo.phase == PaintPhaseTextClip);
else
paintContents(info, adjustedPaintOffset);
}
currLogicalTopOffset += blockDelta;
}
}
void RenderBlock::paintContents(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
// Avoid painting descendants of the root element when stylesheets haven't loaded. This eliminates FOUC.
// It's ok not to draw, because later on, when all the stylesheets do load, styleResolverChanged() on the Document
// will do a full repaint.
if (document().didLayoutWithPendingStylesheets() && !isRenderView())
return;
if (childrenInline())
paintInlineChildren(paintInfo, paintOffset);
else {
PaintPhase newPhase = (paintInfo.phase == PaintPhaseChildOutlines) ? PaintPhaseOutline : paintInfo.phase;
newPhase = (newPhase == PaintPhaseChildBlockBackgrounds) ? PaintPhaseChildBlockBackground : newPhase;
// We don't paint our own background, but we do let the kids paint their backgrounds.
PaintInfo paintInfoForChild(paintInfo);
paintInfoForChild.phase = newPhase;
paintInfoForChild.updateSubtreePaintRootForChildren(this);
// FIXME: Paint-time pagination is obsolete and is now only used by embedded WebViews inside AppKit
// NSViews. Do not add any more code for this.
bool usePrintRect = !view().printRect().isEmpty();
paintChildren(paintInfo, paintOffset, paintInfoForChild, usePrintRect);
}
}
void RenderBlock::paintChildren(PaintInfo& paintInfo, const LayoutPoint& paintOffset, PaintInfo& paintInfoForChild, bool usePrintRect)
{
for (auto child = firstChildBox(); child; child = child->nextSiblingBox()) {
if (!paintChild(*child, paintInfo, paintOffset, paintInfoForChild, usePrintRect))
return;
}
}
bool RenderBlock::paintChild(RenderBox& child, PaintInfo& paintInfo, const LayoutPoint& paintOffset, PaintInfo& paintInfoForChild, bool usePrintRect)
{
// Check for page-break-before: always, and if it's set, break and bail.
bool checkBeforeAlways = !childrenInline() && (usePrintRect && child.style().pageBreakBefore() == PBALWAYS);
LayoutUnit absoluteChildY = paintOffset.y() + child.y();
if (checkBeforeAlways
&& absoluteChildY > paintInfo.rect.y()
&& absoluteChildY < paintInfo.rect.maxY()) {
view().setBestTruncatedAt(absoluteChildY, this, true);
return false;
}
if (!child.isFloating() && child.isReplaced() && usePrintRect && child.height() <= view().printRect().height()) {
// Paginate block-level replaced elements.
if (absoluteChildY + child.height() > view().printRect().maxY()) {
if (absoluteChildY < view().truncatedAt())
view().setBestTruncatedAt(absoluteChildY, &child);
// If we were able to truncate, don't paint.
if (absoluteChildY >= view().truncatedAt())
return false;
}
}
LayoutPoint childPoint = flipForWritingModeForChild(&child, paintOffset);
if (!child.hasSelfPaintingLayer() && !child.isFloating())
child.paint(paintInfoForChild, childPoint);
// Check for page-break-after: always, and if it's set, break and bail.
bool checkAfterAlways = !childrenInline() && (usePrintRect && child.style().pageBreakAfter() == PBALWAYS);
if (checkAfterAlways
&& (absoluteChildY + child.height()) > paintInfo.rect.y()
&& (absoluteChildY + child.height()) < paintInfo.rect.maxY()) {
view().setBestTruncatedAt(absoluteChildY + child.height() + std::max<LayoutUnit>(0, child.collapsedMarginAfter()), this, true);
return false;
}
return true;
}
void RenderBlock::paintCaret(PaintInfo& paintInfo, const LayoutPoint& paintOffset, CaretType type)
{
// Paint the caret if the FrameSelection says so or if caret browsing is enabled
bool caretBrowsing = frame().settings().caretBrowsingEnabled();
RenderObject* caretPainter;
bool isContentEditable;
if (type == CursorCaret) {
caretPainter = frame().selection().caretRenderer();
isContentEditable = frame().selection().rendererIsEditable();
} else {
caretPainter = frame().page()->dragCaretController().caretRenderer();
isContentEditable = frame().page()->dragCaretController().isContentEditable();
}
if (caretPainter == this && (isContentEditable || caretBrowsing)) {
if (type == CursorCaret)
frame().selection().paintCaret(paintInfo.context, paintOffset, paintInfo.rect);
else
frame().page()->dragCaretController().paintDragCaret(&frame(), paintInfo.context, paintOffset, paintInfo.rect);
}
}
void RenderBlock::paintObject(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
PaintPhase paintPhase = paintInfo.phase;
// 1. paint background, borders etc
if ((paintPhase == PaintPhaseBlockBackground || paintPhase == PaintPhaseChildBlockBackground) && style().visibility() == VISIBLE) {
if (hasBoxDecorations()) {
bool didClipToRegion = false;
if (paintInfo.paintContainer && paintInfo.renderRegion && paintInfo.paintContainer->isRenderFlowThread()) {
// If this box goes beyond the current region, then make sure not to overflow the region.
// This (overflowing region X altough also fragmented to region X+1) could happen when one of this box's children
// overflows region X and is an unsplittable element (like an image).
// The same applies for a box overflowing the top of region X when that box is also fragmented in region X-1.
paintInfo.context->save();
didClipToRegion = true;
paintInfo.context->clip(toRenderFlowThread(paintInfo.paintContainer)->decorationsClipRectForBoxInRegion(*this, *paintInfo.renderRegion));
}
paintBoxDecorations(paintInfo, paintOffset);
if (didClipToRegion)
paintInfo.context->restore();
}
if (hasColumns() && !paintInfo.paintRootBackgroundOnly())
paintColumnRules(paintInfo, paintOffset);
}
if (paintPhase == PaintPhaseMask && style().visibility() == VISIBLE) {
paintMask(paintInfo, paintOffset);
return;
}
// We're done. We don't bother painting any children.
if (paintPhase == PaintPhaseBlockBackground || paintInfo.paintRootBackgroundOnly())
return;
// Adjust our painting position if we're inside a scrolled layer (e.g., an overflow:auto div).
LayoutPoint scrolledOffset = paintOffset;
if (hasOverflowClip())
scrolledOffset.move(-scrolledContentOffset());
// 2. paint contents
if (paintPhase != PaintPhaseSelfOutline) {
if (hasColumns())
paintColumnContents(paintInfo, scrolledOffset);
else
paintContents(paintInfo, scrolledOffset);
}
// 3. paint selection
// FIXME: Make this work with multi column layouts. For now don't fill gaps.
bool isPrinting = document().printing();
if (!isPrinting && !hasColumns())
paintSelection(paintInfo, scrolledOffset); // Fill in gaps in selection on lines and between blocks.
// 4. paint floats.
if (paintPhase == PaintPhaseFloat || paintPhase == PaintPhaseSelection || paintPhase == PaintPhaseTextClip) {
if (hasColumns())
paintColumnContents(paintInfo, scrolledOffset, true);
else
paintFloats(paintInfo, scrolledOffset, paintPhase == PaintPhaseSelection || paintPhase == PaintPhaseTextClip);
}
// 5. paint outline.
if ((paintPhase == PaintPhaseOutline || paintPhase == PaintPhaseSelfOutline) && hasOutline() && style().visibility() == VISIBLE)
paintOutline(paintInfo, LayoutRect(paintOffset, size()));
// 6. paint continuation outlines.
if ((paintPhase == PaintPhaseOutline || paintPhase == PaintPhaseChildOutlines)) {
RenderInline* inlineCont = inlineElementContinuation();
if (inlineCont && inlineCont->hasOutline() && inlineCont->style().visibility() == VISIBLE) {
RenderInline* inlineRenderer = toRenderInline(inlineCont->element()->renderer());
RenderBlock* cb = containingBlock();
bool inlineEnclosedInSelfPaintingLayer = false;
for (RenderBoxModelObject* box = inlineRenderer; box != cb; box = box->parent()->enclosingBoxModelObject()) {
if (box->hasSelfPaintingLayer()) {
inlineEnclosedInSelfPaintingLayer = true;
break;
}
}
// Do not add continuations for outline painting by our containing block if we are a relative positioned
// anonymous block (i.e. have our own layer), paint them straightaway instead. This is because a block depends on renderers in its continuation table being
// in the same layer.
if (!inlineEnclosedInSelfPaintingLayer && !hasLayer())
cb->addContinuationWithOutline(inlineRenderer);
else if (!inlineRenderer->firstLineBox() || (!inlineEnclosedInSelfPaintingLayer && hasLayer()))
inlineRenderer->paintOutline(paintInfo, paintOffset - locationOffset() + inlineRenderer->containingBlock()->location());
}
paintContinuationOutlines(paintInfo, paintOffset);
}
// 7. paint caret.
// If the caret's node's render object's containing block is this block, and the paint action is PaintPhaseForeground,
// then paint the caret.
if (paintPhase == PaintPhaseForeground) {
paintCaret(paintInfo, paintOffset, CursorCaret);
paintCaret(paintInfo, paintOffset, DragCaret);
}
}
RenderInline* RenderBlock::inlineElementContinuation() const
{
RenderBoxModelObject* continuation = this->continuation();
return continuation && continuation->isInline() ? toRenderInline(continuation) : 0;
}
RenderBlock* RenderBlock::blockElementContinuation() const
{
RenderBoxModelObject* currentContinuation = continuation();
if (!currentContinuation || currentContinuation->isInline())
return 0;
RenderBlock* nextContinuation = toRenderBlock(currentContinuation);
if (nextContinuation->isAnonymousBlock())
return nextContinuation->blockElementContinuation();
return nextContinuation;
}
static ContinuationOutlineTableMap* continuationOutlineTable()
{
DEFINE_STATIC_LOCAL(ContinuationOutlineTableMap, table, ());
return &table;
}
void RenderBlock::addContinuationWithOutline(RenderInline* flow)
{
// We can't make this work if the inline is in a layer. We'll just rely on the broken
// way of painting.
ASSERT(!flow->layer() && !flow->isInlineElementContinuation());
ContinuationOutlineTableMap* table = continuationOutlineTable();
ListHashSet<RenderInline*>* continuations = table->get(this);
if (!continuations) {
continuations = new ListHashSet<RenderInline*>;
table->set(this, adoptPtr(continuations));
}
continuations->add(flow);
}
bool RenderBlock::paintsContinuationOutline(RenderInline* flow)
{
ContinuationOutlineTableMap* table = continuationOutlineTable();
if (table->isEmpty())
return false;
ListHashSet<RenderInline*>* continuations = table->get(this);
if (!continuations)
return false;
return continuations->contains(flow);
}
void RenderBlock::paintContinuationOutlines(PaintInfo& info, const LayoutPoint& paintOffset)
{
ContinuationOutlineTableMap* table = continuationOutlineTable();
if (table->isEmpty())
return;
OwnPtr<ListHashSet<RenderInline*>> continuations = table->take(this);
if (!continuations)
return;
LayoutPoint accumulatedPaintOffset = paintOffset;
// Paint each continuation outline.
ListHashSet<RenderInline*>::iterator end = continuations->end();
for (ListHashSet<RenderInline*>::iterator it = continuations->begin(); it != end; ++it) {
// Need to add in the coordinates of the intervening blocks.
RenderInline* flow = *it;
RenderBlock* block = flow->containingBlock();
for ( ; block && block != this; block = block->containingBlock())
accumulatedPaintOffset.moveBy(block->location());
ASSERT(block);
flow->paintOutline(info, accumulatedPaintOffset);
}
}
bool RenderBlock::shouldPaintSelectionGaps() const
{
return selectionState() != SelectionNone && style().visibility() == VISIBLE && isSelectionRoot();
}
bool RenderBlock::isSelectionRoot() const
{
if (isPseudoElement())
return false;
ASSERT(element() || isAnonymous());
// FIXME: Eventually tables should have to learn how to fill gaps between cells, at least in simple non-spanning cases.
if (isTable())
return false;
if (isBody() || isRoot() || hasOverflowClip()
|| isPositioned() || isFloating()
|| isTableCell() || isInlineBlockOrInlineTable()
|| hasTransform() || hasReflection() || hasMask() || isWritingModeRoot()
|| isRenderFlowThread())
return true;
if (view().selectionStart()) {
Node* startElement = view().selectionStart()->node();
if (startElement && startElement->rootEditableElement() == element())
return true;
}
return false;
}
GapRects RenderBlock::selectionGapRectsForRepaint(const RenderLayerModelObject* repaintContainer)
{
ASSERT(!needsLayout());
if (!shouldPaintSelectionGaps())
return GapRects();
TransformState transformState(TransformState::ApplyTransformDirection, FloatPoint());
mapLocalToContainer(repaintContainer, transformState, ApplyContainerFlip | UseTransforms);
LayoutPoint offsetFromRepaintContainer = roundedLayoutPoint(transformState.mappedPoint());
if (hasOverflowClip())
offsetFromRepaintContainer -= scrolledContentOffset();
LogicalSelectionOffsetCaches cache(*this);
LayoutUnit lastTop = 0;
LayoutUnit lastLeft = logicalLeftSelectionOffset(*this, lastTop, cache);
LayoutUnit lastRight = logicalRightSelectionOffset(*this, lastTop, cache);
return selectionGaps(*this, offsetFromRepaintContainer, IntSize(), lastTop, lastLeft, lastRight, cache);
}
void RenderBlock::paintSelection(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
#if ENABLE(TEXT_SELECTION)
if (shouldPaintSelectionGaps() && paintInfo.phase == PaintPhaseForeground) {
LogicalSelectionOffsetCaches cache(*this);
LayoutUnit lastTop = 0;
LayoutUnit lastLeft = logicalLeftSelectionOffset(*this, lastTop, cache);
LayoutUnit lastRight = logicalRightSelectionOffset(*this, lastTop, cache);
GraphicsContextStateSaver stateSaver(*paintInfo.context);
LayoutRect gapRectsBounds = selectionGaps(*this, paintOffset, LayoutSize(), lastTop, lastLeft, lastRight, cache, &paintInfo);
if (!gapRectsBounds.isEmpty()) {
if (RenderLayer* layer = enclosingLayer()) {
gapRectsBounds.moveBy(-paintOffset);
if (!hasLayer()) {
LayoutRect localBounds(gapRectsBounds);
flipForWritingMode(localBounds);
gapRectsBounds = localToContainerQuad(FloatRect(localBounds), &layer->renderer()).enclosingBoundingBox();
if (layer->renderer().hasOverflowClip())
gapRectsBounds.move(layer->renderBox()->scrolledContentOffset());
}
layer->addBlockSelectionGapsBounds(gapRectsBounds);
}
}
}
#else
UNUSED_PARAM(paintInfo);
UNUSED_PARAM(paintOffset);
#endif
}
static void clipOutPositionedObjects(const PaintInfo* paintInfo, const LayoutPoint& offset, TrackedRendererListHashSet* positionedObjects)
{
if (!positionedObjects)
return;
TrackedRendererListHashSet::const_iterator end = positionedObjects->end();
for (TrackedRendererListHashSet::const_iterator it = positionedObjects->begin(); it != end; ++it) {
RenderBox* r = *it;
paintInfo->context->clipOut(IntRect(offset.x() + r->x(), offset.y() + r->y(), r->width(), r->height()));
}
}
LayoutUnit blockDirectionOffset(RenderBlock& rootBlock, const LayoutSize& offsetFromRootBlock)
{
return rootBlock.isHorizontalWritingMode() ? offsetFromRootBlock.height() : offsetFromRootBlock.width();
}
LayoutUnit inlineDirectionOffset(RenderBlock& rootBlock, const LayoutSize& offsetFromRootBlock)
{
return rootBlock.isHorizontalWritingMode() ? offsetFromRootBlock.width() : offsetFromRootBlock.height();
}
LayoutRect RenderBlock::logicalRectToPhysicalRect(const LayoutPoint& rootBlockPhysicalPosition, const LayoutRect& logicalRect)
{
LayoutRect result;
if (isHorizontalWritingMode())
result = logicalRect;
else
result = LayoutRect(logicalRect.y(), logicalRect.x(), logicalRect.height(), logicalRect.width());
flipForWritingMode(result);
result.moveBy(rootBlockPhysicalPosition);
return result;
}
GapRects RenderBlock::selectionGaps(RenderBlock& rootBlock, const LayoutPoint& rootBlockPhysicalPosition, const LayoutSize& offsetFromRootBlock,
LayoutUnit& lastLogicalTop, LayoutUnit& lastLogicalLeft, LayoutUnit& lastLogicalRight, const LogicalSelectionOffsetCaches& cache, const PaintInfo* paintInfo)
{
// IMPORTANT: Callers of this method that intend for painting to happen need to do a save/restore.
// Clip out floating and positioned objects when painting selection gaps.
if (paintInfo) {
// Note that we don't clip out overflow for positioned objects. We just stick to the border box.
LayoutRect flippedBlockRect(offsetFromRootBlock.width(), offsetFromRootBlock.height(), width(), height());
rootBlock.flipForWritingMode(flippedBlockRect);
flippedBlockRect.moveBy(rootBlockPhysicalPosition);
clipOutPositionedObjects(paintInfo, flippedBlockRect.location(), positionedObjects());
if (isBody() || isRoot()) // The <body> must make sure to examine its containingBlock's positioned objects.
for (RenderBlock* cb = containingBlock(); cb && !cb->isRenderView(); cb = cb->containingBlock())
clipOutPositionedObjects(paintInfo, LayoutPoint(cb->x(), cb->y()), cb->positionedObjects()); // FIXME: Not right for flipped writing modes.
clipOutFloatingObjects(rootBlock, paintInfo, rootBlockPhysicalPosition, offsetFromRootBlock);
}
// FIXME: overflow: auto/scroll regions need more math here, since painting in the border box is different from painting in the padding box (one is scrolled, the other is
// fixed).
GapRects result;
if (!isRenderBlockFlow()) // FIXME: Make multi-column selection gap filling work someday.
return result;
if (hasColumns() || hasTransform() || style().columnSpan()) {
// FIXME: We should learn how to gap fill multiple columns and transforms eventually.
lastLogicalTop = blockDirectionOffset(rootBlock, offsetFromRootBlock) + logicalHeight();
lastLogicalLeft = logicalLeftSelectionOffset(rootBlock, logicalHeight(), cache);
lastLogicalRight = logicalRightSelectionOffset(rootBlock, logicalHeight(), cache);
return result;
}
if (childrenInline())
result = inlineSelectionGaps(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, lastLogicalTop, lastLogicalLeft, lastLogicalRight, cache, paintInfo);
else
result = blockSelectionGaps(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, lastLogicalTop, lastLogicalLeft, lastLogicalRight, cache, paintInfo);
// Go ahead and fill the vertical gap all the way to the bottom of our block if the selection extends past our block.
if (&rootBlock == this && (selectionState() != SelectionBoth && selectionState() != SelectionEnd)) {
result.uniteCenter(blockSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock,
lastLogicalTop, lastLogicalLeft, lastLogicalRight, logicalHeight(), cache, paintInfo));
}
return result;
}
GapRects RenderBlock::inlineSelectionGaps(RenderBlock&, const LayoutPoint&, const LayoutSize&, LayoutUnit&, LayoutUnit&, LayoutUnit&, const LogicalSelectionOffsetCaches&, const PaintInfo*)
{
ASSERT_NOT_REACHED();
return GapRects();
}
GapRects RenderBlock::blockSelectionGaps(RenderBlock& rootBlock, const LayoutPoint& rootBlockPhysicalPosition, const LayoutSize& offsetFromRootBlock,
LayoutUnit& lastLogicalTop, LayoutUnit& lastLogicalLeft, LayoutUnit& lastLogicalRight, const LogicalSelectionOffsetCaches& cache, const PaintInfo* paintInfo)
{
GapRects result;
// Go ahead and jump right to the first block child that contains some selected objects.
RenderBox* curr;
for (curr = firstChildBox(); curr && curr->selectionState() == SelectionNone; curr = curr->nextSiblingBox()) { }
if (!curr)
return result;
LogicalSelectionOffsetCaches childCache(*this, cache);
for (bool sawSelectionEnd = false; curr && !sawSelectionEnd; curr = curr->nextSiblingBox()) {
SelectionState childState = curr->selectionState();
if (childState == SelectionBoth || childState == SelectionEnd)
sawSelectionEnd = true;
if (curr->isFloatingOrOutOfFlowPositioned())
continue; // We must be a normal flow object in order to even be considered.
if (curr->isInFlowPositioned() && curr->hasLayer()) {
// If the relposition offset is anything other than 0, then treat this just like an absolute positioned element.
// Just disregard it completely.
LayoutSize relOffset = curr->layer()->offsetForInFlowPosition();
if (relOffset.width() || relOffset.height())
continue;
}
bool paintsOwnSelection = curr->shouldPaintSelectionGaps() || curr->isTable(); // FIXME: Eventually we won't special-case table like this.
bool fillBlockGaps = paintsOwnSelection || (curr->canBeSelectionLeaf() && childState != SelectionNone);
if (fillBlockGaps) {
// We need to fill the vertical gap above this object.
if (childState == SelectionEnd || childState == SelectionInside) {
// Fill the gap above the object.
result.uniteCenter(blockSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock,
lastLogicalTop, lastLogicalLeft, lastLogicalRight, curr->logicalTop(), cache, paintInfo));
}
// Only fill side gaps for objects that paint their own selection if we know for sure the selection is going to extend all the way *past*
// our object. We know this if the selection did not end inside our object.
if (paintsOwnSelection && (childState == SelectionStart || sawSelectionEnd))
childState = SelectionNone;
// Fill side gaps on this object based off its state.
bool leftGap, rightGap;
getSelectionGapInfo(childState, leftGap, rightGap);
if (leftGap)
result.uniteLeft(logicalLeftSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, this, curr->logicalLeft(), curr->logicalTop(), curr->logicalHeight(), cache, paintInfo));
if (rightGap)
result.uniteRight(logicalRightSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, this, curr->logicalRight(), curr->logicalTop(), curr->logicalHeight(), cache, paintInfo));
// Update lastLogicalTop to be just underneath the object. lastLogicalLeft and lastLogicalRight extend as far as
// they can without bumping into floating or positioned objects. Ideally they will go right up
// to the border of the root selection block.
lastLogicalTop = blockDirectionOffset(rootBlock, offsetFromRootBlock) + curr->logicalBottom();
lastLogicalLeft = logicalLeftSelectionOffset(rootBlock, curr->logicalBottom(), cache);
lastLogicalRight = logicalRightSelectionOffset(rootBlock, curr->logicalBottom(), cache);
} else if (childState != SelectionNone) {
// We must be a block that has some selected object inside it. Go ahead and recur.
result.unite(toRenderBlock(curr)->selectionGaps(rootBlock, rootBlockPhysicalPosition, LayoutSize(offsetFromRootBlock.width() + curr->x(), offsetFromRootBlock.height() + curr->y()),
lastLogicalTop, lastLogicalLeft, lastLogicalRight, childCache, paintInfo));
}
}
return result;
}
LayoutRect RenderBlock::blockSelectionGap(RenderBlock& rootBlock, const LayoutPoint& rootBlockPhysicalPosition, const LayoutSize& offsetFromRootBlock,
LayoutUnit lastLogicalTop, LayoutUnit lastLogicalLeft, LayoutUnit lastLogicalRight, LayoutUnit logicalBottom, const LogicalSelectionOffsetCaches& cache, const PaintInfo* paintInfo)
{
LayoutUnit logicalTop = lastLogicalTop;
LayoutUnit logicalHeight = blockDirectionOffset(rootBlock, offsetFromRootBlock) + logicalBottom - logicalTop;
if (logicalHeight <= 0)
return LayoutRect();
// Get the selection offsets for the bottom of the gap
LayoutUnit logicalLeft = std::max(lastLogicalLeft, logicalLeftSelectionOffset(rootBlock, logicalBottom, cache));
LayoutUnit logicalRight = std::min(lastLogicalRight, logicalRightSelectionOffset(rootBlock, logicalBottom, cache));
LayoutUnit logicalWidth = logicalRight - logicalLeft;
if (logicalWidth <= 0)
return LayoutRect();
LayoutRect gapRect = rootBlock.logicalRectToPhysicalRect(rootBlockPhysicalPosition, LayoutRect(logicalLeft, logicalTop, logicalWidth, logicalHeight));
if (paintInfo)
paintInfo->context->fillRect(pixelSnappedIntRect(gapRect), selectionBackgroundColor(), style().colorSpace());
return gapRect;
}
LayoutRect RenderBlock::logicalLeftSelectionGap(RenderBlock& rootBlock, const LayoutPoint& rootBlockPhysicalPosition, const LayoutSize& offsetFromRootBlock,
RenderObject* selObj, LayoutUnit logicalLeft, LayoutUnit logicalTop, LayoutUnit logicalHeight, const LogicalSelectionOffsetCaches& cache, const PaintInfo* paintInfo)
{
LayoutUnit rootBlockLogicalTop = blockDirectionOffset(rootBlock, offsetFromRootBlock) + logicalTop;
LayoutUnit rootBlockLogicalLeft = std::max(logicalLeftSelectionOffset(rootBlock, logicalTop, cache), logicalLeftSelectionOffset(rootBlock, logicalTop + logicalHeight, cache));
LayoutUnit rootBlockLogicalRight = std::min(inlineDirectionOffset(rootBlock, offsetFromRootBlock) + floorToInt(logicalLeft),
std::min(logicalRightSelectionOffset(rootBlock, logicalTop, cache), logicalRightSelectionOffset(rootBlock, logicalTop + logicalHeight, cache)));
LayoutUnit rootBlockLogicalWidth = rootBlockLogicalRight - rootBlockLogicalLeft;
if (rootBlockLogicalWidth <= 0)
return LayoutRect();
LayoutRect gapRect = rootBlock.logicalRectToPhysicalRect(rootBlockPhysicalPosition, LayoutRect(rootBlockLogicalLeft, rootBlockLogicalTop, rootBlockLogicalWidth, logicalHeight));
if (paintInfo)
paintInfo->context->fillRect(pixelSnappedIntRect(gapRect), selObj->selectionBackgroundColor(), selObj->style().colorSpace());
return gapRect;
}
LayoutRect RenderBlock::logicalRightSelectionGap(RenderBlock& rootBlock, const LayoutPoint& rootBlockPhysicalPosition, const LayoutSize& offsetFromRootBlock,
RenderObject* selObj, LayoutUnit logicalRight, LayoutUnit logicalTop, LayoutUnit logicalHeight, const LogicalSelectionOffsetCaches& cache, const PaintInfo* paintInfo)
{
LayoutUnit rootBlockLogicalTop = blockDirectionOffset(rootBlock, offsetFromRootBlock) + logicalTop;
LayoutUnit rootBlockLogicalLeft = std::max(inlineDirectionOffset(rootBlock, offsetFromRootBlock) + floorToInt(logicalRight),
std::max(logicalLeftSelectionOffset(rootBlock, logicalTop, cache), logicalLeftSelectionOffset(rootBlock, logicalTop + logicalHeight, cache)));
LayoutUnit rootBlockLogicalRight = std::min(logicalRightSelectionOffset(rootBlock, logicalTop, cache), logicalRightSelectionOffset(rootBlock, logicalTop + logicalHeight, cache));
LayoutUnit rootBlockLogicalWidth = rootBlockLogicalRight - rootBlockLogicalLeft;
if (rootBlockLogicalWidth <= 0)
return LayoutRect();
LayoutRect gapRect = rootBlock.logicalRectToPhysicalRect(rootBlockPhysicalPosition, LayoutRect(rootBlockLogicalLeft, rootBlockLogicalTop, rootBlockLogicalWidth, logicalHeight));
if (paintInfo)
paintInfo->context->fillRect(pixelSnappedIntRect(gapRect), selObj->selectionBackgroundColor(), selObj->style().colorSpace());
return gapRect;
}
void RenderBlock::getSelectionGapInfo(SelectionState state, bool& leftGap, bool& rightGap)
{
bool ltr = style().isLeftToRightDirection();
leftGap = (state == RenderObject::SelectionInside) ||
(state == RenderObject::SelectionEnd && ltr) ||
(state == RenderObject::SelectionStart && !ltr);
rightGap = (state == RenderObject::SelectionInside) ||
(state == RenderObject::SelectionStart && ltr) ||
(state == RenderObject::SelectionEnd && !ltr);
}
LayoutUnit RenderBlock::logicalLeftSelectionOffset(RenderBlock& rootBlock, LayoutUnit position, const LogicalSelectionOffsetCaches& cache)
{
LayoutUnit logicalLeft = logicalLeftOffsetForLine(position, false);
if (logicalLeft == logicalLeftOffsetForContent()) {
if (&rootBlock != this) // The border can potentially be further extended by our containingBlock().
return cache.containingBlockInfo(*this).logicalLeftSelectionOffset(rootBlock, position + logicalTop());
return logicalLeft;
}
RenderBlock* cb = this;
const LogicalSelectionOffsetCaches* currentCache = &cache;
while (cb != &rootBlock) {
logicalLeft += cb->logicalLeft();
ASSERT(currentCache);
auto info = currentCache->containingBlockInfo(*cb);
cb = info.block();
currentCache = info.cache();
}
return logicalLeft;
}
LayoutUnit RenderBlock::logicalRightSelectionOffset(RenderBlock& rootBlock, LayoutUnit position, const LogicalSelectionOffsetCaches& cache)
{
LayoutUnit logicalRight = logicalRightOffsetForLine(position, false);
if (logicalRight == logicalRightOffsetForContent()) {
if (&rootBlock != this) // The border can potentially be further extended by our containingBlock().
return cache.containingBlockInfo(*this).logicalRightSelectionOffset(rootBlock, position + logicalTop());
return logicalRight;
}
RenderBlock* cb = this;
const LogicalSelectionOffsetCaches* currentCache = &cache;
while (cb != &rootBlock) {
logicalRight += cb->logicalLeft();
ASSERT(currentCache);
auto info = currentCache->containingBlockInfo(*cb);
cb = info.block();
currentCache = info.cache();
}
return logicalRight;
}
RenderBlock* RenderBlock::blockBeforeWithinSelectionRoot(LayoutSize& offset) const
{
if (isSelectionRoot())
return 0;
const RenderElement* object = this;
RenderObject* sibling;
do {
sibling = object->previousSibling();
while (sibling && (!sibling->isRenderBlock() || toRenderBlock(sibling)->isSelectionRoot()))
sibling = sibling->previousSibling();
offset -= LayoutSize(toRenderBlock(object)->logicalLeft(), toRenderBlock(object)->logicalTop());
object = object->parent();
} while (!sibling && object && object->isRenderBlock() && !toRenderBlock(object)->isSelectionRoot());
if (!sibling)
return 0;
RenderBlock* beforeBlock = toRenderBlock(sibling);
offset += LayoutSize(beforeBlock->logicalLeft(), beforeBlock->logicalTop());
RenderObject* child = beforeBlock->lastChild();
while (child && child->isRenderBlock()) {
beforeBlock = toRenderBlock(child);
offset += LayoutSize(beforeBlock->logicalLeft(), beforeBlock->logicalTop());
child = beforeBlock->lastChild();
}
return beforeBlock;
}
void RenderBlock::insertIntoTrackedRendererMaps(RenderBox& descendant, TrackedDescendantsMap*& descendantsMap, TrackedContainerMap*& containerMap)
{
if (!descendantsMap) {
descendantsMap = new TrackedDescendantsMap;
containerMap = new TrackedContainerMap;
}
TrackedRendererListHashSet* descendantSet = descendantsMap->get(this);
if (!descendantSet) {
descendantSet = new TrackedRendererListHashSet;
descendantsMap->set(this, adoptPtr(descendantSet));
}
bool added = descendantSet->add(&descendant).isNewEntry;
if (!added) {
ASSERT(containerMap->get(&descendant));
ASSERT(containerMap->get(&descendant)->contains(this));
return;
}
HashSet<RenderBlock*>* containerSet = containerMap->get(&descendant);
if (!containerSet) {
containerSet = new HashSet<RenderBlock*>;
containerMap->set(&descendant, adoptPtr(containerSet));
}
ASSERT(!containerSet->contains(this));
containerSet->add(this);
}
void RenderBlock::removeFromTrackedRendererMaps(RenderBox& descendant, TrackedDescendantsMap*& descendantsMap, TrackedContainerMap*& containerMap)
{
if (!descendantsMap)
return;
OwnPtr<HashSet<RenderBlock*>> containerSet = containerMap->take(&descendant);
if (!containerSet)
return;
for (auto it = containerSet->begin(), end = containerSet->end(); it != end; ++it) {
RenderBlock* container = *it;
// FIXME: Disabling this assert temporarily until we fix the layout
// bugs associated with positioned objects not properly cleared from
// their ancestor chain before being moved. See webkit bug 93766.
// ASSERT(descendant->isDescendantOf(container));
TrackedDescendantsMap::iterator descendantsMapIterator = descendantsMap->find(container);
ASSERT(descendantsMapIterator != descendantsMap->end());
if (descendantsMapIterator == descendantsMap->end())
continue;
TrackedRendererListHashSet* descendantSet = descendantsMapIterator->value.get();
ASSERT(descendantSet->contains(&descendant));
descendantSet->remove(&descendant);
if (descendantSet->isEmpty())
descendantsMap->remove(descendantsMapIterator);
}
}
TrackedRendererListHashSet* RenderBlock::positionedObjects() const
{
if (gPositionedDescendantsMap)
return gPositionedDescendantsMap->get(this);
return 0;
}
void RenderBlock::insertPositionedObject(RenderBox& o)
{
ASSERT(!isAnonymousBlock());
if (o.isRenderFlowThread())
return;
insertIntoTrackedRendererMaps(o, gPositionedDescendantsMap, gPositionedContainerMap);
}
void RenderBlock::removePositionedObject(RenderBox& o)
{
removeFromTrackedRendererMaps(o, gPositionedDescendantsMap, gPositionedContainerMap);
}
void RenderBlock::removePositionedObjects(RenderBlock* o, ContainingBlockState containingBlockState)
{
TrackedRendererListHashSet* positionedDescendants = positionedObjects();
if (!positionedDescendants)
return;
Vector<RenderBox*, 16> deadObjects;
for (auto it = positionedDescendants->begin(), end = positionedDescendants->end(); it != end; ++it) {
RenderBox* r = *it;
if (!o || r->isDescendantOf(o)) {
if (containingBlockState == NewContainingBlock)
r->setChildNeedsLayout(MarkOnlyThis);
// It is parent blocks job to add positioned child to positioned objects list of its containing block
// Parent layout needs to be invalidated to ensure this happens.
RenderElement* p = r->parent();
while (p && !p->isRenderBlock())
p = p->parent();
if (p)
p->setChildNeedsLayout();
deadObjects.append(r);
}
}
for (unsigned i = 0; i < deadObjects.size(); i++)
removePositionedObject(*deadObjects.at(i));
}
void RenderBlock::addPercentHeightDescendant(RenderBox& descendant)
{
insertIntoTrackedRendererMaps(descendant, gPercentHeightDescendantsMap, gPercentHeightContainerMap);
}
void RenderBlock::removePercentHeightDescendant(RenderBox& descendant)
{
removeFromTrackedRendererMaps(descendant, gPercentHeightDescendantsMap, gPercentHeightContainerMap);
}
TrackedRendererListHashSet* RenderBlock::percentHeightDescendants() const
{
return gPercentHeightDescendantsMap ? gPercentHeightDescendantsMap->get(this) : 0;
}
bool RenderBlock::hasPercentHeightContainerMap()
{
return gPercentHeightContainerMap;
}
bool RenderBlock::hasPercentHeightDescendant(RenderBox& descendant)
{
// We don't null check gPercentHeightContainerMap since the caller
// already ensures this and we need to call this function on every
// descendant in clearPercentHeightDescendantsFrom().
ASSERT(gPercentHeightContainerMap);
return gPercentHeightContainerMap->contains(&descendant);
}
void RenderBlock::removePercentHeightDescendantIfNeeded(RenderBox& descendant)
{
// We query the map directly, rather than looking at style's
// logicalHeight()/logicalMinHeight()/logicalMaxHeight() since those
// can change with writing mode/directional changes.
if (!hasPercentHeightContainerMap())
return;
if (!hasPercentHeightDescendant(descendant))
return;
removePercentHeightDescendant(descendant);
}
void RenderBlock::clearPercentHeightDescendantsFrom(RenderBox& parent)
{
ASSERT(gPercentHeightContainerMap);
for (RenderObject* curr = parent.firstChild(); curr; curr = curr->nextInPreOrder(&parent)) {
if (!curr->isBox())
continue;
RenderBox& box = toRenderBox(*curr);
if (!hasPercentHeightDescendant(box))
continue;
removePercentHeightDescendant(box);
}
}
LayoutUnit RenderBlock::textIndentOffset() const
{
LayoutUnit cw = 0;
if (style().textIndent().isPercent())
cw = containingBlock()->availableLogicalWidth();
return minimumValueForLength(style().textIndent(), cw);
}
LayoutUnit RenderBlock::logicalLeftOffsetForContent(RenderRegion* region) const
{
LayoutUnit logicalLeftOffset = style().isHorizontalWritingMode() ? borderLeft() + paddingLeft() : borderTop() + paddingTop();
if (!region)
return logicalLeftOffset;
LayoutRect boxRect = borderBoxRectInRegion(region);
return logicalLeftOffset + (isHorizontalWritingMode() ? boxRect.x() : boxRect.y());
}
LayoutUnit RenderBlock::logicalRightOffsetForContent(RenderRegion* region) const
{
LayoutUnit logicalRightOffset = style().isHorizontalWritingMode() ? borderLeft() + paddingLeft() : borderTop() + paddingTop();
logicalRightOffset += availableLogicalWidth();
if (!region)
return logicalRightOffset;
LayoutRect boxRect = borderBoxRectInRegion(region);
return logicalRightOffset - (logicalWidth() - (isHorizontalWritingMode() ? boxRect.maxX() : boxRect.maxY()));
}
LayoutUnit RenderBlock::adjustLogicalLeftOffsetForLine(LayoutUnit offsetFromFloats, bool applyTextIndent) const
{
LayoutUnit left = offsetFromFloats;
if (applyTextIndent && style().isLeftToRightDirection())
left += textIndentOffset();
if (style().lineAlign() == LineAlignNone)
return left;
// Push in our left offset so that it is aligned with the character grid.
LayoutState* layoutState = view().layoutState();
if (!layoutState)
return left;
RenderBlock* lineGrid = layoutState->lineGrid();
if (!lineGrid || lineGrid->style().writingMode() != style().writingMode())
return left;
// FIXME: Should letter-spacing apply? This is complicated since it doesn't apply at the edge?
float maxCharWidth = lineGrid->style().font().primaryFont()->maxCharWidth();
if (!maxCharWidth)
return left;
LayoutUnit lineGridOffset = lineGrid->isHorizontalWritingMode() ? layoutState->lineGridOffset().width(): layoutState->lineGridOffset().height();
LayoutUnit layoutOffset = lineGrid->isHorizontalWritingMode() ? layoutState->layoutOffset().width() : layoutState->layoutOffset().height();
// Push in to the nearest character width (truncated so that we pixel snap left).
// FIXME: Should be patched when subpixel layout lands, since this calculation doesn't have to pixel snap
// any more (https://bugs.webkit.org/show_bug.cgi?id=79946).
// FIXME: This is wrong for RTL (https://bugs.webkit.org/show_bug.cgi?id=79945).
// FIXME: This doesn't work with columns or regions (https://bugs.webkit.org/show_bug.cgi?id=79942).
// FIXME: This doesn't work when the inline position of the object isn't set ahead of time.
// FIXME: Dynamic changes to the font or to the inline position need to result in a deep relayout.
// (https://bugs.webkit.org/show_bug.cgi?id=79944)
float remainder = fmodf(maxCharWidth - fmodf(left + layoutOffset - lineGridOffset, maxCharWidth), maxCharWidth);
left += remainder;
return left;
}
LayoutUnit RenderBlock::adjustLogicalRightOffsetForLine(LayoutUnit offsetFromFloats, bool applyTextIndent) const
{
LayoutUnit right = offsetFromFloats;
if (applyTextIndent && !style().isLeftToRightDirection())
right -= textIndentOffset();
if (style().lineAlign() == LineAlignNone)
return right;
// Push in our right offset so that it is aligned with the character grid.
LayoutState* layoutState = view().layoutState();
if (!layoutState)
return right;
RenderBlock* lineGrid = layoutState->lineGrid();
if (!lineGrid || lineGrid->style().writingMode() != style().writingMode())
return right;
// FIXME: Should letter-spacing apply? This is complicated since it doesn't apply at the edge?
float maxCharWidth = lineGrid->style().font().primaryFont()->maxCharWidth();
if (!maxCharWidth)
return right;
LayoutUnit lineGridOffset = lineGrid->isHorizontalWritingMode() ? layoutState->lineGridOffset().width(): layoutState->lineGridOffset().height();
LayoutUnit layoutOffset = lineGrid->isHorizontalWritingMode() ? layoutState->layoutOffset().width() : layoutState->layoutOffset().height();
// Push in to the nearest character width (truncated so that we pixel snap right).
// FIXME: Should be patched when subpixel layout lands, since this calculation doesn't have to pixel snap
// any more (https://bugs.webkit.org/show_bug.cgi?id=79946).
// FIXME: This is wrong for RTL (https://bugs.webkit.org/show_bug.cgi?id=79945).
// FIXME: This doesn't work with columns or regions (https://bugs.webkit.org/show_bug.cgi?id=79942).
// FIXME: This doesn't work when the inline position of the object isn't set ahead of time.
// FIXME: Dynamic changes to the font or to the inline position need to result in a deep relayout.
// (https://bugs.webkit.org/show_bug.cgi?id=79944)
float remainder = fmodf(fmodf(right + layoutOffset - lineGridOffset, maxCharWidth), maxCharWidth);
right -= ceilf(remainder);
return right;
}
bool RenderBlock::avoidsFloats() const
{
// Floats can't intrude into our box if we have a non-auto column count or width.
return RenderBox::avoidsFloats() || !style().hasAutoColumnCount() || !style().hasAutoColumnWidth();
}
bool RenderBlock::isPointInOverflowControl(HitTestResult& result, const LayoutPoint& locationInContainer, const LayoutPoint& accumulatedOffset)
{
if (!scrollsOverflow())
return false;
return layer()->hitTestOverflowControls(result, roundedIntPoint(locationInContainer - toLayoutSize(accumulatedOffset)));
}
Node* RenderBlock::nodeForHitTest() const
{
// If we are in the margins of block elements that are part of a
// continuation we're actually still inside the enclosing element
// that was split. Use the appropriate inner node.
if (isRenderView())
return &document();
return isAnonymousBlockContinuation() ? continuation()->element() : element();
}
bool RenderBlock::nodeAtPoint(const HitTestRequest& request, HitTestResult& result, const HitTestLocation& locationInContainer, const LayoutPoint& accumulatedOffset, HitTestAction hitTestAction)
{
LayoutPoint adjustedLocation(accumulatedOffset + location());
LayoutSize localOffset = toLayoutSize(adjustedLocation);
if (!isRenderView()) {
// Check if we need to do anything at all.
LayoutRect overflowBox = visualOverflowRect();
flipForWritingMode(overflowBox);
overflowBox.moveBy(adjustedLocation);
if (!locationInContainer.intersects(overflowBox))
return false;
}
if ((hitTestAction == HitTestBlockBackground || hitTestAction == HitTestChildBlockBackground) && isPointInOverflowControl(result, locationInContainer.point(), adjustedLocation)) {
updateHitTestResult(result, locationInContainer.point() - localOffset);
// FIXME: isPointInOverflowControl() doesn't handle rect-based tests yet.
if (!result.addNodeToRectBasedTestResult(nodeForHitTest(), request, locationInContainer))
return true;
}
// If we have clipping, then we can't have any spillout.
bool useOverflowClip = hasOverflowClip() && !hasSelfPaintingLayer();
bool useClip = (hasControlClip() || useOverflowClip);
bool checkChildren = !useClip || (hasControlClip() ? locationInContainer.intersects(controlClipRect(adjustedLocation)) : locationInContainer.intersects(overflowClipRect(adjustedLocation, locationInContainer.region(), IncludeOverlayScrollbarSize)));
if (checkChildren) {
// Hit test descendants first.
LayoutSize scrolledOffset(localOffset);
if (hasOverflowClip())
scrolledOffset -= scrolledContentOffset();
// Hit test contents if we don't have columns.
if (!hasColumns()) {
if (hitTestContents(request, result, locationInContainer, toLayoutPoint(scrolledOffset), hitTestAction)) {
updateHitTestResult(result, flipForWritingMode(locationInContainer.point() - localOffset));
return true;
}
if (hitTestAction == HitTestFloat && hitTestFloats(request, result, locationInContainer, toLayoutPoint(scrolledOffset)))
return true;
} else if (hitTestColumns(request, result, locationInContainer, toLayoutPoint(scrolledOffset), hitTestAction)) {
updateHitTestResult(result, flipForWritingMode(locationInContainer.point() - localOffset));
return true;
}
}
// Check if the point is outside radii.
if (!isRenderView() && style().hasBorderRadius()) {
LayoutRect borderRect = borderBoxRect();
borderRect.moveBy(adjustedLocation);
RoundedRect border = style().getRoundedBorderFor(borderRect, &view());
if (!locationInContainer.intersects(border))
return false;
}
// Now hit test our background
if (hitTestAction == HitTestBlockBackground || hitTestAction == HitTestChildBlockBackground) {
LayoutRect boundsRect(adjustedLocation, size());
if (visibleToHitTesting() && locationInContainer.intersects(boundsRect)) {
updateHitTestResult(result, flipForWritingMode(locationInContainer.point() - localOffset));
if (!result.addNodeToRectBasedTestResult(nodeForHitTest(), request, locationInContainer, boundsRect))
return true;
}
}
return false;
}
class ColumnRectIterator {
WTF_MAKE_NONCOPYABLE(ColumnRectIterator);
public:
ColumnRectIterator(const RenderBlock& block)
: m_block(block)
, m_colInfo(block.columnInfo())
, m_direction(m_block.style().isFlippedBlocksWritingMode() ? 1 : -1)
, m_isHorizontal(block.isHorizontalWritingMode())
, m_logicalLeft(block.logicalLeftOffsetForContent())
{
int colCount = m_colInfo->columnCount();
m_colIndex = colCount - 1;
m_currLogicalTopOffset = m_block.initialBlockOffsetForPainting();
m_currLogicalTopOffset = colCount * m_block.blockDeltaForPaintingNextColumn();
update();
}
void advance()
{
ASSERT(hasMore());
m_colIndex--;
update();
}
LayoutRect columnRect() const { return m_colRect; }
bool hasMore() const { return m_colIndex >= 0; }
void adjust(LayoutSize& offset) const
{
LayoutUnit currLogicalLeftOffset = (m_isHorizontal ? m_colRect.x() : m_colRect.y()) - m_logicalLeft;
offset += m_isHorizontal ? LayoutSize(currLogicalLeftOffset, m_currLogicalTopOffset) : LayoutSize(m_currLogicalTopOffset, currLogicalLeftOffset);
}
private:
void update()
{
if (m_colIndex < 0)
return;
m_colRect = m_block.columnRectAt(const_cast<ColumnInfo*>(m_colInfo), m_colIndex);
m_block.flipForWritingMode(m_colRect);
m_currLogicalTopOffset -= m_block.blockDeltaForPaintingNextColumn();
}
const RenderBlock& m_block;
const ColumnInfo* const m_colInfo;
const int m_direction;
const bool m_isHorizontal;
const LayoutUnit m_logicalLeft;
int m_colIndex;
LayoutUnit m_currLogicalTopOffset;
LayoutRect m_colRect;
};
bool RenderBlock::hitTestColumns(const HitTestRequest& request, HitTestResult& result, const HitTestLocation& locationInContainer, const LayoutPoint& accumulatedOffset, HitTestAction hitTestAction)
{
// We need to do multiple passes, breaking up our hit testing into strips.
if (!hasColumns())
return false;
for (ColumnRectIterator it(*this); it.hasMore(); it.advance()) {
LayoutRect hitRect = locationInContainer.boundingBox();
LayoutRect colRect = it.columnRect();
colRect.moveBy(accumulatedOffset);
if (locationInContainer.intersects(colRect)) {
// The point is inside this column.
// Adjust accumulatedOffset to change where we hit test.
LayoutSize offset;
it.adjust(offset);
LayoutPoint finalLocation = accumulatedOffset + offset;
if (!result.isRectBasedTest() || colRect.contains(hitRect))
return hitTestContents(request, result, locationInContainer, finalLocation, hitTestAction) || (hitTestAction == HitTestFloat && hitTestFloats(request, result, locationInContainer, finalLocation));
hitTestContents(request, result, locationInContainer, finalLocation, hitTestAction);
}
}
return false;
}
void RenderBlock::adjustForColumnRect(LayoutSize& offset, const LayoutPoint& locationInContainer) const
{
for (ColumnRectIterator it(*this); it.hasMore(); it.advance()) {
LayoutRect colRect = it.columnRect();
if (colRect.contains(locationInContainer)) {
it.adjust(offset);
return;
}
}
}
bool RenderBlock::hitTestContents(const HitTestRequest& request, HitTestResult& result, const HitTestLocation& locationInContainer, const LayoutPoint& accumulatedOffset, HitTestAction hitTestAction)
{
if (childrenInline() && !isTable())
return hitTestInlineChildren(request, result, locationInContainer, accumulatedOffset, hitTestAction);
// Hit test our children.
HitTestAction childHitTest = hitTestAction;
if (hitTestAction == HitTestChildBlockBackgrounds)
childHitTest = HitTestChildBlockBackground;
for (auto child = lastChildBox(); child; child = child->previousSiblingBox()) {
LayoutPoint childPoint = flipForWritingModeForChild(child, accumulatedOffset);
if (!child->hasSelfPaintingLayer() && !child->isFloating() && child->nodeAtPoint(request, result, locationInContainer, childPoint, childHitTest))
return true;
}
return false;
}
static inline bool isEditingBoundary(RenderElement* ancestor, RenderObject& child)
{
ASSERT(!ancestor || ancestor->nonPseudoElement());
ASSERT(child.nonPseudoNode());
return !ancestor || !ancestor->parent() || (ancestor->hasLayer() && ancestor->parent()->isRenderView())
|| ancestor->nonPseudoElement()->rendererIsEditable() == child.nonPseudoNode()->rendererIsEditable();
}
// FIXME: This function should go on RenderObject as an instance method. Then
// all cases in which positionForPoint recurs could call this instead to
// prevent crossing editable boundaries. This would require many tests.
VisiblePosition positionForPointRespectingEditingBoundaries(RenderBlock& parent, RenderBox& child, const LayoutPoint& pointInParentCoordinates)
{
LayoutPoint childLocation = child.location();
if (child.isInFlowPositioned())
childLocation += child.offsetForInFlowPosition();
// FIXME: This is wrong if the child's writing-mode is different from the parent's.
LayoutPoint pointInChildCoordinates(toLayoutPoint(pointInParentCoordinates - childLocation));
// If this is an anonymous renderer, we just recur normally
Element* childElement= child.nonPseudoElement();
if (!childElement)
return child.positionForPoint(pointInChildCoordinates);
// Otherwise, first make sure that the editability of the parent and child agree.
// If they don't agree, then we return a visible position just before or after the child
RenderElement* ancestor = &parent;
while (ancestor && !ancestor->nonPseudoElement())
ancestor = ancestor->parent();
// If we can't find an ancestor to check editability on, or editability is unchanged, we recur like normal
if (isEditingBoundary(ancestor, child))
return child.positionForPoint(pointInChildCoordinates);
// Otherwise return before or after the child, depending on if the click was to the logical left or logical right of the child
LayoutUnit childMiddle = parent.logicalWidthForChild(child) / 2;
LayoutUnit logicalLeft = parent.isHorizontalWritingMode() ? pointInChildCoordinates.x() : pointInChildCoordinates.y();
if (logicalLeft < childMiddle)
return ancestor->createVisiblePosition(childElement->nodeIndex(), DOWNSTREAM);
return ancestor->createVisiblePosition(childElement->nodeIndex() + 1, UPSTREAM);
}
VisiblePosition RenderBlock::positionForPointWithInlineChildren(const LayoutPoint&)
{
ASSERT_NOT_REACHED();
return VisiblePosition();
}
static inline bool isChildHitTestCandidate(const RenderBox& box)
{
return box.height() && box.style().visibility() == VISIBLE && !box.isFloatingOrOutOfFlowPositioned();
}
// Valid candidates in a FlowThread must be rendered by the region.
static inline bool isChildHitTestCandidate(const RenderBox& box, RenderRegion* region, const LayoutPoint& point)
{
if (!isChildHitTestCandidate(box))
return false;
if (!region)
return true;
const RenderBlock& block = box.isRenderBlock() ? toRenderBlock(box) : *box.containingBlock();
return block.regionAtBlockOffset(point.y()) == region;
}
VisiblePosition RenderBlock::positionForPoint(const LayoutPoint& point)
{
if (isTable())
return RenderBox::positionForPoint(point);
if (isReplaced()) {
// FIXME: This seems wrong when the object's writing-mode doesn't match the line's writing-mode.
LayoutUnit pointLogicalLeft = isHorizontalWritingMode() ? point.x() : point.y();
LayoutUnit pointLogicalTop = isHorizontalWritingMode() ? point.y() : point.x();
if (pointLogicalTop < 0 || (pointLogicalTop < logicalHeight() && pointLogicalLeft < 0))
return createVisiblePosition(caretMinOffset(), DOWNSTREAM);
if (pointLogicalTop >= logicalHeight() || (pointLogicalTop >= 0 && pointLogicalLeft >= logicalWidth()))
return createVisiblePosition(caretMaxOffset(), DOWNSTREAM);
}
LayoutPoint pointInContents = point;
offsetForContents(pointInContents);
LayoutPoint pointInLogicalContents(pointInContents);
if (!isHorizontalWritingMode())
pointInLogicalContents = pointInLogicalContents.transposedPoint();
if (childrenInline())
return positionForPointWithInlineChildren(pointInLogicalContents);
RenderRegion* region = regionAtBlockOffset(pointInLogicalContents.y());
RenderBox* lastCandidateBox = lastChildBox();
while (lastCandidateBox && !isChildHitTestCandidate(*lastCandidateBox, region, pointInLogicalContents))
lastCandidateBox = lastCandidateBox->previousSiblingBox();
bool blocksAreFlipped = style().isFlippedBlocksWritingMode();
if (lastCandidateBox) {
if (pointInLogicalContents.y() > logicalTopForChild(*lastCandidateBox)
|| (!blocksAreFlipped && pointInLogicalContents.y() == logicalTopForChild(*lastCandidateBox)))
return positionForPointRespectingEditingBoundaries(*this, *lastCandidateBox, pointInContents);
for (auto childBox = firstChildBox(); childBox; childBox = childBox->nextSiblingBox()) {
if (!isChildHitTestCandidate(*childBox, region, pointInLogicalContents))
continue;
LayoutUnit childLogicalBottom = logicalTopForChild(*childBox) + logicalHeightForChild(*childBox);
// We hit child if our click is above the bottom of its padding box (like IE6/7 and FF3).
if (isChildHitTestCandidate(*childBox, region, pointInLogicalContents) && (pointInLogicalContents.y() < childLogicalBottom
|| (blocksAreFlipped && pointInLogicalContents.y() == childLogicalBottom)))
return positionForPointRespectingEditingBoundaries(*this, *childBox, pointInContents);
}
}
// We only get here if there are no hit test candidate children below the click.
return RenderBox::positionForPoint(point);
}
void RenderBlock::offsetForContents(LayoutPoint& offset) const
{
offset = flipForWritingMode(offset);
if (hasOverflowClip())
offset += scrolledContentOffset();
if (hasColumns())
adjustPointToColumnContents(offset);
offset = flipForWritingMode(offset);
}
LayoutUnit RenderBlock::availableLogicalWidth() const
{
// If we have multiple columns, then the available logical width is reduced to our column width.
if (hasColumns())
return desiredColumnWidth();
return RenderBox::availableLogicalWidth();
}
int RenderBlock::columnGap() const
{
if (style().hasNormalColumnGap())
return style().fontDescription().computedPixelSize(); // "1em" is recommended as the normal gap setting. Matches <p> margins.
return static_cast<int>(style().columnGap());
}
void RenderBlock::calcColumnWidth()
{
if (document().regionBasedColumnsEnabled())
return;
// Calculate our column width and column count.
// FIXME: Can overflow on fast/block/float/float-not-removed-from-next-sibling4.html, see https://bugs.webkit.org/show_bug.cgi?id=68744
unsigned desiredColumnCount = 1;
LayoutUnit desiredColumnWidth = contentLogicalWidth();
// For now, we don't support multi-column layouts when printing, since we have to do a lot of work for proper pagination.
if (document().paginated() || (style().hasAutoColumnCount() && style().hasAutoColumnWidth()) || !style().hasInlineColumnAxis()) {
setDesiredColumnCountAndWidth(desiredColumnCount, desiredColumnWidth);
return;
}
LayoutUnit availWidth = desiredColumnWidth;
LayoutUnit colGap = columnGap();
LayoutUnit colWidth = std::max<LayoutUnit>(1, LayoutUnit(style().columnWidth()));
int colCount = std::max<int>(1, style().columnCount());
if (style().hasAutoColumnWidth() && !style().hasAutoColumnCount()) {
desiredColumnCount = colCount;
desiredColumnWidth = std::max<LayoutUnit>(0, (availWidth - ((desiredColumnCount - 1) * colGap)) / desiredColumnCount);
} else if (!style().hasAutoColumnWidth() && style().hasAutoColumnCount()) {
desiredColumnCount = std::max<LayoutUnit>(1, (availWidth + colGap) / (colWidth + colGap));
desiredColumnWidth = ((availWidth + colGap) / desiredColumnCount) - colGap;
} else {
desiredColumnCount = std::max<LayoutUnit>(std::min<LayoutUnit>(colCount, (availWidth + colGap) / (colWidth + colGap)), 1);
desiredColumnWidth = ((availWidth + colGap) / desiredColumnCount) - colGap;
}
setDesiredColumnCountAndWidth(desiredColumnCount, desiredColumnWidth);
}
bool RenderBlock::requiresColumns(int desiredColumnCount) const
{
// If overflow-y is set to paged-x or paged-y on the body or html element, we'll handle the paginating
// in the RenderView instead.
bool isPaginated = (style().overflowY() == OPAGEDX || style().overflowY() == OPAGEDY) && !(isRoot() || isBody());
return firstChild()
&& (desiredColumnCount != 1 || !style().hasAutoColumnWidth() || !style().hasInlineColumnAxis() || isPaginated)
&& !firstChild()->isAnonymousColumnsBlock()
&& !firstChild()->isAnonymousColumnSpanBlock();
}
void RenderBlock::setDesiredColumnCountAndWidth(int count, LayoutUnit width)
{
bool destroyColumns = !requiresColumns(count);
if (destroyColumns) {
if (hasColumns()) {
gColumnInfoMap->take(this);
setHasColumns(false);
}
} else {
ColumnInfo* info;
if (hasColumns())
info = gColumnInfoMap->get(this);
else {
if (!gColumnInfoMap)
gColumnInfoMap = new ColumnInfoMap;
info = new ColumnInfo;
gColumnInfoMap->add(this, adoptPtr(info));
setHasColumns(true);
}
info->setDesiredColumnCount(count);
info->setDesiredColumnWidth(width);
info->setProgressionAxis(style().hasInlineColumnAxis() ? ColumnInfo::InlineAxis : ColumnInfo::BlockAxis);
info->setProgressionIsReversed(style().columnProgression() == ReverseColumnProgression);
}
}
void RenderBlock::updateColumnInfoFromStyle(RenderStyle* style)
{
if (!hasColumns())
return;
ColumnInfo* info = gColumnInfoMap->get(this);
bool needsLayout = false;
ColumnInfo::Axis oldAxis = info->progressionAxis();
ColumnInfo::Axis newAxis = style->hasInlineColumnAxis() ? ColumnInfo::InlineAxis : ColumnInfo::BlockAxis;
if (oldAxis != newAxis) {
info->setProgressionAxis(newAxis);
needsLayout = true;
}
bool oldProgressionIsReversed = info->progressionIsReversed();
bool newProgressionIsReversed = style->columnProgression() == ReverseColumnProgression;
if (oldProgressionIsReversed != newProgressionIsReversed) {
info->setProgressionIsReversed(newProgressionIsReversed);
needsLayout = true;
}
if (needsLayout)
setNeedsLayoutAndPrefWidthsRecalc();
}
LayoutUnit RenderBlock::desiredColumnWidth() const
{
if (!hasColumns())
return contentLogicalWidth();
return gColumnInfoMap->get(this)->desiredColumnWidth();
}
unsigned RenderBlock::desiredColumnCount() const
{
if (!hasColumns())
return 1;
return gColumnInfoMap->get(this)->desiredColumnCount();
}
ColumnInfo* RenderBlock::columnInfo() const
{
if (!hasColumns())
return 0;
return gColumnInfoMap->get(this);
}
unsigned RenderBlock::columnCount(ColumnInfo* colInfo) const
{
ASSERT(hasColumns());
ASSERT(gColumnInfoMap->get(this) == colInfo);
return colInfo->columnCount();
}
LayoutRect RenderBlock::columnRectAt(ColumnInfo* colInfo, unsigned index) const
{
ASSERT(hasColumns() && gColumnInfoMap->get(this) == colInfo);
// Compute the appropriate rect based off our information.
LayoutUnit colLogicalWidth = colInfo->desiredColumnWidth();
LayoutUnit colLogicalHeight = colInfo->columnHeight();
LayoutUnit colLogicalTop = borderAndPaddingBefore();
LayoutUnit colLogicalLeft = logicalLeftOffsetForContent();
LayoutUnit colGap = columnGap();
if (colInfo->progressionAxis() == ColumnInfo::InlineAxis) {
if (style().isLeftToRightDirection() ^ colInfo->progressionIsReversed())
colLogicalLeft += index * (colLogicalWidth + colGap);
else
colLogicalLeft += contentLogicalWidth() - colLogicalWidth - index * (colLogicalWidth + colGap);
} else {
if (!colInfo->progressionIsReversed())
colLogicalTop += index * (colLogicalHeight + colGap);
else
colLogicalTop += contentLogicalHeight() - colLogicalHeight - index * (colLogicalHeight + colGap);
}
if (isHorizontalWritingMode())
return LayoutRect(colLogicalLeft, colLogicalTop, colLogicalWidth, colLogicalHeight);
return LayoutRect(colLogicalTop, colLogicalLeft, colLogicalHeight, colLogicalWidth);
}
void RenderBlock::adjustPointToColumnContents(LayoutPoint& point) const
{
// Just bail if we have no columns.
if (!hasColumns())
return;
ColumnInfo* colInfo = columnInfo();
if (!columnCount(colInfo))
return;
// Determine which columns we intersect.
LayoutUnit colGap = columnGap();
LayoutUnit halfColGap = colGap / 2;
LayoutPoint columnPoint(columnRectAt(colInfo, 0).location());
LayoutUnit logicalOffset = 0;
for (unsigned i = 0; i < colInfo->columnCount(); i++) {
// Add in half the column gap to the left and right of the rect.
LayoutRect colRect = columnRectAt(colInfo, i);
flipForWritingMode(colRect);
if (isHorizontalWritingMode() == (colInfo->progressionAxis() == ColumnInfo::InlineAxis)) {
LayoutRect gapAndColumnRect(colRect.x() - halfColGap, colRect.y(), colRect.width() + colGap, colRect.height());
if (point.x() >= gapAndColumnRect.x() && point.x() < gapAndColumnRect.maxX()) {
if (colInfo->progressionAxis() == ColumnInfo::InlineAxis) {
// FIXME: The clamping that follows is not completely right for right-to-left
// content.
// Clamp everything above the column to its top left.
if (point.y() < gapAndColumnRect.y())
point = gapAndColumnRect.location();
// Clamp everything below the column to the next column's top left. If there is
// no next column, this still maps to just after this column.
else if (point.y() >= gapAndColumnRect.maxY()) {
point = gapAndColumnRect.location();
point.move(0, gapAndColumnRect.height());
}
} else {
if (point.x() < colRect.x())
point.setX(colRect.x());
else if (point.x() >= colRect.maxX())
point.setX(colRect.maxX() - 1);
}
// We're inside the column. Translate the x and y into our column coordinate space.
if (colInfo->progressionAxis() == ColumnInfo::InlineAxis)
point.move(columnPoint.x() - colRect.x(), (!style().isFlippedBlocksWritingMode() ? logicalOffset : -logicalOffset));
else
point.move((!style().isFlippedBlocksWritingMode() ? logicalOffset : -logicalOffset) - colRect.x() + borderLeft() + paddingLeft(), 0);
return;
}
// Move to the next position.
logicalOffset += colInfo->progressionAxis() == ColumnInfo::InlineAxis ? colRect.height() : colRect.width();
} else {
LayoutRect gapAndColumnRect(colRect.x(), colRect.y() - halfColGap, colRect.width(), colRect.height() + colGap);
if (point.y() >= gapAndColumnRect.y() && point.y() < gapAndColumnRect.maxY()) {
if (colInfo->progressionAxis() == ColumnInfo::InlineAxis) {
// FIXME: The clamping that follows is not completely right for right-to-left
// content.
// Clamp everything above the column to its top left.
if (point.x() < gapAndColumnRect.x())
point = gapAndColumnRect.location();
// Clamp everything below the column to the next column's top left. If there is
// no next column, this still maps to just after this column.
else if (point.x() >= gapAndColumnRect.maxX()) {
point = gapAndColumnRect.location();
point.move(gapAndColumnRect.width(), 0);
}
} else {
if (point.y() < colRect.y())
point.setY(colRect.y());
else if (point.y() >= colRect.maxY())
point.setY(colRect.maxY() - 1);
}
// We're inside the column. Translate the x and y into our column coordinate space.
if (colInfo->progressionAxis() == ColumnInfo::InlineAxis)
point.move((!style().isFlippedBlocksWritingMode() ? logicalOffset : -logicalOffset), columnPoint.y() - colRect.y());
else
point.move(0, (!style().isFlippedBlocksWritingMode() ? logicalOffset : -logicalOffset) - colRect.y() + borderTop() + paddingTop());
return;
}
// Move to the next position.
logicalOffset += colInfo->progressionAxis() == ColumnInfo::InlineAxis ? colRect.width() : colRect.height();
}
}
}
void RenderBlock::adjustRectForColumns(LayoutRect& r) const
{
// Just bail if we have no columns.
if (!hasColumns())
return;
ColumnInfo* colInfo = columnInfo();
// Determine which columns we intersect.
unsigned colCount = columnCount(colInfo);
if (!colCount)
return;
// Begin with a result rect that is empty.
LayoutRect result;
bool isHorizontal = isHorizontalWritingMode();
LayoutUnit beforeBorderPadding = borderAndPaddingBefore();
LayoutUnit colHeight = colInfo->columnHeight();
if (!colHeight)
return;
LayoutUnit startOffset = std::max(isHorizontal ? r.y() : r.x(), beforeBorderPadding);
LayoutUnit endOffset = std::max(std::min<LayoutUnit>(isHorizontal ? r.maxY() : r.maxX(), beforeBorderPadding + colCount * colHeight), beforeBorderPadding);
// FIXME: Can overflow on fast/block/float/float-not-removed-from-next-sibling4.html, see https://bugs.webkit.org/show_bug.cgi?id=68744
unsigned startColumn = (startOffset - beforeBorderPadding) / colHeight;
unsigned endColumn = (endOffset - beforeBorderPadding) / colHeight;
if (startColumn == endColumn) {
// The rect is fully contained within one column. Adjust for our offsets
// and repaint only that portion.
LayoutUnit logicalLeftOffset = logicalLeftOffsetForContent();
LayoutRect colRect = columnRectAt(colInfo, startColumn);
LayoutRect repaintRect = r;
if (colInfo->progressionAxis() == ColumnInfo::InlineAxis) {
if (isHorizontal)
repaintRect.move(colRect.x() - logicalLeftOffset, - static_cast<int>(startColumn) * colHeight);
else
repaintRect.move(- static_cast<int>(startColumn) * colHeight, colRect.y() - logicalLeftOffset);
} else {
if (isHorizontal)
repaintRect.move(0, colRect.y() - startColumn * colHeight - beforeBorderPadding);
else
repaintRect.move(colRect.x() - startColumn * colHeight - beforeBorderPadding, 0);
}
repaintRect.intersect(colRect);
result.unite(repaintRect);
} else {
// We span multiple columns. We can just unite the start and end column to get the final
// repaint rect.
result.unite(columnRectAt(colInfo, startColumn));
result.unite(columnRectAt(colInfo, endColumn));
}
r = result;
}
LayoutPoint RenderBlock::flipForWritingModeIncludingColumns(const LayoutPoint& point) const
{
ASSERT(hasColumns());
if (!hasColumns() || !style().isFlippedBlocksWritingMode())
return point;
ColumnInfo* colInfo = columnInfo();
LayoutUnit columnLogicalHeight = colInfo->columnHeight();
LayoutUnit expandedLogicalHeight = borderAndPaddingBefore() + columnCount(colInfo) * columnLogicalHeight + borderAndPaddingAfter() + scrollbarLogicalHeight();
if (isHorizontalWritingMode())
return LayoutPoint(point.x(), expandedLogicalHeight - point.y());
return LayoutPoint(expandedLogicalHeight - point.x(), point.y());
}
void RenderBlock::adjustStartEdgeForWritingModeIncludingColumns(LayoutRect& rect) const
{
ASSERT(hasColumns());
if (!hasColumns() || !style().isFlippedBlocksWritingMode())
return;
ColumnInfo* colInfo = columnInfo();
LayoutUnit columnLogicalHeight = colInfo->columnHeight();
LayoutUnit expandedLogicalHeight = borderAndPaddingBefore() + columnCount(colInfo) * columnLogicalHeight + borderAndPaddingAfter() + scrollbarLogicalHeight();
if (isHorizontalWritingMode())
rect.setY(expandedLogicalHeight - rect.maxY());
else
rect.setX(expandedLogicalHeight - rect.maxX());
}
void RenderBlock::adjustForColumns(LayoutSize& offset, const LayoutPoint& point) const
{
if (!hasColumns())
return;
ColumnInfo* colInfo = columnInfo();
LayoutUnit logicalLeft = logicalLeftOffsetForContent();
unsigned colCount = columnCount(colInfo);
LayoutUnit colLogicalWidth = colInfo->desiredColumnWidth();
LayoutUnit colLogicalHeight = colInfo->columnHeight();
for (unsigned i = 0; i < colCount; ++i) {
// Compute the edges for a given column in the block progression direction.
LayoutRect sliceRect = LayoutRect(logicalLeft, borderAndPaddingBefore() + i * colLogicalHeight, colLogicalWidth, colLogicalHeight);
if (!isHorizontalWritingMode())
sliceRect = sliceRect.transposedRect();
LayoutUnit logicalOffset = i * colLogicalHeight;
// Now we're in the same coordinate space as the point. See if it is inside the rectangle.
if (isHorizontalWritingMode()) {
if (point.y() >= sliceRect.y() && point.y() < sliceRect.maxY()) {
if (colInfo->progressionAxis() == ColumnInfo::InlineAxis)
offset.expand(columnRectAt(colInfo, i).x() - logicalLeft, -logicalOffset);
else
offset.expand(0, columnRectAt(colInfo, i).y() - logicalOffset - borderAndPaddingBefore());
return;
}
} else {
if (point.x() >= sliceRect.x() && point.x() < sliceRect.maxX()) {
if (colInfo->progressionAxis() == ColumnInfo::InlineAxis)
offset.expand(-logicalOffset, columnRectAt(colInfo, i).y() - logicalLeft);
else
offset.expand(columnRectAt(colInfo, i).x() - logicalOffset - borderAndPaddingBefore(), 0);
return;
}
}
}
}
void RenderBlock::computeIntrinsicLogicalWidths(LayoutUnit& minLogicalWidth, LayoutUnit& maxLogicalWidth) const
{
if (childrenInline()) {
// FIXME: Remove this const_cast.
const_cast<RenderBlock*>(this)->computeInlinePreferredLogicalWidths(minLogicalWidth, maxLogicalWidth);
} else
computeBlockPreferredLogicalWidths(minLogicalWidth, maxLogicalWidth);
maxLogicalWidth = std::max(minLogicalWidth, maxLogicalWidth);
adjustIntrinsicLogicalWidthsForColumns(minLogicalWidth, maxLogicalWidth);
if (!style().autoWrap() && childrenInline()) {
// A horizontal marquee with inline children has no minimum width.
if (layer() && layer()->marquee() && layer()->marquee()->isHorizontal())
minLogicalWidth = 0;
}
if (isTableCell()) {
Length tableCellWidth = toRenderTableCell(this)->styleOrColLogicalWidth();
if (tableCellWidth.isFixed() && tableCellWidth.value() > 0)
maxLogicalWidth = std::max(minLogicalWidth, adjustContentBoxLogicalWidthForBoxSizing(tableCellWidth.value()));
}
int scrollbarWidth = instrinsicScrollbarLogicalWidth();
maxLogicalWidth += scrollbarWidth;
minLogicalWidth += scrollbarWidth;
}
void RenderBlock::computePreferredLogicalWidths()
{
ASSERT(preferredLogicalWidthsDirty());
updateFirstLetter();
m_minPreferredLogicalWidth = 0;
m_maxPreferredLogicalWidth = 0;
const RenderStyle& styleToUse = style();
if (!isTableCell() && styleToUse.logicalWidth().isFixed() && styleToUse.logicalWidth().value() >= 0
&& !(isDeprecatedFlexItem() && !styleToUse.logicalWidth().intValue()))
m_minPreferredLogicalWidth = m_maxPreferredLogicalWidth = adjustContentBoxLogicalWidthForBoxSizing(styleToUse.logicalWidth().value());
else
computeIntrinsicLogicalWidths(m_minPreferredLogicalWidth, m_maxPreferredLogicalWidth);
if (styleToUse.logicalMinWidth().isFixed() && styleToUse.logicalMinWidth().value() > 0) {
m_maxPreferredLogicalWidth = std::max(m_maxPreferredLogicalWidth, adjustContentBoxLogicalWidthForBoxSizing(styleToUse.logicalMinWidth().value()));
m_minPreferredLogicalWidth = std::max(m_minPreferredLogicalWidth, adjustContentBoxLogicalWidthForBoxSizing(styleToUse.logicalMinWidth().value()));
}
if (styleToUse.logicalMaxWidth().isFixed()) {
m_maxPreferredLogicalWidth = std::min(m_maxPreferredLogicalWidth, adjustContentBoxLogicalWidthForBoxSizing(styleToUse.logicalMaxWidth().value()));
m_minPreferredLogicalWidth = std::min(m_minPreferredLogicalWidth, adjustContentBoxLogicalWidthForBoxSizing(styleToUse.logicalMaxWidth().value()));
}
// Table layout uses integers, ceil the preferred widths to ensure that they can contain the contents.
if (isTableCell()) {
m_minPreferredLogicalWidth = m_minPreferredLogicalWidth.ceil();
m_maxPreferredLogicalWidth = m_maxPreferredLogicalWidth.ceil();
}
LayoutUnit borderAndPadding = borderAndPaddingLogicalWidth();
m_minPreferredLogicalWidth += borderAndPadding;
m_maxPreferredLogicalWidth += borderAndPadding;
setPreferredLogicalWidthsDirty(false);
}
void RenderBlock::adjustIntrinsicLogicalWidthsForColumns(LayoutUnit& minLogicalWidth, LayoutUnit& maxLogicalWidth) const
{
// FIXME: make this method virtual and move the code to RenderMultiColumnBlock once the old
// multicol code is gone.
if (!style().hasAutoColumnCount() || !style().hasAutoColumnWidth()) {
// The min/max intrinsic widths calculated really tell how much space elements need when
// laid out inside the columns. In order to eventually end up with the desired column width,
// we need to convert them to values pertaining to the multicol container.
int columnCount = style().hasAutoColumnCount() ? 1 : style().columnCount();
LayoutUnit columnWidth;
LayoutUnit gapExtra = (columnCount - 1) * columnGap();
if (style().hasAutoColumnWidth())
minLogicalWidth = minLogicalWidth * columnCount + gapExtra;
else {
columnWidth = style().columnWidth();
minLogicalWidth = std::min(minLogicalWidth, columnWidth);
}
// FIXME: If column-count is auto here, we should resolve it to calculate the maximum
// intrinsic width, instead of pretending that it's 1. The only way to do that is by
// performing a layout pass, but this is not an appropriate time or place for layout. The
// good news is that if height is unconstrained and there are no explicit breaks, the
// resolved column-count really should be 1.
maxLogicalWidth = std::max(maxLogicalWidth, columnWidth) * columnCount + gapExtra;
}
}
struct InlineMinMaxIterator {
/* InlineMinMaxIterator is a class that will iterate over all render objects that contribute to
inline min/max width calculations. Note the following about the way it walks:
(1) Positioned content is skipped (since it does not contribute to min/max width of a block)
(2) We do not drill into the children of floats or replaced elements, since you can't break
in the middle of such an element.
(3) Inline flows (e.g., <a>, <span>, <i>) are walked twice, since each side can have
distinct borders/margin/padding that contribute to the min/max width.
*/
RenderObject* parent;
RenderObject* current;
bool endOfInline;
InlineMinMaxIterator(RenderObject* p, bool end = false)
:parent(p), current(p), endOfInline(end) {}
RenderObject* next();
};
RenderObject* InlineMinMaxIterator::next()
{
RenderObject* result = 0;
bool oldEndOfInline = endOfInline;
endOfInline = false;
while (current || current == parent) {
if (!oldEndOfInline &&
(current == parent ||
(!current->isFloating() && !current->isReplaced() && !current->isOutOfFlowPositioned())))
result = current->firstChildSlow();
if (!result) {
// We hit the end of our inline. (It was empty, e.g., <span></span>.)
if (!oldEndOfInline && current->isRenderInline()) {
result = current;
endOfInline = true;
break;
}
while (current && current != parent) {
result = current->nextSibling();
if (result) break;
current = current->parent();
if (current && current != parent && current->isRenderInline()) {
result = current;
endOfInline = true;
break;
}
}
}
if (!result)
break;
if (!result->isOutOfFlowPositioned() && (result->isTextOrLineBreak() || result->isFloating() || result->isReplaced() || result->isRenderInline()))
break;
current = result;
result = 0;
}
// Update our position.
current = result;
return current;
}
static LayoutUnit getBPMWidth(LayoutUnit childValue, Length cssUnit)
{
if (cssUnit.type() != Auto)
return (cssUnit.isFixed() ? static_cast<LayoutUnit>(cssUnit.value()) : childValue);
return 0;
}
static LayoutUnit getBorderPaddingMargin(const RenderBoxModelObject* child, bool endOfInline)
{
const RenderStyle& childStyle = child->style();
if (endOfInline)
return getBPMWidth(child->marginEnd(), childStyle.marginEnd()) +
getBPMWidth(child->paddingEnd(), childStyle.paddingEnd()) +
child->borderEnd();
return getBPMWidth(child->marginStart(), childStyle.marginStart()) +
getBPMWidth(child->paddingStart(), childStyle.paddingStart()) +
child->borderStart();
}
static inline void stripTrailingSpace(float& inlineMax, float& inlineMin,
RenderObject* trailingSpaceChild)
{
if (trailingSpaceChild && trailingSpaceChild->isText()) {
// Collapse away the trailing space at the end of a block.
RenderText* t = toRenderText(trailingSpaceChild);
const UChar space = ' ';
const Font& font = t->style().font(); // FIXME: This ignores first-line.
float spaceWidth = font.width(RenderBlock::constructTextRun(t, font, &space, 1, t->style()));
inlineMax -= spaceWidth + font.wordSpacing();
if (inlineMin > inlineMax)
inlineMin = inlineMax;
}
}
static inline void updatePreferredWidth(LayoutUnit& preferredWidth, float& result)
{
LayoutUnit snappedResult = ceiledLayoutUnit(result);
preferredWidth = std::max(snappedResult, preferredWidth);
}
// With sub-pixel enabled: When converting between floating point and LayoutUnits
// we risk losing precision with each conversion. When this occurs while
// accumulating our preferred widths, we can wind up with a line width that's
// larger than our maxPreferredWidth due to pure float accumulation.
//
// With sub-pixel disabled: values from Lengths or the render tree aren't subject
// to the same loss of precision, as they're always truncated and stored as
// integers. We mirror that behavior here to prevent over-allocating our preferred
// width.
static inline LayoutUnit adjustFloatForSubPixelLayout(float value)
{
#if ENABLE(SUBPIXEL_LAYOUT)
return ceiledLayoutUnit(value);
#else
return static_cast<int>(value);
#endif
}
void RenderBlock::computeInlinePreferredLogicalWidths(LayoutUnit& minLogicalWidth, LayoutUnit& maxLogicalWidth)
{
float inlineMax = 0;
float inlineMin = 0;
const RenderStyle& styleToUse = style();
RenderBlock* containingBlock = this->containingBlock();
LayoutUnit cw = containingBlock ? containingBlock->contentLogicalWidth() : LayoutUnit();
// If we are at the start of a line, we want to ignore all white-space.
// Also strip spaces if we previously had text that ended in a trailing space.
bool stripFrontSpaces = true;
RenderObject* trailingSpaceChild = 0;
// Firefox and Opera will allow a table cell to grow to fit an image inside it under
// very specific cirucumstances (in order to match common WinIE renderings).
// Not supporting the quirk has caused us to mis-render some real sites. (See Bugzilla 10517.)
bool allowImagesToBreak = !document().inQuirksMode() || !isTableCell() || !styleToUse.logicalWidth().isIntrinsicOrAuto();
bool autoWrap, oldAutoWrap;
autoWrap = oldAutoWrap = styleToUse.autoWrap();
InlineMinMaxIterator childIterator(this);
// Only gets added to the max preffered width once.
bool addedTextIndent = false;
// Signals the text indent was more negative than the min preferred width
bool hasRemainingNegativeTextIndent = false;
LayoutUnit textIndent = minimumValueForLength(styleToUse.textIndent(), cw);
RenderObject* prevFloat = 0;
bool isPrevChildInlineFlow = false;
bool shouldBreakLineAfterText = false;
while (RenderObject* child = childIterator.next()) {
autoWrap = child->isReplaced() ? child->parent()->style().autoWrap() :
child->style().autoWrap();
if (!child->isBR()) {
// Step One: determine whether or not we need to go ahead and
// terminate our current line. Each discrete chunk can become
// the new min-width, if it is the widest chunk seen so far, and
// it can also become the max-width.
// Children fall into three categories:
// (1) An inline flow object. These objects always have a min/max of 0,
// and are included in the iteration solely so that their margins can
// be added in.
//
// (2) An inline non-text non-flow object, e.g., an inline replaced element.
// These objects can always be on a line by themselves, so in this situation
// we need to go ahead and break the current line, and then add in our own
// margins and min/max width on its own line, and then terminate the line.
//
// (3) A text object. Text runs can have breakable characters at the start,
// the middle or the end. They may also lose whitespace off the front if
// we're already ignoring whitespace. In order to compute accurate min-width
// information, we need three pieces of information.
// (a) the min-width of the first non-breakable run. Should be 0 if the text string
// starts with whitespace.
// (b) the min-width of the last non-breakable run. Should be 0 if the text string
// ends with whitespace.
// (c) the min/max width of the string (trimmed for whitespace).
//
// If the text string starts with whitespace, then we need to go ahead and
// terminate our current line (unless we're already in a whitespace stripping
// mode.
//
// If the text string has a breakable character in the middle, but didn't start
// with whitespace, then we add the width of the first non-breakable run and
// then end the current line. We then need to use the intermediate min/max width
// values (if any of them are larger than our current min/max). We then look at
// the width of the last non-breakable run and use that to start a new line
// (unless we end in whitespace).
const RenderStyle& childStyle = child->style();
float childMin = 0;
float childMax = 0;
if (!child->isText()) {
if (child->isLineBreakOpportunity()) {
updatePreferredWidth(minLogicalWidth, inlineMin);
inlineMin = 0;
continue;
}
// Case (1) and (2). Inline replaced and inline flow elements.
if (child->isRenderInline()) {
// Add in padding/border/margin from the appropriate side of
// the element.
float bpm = getBorderPaddingMargin(toRenderInline(child), childIterator.endOfInline);
childMin += bpm;
childMax += bpm;
inlineMin += childMin;
inlineMax += childMax;
child->setPreferredLogicalWidthsDirty(false);
} else {
// Inline replaced elts add in their margins to their min/max values.
LayoutUnit margins = 0;
Length startMargin = childStyle.marginStart();
Length endMargin = childStyle.marginEnd();
if (startMargin.isFixed())
margins += adjustFloatForSubPixelLayout(startMargin.value());
if (endMargin.isFixed())
margins += adjustFloatForSubPixelLayout(endMargin.value());
childMin += margins.ceilToFloat();
childMax += margins.ceilToFloat();
}
}
if (!child->isRenderInline() && !child->isText()) {
// Case (2). Inline replaced elements and floats.
// Go ahead and terminate the current line as far as
// minwidth is concerned.
childMin += child->minPreferredLogicalWidth().ceilToFloat();
childMax += child->maxPreferredLogicalWidth().ceilToFloat();
bool clearPreviousFloat;
if (child->isFloating()) {
clearPreviousFloat = (prevFloat
&& ((prevFloat->style().floating() == LeftFloat && (childStyle.clear() & CLEFT))
|| (prevFloat->style().floating() == RightFloat && (childStyle.clear() & CRIGHT))));
prevFloat = child;
} else
clearPreviousFloat = false;
bool canBreakReplacedElement = !child->isImage() || allowImagesToBreak;
if ((canBreakReplacedElement && (autoWrap || oldAutoWrap) && (!isPrevChildInlineFlow || shouldBreakLineAfterText)) || clearPreviousFloat) {
updatePreferredWidth(minLogicalWidth, inlineMin);
inlineMin = 0;
}
// If we're supposed to clear the previous float, then terminate maxwidth as well.
if (clearPreviousFloat) {
updatePreferredWidth(maxLogicalWidth, inlineMax);
inlineMax = 0;
}
// Add in text-indent. This is added in only once.
if (!addedTextIndent && !child->isFloating()) {
LayoutUnit ceiledIndent = textIndent.ceilToFloat();
childMin += ceiledIndent;
childMax += ceiledIndent;
if (childMin < 0)
textIndent = adjustFloatForSubPixelLayout(childMin);
else
addedTextIndent = true;
}
// Add our width to the max.
inlineMax += std::max<float>(0, childMax);
if (!autoWrap || !canBreakReplacedElement || (isPrevChildInlineFlow && !shouldBreakLineAfterText)) {
if (child->isFloating())
updatePreferredWidth(minLogicalWidth, childMin);
else
inlineMin += childMin;
} else {
// Now check our line.
updatePreferredWidth(minLogicalWidth, childMin);
// Now start a new line.
inlineMin = 0;
}
if (autoWrap && canBreakReplacedElement && isPrevChildInlineFlow) {
updatePreferredWidth(minLogicalWidth, inlineMin);
inlineMin = 0;
}
// We are no longer stripping whitespace at the start of
// a line.
if (!child->isFloating()) {
stripFrontSpaces = false;
trailingSpaceChild = 0;
}
} else if (child->isText()) {
// Case (3). Text.
RenderText* t = toRenderText(child);
if (t->style().hasTextCombine() && t->isCombineText())
toRenderCombineText(*t).combineText();
// Determine if we have a breakable character. Pass in
// whether or not we should ignore any spaces at the front
// of the string. If those are going to be stripped out,
// then they shouldn't be considered in the breakable char
// check.
bool hasBreakableChar, hasBreak;
float beginMin, endMin;
bool beginWS, endWS;
float beginMax, endMax;
t->trimmedPrefWidths(inlineMax, beginMin, beginWS, endMin, endWS,
hasBreakableChar, hasBreak, beginMax, endMax,
childMin, childMax, stripFrontSpaces);
// This text object will not be rendered, but it may still provide a breaking opportunity.
if (!hasBreak && childMax == 0) {
if (autoWrap && (beginWS || endWS)) {
updatePreferredWidth(minLogicalWidth, inlineMin);
inlineMin = 0;
}
continue;
}
if (stripFrontSpaces)
trailingSpaceChild = child;
else
trailingSpaceChild = 0;
// Add in text-indent. This is added in only once.
float ti = 0;
if (!addedTextIndent || hasRemainingNegativeTextIndent) {
ti = textIndent.ceilToFloat();
childMin += ti;
beginMin += ti;
// It the text indent negative and larger than the child minimum, we re-use the remainder
// in future minimum calculations, but using the negative value again on the maximum
// will lead to under-counting the max pref width.
if (!addedTextIndent) {
childMax += ti;
beginMax += ti;
addedTextIndent = true;
}
if (childMin < 0) {
textIndent = childMin;
hasRemainingNegativeTextIndent = true;
}
}
// If we have no breakable characters at all,
// then this is the easy case. We add ourselves to the current
// min and max and continue.
if (!hasBreakableChar) {
inlineMin += childMin;
} else {
// We have a breakable character. Now we need to know if
// we start and end with whitespace.
if (beginWS)
// Go ahead and end the current line.
updatePreferredWidth(minLogicalWidth, inlineMin);
else {
inlineMin += beginMin;
updatePreferredWidth(minLogicalWidth, inlineMin);
childMin -= ti;
}
inlineMin = childMin;
if (endWS) {
// We end in whitespace, which means we can go ahead
// and end our current line.
updatePreferredWidth(minLogicalWidth, inlineMin);
inlineMin = 0;
shouldBreakLineAfterText = false;
} else {
updatePreferredWidth(minLogicalWidth, inlineMin);
inlineMin = endMin;
shouldBreakLineAfterText = true;
}
}
if (hasBreak) {
inlineMax += beginMax;
updatePreferredWidth(maxLogicalWidth, inlineMax);
updatePreferredWidth(maxLogicalWidth, childMax);
inlineMax = endMax;
addedTextIndent = true;
} else
inlineMax += std::max<float>(0, childMax);
}
// Ignore spaces after a list marker.
if (child->isListMarker())
stripFrontSpaces = true;
} else {
updatePreferredWidth(minLogicalWidth, inlineMin);
updatePreferredWidth(maxLogicalWidth, inlineMax);
inlineMin = inlineMax = 0;
stripFrontSpaces = true;
trailingSpaceChild = 0;
addedTextIndent = true;
}
if (!child->isText() && child->isRenderInline())
isPrevChildInlineFlow = true;
else
isPrevChildInlineFlow = false;
oldAutoWrap = autoWrap;
}
if (styleToUse.collapseWhiteSpace())
stripTrailingSpace(inlineMax, inlineMin, trailingSpaceChild);
updatePreferredWidth(minLogicalWidth, inlineMin);
updatePreferredWidth(maxLogicalWidth, inlineMax);
}
void RenderBlock::computeBlockPreferredLogicalWidths(LayoutUnit& minLogicalWidth, LayoutUnit& maxLogicalWidth) const
{
const RenderStyle& styleToUse = style();
bool nowrap = styleToUse.whiteSpace() == NOWRAP;
RenderObject* child = firstChild();
RenderBlock* containingBlock = this->containingBlock();
LayoutUnit floatLeftWidth = 0, floatRightWidth = 0;
while (child) {
// Positioned children don't affect the min/max width
if (child->isOutOfFlowPositioned()) {
child = child->nextSibling();
continue;
}
const RenderStyle& childStyle = child->style();
if (child->isFloating() || (child->isBox() && toRenderBox(child)->avoidsFloats())) {
LayoutUnit floatTotalWidth = floatLeftWidth + floatRightWidth;
if (childStyle.clear() & CLEFT) {
maxLogicalWidth = std::max(floatTotalWidth, maxLogicalWidth);
floatLeftWidth = 0;
}
if (childStyle.clear() & CRIGHT) {
maxLogicalWidth = std::max(floatTotalWidth, maxLogicalWidth);
floatRightWidth = 0;
}
}
// A margin basically has three types: fixed, percentage, and auto (variable).
// Auto and percentage margins simply become 0 when computing min/max width.
// Fixed margins can be added in as is.
Length startMarginLength = childStyle.marginStartUsing(&styleToUse);
Length endMarginLength = childStyle.marginEndUsing(&styleToUse);
LayoutUnit margin = 0;
LayoutUnit marginStart = 0;
LayoutUnit marginEnd = 0;
if (startMarginLength.isFixed())
marginStart += startMarginLength.value();
if (endMarginLength.isFixed())
marginEnd += endMarginLength.value();
margin = marginStart + marginEnd;
LayoutUnit childMinPreferredLogicalWidth, childMaxPreferredLogicalWidth;
if (child->isBox() && child->isHorizontalWritingMode() != isHorizontalWritingMode()) {
RenderBox* childBox = toRenderBox(child);
LogicalExtentComputedValues computedValues;
childBox->computeLogicalHeight(childBox->borderAndPaddingLogicalHeight(), 0, computedValues);
childMinPreferredLogicalWidth = childMaxPreferredLogicalWidth = computedValues.m_extent;
} else {
childMinPreferredLogicalWidth = child->minPreferredLogicalWidth();
childMaxPreferredLogicalWidth = child->maxPreferredLogicalWidth();
}
LayoutUnit w = childMinPreferredLogicalWidth + margin;
minLogicalWidth = std::max(w, minLogicalWidth);
// IE ignores tables for calculation of nowrap. Makes some sense.
if (nowrap && !child->isTable())
maxLogicalWidth = std::max(w, maxLogicalWidth);
w = childMaxPreferredLogicalWidth + margin;
if (!child->isFloating()) {
if (child->isBox() && toRenderBox(child)->avoidsFloats()) {
// Determine a left and right max value based off whether or not the floats can fit in the
// margins of the object. For negative margins, we will attempt to overlap the float if the negative margin
// is smaller than the float width.
bool ltr = containingBlock ? containingBlock->style().isLeftToRightDirection() : styleToUse.isLeftToRightDirection();
LayoutUnit marginLogicalLeft = ltr ? marginStart : marginEnd;
LayoutUnit marginLogicalRight = ltr ? marginEnd : marginStart;
LayoutUnit maxLeft = marginLogicalLeft > 0 ? std::max(floatLeftWidth, marginLogicalLeft) : floatLeftWidth + marginLogicalLeft;
LayoutUnit maxRight = marginLogicalRight > 0 ? std::max(floatRightWidth, marginLogicalRight) : floatRightWidth + marginLogicalRight;
w = childMaxPreferredLogicalWidth + maxLeft + maxRight;
w = std::max(w, floatLeftWidth + floatRightWidth);
}
else
maxLogicalWidth = std::max(floatLeftWidth + floatRightWidth, maxLogicalWidth);
floatLeftWidth = floatRightWidth = 0;
}
if (child->isFloating()) {
if (childStyle.floating() == LeftFloat)
floatLeftWidth += w;
else
floatRightWidth += w;
} else
maxLogicalWidth = std::max(w, maxLogicalWidth);
child = child->nextSibling();
}
// Always make sure these values are non-negative.
minLogicalWidth = std::max<LayoutUnit>(0, minLogicalWidth);
maxLogicalWidth = std::max<LayoutUnit>(0, maxLogicalWidth);
maxLogicalWidth = std::max(floatLeftWidth + floatRightWidth, maxLogicalWidth);
}
bool RenderBlock::hasLineIfEmpty() const
{
if (!element())
return false;
if (element()->isRootEditableElement())
return true;
return false;
}
LayoutUnit RenderBlock::lineHeight(bool firstLine, LineDirectionMode direction, LinePositionMode linePositionMode) const
{
// Inline blocks are replaced elements. Otherwise, just pass off to
// the base class. If we're being queried as though we're the root line
// box, then the fact that we're an inline-block is irrelevant, and we behave
// just like a block.
if (isReplaced() && linePositionMode == PositionOnContainingLine)
return RenderBox::lineHeight(firstLine, direction, linePositionMode);
if (firstLine && document().styleSheetCollection().usesFirstLineRules()) {
RenderStyle& s = firstLine ? firstLineStyle() : style();
if (&s != &style())
return s.computedLineHeight(&view());
}
if (m_lineHeight == -1)
m_lineHeight = style().computedLineHeight(&view());
return m_lineHeight;
}
int RenderBlock::baselinePosition(FontBaseline baselineType, bool firstLine, LineDirectionMode direction, LinePositionMode linePositionMode) const
{
// Inline blocks are replaced elements. Otherwise, just pass off to
// the base class. If we're being queried as though we're the root line
// box, then the fact that we're an inline-block is irrelevant, and we behave
// just like a block.
if (isReplaced() && linePositionMode == PositionOnContainingLine) {
// For "leaf" theme objects, let the theme decide what the baseline position is.
// FIXME: Might be better to have a custom CSS property instead, so that if the theme
// is turned off, checkboxes/radios will still have decent baselines.
// FIXME: Need to patch form controls to deal with vertical lines.
if (style().hasAppearance() && !theme()->isControlContainer(style().appearance()))
return theme()->baselinePosition(this);
// CSS2.1 states that the baseline of an inline block is the baseline of the last line box in
// the normal flow. We make an exception for marquees, since their baselines are meaningless
// (the content inside them moves). This matches WinIE as well, which just bottom-aligns them.
// We also give up on finding a baseline if we have a vertical scrollbar, or if we are scrolled
// vertically (e.g., an overflow:hidden block that has had scrollTop moved) or if the baseline is outside
// of our content box.
bool ignoreBaseline = (layer() && (layer()->marquee() || (direction == HorizontalLine ? (layer()->verticalScrollbar() || layer()->scrollYOffset() != 0)
: (layer()->horizontalScrollbar() || layer()->scrollXOffset() != 0)))) || (isWritingModeRoot() && !isRubyRun());
int baselinePos = ignoreBaseline ? -1 : inlineBlockBaseline(direction);
LayoutUnit bottomOfContent = direction == HorizontalLine ? borderTop() + paddingTop() + contentHeight() : borderRight() + paddingRight() + contentWidth();
if (baselinePos != -1 && baselinePos <= bottomOfContent)
return direction == HorizontalLine ? marginTop() + baselinePos : marginRight() + baselinePos;
return RenderBox::baselinePosition(baselineType, firstLine, direction, linePositionMode);
}
const RenderStyle& style = firstLine ? firstLineStyle() : this->style();
const FontMetrics& fontMetrics = style.fontMetrics();
return fontMetrics.ascent(baselineType) + (lineHeight(firstLine, direction, linePositionMode) - fontMetrics.height()) / 2;
}
LayoutUnit RenderBlock::minLineHeightForReplacedRenderer(bool isFirstLine, LayoutUnit replacedHeight) const
{
if (!document().inNoQuirksMode() && replacedHeight)
return replacedHeight;
const RenderStyle& style = isFirstLine ? firstLineStyle() : this->style();
if (!(style.lineBoxContain() & LineBoxContainBlock))
return 0;
return std::max<LayoutUnit>(replacedHeight, lineHeight(isFirstLine, isHorizontalWritingMode() ? HorizontalLine : VerticalLine, PositionOfInteriorLineBoxes));
}
int RenderBlock::firstLineBaseline() const
{
if (isWritingModeRoot() && !isRubyRun())
return -1;
for (RenderBox* curr = firstChildBox(); curr; curr = curr->nextSiblingBox()) {
if (!curr->isFloatingOrOutOfFlowPositioned()) {
int result = curr->firstLineBaseline();
if (result != -1)
return curr->logicalTop() + result; // Translate to our coordinate space.
}
}
return -1;
}
int RenderBlock::inlineBlockBaseline(LineDirectionMode lineDirection) const
{
if (isWritingModeRoot() && !isRubyRun())
return -1;
bool haveNormalFlowChild = false;
for (auto box = lastChildBox(); box; box = box->previousSiblingBox()) {
if (box->isFloatingOrOutOfFlowPositioned())
continue;
haveNormalFlowChild = true;
int result = box->inlineBlockBaseline(lineDirection);
if (result != -1)
return box->logicalTop() + result; // Translate to our coordinate space.
}
if (!haveNormalFlowChild && hasLineIfEmpty()) {
auto& fontMetrics = firstLineStyle().fontMetrics();
return fontMetrics.ascent()
+ (lineHeight(true, lineDirection, PositionOfInteriorLineBoxes) - fontMetrics.height()) / 2
+ (lineDirection == HorizontalLine ? borderTop() + paddingTop() : borderRight() + paddingRight());
}
return -1;
}
RenderBlock* RenderBlock::firstLineBlock() const
{
RenderBlock* firstLineBlock = const_cast<RenderBlock*>(this);
bool hasPseudo = false;
while (true) {
hasPseudo = firstLineBlock->style().hasPseudoStyle(FIRST_LINE);
if (hasPseudo)
break;
RenderElement* parentBlock = firstLineBlock->parent();
// We include isRenderButton in this check because buttons are
// implemented using flex box but should still support first-line. The
// flex box spec requires that flex box does not support first-line,
// though.
// FIXME: Remove when buttons are implemented with align-items instead
// of flexbox.
if (firstLineBlock->isReplaced() || firstLineBlock->isFloating()
|| !parentBlock || parentBlock->firstChild() != firstLineBlock || (!parentBlock->isRenderBlockFlow() && !parentBlock->isRenderButton()))
break;
firstLineBlock = toRenderBlock(parentBlock);
}
if (!hasPseudo)
return 0;
return firstLineBlock;
}
static RenderStyle* styleForFirstLetter(RenderObject* firstLetterBlock, RenderObject* firstLetterContainer)
{
RenderStyle* pseudoStyle = firstLetterBlock->getCachedPseudoStyle(FIRST_LETTER, &firstLetterContainer->firstLineStyle());
// Force inline display (except for floating first-letters).
pseudoStyle->setDisplay(pseudoStyle->isFloating() ? BLOCK : INLINE);
// CSS2 says first-letter can't be positioned.
pseudoStyle->setPosition(StaticPosition);
return pseudoStyle;
}
// CSS 2.1 http://www.w3.org/TR/CSS21/selector.html#first-letter
// "Punctuation (i.e, characters defined in Unicode [UNICODE] in the "open" (Ps), "close" (Pe),
// "initial" (Pi). "final" (Pf) and "other" (Po) punctuation classes), that precedes or follows the first letter should be included"
static inline bool isPunctuationForFirstLetter(UChar c)
{
return U_GET_GC_MASK(c) & (U_GC_PS_MASK | U_GC_PE_MASK | U_GC_PI_MASK | U_GC_PF_MASK | U_GC_PO_MASK);
}
static inline bool shouldSkipForFirstLetter(UChar c)
{
return isSpaceOrNewline(c) || c == noBreakSpace || isPunctuationForFirstLetter(c);
}
static inline RenderBlock* findFirstLetterBlock(RenderBlock* start)
{
RenderBlock* firstLetterBlock = start;
while (true) {
// We include isRenderButton in these two checks because buttons are
// implemented using flex box but should still support first-letter.
// The flex box spec requires that flex box does not support
// first-letter, though.
// FIXME: Remove when buttons are implemented with align-items instead
// of flexbox.
bool canHaveFirstLetterRenderer = firstLetterBlock->style().hasPseudoStyle(FIRST_LETTER)
&& firstLetterBlock->canHaveGeneratedChildren()
&& (!firstLetterBlock->isFlexibleBox() || firstLetterBlock->isRenderButton());
if (canHaveFirstLetterRenderer)
return firstLetterBlock;
RenderElement* parentBlock = firstLetterBlock->parent();
if (firstLetterBlock->isReplaced() || !parentBlock || parentBlock->firstChild() != firstLetterBlock
|| (!parentBlock->isRenderBlockFlow() && !parentBlock->isRenderButton()))
return 0;
firstLetterBlock = toRenderBlock(parentBlock);
}
return 0;
}
void RenderBlock::updateFirstLetterStyle(RenderObject* firstLetterBlock, RenderObject* currentChild)
{
RenderElement* firstLetter = currentChild->parent();
RenderElement* firstLetterContainer = firstLetter->parent();
RenderStyle* pseudoStyle = styleForFirstLetter(firstLetterBlock, firstLetterContainer);
ASSERT(firstLetter->isFloating() || firstLetter->isInline());
if (Style::determineChange(&firstLetter->style(), pseudoStyle, &frame().settings()) == Style::Detach) {
// The first-letter renderer needs to be replaced. Create a new renderer of the right type.
RenderBoxModelObject* newFirstLetter;
if (pseudoStyle->display() == INLINE)
newFirstLetter = new RenderInline(document(), *pseudoStyle);
else
newFirstLetter = new RenderBlockFlow(document(), *pseudoStyle);
newFirstLetter->initializeStyle();
// Move the first letter into the new renderer.
LayoutStateDisabler layoutStateDisabler(&view());
while (RenderObject* child = firstLetter->firstChild()) {
if (child->isText())
toRenderText(child)->removeAndDestroyTextBoxes();
firstLetter->removeChild(*child);
newFirstLetter->addChild(child, 0);
}
RenderObject* nextSibling = firstLetter->nextSibling();
if (RenderTextFragment* remainingText = toRenderBoxModelObject(firstLetter)->firstLetterRemainingText()) {
ASSERT(remainingText->isAnonymous() || remainingText->textNode()->renderer() == remainingText);
// Replace the old renderer with the new one.
remainingText->setFirstLetter(*newFirstLetter);
newFirstLetter->setFirstLetterRemainingText(remainingText);
}
// To prevent removal of single anonymous block in RenderBlock::removeChild and causing
// |nextSibling| to go stale, we remove the old first letter using removeChildNode first.
firstLetterContainer->removeChildInternal(*firstLetter, NotifyChildren);
firstLetter->destroy();
firstLetter = newFirstLetter;
firstLetterContainer->addChild(firstLetter, nextSibling);
} else
firstLetter->setStyle(*pseudoStyle);
}
void RenderBlock::createFirstLetterRenderer(RenderObject* firstLetterBlock, RenderText* currentTextChild)
{
RenderElement* firstLetterContainer = currentTextChild->parent();
RenderStyle* pseudoStyle = styleForFirstLetter(firstLetterBlock, firstLetterContainer);
RenderBoxModelObject* firstLetter = 0;
if (pseudoStyle->display() == INLINE)
firstLetter = new RenderInline(document(), *pseudoStyle);
else
firstLetter = new RenderBlockFlow(document(), *pseudoStyle);
firstLetter->initializeStyle();
firstLetterContainer->addChild(firstLetter, currentTextChild);
// The original string is going to be either a generated content string or a DOM node's
// string. We want the original string before it got transformed in case first-letter has
// no text-transform or a different text-transform applied to it.
String oldText = currentTextChild->originalText();
ASSERT(!oldText.isNull());
if (!oldText.isEmpty()) {
unsigned length = 0;
// Account for leading spaces and punctuation.
while (length < oldText.length() && shouldSkipForFirstLetter(oldText[length]))
length++;
// Account for first letter.
length++;
// Keep looking for whitespace and allowed punctuation, but avoid
// accumulating just whitespace into the :first-letter.
for (unsigned scanLength = length; scanLength < oldText.length(); ++scanLength) {
UChar c = oldText[scanLength];
if (!shouldSkipForFirstLetter(c))
break;
if (isPunctuationForFirstLetter(c))
length = scanLength + 1;
}
// Construct a text fragment for the text after the first letter.
// This text fragment might be empty.
RenderTextFragment* remainingText;
if (currentTextChild->textNode())
remainingText = new RenderTextFragment(*currentTextChild->textNode(), oldText, length, oldText.length() - length);
else
remainingText = new RenderTextFragment(document(), oldText, length, oldText.length() - length);
if (remainingText->textNode())
remainingText->textNode()->setRenderer(remainingText);
firstLetterContainer->addChild(remainingText, currentTextChild);
firstLetterContainer->removeChild(*currentTextChild);
remainingText->setFirstLetter(*firstLetter);
firstLetter->setFirstLetterRemainingText(remainingText);
// construct text fragment for the first letter
RenderTextFragment* letter;
if (remainingText->textNode())
letter = new RenderTextFragment(*remainingText->textNode(), oldText, 0, length);
else
letter = new RenderTextFragment(document(), oldText, 0, length);
firstLetter->addChild(letter);
currentTextChild->destroy();
}
}
void RenderBlock::updateFirstLetter()
{
if (!document().styleSheetCollection().usesFirstLetterRules())
return;
// Don't recur
if (style().styleType() == FIRST_LETTER)
return;
RenderElement* firstLetterBlock = findFirstLetterBlock(this);
if (!firstLetterBlock)
return;
// Drill into inlines looking for our first text descendant.
RenderObject* descendant = firstLetterBlock->firstChild();
while (descendant) {
if (descendant->isText())
break;
RenderElement& current = toRenderElement(*descendant);
if (current.isListMarker())
descendant = current.nextSibling();
else if (current.isFloatingOrOutOfFlowPositioned()) {
if (current.style().styleType() == FIRST_LETTER) {
descendant = current.firstChild();
break;
}
descendant = current.nextSibling();
} else if (current.isReplaced() || current.isRenderButton() || current.isMenuList())
break;
else if (current.style().hasPseudoStyle(FIRST_LETTER) && current.canHaveGeneratedChildren()) {
// We found a lower-level node with first-letter, which supersedes the higher-level style
firstLetterBlock = &current;
descendant = current.firstChild();
} else
descendant = current.firstChild();
}
if (!descendant)
return;
if (descendant->parent()->style().styleType() == FIRST_LETTER) {
// Destroy the first-letter object if it is no longer the first child.
RenderObject* remainingText = descendant->parent()->nextSibling();
if (remainingText && descendant->node() != remainingText->node()) {
if (!remainingText->isText() || remainingText->isBR())
return;
if (auto oldFirstLetter = descendant->parent()->isBoxModelObject() ? toRenderBoxModelObject(descendant->parent()) : nullptr) {
if (auto oldRemainingText = oldFirstLetter->firstLetterRemainingText()) {
LayoutStateDisabler layoutStateDisabler(&view());
// Destroy the text fragment for the old first-letter and update oldRemainingText with its DOM text.
oldRemainingText->setText(oldRemainingText->textNode()->data());
createFirstLetterRenderer(firstLetterBlock, toRenderText(remainingText));
}
}
return;
}
// If the child already has style, then it has already been created, so we just want
// to update it.
updateFirstLetterStyle(firstLetterBlock, descendant);
return;
}
if (!descendant->isText())
return;
// Our layout state is not valid for the repaints we are going to trigger by
// adding and removing children of firstLetterContainer.
LayoutStateDisabler layoutStateDisabler(&view());
createFirstLetterRenderer(firstLetterBlock, toRenderText(descendant));
}
LayoutUnit RenderBlock::paginationStrut() const
{
RenderBlockRareData* rareData = getRareData(this);
return rareData ? rareData->m_paginationStrut : LayoutUnit();
}
LayoutUnit RenderBlock::pageLogicalOffset() const
{
RenderBlockRareData* rareData = getRareData(this);
return rareData ? rareData->m_pageLogicalOffset : LayoutUnit();
}
void RenderBlock::setPaginationStrut(LayoutUnit strut)
{
RenderBlockRareData* rareData = getRareData(this);
if (!rareData) {
if (!strut)
return;
rareData = &ensureRareData(this);
}
rareData->m_paginationStrut = strut;
}
void RenderBlock::setPageLogicalOffset(LayoutUnit logicalOffset)
{
RenderBlockRareData* rareData = getRareData(this);
if (!rareData) {
if (!logicalOffset)
return;
rareData = &ensureRareData(this);
}
rareData->m_pageLogicalOffset = logicalOffset;
}
void RenderBlock::absoluteRects(Vector<IntRect>& rects, const LayoutPoint& accumulatedOffset) const
{
// For blocks inside inlines, we go ahead and include margins so that we run right up to the
// inline boxes above and below us (thus getting merged with them to form a single irregular
// shape).
if (isAnonymousBlockContinuation()) {
// FIXME: This is wrong for block-flows that are horizontal.
// https://bugs.webkit.org/show_bug.cgi?id=46781
rects.append(pixelSnappedIntRect(accumulatedOffset.x(), accumulatedOffset.y() - collapsedMarginBefore(),
width(), height() + collapsedMarginBefore() + collapsedMarginAfter()));
continuation()->absoluteRects(rects, accumulatedOffset - toLayoutSize(location() +
inlineElementContinuation()->containingBlock()->location()));
} else
rects.append(pixelSnappedIntRect(accumulatedOffset, size()));
}
void RenderBlock::absoluteQuads(Vector<FloatQuad>& quads, bool* wasFixed) const
{
// For blocks inside inlines, we go ahead and include margins so that we run right up to the
// inline boxes above and below us (thus getting merged with them to form a single irregular
// shape).
if (isAnonymousBlockContinuation()) {
// FIXME: This is wrong for block-flows that are horizontal.
// https://bugs.webkit.org/show_bug.cgi?id=46781
FloatRect localRect(0, -collapsedMarginBefore(),
width(), height() + collapsedMarginBefore() + collapsedMarginAfter());
quads.append(localToAbsoluteQuad(localRect, 0 /* mode */, wasFixed));
continuation()->absoluteQuads(quads, wasFixed);
} else
quads.append(RenderBox::localToAbsoluteQuad(FloatRect(0, 0, width(), height()), 0 /* mode */, wasFixed));
}
LayoutRect RenderBlock::rectWithOutlineForRepaint(const RenderLayerModelObject* repaintContainer, LayoutUnit outlineWidth) const
{
LayoutRect r(RenderBox::rectWithOutlineForRepaint(repaintContainer, outlineWidth));
if (isAnonymousBlockContinuation())
r.inflateY(collapsedMarginBefore()); // FIXME: This is wrong for block-flows that are horizontal.
return r;
}
RenderElement* RenderBlock::hoverAncestor() const
{
return isAnonymousBlockContinuation() ? continuation() : RenderBox::hoverAncestor();
}
void RenderBlock::updateDragState(bool dragOn)
{
RenderBox::updateDragState(dragOn);
if (RenderBoxModelObject* continuation = this->continuation())
continuation->updateDragState(dragOn);
}
const RenderStyle& RenderBlock::outlineStyleForRepaint() const
{
return isAnonymousBlockContinuation() ? continuation()->style() : style();
}
void RenderBlock::childBecameNonInline(RenderObject*)
{
makeChildrenNonInline();
if (isAnonymousBlock() && parent() && parent()->isRenderBlock())
toRenderBlock(parent())->removeLeftoverAnonymousBlock(this);
// |this| may be dead here
}
void RenderBlock::updateHitTestResult(HitTestResult& result, const LayoutPoint& point)
{
if (result.innerNode())
return;
if (Node* n = nodeForHitTest()) {
result.setInnerNode(n);
if (!result.innerNonSharedNode())
result.setInnerNonSharedNode(n);
result.setLocalPoint(point);
}
}
LayoutRect RenderBlock::localCaretRect(InlineBox* inlineBox, int caretOffset, LayoutUnit* extraWidthToEndOfLine)
{
// Do the normal calculation in most cases.
if (firstChild())
return RenderBox::localCaretRect(inlineBox, caretOffset, extraWidthToEndOfLine);
LayoutRect caretRect = localCaretRectForEmptyElement(width(), textIndentOffset());
// FIXME: Does this need to adjust for vertical orientation?
if (extraWidthToEndOfLine)
*extraWidthToEndOfLine = width() - caretRect.maxX();
return caretRect;
}
void RenderBlock::addFocusRingRectsForInlineChildren(Vector<IntRect>&, const LayoutPoint&, const RenderLayerModelObject*)
{
ASSERT_NOT_REACHED();
}
void RenderBlock::addFocusRingRects(Vector<IntRect>& rects, const LayoutPoint& additionalOffset, const RenderLayerModelObject* paintContainer)
{
// For blocks inside inlines, we go ahead and include margins so that we run right up to the
// inline boxes above and below us (thus getting merged with them to form a single irregular
// shape).
if (inlineElementContinuation()) {
// FIXME: This check really isn't accurate.
bool nextInlineHasLineBox = inlineElementContinuation()->firstLineBox();
// FIXME: This is wrong. The principal renderer may not be the continuation preceding this block.
// FIXME: This is wrong for block-flows that are horizontal.
// https://bugs.webkit.org/show_bug.cgi?id=46781
bool prevInlineHasLineBox = toRenderInline(inlineElementContinuation()->element()->renderer())->firstLineBox();
float topMargin = prevInlineHasLineBox ? collapsedMarginBefore() : LayoutUnit();
float bottomMargin = nextInlineHasLineBox ? collapsedMarginAfter() : LayoutUnit();
LayoutRect rect(additionalOffset.x(), additionalOffset.y() - topMargin, width(), height() + topMargin + bottomMargin);
if (!rect.isEmpty())
rects.append(pixelSnappedIntRect(rect));
} else if (width() && height())
rects.append(pixelSnappedIntRect(additionalOffset, size()));
if (!hasOverflowClip() && !hasControlClip()) {
if (childrenInline())
addFocusRingRectsForInlineChildren(rects, additionalOffset, paintContainer);
for (RenderObject* curr = firstChild(); curr; curr = curr->nextSibling()) {
if (!curr->isText() && !curr->isListMarker() && curr->isBox()) {
RenderBox* box = toRenderBox(curr);
FloatPoint pos;
// FIXME: This doesn't work correctly with transforms.
if (box->layer())
pos = curr->localToContainerPoint(FloatPoint(), paintContainer);
else
pos = FloatPoint(additionalOffset.x() + box->x(), additionalOffset.y() + box->y());
box->addFocusRingRects(rects, flooredLayoutPoint(pos), paintContainer);
}
}
}
if (inlineElementContinuation())
inlineElementContinuation()->addFocusRingRects(rects, flooredLayoutPoint(additionalOffset + inlineElementContinuation()->containingBlock()->location() - location()), paintContainer);
}
RenderBox* RenderBlock::createAnonymousBoxWithSameTypeAs(const RenderObject* parent) const
{
if (isAnonymousColumnsBlock())
return createAnonymousColumnsWithParentRenderer(parent);
if (isAnonymousColumnSpanBlock())
return createAnonymousColumnSpanWithParentRenderer(parent);
return createAnonymousWithParentRendererAndDisplay(parent, style().display());
}
ColumnInfo::PaginationUnit RenderBlock::paginationUnit() const
{
return ColumnInfo::Column;
}
LayoutUnit RenderBlock::offsetFromLogicalTopOfFirstPage() const
{
LayoutState* layoutState = view().layoutState();
if (layoutState && !layoutState->isPaginated())
return 0;
RenderFlowThread* flowThread = flowThreadContainingBlock();
if (flowThread)
return flowThread->offsetFromLogicalTopOfFirstRegion(this);
if (layoutState) {
ASSERT(layoutState->m_renderer == this);
LayoutSize offsetDelta = layoutState->m_layoutOffset - layoutState->m_pageOffset;
return isHorizontalWritingMode() ? offsetDelta.height() : offsetDelta.width();
}
ASSERT_NOT_REACHED();
return 0;
}
RenderRegion* RenderBlock::regionAtBlockOffset(LayoutUnit blockOffset) const
{
RenderFlowThread* flowThread = flowThreadContainingBlock();
if (!flowThread || !flowThread->hasValidRegionInfo())
return 0;
return flowThread->regionAtBlockOffset(this, offsetFromLogicalTopOfFirstPage() + blockOffset, true);
}
void RenderBlock::computeRegionRangeForBoxChild(const RenderBox& box) const
{
RenderFlowThread* flowThread = flowThreadContainingBlock();
if (!flowThread || !flowThread->hasRegions())
return;
RenderRegion* startRegion;
RenderRegion* endRegion;
LayoutUnit offsetFromLogicalTopOfFirstRegion = box.offsetFromLogicalTopOfFirstPage();
if (box.isUnsplittableForPagination())
startRegion = endRegion = flowThread->regionAtBlockOffset(this, offsetFromLogicalTopOfFirstRegion, true);
else {
startRegion = flowThread->regionAtBlockOffset(this, offsetFromLogicalTopOfFirstRegion, true);
endRegion = flowThread->regionAtBlockOffset(this, offsetFromLogicalTopOfFirstRegion + logicalHeightForChild(box), true);
}
flowThread->setRegionRangeForBox(&box, startRegion, endRegion);
}
void RenderBlock::estimateRegionRangeForBoxChild(const RenderBox& box) const
{
RenderFlowThread* flowThread = flowThreadContainingBlock();
if (!flowThread || !flowThread->hasRegions() || !box.canHaveOutsideRegionRange())
return;
if (box.isUnsplittableForPagination()) {
computeRegionRangeForBoxChild(box);
return;
}
LogicalExtentComputedValues estimatedValues;
box.computeLogicalHeight(RenderFlowThread::maxLogicalHeight(), logicalTopForChild(box), estimatedValues);
LayoutUnit offsetFromLogicalTopOfFirstRegion = box.offsetFromLogicalTopOfFirstPage();
RenderRegion* startRegion = flowThread->regionAtBlockOffset(this, offsetFromLogicalTopOfFirstRegion, true);
RenderRegion* endRegion = flowThread->regionAtBlockOffset(this, offsetFromLogicalTopOfFirstRegion + estimatedValues.m_extent, true);
flowThread->setRegionRangeForBox(&box, startRegion, endRegion);
}
bool RenderBlock::updateRegionRangeForBoxChild(const RenderBox& box) const
{
RenderFlowThread* flowThread = flowThreadContainingBlock();
if (!flowThread || !flowThread->hasRegions() || !box.canHaveOutsideRegionRange())
return false;
RenderRegion* startRegion = 0;
RenderRegion* endRegion = 0;
flowThread->getRegionRangeForBox(&box, startRegion, endRegion);
computeRegionRangeForBoxChild(box);
RenderRegion* newStartRegion = 0;
RenderRegion* newEndRegion = 0;
flowThread->getRegionRangeForBox(&box, newStartRegion, newEndRegion);
// The region range of the box has changed. Some boxes (e.g floats) may have been positioned assuming
// a different range.
// FIXME: Be smarter about this. We don't need to relayout all the time.
if (newStartRegion != startRegion || newEndRegion != endRegion)
return true;
return false;
}
LayoutUnit RenderBlock::collapsedMarginBeforeForChild(const RenderBox& child) const
{
// If the child has the same directionality as we do, then we can just return its
// collapsed margin.
if (!child.isWritingModeRoot())
return child.collapsedMarginBefore();
// The child has a different directionality. If the child is parallel, then it's just
// flipped relative to us. We can use the collapsed margin for the opposite edge.
if (child.isHorizontalWritingMode() == isHorizontalWritingMode())
return child.collapsedMarginAfter();
// The child is perpendicular to us, which means its margins don't collapse but are on the
// "logical left/right" sides of the child box. We can just return the raw margin in this case.
return marginBeforeForChild(child);
}
LayoutUnit RenderBlock::collapsedMarginAfterForChild(const RenderBox& child) const
{
// If the child has the same directionality as we do, then we can just return its
// collapsed margin.
if (!child.isWritingModeRoot())
return child.collapsedMarginAfter();
// The child has a different directionality. If the child is parallel, then it's just
// flipped relative to us. We can use the collapsed margin for the opposite edge.
if (child.isHorizontalWritingMode() == isHorizontalWritingMode())
return child.collapsedMarginBefore();
// The child is perpendicular to us, which means its margins don't collapse but are on the
// "logical left/right" side of the child box. We can just return the raw margin in this case.
return marginAfterForChild(child);
}
bool RenderBlock::hasMarginBeforeQuirk(const RenderBox& child) const
{
// If the child has the same directionality as we do, then we can just return its
// margin quirk.
if (!child.isWritingModeRoot())
return child.isRenderBlock() ? toRenderBlock(child).hasMarginBeforeQuirk() : child.style().hasMarginBeforeQuirk();
// The child has a different directionality. If the child is parallel, then it's just
// flipped relative to us. We can use the opposite edge.
if (child.isHorizontalWritingMode() == isHorizontalWritingMode())
return child.isRenderBlock() ? toRenderBlock(child).hasMarginAfterQuirk() : child.style().hasMarginAfterQuirk();
// The child is perpendicular to us and box sides are never quirky in html.css, and we don't really care about
// whether or not authors specified quirky ems, since they're an implementation detail.
return false;
}
bool RenderBlock::hasMarginAfterQuirk(const RenderBox& child) const
{
// If the child has the same directionality as we do, then we can just return its
// margin quirk.
if (!child.isWritingModeRoot())
return child.isRenderBlock() ? toRenderBlock(child).hasMarginAfterQuirk() : child.style().hasMarginAfterQuirk();
// The child has a different directionality. If the child is parallel, then it's just
// flipped relative to us. We can use the opposite edge.
if (child.isHorizontalWritingMode() == isHorizontalWritingMode())
return child.isRenderBlock() ? toRenderBlock(child).hasMarginBeforeQuirk() : child.style().hasMarginBeforeQuirk();
// The child is perpendicular to us and box sides are never quirky in html.css, and we don't really care about
// whether or not authors specified quirky ems, since they're an implementation detail.
return false;
}
const char* RenderBlock::renderName() const
{
if (isBody())
return "RenderBody"; // FIXME: Temporary hack until we know that the regression tests pass.
if (isFloating())
return "RenderBlock (floating)";
if (isOutOfFlowPositioned())
return "RenderBlock (positioned)";
if (isAnonymousColumnsBlock())
return "RenderBlock (anonymous multi-column)";
if (isAnonymousColumnSpanBlock())
return "RenderBlock (anonymous multi-column span)";
if (isAnonymousBlock())
return "RenderBlock (anonymous)";
// FIXME: Temporary hack while the new generated content system is being implemented.
if (isPseudoElement())
return "RenderBlock (generated)";
if (isAnonymous())
return "RenderBlock (generated)";
if (isRelPositioned())
return "RenderBlock (relative positioned)";
if (isStickyPositioned())
return "RenderBlock (sticky positioned)";
if (isRunIn())
return "RenderBlock (run-in)";
return "RenderBlock";
}
template <typename CharacterType>
static inline TextRun constructTextRunInternal(RenderObject* context, const Font& font, const CharacterType* characters, int length, const RenderStyle& style, TextRun::ExpansionBehavior expansion)
{
TextDirection textDirection = LTR;
bool directionalOverride = style.rtlOrdering() == VisualOrder;
TextRun run(characters, length, 0, 0, expansion, textDirection, directionalOverride);
if (font.isSVGFont()) {
ASSERT(context); // FIXME: Thread a RenderObject& to this point so we don't have to dereference anything.
run.setRenderingContext(SVGTextRunRenderingContext::create(*context));
}
return run;
}
template <typename CharacterType>
static inline TextRun constructTextRunInternal(RenderObject* context, const Font& font, const CharacterType* characters, int length, const RenderStyle& style, TextRun::ExpansionBehavior expansion, TextRunFlags flags)
{
TextDirection textDirection = LTR;
bool directionalOverride = style.rtlOrdering() == VisualOrder;
if (flags != DefaultTextRunFlags) {
if (flags & RespectDirection)
textDirection = style.direction();
if (flags & RespectDirectionOverride)
directionalOverride |= isOverride(style.unicodeBidi());
}
TextRun run(characters, length, 0, 0, expansion, textDirection, directionalOverride);
if (font.isSVGFont()) {
ASSERT(context); // FIXME: Thread a RenderObject& to this point so we don't have to dereference anything.
run.setRenderingContext(SVGTextRunRenderingContext::create(*context));
}
return run;
}
#if ENABLE(8BIT_TEXTRUN)
TextRun RenderBlock::constructTextRun(RenderObject* context, const Font& font, const LChar* characters, int length, const RenderStyle& style, TextRun::ExpansionBehavior expansion)
{
return constructTextRunInternal(context, font, characters, length, style, expansion);
}
#endif
TextRun RenderBlock::constructTextRun(RenderObject* context, const Font& font, const UChar* characters, int length, const RenderStyle& style, TextRun::ExpansionBehavior expansion)
{
return constructTextRunInternal(context, font, characters, length, style, expansion);
}
TextRun RenderBlock::constructTextRun(RenderObject* context, const Font& font, const RenderText* text, const RenderStyle& style, TextRun::ExpansionBehavior expansion)
{
#if ENABLE(8BIT_TEXTRUN)
if (text->is8Bit())
return constructTextRunInternal(context, font, text->characters8(), text->textLength(), style, expansion);
return constructTextRunInternal(context, font, text->characters16(), text->textLength(), style, expansion);
#else
return constructTextRunInternal(context, font, text->characters(), text->textLength(), style, expansion);
#endif
}
TextRun RenderBlock::constructTextRun(RenderObject* context, const Font& font, const RenderText* text, unsigned offset, unsigned length, const RenderStyle& style, TextRun::ExpansionBehavior expansion)
{
ASSERT(offset + length <= text->textLength());
#if ENABLE(8BIT_TEXTRUN)
if (text->is8Bit())
return constructTextRunInternal(context, font, text->characters8() + offset, length, style, expansion);
return constructTextRunInternal(context, font, text->characters16() + offset, length, style, expansion);
#else
return constructTextRunInternal(context, font, text->characters() + offset, length, style, expansion);
#endif
}
TextRun RenderBlock::constructTextRun(RenderObject* context, const Font& font, const String& string, const RenderStyle& style, TextRun::ExpansionBehavior expansion, TextRunFlags flags)
{
unsigned length = string.length();
#if ENABLE(8BIT_TEXTRUN)
if (length && string.is8Bit())
return constructTextRunInternal(context, font, string.characters8(), length, style, expansion, flags);
return constructTextRunInternal(context, font, string.characters(), length, style, expansion, flags);
#else
return constructTextRunInternal(context, font, string.characters(), length, style, expansion, flags);
#endif
}
RenderBlock* RenderBlock::createAnonymousWithParentRendererAndDisplay(const RenderObject* parent, EDisplay display)
{
// FIXME: Do we need to convert all our inline displays to block-type in the anonymous logic ?
RenderBlock* newBox;
if (display == FLEX || display == INLINE_FLEX)
newBox = new RenderFlexibleBox(parent->document(), RenderStyle::createAnonymousStyleWithDisplay(&parent->style(), FLEX));
else
newBox = new RenderBlockFlow(parent->document(), RenderStyle::createAnonymousStyleWithDisplay(&parent->style(), BLOCK));
newBox->initializeStyle();
return newBox;
}
RenderBlock* RenderBlock::createAnonymousColumnsWithParentRenderer(const RenderObject* parent)
{
auto newStyle = RenderStyle::createAnonymousStyleWithDisplay(&parent->style(), BLOCK);
newStyle.get().inheritColumnPropertiesFrom(&parent->style());
RenderBlock* newBox = new RenderBlockFlow(parent->document(), std::move(newStyle));
newBox->initializeStyle();
return newBox;
}
RenderBlock* RenderBlock::createAnonymousColumnSpanWithParentRenderer(const RenderObject* parent)
{
auto newStyle = RenderStyle::createAnonymousStyleWithDisplay(&parent->style(), BLOCK);
newStyle.get().setColumnSpan(ColumnSpanAll);
RenderBlock* newBox = new RenderBlockFlow(parent->document(), std::move(newStyle));
newBox->initializeStyle();
return newBox;
}
#ifndef NDEBUG
void RenderBlock::checkPositionedObjectsNeedLayout()
{
if (!gPositionedDescendantsMap)
return;
TrackedRendererListHashSet* positionedDescendantSet = positionedObjects();
if (!positionedDescendantSet)
return;
for (auto it = positionedDescendantSet->begin(), end = positionedDescendantSet->end(); it != end; ++it) {
RenderBox* currBox = *it;
ASSERT(!currBox->needsLayout());
}
}
void RenderBlock::showLineTreeAndMark(const InlineBox*, const char*, const InlineBox*, const char*, const RenderObject*) const
{
showRenderObject();
}
#endif
#if ENABLE(IOS_TEXT_AUTOSIZING)
inline static bool isVisibleRenderText(RenderObject* renderer)
{
if (!renderer->isText())
return false;
RenderText* renderText = toRenderText(renderer);
return !renderText->linesBoundingBox().isEmpty() && !renderText->text()->containsOnlyWhitespace();
}
inline static bool resizeTextPermitted(RenderObject* render)
{
// We disallow resizing for text input fields and textarea to address <rdar://problem/5792987> and <rdar://problem/8021123>
auto renderer = render->parent();
while (renderer) {
// Get the first non-shadow HTMLElement and see if it's an input.
if (renderer->element() && renderer->element()->isHTMLElement() && !renderer->element()->isInShadowTree()) {
const HTMLElement& element = toHTMLElement(*renderer->element());
return !isHTMLInputElement(element) && !isHTMLTextAreaElement(element);
}
renderer = renderer->parent();
}
return true;
}
int RenderBlock::immediateLineCount()
{
// Copied and modified from RenderBlock::lineCount.
// Only descend into list items.
int count = 0;
if (style().visibility() == VISIBLE) {
if (childrenInline()) {
for (RootInlineBox* box = firstRootBox(); box; box = box->nextRootBox())
count++;
} else {
for (RenderObject* obj = firstChild(); obj; obj = obj->nextSibling()) {
if (obj->isListItem())
count += toRenderBlock(obj)->lineCount();
}
}
}
return count;
}
static bool isNonBlocksOrNonFixedHeightListItems(const RenderObject* render)
{
if (!render->isRenderBlock())
return true;
if (render->isListItem()) {
RenderStyle* style = render->style();
return style && style->height().type() != Fixed;
}
return false;
}
// For now, we auto size single lines of text the same as multiple lines.
// We've been experimenting with low values for single lines of text.
static inline float oneLineTextMultiplier(float specifiedSize)
{
return max((1.0f / log10f(specifiedSize) * 1.7f), 1.0f);
}
static inline float textMultiplier(float specifiedSize)
{
return max((1.0f / log10f(specifiedSize) * 1.95f), 1.0f);
}
void RenderBlock::adjustComputedFontSizes(float size, float visibleWidth)
{
// Don't do any work if the block is smaller than the visible area.
if (visibleWidth >= width())
return;
unsigned lineCount;
if (m_lineCountForTextAutosizing == NOT_SET) {
int count = immediateLineCount();
if (!count)
lineCount = NO_LINE;
else if (count == 1)
lineCount = ONE_LINE;
else
lineCount = MULTI_LINE;
} else
lineCount = m_lineCountForTextAutosizing;
ASSERT(lineCount != NOT_SET);
if (lineCount == NO_LINE)
return;
float actualWidth = m_widthForTextAutosizing != -1 ? static_cast<float>(m_widthForTextAutosizing) : static_cast<float>(width());
float scale = visibleWidth / actualWidth;
float minFontSize = roundf(size / scale);
for (RenderObject* descendent = traverseNext(this, isNonBlocksOrNonFixedHeightListItems); descendent; descendent = descendent->traverseNext(this, isNonBlocksOrNonFixedHeightListItems)) {
if (isVisibleRenderText(descendent) && resizeTextPermitted(descendent)) {
RenderText* text = toRenderText(descendent);
RenderStyle* oldStyle = text->style();
FontDescription fontDescription = oldStyle->fontDescription();
float specifiedSize = fontDescription.specifiedSize();
float scaledSize = roundf(specifiedSize * scale);
if (scaledSize > 0 && scaledSize < minFontSize) {
// Record the width of the block and the line count the first time we resize text and use it from then on for text resizing.
// This makes text resizing consistent even if the block's width or line count changes (which can be caused by text resizing itself 5159915).
if (m_lineCountForTextAutosizing == NOT_SET)
m_lineCountForTextAutosizing = lineCount;
if (m_widthForTextAutosizing == -1)
m_widthForTextAutosizing = actualWidth;
float candidateNewSize = 0;
float lineTextMultiplier = lineCount == ONE_LINE ? oneLineTextMultiplier(specifiedSize) : textMultiplier(specifiedSize);
candidateNewSize = roundf(min(minFontSize, specifiedSize * lineTextMultiplier));
if (candidateNewSize > specifiedSize && candidateNewSize != fontDescription.computedSize() && text->node() && (!oldStyle || oldStyle->textSizeAdjust().isAuto()))
document().addAutoSizingNode(text->node(), candidateNewSize);
}
}
}
}
#endif // ENABLE(IOS_TEXT_AUTOSIZING)
} // namespace WebCore