blob: f24d6590676641e6cbe967dd03a79ae647f26733 [file] [log] [blame]
/*
* Copyright (C) 2006 Samuel Weinig (sam.weinig@gmail.com)
* Copyright (C) 2004, 2005, 2006, 2008 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "BitmapImage.h"
#include "FloatRect.h"
#include "ImageBuffer.h"
#include "ImageObserver.h"
#include "IntRect.h"
#include "MIMETypeRegistry.h"
#include "Timer.h"
#include <wtf/CurrentTime.h>
#include <wtf/Vector.h>
#include <wtf/text/WTFString.h>
namespace WebCore {
BitmapImage::BitmapImage(ImageObserver* observer)
: Image(observer)
, m_currentFrame(0)
, m_frames(0)
, m_repetitionCount(cAnimationNone)
, m_repetitionCountStatus(Unknown)
, m_repetitionsComplete(0)
, m_desiredFrameStartTime(0)
, m_decodedSize(0)
, m_decodedPropertiesSize(0)
, m_frameCount(0)
, m_isSolidColor(false)
, m_checkedForSolidColor(false)
, m_animationFinished(false)
, m_allDataReceived(false)
, m_haveSize(false)
, m_sizeAvailable(false)
, m_hasUniformFrameSize(true)
, m_haveFrameCount(false)
, m_cachedImage(0)
{
}
BitmapImage::~BitmapImage()
{
invalidatePlatformData();
stopAnimation();
}
bool BitmapImage::hasSingleSecurityOrigin() const
{
return true;
}
void BitmapImage::destroyDecodedData(bool destroyAll)
{
unsigned frameBytesCleared = 0;
const size_t clearBeforeFrame = destroyAll ? m_frames.size() : m_currentFrame;
// Because we can advance frames without always needing to decode the actual
// bitmap data, |m_currentFrame| may be larger than m_frames.size();
// make sure not to walk off the end of the container in this case.
for (size_t i = 0; i < std::min(clearBeforeFrame, m_frames.size()); ++i) {
// The underlying frame isn't actually changing (we're just trying to
// save the memory for the framebuffer data), so we don't need to clear
// the metadata.
unsigned frameBytes = m_frames[i].m_frameBytes;
if (m_frames[i].clear(false))
frameBytesCleared += frameBytes;
}
destroyMetadataAndNotify(frameBytesCleared);
m_source.clear(destroyAll, clearBeforeFrame, data(), m_allDataReceived);
return;
}
void BitmapImage::destroyDecodedDataIfNecessary(bool destroyAll)
{
// Animated images >5MB are considered large enough that we'll only hang on
// to one frame at a time.
static const unsigned cLargeAnimationCutoff = 5242880;
// If we have decoded frames but there is no encoded data, we shouldn't destroy
// the decoded image since we won't be able to reconstruct it later.
if (!data() && m_frames.size())
return;
unsigned allFrameBytes = 0;
for (size_t i = 0; i < m_frames.size(); ++i)
allFrameBytes += m_frames[i].m_frameBytes;
if (allFrameBytes > cLargeAnimationCutoff)
destroyDecodedData(destroyAll);
}
void BitmapImage::destroyMetadataAndNotify(unsigned frameBytesCleared)
{
m_isSolidColor = false;
m_checkedForSolidColor = false;
invalidatePlatformData();
ASSERT(m_decodedSize >= frameBytesCleared);
m_decodedSize -= frameBytesCleared;
if (frameBytesCleared > 0) {
frameBytesCleared += m_decodedPropertiesSize;
m_decodedPropertiesSize = 0;
}
if (frameBytesCleared && imageObserver())
imageObserver()->decodedSizeChanged(this, -safeCast<int>(frameBytesCleared));
}
void BitmapImage::cacheFrame(size_t index)
{
size_t numFrames = frameCount();
ASSERT(m_decodedSize == 0 || numFrames > 1);
if (m_frames.size() < numFrames)
m_frames.grow(numFrames);
m_frames[index].m_frame = m_source.createFrameAtIndex(index);
if (numFrames == 1 && m_frames[index].m_frame)
checkForSolidColor();
m_frames[index].m_orientation = m_source.orientationAtIndex(index);
m_frames[index].m_haveMetadata = true;
m_frames[index].m_isComplete = m_source.frameIsCompleteAtIndex(index);
if (repetitionCount(false) != cAnimationNone)
m_frames[index].m_duration = m_source.frameDurationAtIndex(index);
m_frames[index].m_hasAlpha = m_source.frameHasAlphaAtIndex(index);
m_frames[index].m_frameBytes = m_source.frameBytesAtIndex(index);
const IntSize frameSize(index ? m_source.frameSizeAtIndex(index) : m_size);
if (frameSize != m_size)
m_hasUniformFrameSize = false;
if (m_frames[index].m_frame) {
int deltaBytes = safeCast<int>(m_frames[index].m_frameBytes);
m_decodedSize += deltaBytes;
// The fully-decoded frame will subsume the partially decoded data used
// to determine image properties.
deltaBytes -= m_decodedPropertiesSize;
m_decodedPropertiesSize = 0;
if (imageObserver())
imageObserver()->decodedSizeChanged(this, deltaBytes);
}
}
void BitmapImage::didDecodeProperties() const
{
if (m_decodedSize)
return;
size_t updatedSize = m_source.bytesDecodedToDetermineProperties();
if (m_decodedPropertiesSize == updatedSize)
return;
int deltaBytes = updatedSize - m_decodedPropertiesSize;
#if !ASSERT_DISABLED
bool overflow = updatedSize > m_decodedPropertiesSize && deltaBytes < 0;
bool underflow = updatedSize < m_decodedPropertiesSize && deltaBytes > 0;
ASSERT(!overflow && !underflow);
#endif
m_decodedPropertiesSize = updatedSize;
if (imageObserver())
imageObserver()->decodedSizeChanged(this, deltaBytes);
}
void BitmapImage::updateSize(ImageOrientationDescription description) const
{
if (!m_sizeAvailable || m_haveSize)
return;
m_size = m_source.size(description);
m_sizeRespectingOrientation = m_source.size(ImageOrientationDescription(RespectImageOrientation, description.imageOrientation()));
m_imageOrientation = static_cast<unsigned>(description.imageOrientation());
m_shouldRespectImageOrientation = static_cast<unsigned>(description.respectImageOrientation());
m_haveSize = true;
didDecodeProperties();
}
IntSize BitmapImage::size() const
{
updateSize();
return m_size;
}
IntSize BitmapImage::sizeRespectingOrientation(ImageOrientationDescription description) const
{
updateSize(description);
return m_sizeRespectingOrientation;
}
IntSize BitmapImage::currentFrameSize() const
{
if (!m_currentFrame || m_hasUniformFrameSize)
return size();
IntSize frameSize = m_source.frameSizeAtIndex(m_currentFrame);
didDecodeProperties();
return frameSize;
}
bool BitmapImage::getHotSpot(IntPoint& hotSpot) const
{
bool result = m_source.getHotSpot(hotSpot);
didDecodeProperties();
return result;
}
bool BitmapImage::dataChanged(bool allDataReceived)
{
// Clear all partially-decoded frames. For most image formats, there is only
// one frame, but at least GIF and ICO can have more. With GIFs, the frames
// come in order and we ask to decode them in order, waiting to request a
// subsequent frame until the prior one is complete. Given that we clear
// incomplete frames here, this means there is at most one incomplete frame
// (even if we use destroyDecodedData() -- since it doesn't reset the
// metadata), and it is after all the complete frames.
//
// With ICOs, on the other hand, we may ask for arbitrary frames at
// different times (e.g. because we're displaying a higher-resolution image
// in the content area and using a lower-resolution one for the favicon),
// and the frames aren't even guaranteed to appear in the file in the same
// order as in the directory, so an arbitrary number of the frames might be
// incomplete (if we ask for frames for which we've not yet reached the
// start of the frame data), and any or none of them might be the particular
// frame affected by appending new data here. Thus we have to clear all the
// incomplete frames to be safe.
unsigned frameBytesCleared = 0;
for (size_t i = 0; i < m_frames.size(); ++i) {
// NOTE: Don't call frameIsCompleteAtIndex() here, that will try to
// decode any uncached (i.e. never-decoded or
// cleared-on-a-previous-pass) frames!
unsigned frameBytes = m_frames[i].m_frameBytes;
if (m_frames[i].m_haveMetadata && !m_frames[i].m_isComplete)
frameBytesCleared += (m_frames[i].clear(true) ? frameBytes : 0);
}
destroyMetadataAndNotify(frameBytesCleared);
// Feed all the data we've seen so far to the image decoder.
m_allDataReceived = allDataReceived;
m_source.setData(data(), allDataReceived);
m_haveFrameCount = false;
m_hasUniformFrameSize = true;
return isSizeAvailable();
}
String BitmapImage::filenameExtension() const
{
return m_source.filenameExtension();
}
size_t BitmapImage::frameCount()
{
if (!m_haveFrameCount) {
m_frameCount = m_source.frameCount();
// If decoder is not initialized yet, m_source.frameCount() returns 0.
if (m_frameCount) {
didDecodeProperties();
m_haveFrameCount = true;
}
}
return m_frameCount;
}
bool BitmapImage::isSizeAvailable()
{
if (m_sizeAvailable)
return true;
m_sizeAvailable = m_source.isSizeAvailable();
didDecodeProperties();
return m_sizeAvailable;
}
bool BitmapImage::ensureFrameIsCached(size_t index)
{
if (index >= frameCount())
return false;
if (index >= m_frames.size() || !m_frames[index].m_frame)
cacheFrame(index);
return true;
}
PassNativeImagePtr BitmapImage::frameAtIndex(size_t index)
{
if (!ensureFrameIsCached(index))
return 0;
return m_frames[index].m_frame;
}
bool BitmapImage::frameIsCompleteAtIndex(size_t index)
{
if (!ensureFrameIsCached(index))
return false;
return m_frames[index].m_isComplete;
}
float BitmapImage::frameDurationAtIndex(size_t index)
{
if (!ensureFrameIsCached(index))
return 0;
return m_frames[index].m_duration;
}
PassNativeImagePtr BitmapImage::nativeImageForCurrentFrame()
{
return frameAtIndex(currentFrame());
}
bool BitmapImage::frameHasAlphaAtIndex(size_t index)
{
if (m_frames.size() <= index)
return true;
if (m_frames[index].m_haveMetadata)
return m_frames[index].m_hasAlpha;
return m_source.frameHasAlphaAtIndex(index);
}
bool BitmapImage::currentFrameKnownToBeOpaque()
{
return !frameHasAlphaAtIndex(currentFrame());
}
ImageOrientation BitmapImage::frameOrientationAtIndex(size_t index)
{
if (!ensureFrameIsCached(index))
return DefaultImageOrientation;
if (m_frames[index].m_haveMetadata)
return m_frames[index].m_orientation;
return m_source.orientationAtIndex(index);
}
#if !ASSERT_DISABLED
bool BitmapImage::notSolidColor()
{
return size().width() != 1 || size().height() != 1 || frameCount() > 1;
}
#endif
int BitmapImage::repetitionCount(bool imageKnownToBeComplete)
{
if ((m_repetitionCountStatus == Unknown) || ((m_repetitionCountStatus == Uncertain) && imageKnownToBeComplete)) {
// Snag the repetition count. If |imageKnownToBeComplete| is false, the
// repetition count may not be accurate yet for GIFs; in this case the
// decoder will default to cAnimationLoopOnce, and we'll try and read
// the count again once the whole image is decoded.
m_repetitionCount = m_source.repetitionCount();
didDecodeProperties();
m_repetitionCountStatus = (imageKnownToBeComplete || m_repetitionCount == cAnimationNone) ? Certain : Uncertain;
}
return m_repetitionCount;
}
bool BitmapImage::shouldAnimate()
{
return (repetitionCount(false) != cAnimationNone && !m_animationFinished && imageObserver());
}
void BitmapImage::startAnimation(bool catchUpIfNecessary)
{
if (m_frameTimer || !shouldAnimate() || frameCount() <= 1)
return;
// If we aren't already animating, set now as the animation start time.
const double time = monotonicallyIncreasingTime();
if (!m_desiredFrameStartTime)
m_desiredFrameStartTime = time;
// Don't advance the animation to an incomplete frame.
size_t nextFrame = (m_currentFrame + 1) % frameCount();
if (!m_allDataReceived && !frameIsCompleteAtIndex(nextFrame))
return;
// Don't advance past the last frame if we haven't decoded the whole image
// yet and our repetition count is potentially unset. The repetition count
// in a GIF can potentially come after all the rest of the image data, so
// wait on it.
if (!m_allDataReceived && repetitionCount(false) == cAnimationLoopOnce && m_currentFrame >= (frameCount() - 1))
return;
// Determine time for next frame to start. By ignoring paint and timer lag
// in this calculation, we make the animation appear to run at its desired
// rate regardless of how fast it's being repainted.
const double currentDuration = frameDurationAtIndex(m_currentFrame);
m_desiredFrameStartTime += currentDuration;
// When an animated image is more than five minutes out of date, the
// user probably doesn't care about resyncing and we could burn a lot of
// time looping through frames below. Just reset the timings.
const double cAnimationResyncCutoff = 5 * 60;
if ((time - m_desiredFrameStartTime) > cAnimationResyncCutoff)
m_desiredFrameStartTime = time + currentDuration;
// The image may load more slowly than it's supposed to animate, so that by
// the time we reach the end of the first repetition, we're well behind.
// Clamp the desired frame start time in this case, so that we don't skip
// frames (or whole iterations) trying to "catch up". This is a tradeoff:
// It guarantees users see the whole animation the second time through and
// don't miss any repetitions, and is closer to what other browsers do; on
// the other hand, it makes animations "less accurate" for pages that try to
// sync an image and some other resource (e.g. audio), especially if users
// switch tabs (and thus stop drawing the animation, which will pause it)
// during that initial loop, then switch back later.
if (nextFrame == 0 && m_repetitionsComplete == 0 && m_desiredFrameStartTime < time)
m_desiredFrameStartTime = time;
if (!catchUpIfNecessary || time < m_desiredFrameStartTime) {
// Haven't yet reached time for next frame to start; delay until then.
m_frameTimer = std::make_unique<Timer<BitmapImage>>(this, &BitmapImage::advanceAnimation);
m_frameTimer->startOneShot(std::max(m_desiredFrameStartTime - time, 0.));
} else {
// We've already reached or passed the time for the next frame to start.
// See if we've also passed the time for frames after that to start, in
// case we need to skip some frames entirely. Remember not to advance
// to an incomplete frame.
for (size_t frameAfterNext = (nextFrame + 1) % frameCount(); frameIsCompleteAtIndex(frameAfterNext); frameAfterNext = (nextFrame + 1) % frameCount()) {
// Should we skip the next frame?
double frameAfterNextStartTime = m_desiredFrameStartTime + frameDurationAtIndex(nextFrame);
if (time < frameAfterNextStartTime)
break;
// Yes; skip over it without notifying our observers.
if (!internalAdvanceAnimation(true))
return;
m_desiredFrameStartTime = frameAfterNextStartTime;
nextFrame = frameAfterNext;
}
// Draw the next frame immediately. Note that m_desiredFrameStartTime
// may be in the past, meaning the next time through this function we'll
// kick off the next advancement sooner than this frame's duration would
// suggest.
if (internalAdvanceAnimation(false)) {
// The image region has been marked dirty, but once we return to our
// caller, draw() will clear it, and nothing will cause the
// animation to advance again. We need to start the timer for the
// next frame running, or the animation can hang. (Compare this
// with when advanceAnimation() is called, and the region is dirtied
// while draw() is not in the callstack, meaning draw() gets called
// to update the region and thus startAnimation() is reached again.)
// NOTE: For large images with slow or heavily-loaded systems,
// throwing away data as we go (see destroyDecodedData()) means we
// can spend so much time re-decoding data above that by the time we
// reach here we're behind again. If we let startAnimation() run
// the catch-up code again, we can get long delays without painting
// as we race the timer, or even infinite recursion. In this
// situation the best we can do is to simply change frames as fast
// as possible, so force startAnimation() to set a zero-delay timer
// and bail out if we're not caught up.
startAnimation(false);
}
}
}
void BitmapImage::stopAnimation()
{
// This timer is used to animate all occurrences of this image. Don't invalidate
// the timer unless all renderers have stopped drawing.
m_frameTimer = nullptr;
}
void BitmapImage::resetAnimation()
{
stopAnimation();
m_currentFrame = 0;
m_repetitionsComplete = 0;
m_desiredFrameStartTime = 0;
m_animationFinished = false;
// For extremely large animations, when the animation is reset, we just throw everything away.
destroyDecodedDataIfNecessary(true);
}
unsigned BitmapImage::decodedSize() const
{
return m_decodedSize;
}
void BitmapImage::drawPattern(GraphicsContext* ctxt, const FloatRect& tileRect, const AffineTransform& transform,
const FloatPoint& phase, ColorSpace styleColorSpace, CompositeOperator op, const FloatRect& destRect, BlendMode blendMode)
{
if (tileRect.isEmpty())
return;
if (!ctxt->drawLuminanceMask()) {
Image::drawPattern(ctxt, tileRect, transform, phase, styleColorSpace, op, destRect, blendMode);
return;
}
if (!m_cachedImage) {
OwnPtr<ImageBuffer> buffer = ImageBuffer::create(expandedIntSize(tileRect.size()));
ASSERT(buffer.get());
ImageObserver* observer = imageObserver();
ASSERT(observer);
// Temporarily reset image observer, we don't want to receive any changeInRect() calls due to this relayout.
setImageObserver(0);
draw(buffer->context(), tileRect, tileRect, styleColorSpace, op, blendMode, ImageOrientationDescription());
setImageObserver(observer);
buffer->convertToLuminanceMask();
m_cachedImage = buffer->copyImage(DontCopyBackingStore, Unscaled);
m_cachedImage->setSpaceSize(spaceSize());
setImageObserver(observer);
}
ctxt->setDrawLuminanceMask(false);
m_cachedImage->drawPattern(ctxt, tileRect, transform, phase, styleColorSpace, op, destRect, blendMode);
}
void BitmapImage::advanceAnimation(Timer<BitmapImage>*)
{
internalAdvanceAnimation(false);
// At this point the image region has been marked dirty, and if it's
// onscreen, we'll soon make a call to draw(), which will call
// startAnimation() again to keep the animation moving.
}
bool BitmapImage::internalAdvanceAnimation(bool skippingFrames)
{
// Stop the animation.
stopAnimation();
// See if anyone is still paying attention to this animation. If not, we don't
// advance and will remain suspended at the current frame until the animation is resumed.
if (!skippingFrames && imageObserver()->shouldPauseAnimation(this))
return false;
++m_currentFrame;
bool advancedAnimation = true;
bool destroyAll = false;
if (m_currentFrame >= frameCount()) {
++m_repetitionsComplete;
// Get the repetition count again. If we weren't able to get a
// repetition count before, we should have decoded the whole image by
// now, so it should now be available.
// Note that we don't need to special-case cAnimationLoopOnce here
// because it is 0 (see comments on its declaration in ImageSource.h).
if (repetitionCount(true) != cAnimationLoopInfinite && m_repetitionsComplete > m_repetitionCount) {
m_animationFinished = true;
m_desiredFrameStartTime = 0;
--m_currentFrame;
advancedAnimation = false;
} else {
m_currentFrame = 0;
destroyAll = true;
}
}
destroyDecodedDataIfNecessary(destroyAll);
// We need to draw this frame if we advanced to it while not skipping, or if
// while trying to skip frames we hit the last frame and thus had to stop.
if (skippingFrames != advancedAnimation)
imageObserver()->animationAdvanced(this);
return advancedAnimation;
}
bool BitmapImage::mayFillWithSolidColor()
{
if (!m_checkedForSolidColor && frameCount() > 0) {
checkForSolidColor();
// WINCE PORT: checkForSolidColor() doesn't set m_checkedForSolidColor until
// it gets enough information to make final decision.
#if !OS(WINCE)
ASSERT(m_checkedForSolidColor);
#endif
}
return m_isSolidColor && !m_currentFrame;
}
Color BitmapImage::solidColor() const
{
return m_solidColor;
}
bool BitmapImage::canAnimate()
{
return shouldAnimate() && frameCount() > 1;
}
}