blob: f1b22c0fb44808ae358b8897ce865f81fe491d94 [file] [log] [blame]
/*
* Copyright (C) 2008, 2009 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "JIT.h"
#if ENABLE(JIT)
#include "CodeBlock.h"
#include "Interpreter.h"
#include "JITInlineMethods.h"
#include "JITStubCall.h"
#include "JSArray.h"
#include "JSFunction.h"
#include "ResultType.h"
#include "SamplingTool.h"
#ifndef NDEBUG
#include <stdio.h>
#endif
using namespace std;
namespace JSC {
void ctiPatchNearCallByReturnAddress(ReturnAddressPtr returnAddress, MacroAssemblerCodePtr newCalleeFunction)
{
MacroAssembler::RepatchBuffer repatchBuffer;
repatchBuffer.relinkNearCallerToTrampoline(returnAddress, newCalleeFunction);
}
void ctiPatchCallByReturnAddress(ReturnAddressPtr returnAddress, MacroAssemblerCodePtr newCalleeFunction)
{
MacroAssembler::RepatchBuffer repatchBuffer;
repatchBuffer.relinkCallerToTrampoline(returnAddress, newCalleeFunction);
}
void ctiPatchCallByReturnAddress(ReturnAddressPtr returnAddress, FunctionPtr newCalleeFunction)
{
MacroAssembler::RepatchBuffer repatchBuffer;
repatchBuffer.relinkCallerToFunction(returnAddress, newCalleeFunction);
}
JIT::JIT(JSGlobalData* globalData, CodeBlock* codeBlock)
: m_interpreter(globalData->interpreter)
, m_globalData(globalData)
, m_codeBlock(codeBlock)
, m_labels(codeBlock ? codeBlock->instructions().size() : 0)
, m_propertyAccessCompilationInfo(codeBlock ? codeBlock->numberOfStructureStubInfos() : 0)
, m_callStructureStubCompilationInfo(codeBlock ? codeBlock->numberOfCallLinkInfos() : 0)
, m_bytecodeIndex((unsigned)-1)
, m_lastResultBytecodeRegister(std::numeric_limits<int>::max())
, m_jumpTargetsPosition(0)
{
}
void JIT::compileOpStrictEq(Instruction* currentInstruction, CompileOpStrictEqType type)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned src1 = currentInstruction[2].u.operand;
unsigned src2 = currentInstruction[3].u.operand;
emitGetVirtualRegisters(src1, regT0, src2, regT1);
// Jump to a slow case if either operand is a number, or if both are JSCell*s.
move(regT0, regT2);
orPtr(regT1, regT2);
addSlowCase(emitJumpIfJSCell(regT2));
addSlowCase(emitJumpIfImmediateNumber(regT2));
if (type == OpStrictEq)
set32(Equal, regT1, regT0, regT0);
else
set32(NotEqual, regT1, regT0, regT0);
emitTagAsBoolImmediate(regT0);
emitPutVirtualRegister(dst);
}
void JIT::emitTimeoutCheck()
{
Jump skipTimeout = branchSub32(NonZero, Imm32(1), timeoutCheckRegister);
JITStubCall(this, JITStubs::cti_timeout_check).call(timeoutCheckRegister);
skipTimeout.link(this);
killLastResultRegister();
}
#define NEXT_OPCODE(name) \
m_bytecodeIndex += OPCODE_LENGTH(name); \
break;
#define DEFINE_BINARY_OP(name) \
case name: { \
JITStubCall stubCall(this, JITStubs::cti_##name); \
stubCall.addArgument(currentInstruction[2].u.operand, regT2); \
stubCall.addArgument(currentInstruction[3].u.operand, regT2); \
stubCall.call(currentInstruction[1].u.operand); \
NEXT_OPCODE(name); \
}
#define DEFINE_UNARY_OP(name) \
case name: { \
JITStubCall stubCall(this, JITStubs::cti_##name); \
stubCall.addArgument(currentInstruction[2].u.operand, regT2); \
stubCall.call(currentInstruction[1].u.operand); \
NEXT_OPCODE(name); \
}
#define DEFINE_OP(name) \
case name: { \
emit_##name(currentInstruction); \
NEXT_OPCODE(name); \
}
#define DEFINE_SLOWCASE_OP(name) \
case name: { \
emitSlow_##name(currentInstruction, iter); \
NEXT_OPCODE(name); \
}
void JIT::privateCompileMainPass()
{
Instruction* instructionsBegin = m_codeBlock->instructions().begin();
unsigned instructionCount = m_codeBlock->instructions().size();
m_propertyAccessInstructionIndex = 0;
m_globalResolveInfoIndex = 0;
m_callLinkInfoIndex = 0;
for (m_bytecodeIndex = 0; m_bytecodeIndex < instructionCount; ) {
Instruction* currentInstruction = instructionsBegin + m_bytecodeIndex;
ASSERT_WITH_MESSAGE(m_interpreter->isOpcode(currentInstruction->u.opcode), "privateCompileMainPass gone bad @ %d", m_bytecodeIndex);
#if ENABLE(OPCODE_SAMPLING)
if (m_bytecodeIndex > 0) // Avoid the overhead of sampling op_enter twice.
sampleInstruction(currentInstruction);
#endif
if (m_labels[m_bytecodeIndex].isUsed())
killLastResultRegister();
m_labels[m_bytecodeIndex] = label();
switch (m_interpreter->getOpcodeID(currentInstruction->u.opcode)) {
DEFINE_BINARY_OP(op_del_by_val)
DEFINE_BINARY_OP(op_div)
DEFINE_BINARY_OP(op_in)
DEFINE_BINARY_OP(op_less)
DEFINE_BINARY_OP(op_lesseq)
DEFINE_BINARY_OP(op_urshift)
DEFINE_UNARY_OP(op_get_pnames)
DEFINE_UNARY_OP(op_is_boolean)
DEFINE_UNARY_OP(op_is_function)
DEFINE_UNARY_OP(op_is_number)
DEFINE_UNARY_OP(op_is_object)
DEFINE_UNARY_OP(op_is_string)
DEFINE_UNARY_OP(op_is_undefined)
DEFINE_UNARY_OP(op_negate)
DEFINE_UNARY_OP(op_typeof)
DEFINE_OP(op_add)
DEFINE_OP(op_bitand)
DEFINE_OP(op_bitnot)
DEFINE_OP(op_bitor)
DEFINE_OP(op_bitxor)
DEFINE_OP(op_call)
DEFINE_OP(op_call_eval)
DEFINE_OP(op_call_varargs)
DEFINE_OP(op_catch)
DEFINE_OP(op_construct)
DEFINE_OP(op_construct_verify)
DEFINE_OP(op_convert_this)
DEFINE_OP(op_init_arguments)
DEFINE_OP(op_create_arguments)
DEFINE_OP(op_debug)
DEFINE_OP(op_del_by_id)
DEFINE_OP(op_end)
DEFINE_OP(op_enter)
DEFINE_OP(op_enter_with_activation)
DEFINE_OP(op_eq)
DEFINE_OP(op_eq_null)
DEFINE_OP(op_get_by_id)
DEFINE_OP(op_get_by_val)
DEFINE_OP(op_get_global_var)
DEFINE_OP(op_get_scoped_var)
DEFINE_OP(op_instanceof)
DEFINE_OP(op_jeq_null)
DEFINE_OP(op_jfalse)
DEFINE_OP(op_jmp)
DEFINE_OP(op_jmp_scopes)
DEFINE_OP(op_jneq_null)
DEFINE_OP(op_jneq_ptr)
DEFINE_OP(op_jnless)
DEFINE_OP(op_jnlesseq)
DEFINE_OP(op_jsr)
DEFINE_OP(op_jtrue)
DEFINE_OP(op_load_varargs)
DEFINE_OP(op_loop)
DEFINE_OP(op_loop_if_less)
DEFINE_OP(op_loop_if_lesseq)
DEFINE_OP(op_loop_if_true)
DEFINE_OP(op_lshift)
DEFINE_OP(op_method_check)
DEFINE_OP(op_mod)
DEFINE_OP(op_mov)
DEFINE_OP(op_mul)
DEFINE_OP(op_neq)
DEFINE_OP(op_neq_null)
DEFINE_OP(op_new_array)
DEFINE_OP(op_new_error)
DEFINE_OP(op_new_func)
DEFINE_OP(op_new_func_exp)
DEFINE_OP(op_new_object)
DEFINE_OP(op_new_regexp)
DEFINE_OP(op_next_pname)
DEFINE_OP(op_not)
DEFINE_OP(op_nstricteq)
DEFINE_OP(op_pop_scope)
DEFINE_OP(op_post_dec)
DEFINE_OP(op_post_inc)
DEFINE_OP(op_pre_dec)
DEFINE_OP(op_pre_inc)
DEFINE_OP(op_profile_did_call)
DEFINE_OP(op_profile_will_call)
DEFINE_OP(op_push_new_scope)
DEFINE_OP(op_push_scope)
DEFINE_OP(op_put_by_id)
DEFINE_OP(op_put_by_index)
DEFINE_OP(op_put_by_val)
DEFINE_OP(op_put_getter)
DEFINE_OP(op_put_global_var)
DEFINE_OP(op_put_scoped_var)
DEFINE_OP(op_put_setter)
DEFINE_OP(op_resolve)
DEFINE_OP(op_resolve_base)
DEFINE_OP(op_resolve_func)
DEFINE_OP(op_resolve_global)
DEFINE_OP(op_resolve_skip)
DEFINE_OP(op_resolve_with_base)
DEFINE_OP(op_ret)
DEFINE_OP(op_rshift)
DEFINE_OP(op_sret)
DEFINE_OP(op_strcat)
DEFINE_OP(op_stricteq)
DEFINE_OP(op_sub)
DEFINE_OP(op_switch_char)
DEFINE_OP(op_switch_imm)
DEFINE_OP(op_switch_string)
DEFINE_OP(op_tear_off_activation)
DEFINE_OP(op_tear_off_arguments)
DEFINE_OP(op_throw)
DEFINE_OP(op_to_jsnumber)
DEFINE_OP(op_to_primitive)
case op_get_array_length:
case op_get_by_id_chain:
case op_get_by_id_generic:
case op_get_by_id_proto:
case op_get_by_id_proto_list:
case op_get_by_id_self:
case op_get_by_id_self_list:
case op_get_string_length:
case op_put_by_id_generic:
case op_put_by_id_replace:
case op_put_by_id_transition:
ASSERT_NOT_REACHED();
}
}
ASSERT(m_propertyAccessInstructionIndex == m_codeBlock->numberOfStructureStubInfos());
ASSERT(m_callLinkInfoIndex == m_codeBlock->numberOfCallLinkInfos());
#ifndef NDEBUG
// Reset this, in order to guard its use with ASSERTs.
m_bytecodeIndex = (unsigned)-1;
#endif
}
void JIT::privateCompileLinkPass()
{
unsigned jmpTableCount = m_jmpTable.size();
for (unsigned i = 0; i < jmpTableCount; ++i)
m_jmpTable[i].from.linkTo(m_labels[m_jmpTable[i].toBytecodeIndex], this);
m_jmpTable.clear();
}
void JIT::privateCompileSlowCases()
{
Instruction* instructionsBegin = m_codeBlock->instructions().begin();
m_propertyAccessInstructionIndex = 0;
m_callLinkInfoIndex = 0;
for (Vector<SlowCaseEntry>::iterator iter = m_slowCases.begin(); iter != m_slowCases.end();) {
// FIXME: enable peephole optimizations for slow cases when applicable
killLastResultRegister();
m_bytecodeIndex = iter->to;
#ifndef NDEBUG
unsigned firstTo = m_bytecodeIndex;
#endif
Instruction* currentInstruction = instructionsBegin + m_bytecodeIndex;
switch (m_interpreter->getOpcodeID(currentInstruction->u.opcode)) {
DEFINE_SLOWCASE_OP(op_add)
DEFINE_SLOWCASE_OP(op_bitand)
DEFINE_SLOWCASE_OP(op_bitnot)
DEFINE_SLOWCASE_OP(op_bitor)
DEFINE_SLOWCASE_OP(op_bitxor)
DEFINE_SLOWCASE_OP(op_call)
DEFINE_SLOWCASE_OP(op_call_eval)
DEFINE_SLOWCASE_OP(op_call_varargs)
DEFINE_SLOWCASE_OP(op_construct)
DEFINE_SLOWCASE_OP(op_construct_verify)
DEFINE_SLOWCASE_OP(op_convert_this)
DEFINE_SLOWCASE_OP(op_eq)
DEFINE_SLOWCASE_OP(op_get_by_id)
DEFINE_SLOWCASE_OP(op_get_by_val)
DEFINE_SLOWCASE_OP(op_instanceof)
DEFINE_SLOWCASE_OP(op_jfalse)
DEFINE_SLOWCASE_OP(op_jnless)
DEFINE_SLOWCASE_OP(op_jnlesseq)
DEFINE_SLOWCASE_OP(op_jtrue)
DEFINE_SLOWCASE_OP(op_loop_if_less)
DEFINE_SLOWCASE_OP(op_loop_if_lesseq)
DEFINE_SLOWCASE_OP(op_loop_if_true)
DEFINE_SLOWCASE_OP(op_lshift)
DEFINE_SLOWCASE_OP(op_mod)
DEFINE_SLOWCASE_OP(op_mul)
DEFINE_SLOWCASE_OP(op_method_check)
DEFINE_SLOWCASE_OP(op_neq)
DEFINE_SLOWCASE_OP(op_not)
DEFINE_SLOWCASE_OP(op_nstricteq)
DEFINE_SLOWCASE_OP(op_post_dec)
DEFINE_SLOWCASE_OP(op_post_inc)
DEFINE_SLOWCASE_OP(op_pre_dec)
DEFINE_SLOWCASE_OP(op_pre_inc)
DEFINE_SLOWCASE_OP(op_put_by_id)
DEFINE_SLOWCASE_OP(op_put_by_val)
DEFINE_SLOWCASE_OP(op_rshift)
DEFINE_SLOWCASE_OP(op_stricteq)
DEFINE_SLOWCASE_OP(op_sub)
DEFINE_SLOWCASE_OP(op_to_jsnumber)
DEFINE_SLOWCASE_OP(op_to_primitive)
default:
ASSERT_NOT_REACHED();
}
ASSERT_WITH_MESSAGE(iter == m_slowCases.end() || firstTo != iter->to,"Not enough jumps linked in slow case codegen.");
ASSERT_WITH_MESSAGE(firstTo == (iter - 1)->to, "Too many jumps linked in slow case codegen.");
emitJumpSlowToHot(jump(), 0);
}
#if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS)
ASSERT(m_propertyAccessInstructionIndex == m_codeBlock->numberOfStructureStubInfos());
#endif
ASSERT(m_callLinkInfoIndex == m_codeBlock->numberOfCallLinkInfos());
#ifndef NDEBUG
// Reset this, in order to guard its use with ASSERTs.
m_bytecodeIndex = (unsigned)-1;
#endif
}
void JIT::privateCompile()
{
sampleCodeBlock(m_codeBlock);
#if ENABLE(OPCODE_SAMPLING)
sampleInstruction(m_codeBlock->instructions().begin());
#endif
// Could use a pop_m, but would need to offset the following instruction if so.
preverveReturnAddressAfterCall(regT2);
emitPutToCallFrameHeader(regT2, RegisterFile::ReturnPC);
Jump slowRegisterFileCheck;
Label afterRegisterFileCheck;
if (m_codeBlock->codeType() == FunctionCode) {
// In the case of a fast linked call, we do not set this up in the caller.
emitPutImmediateToCallFrameHeader(m_codeBlock, RegisterFile::CodeBlock);
peek(regT0, OBJECT_OFFSETOF(JITStackFrame, registerFile) / sizeof (void*));
addPtr(Imm32(m_codeBlock->m_numCalleeRegisters * sizeof(Register)), callFrameRegister, regT1);
slowRegisterFileCheck = branchPtr(Above, regT1, Address(regT0, OBJECT_OFFSETOF(RegisterFile, m_end)));
afterRegisterFileCheck = label();
}
privateCompileMainPass();
privateCompileLinkPass();
privateCompileSlowCases();
if (m_codeBlock->codeType() == FunctionCode) {
slowRegisterFileCheck.link(this);
m_bytecodeIndex = 0;
JITStubCall(this, JITStubs::cti_register_file_check).call();
#ifndef NDEBUG
m_bytecodeIndex = (unsigned)-1; // Reset this, in order to guard its use with ASSERTs.
#endif
jump(afterRegisterFileCheck);
}
ASSERT(m_jmpTable.isEmpty());
LinkBuffer patchBuffer(this, m_globalData->executableAllocator.poolForSize(m_assembler.size()));
// Translate vPC offsets into addresses in JIT generated code, for switch tables.
for (unsigned i = 0; i < m_switches.size(); ++i) {
SwitchRecord record = m_switches[i];
unsigned bytecodeIndex = record.bytecodeIndex;
if (record.type != SwitchRecord::String) {
ASSERT(record.type == SwitchRecord::Immediate || record.type == SwitchRecord::Character);
ASSERT(record.jumpTable.simpleJumpTable->branchOffsets.size() == record.jumpTable.simpleJumpTable->ctiOffsets.size());
record.jumpTable.simpleJumpTable->ctiDefault = patchBuffer.locationOf(m_labels[bytecodeIndex + 3 + record.defaultOffset]);
for (unsigned j = 0; j < record.jumpTable.simpleJumpTable->branchOffsets.size(); ++j) {
unsigned offset = record.jumpTable.simpleJumpTable->branchOffsets[j];
record.jumpTable.simpleJumpTable->ctiOffsets[j] = offset ? patchBuffer.locationOf(m_labels[bytecodeIndex + 3 + offset]) : record.jumpTable.simpleJumpTable->ctiDefault;
}
} else {
ASSERT(record.type == SwitchRecord::String);
record.jumpTable.stringJumpTable->ctiDefault = patchBuffer.locationOf(m_labels[bytecodeIndex + 3 + record.defaultOffset]);
StringJumpTable::StringOffsetTable::iterator end = record.jumpTable.stringJumpTable->offsetTable.end();
for (StringJumpTable::StringOffsetTable::iterator it = record.jumpTable.stringJumpTable->offsetTable.begin(); it != end; ++it) {
unsigned offset = it->second.branchOffset;
it->second.ctiOffset = offset ? patchBuffer.locationOf(m_labels[bytecodeIndex + 3 + offset]) : record.jumpTable.stringJumpTable->ctiDefault;
}
}
}
for (size_t i = 0; i < m_codeBlock->numberOfExceptionHandlers(); ++i) {
HandlerInfo& handler = m_codeBlock->exceptionHandler(i);
handler.nativeCode = patchBuffer.locationOf(m_labels[handler.target]);
}
for (Vector<CallRecord>::iterator iter = m_calls.begin(); iter != m_calls.end(); ++iter) {
if (iter->to)
patchBuffer.link(iter->from, FunctionPtr(iter->to));
}
if (m_codeBlock->hasExceptionInfo()) {
m_codeBlock->callReturnIndexVector().reserveCapacity(m_calls.size());
for (Vector<CallRecord>::iterator iter = m_calls.begin(); iter != m_calls.end(); ++iter)
m_codeBlock->callReturnIndexVector().append(CallReturnOffsetToBytecodeIndex(patchBuffer.returnAddressOffset(iter->from), iter->bytecodeIndex));
}
// Link absolute addresses for jsr
for (Vector<JSRInfo>::iterator iter = m_jsrSites.begin(); iter != m_jsrSites.end(); ++iter)
patchBuffer.patch(iter->storeLocation, patchBuffer.locationOf(iter->target).executableAddress());
#if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS)
for (unsigned i = 0; i < m_codeBlock->numberOfStructureStubInfos(); ++i) {
StructureStubInfo& info = m_codeBlock->structureStubInfo(i);
info.callReturnLocation = patchBuffer.locationOf(m_propertyAccessCompilationInfo[i].callReturnLocation);
info.hotPathBegin = patchBuffer.locationOf(m_propertyAccessCompilationInfo[i].hotPathBegin);
}
#endif
#if ENABLE(JIT_OPTIMIZE_CALL)
for (unsigned i = 0; i < m_codeBlock->numberOfCallLinkInfos(); ++i) {
CallLinkInfo& info = m_codeBlock->callLinkInfo(i);
info.callReturnLocation = patchBuffer.locationOfNearCall(m_callStructureStubCompilationInfo[i].callReturnLocation);
info.hotPathBegin = patchBuffer.locationOf(m_callStructureStubCompilationInfo[i].hotPathBegin);
info.hotPathOther = patchBuffer.locationOfNearCall(m_callStructureStubCompilationInfo[i].hotPathOther);
}
#endif
unsigned methodCallCount = m_methodCallCompilationInfo.size();
m_codeBlock->addMethodCallLinkInfos(methodCallCount);
for (unsigned i = 0; i < methodCallCount; ++i) {
MethodCallLinkInfo& info = m_codeBlock->methodCallLinkInfo(i);
info.structureLabel = patchBuffer.locationOf(m_methodCallCompilationInfo[i].structureToCompare);
info.callReturnLocation = m_codeBlock->structureStubInfo(m_methodCallCompilationInfo[i].propertyAccessIndex).callReturnLocation;
}
m_codeBlock->setJITCode(patchBuffer.finalizeCode());
}
void JIT::privateCompileCTIMachineTrampolines(RefPtr<ExecutablePool>* executablePool, JSGlobalData* globalData, CodePtr* ctiArrayLengthTrampoline, CodePtr* ctiStringLengthTrampoline, CodePtr* ctiVirtualCallPreLink, CodePtr* ctiVirtualCallLink, CodePtr* ctiVirtualCall, CodePtr* ctiNativeCallThunk)
{
#if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS)
// (1) The first function provides fast property access for array length
Label arrayLengthBegin = align();
// Check eax is an array
Jump array_failureCases1 = emitJumpIfNotJSCell(regT0);
Jump array_failureCases2 = branchPtr(NotEqual, Address(regT0), ImmPtr(m_globalData->jsArrayVPtr));
// Checks out okay! - get the length from the storage
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSArray, m_storage)), regT0);
load32(Address(regT0, OBJECT_OFFSETOF(ArrayStorage, m_length)), regT0);
Jump array_failureCases3 = branch32(Above, regT0, Imm32(JSImmediate::maxImmediateInt));
// regT0 contains a 64 bit value (is positive, is zero extended) so we don't need sign extend here.
emitFastArithIntToImmNoCheck(regT0, regT0);
ret();
// (2) The second function provides fast property access for string length
Label stringLengthBegin = align();
// Check eax is a string
Jump string_failureCases1 = emitJumpIfNotJSCell(regT0);
Jump string_failureCases2 = branchPtr(NotEqual, Address(regT0), ImmPtr(m_globalData->jsStringVPtr));
// Checks out okay! - get the length from the Ustring.
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSString, m_value) + OBJECT_OFFSETOF(UString, m_rep)), regT0);
load32(Address(regT0, OBJECT_OFFSETOF(UString::Rep, len)), regT0);
Jump string_failureCases3 = branch32(Above, regT0, Imm32(JSImmediate::maxImmediateInt));
// regT0 contains a 64 bit value (is positive, is zero extended) so we don't need sign extend here.
emitFastArithIntToImmNoCheck(regT0, regT0);
ret();
#endif
// (3) Trampolines for the slow cases of op_call / op_call_eval / op_construct.
COMPILE_ASSERT(sizeof(CodeType) == 4, CodeTypeEnumMustBe32Bit);
Label virtualCallPreLinkBegin = align();
// Load the callee CodeBlock* into eax
loadPtr(Address(regT2, OBJECT_OFFSETOF(JSFunction, m_body)), regT3);
loadPtr(Address(regT3, OBJECT_OFFSETOF(FunctionBodyNode, m_code)), regT0);
Jump hasCodeBlock1 = branchTestPtr(NonZero, regT0);
preverveReturnAddressAfterCall(regT3);
restoreArgumentReference();
Call callJSFunction1 = call();
emitGetJITStubArg(1, regT2);
emitGetJITStubArg(3, regT1);
restoreReturnAddressBeforeReturn(regT3);
hasCodeBlock1.link(this);
Jump isNativeFunc1 = branch32(Equal, Address(regT0, OBJECT_OFFSETOF(CodeBlock, m_codeType)), Imm32(NativeCode));
// Check argCount matches callee arity.
Jump arityCheckOkay1 = branch32(Equal, Address(regT0, OBJECT_OFFSETOF(CodeBlock, m_numParameters)), regT1);
preverveReturnAddressAfterCall(regT3);
emitPutJITStubArg(regT3, 2);
emitPutJITStubArg(regT0, 4);
restoreArgumentReference();
Call callArityCheck1 = call();
move(regT1, callFrameRegister);
emitGetJITStubArg(1, regT2);
emitGetJITStubArg(3, regT1);
restoreReturnAddressBeforeReturn(regT3);
arityCheckOkay1.link(this);
isNativeFunc1.link(this);
compileOpCallInitializeCallFrame();
preverveReturnAddressAfterCall(regT3);
emitPutJITStubArg(regT3, 2);
restoreArgumentReference();
Call callDontLazyLinkCall = call();
emitGetJITStubArg(1, regT2);
restoreReturnAddressBeforeReturn(regT3);
jump(regT0);
Label virtualCallLinkBegin = align();
// Load the callee CodeBlock* into eax
loadPtr(Address(regT2, OBJECT_OFFSETOF(JSFunction, m_body)), regT3);
loadPtr(Address(regT3, OBJECT_OFFSETOF(FunctionBodyNode, m_code)), regT0);
Jump hasCodeBlock2 = branchTestPtr(NonZero, regT0);
preverveReturnAddressAfterCall(regT3);
restoreArgumentReference();
Call callJSFunction2 = call();
emitGetJITStubArg(1, regT2);
emitGetJITStubArg(3, regT1);
restoreReturnAddressBeforeReturn(regT3);
hasCodeBlock2.link(this);
Jump isNativeFunc2 = branch32(Equal, Address(regT0, OBJECT_OFFSETOF(CodeBlock, m_codeType)), Imm32(NativeCode));
// Check argCount matches callee arity.
Jump arityCheckOkay2 = branch32(Equal, Address(regT0, OBJECT_OFFSETOF(CodeBlock, m_numParameters)), regT1);
preverveReturnAddressAfterCall(regT3);
emitPutJITStubArg(regT3, 2);
emitPutJITStubArg(regT0, 4);
restoreArgumentReference();
Call callArityCheck2 = call();
move(regT1, callFrameRegister);
emitGetJITStubArg(1, regT2);
emitGetJITStubArg(3, regT1);
restoreReturnAddressBeforeReturn(regT3);
arityCheckOkay2.link(this);
isNativeFunc2.link(this);
compileOpCallInitializeCallFrame();
preverveReturnAddressAfterCall(regT3);
emitPutJITStubArg(regT3, 2);
restoreArgumentReference();
Call callLazyLinkCall = call();
restoreReturnAddressBeforeReturn(regT3);
jump(regT0);
Label virtualCallBegin = align();
// Load the callee CodeBlock* into eax
loadPtr(Address(regT2, OBJECT_OFFSETOF(JSFunction, m_body)), regT3);
loadPtr(Address(regT3, OBJECT_OFFSETOF(FunctionBodyNode, m_code)), regT0);
Jump hasCodeBlock3 = branchTestPtr(NonZero, regT0);
preverveReturnAddressAfterCall(regT3);
restoreArgumentReference();
Call callJSFunction3 = call();
emitGetJITStubArg(1, regT2);
emitGetJITStubArg(3, regT1);
restoreReturnAddressBeforeReturn(regT3);
loadPtr(Address(regT2, OBJECT_OFFSETOF(JSFunction, m_body)), regT3); // reload the function body nody, so we can reload the code pointer.
hasCodeBlock3.link(this);
Jump isNativeFunc3 = branch32(Equal, Address(regT0, OBJECT_OFFSETOF(CodeBlock, m_codeType)), Imm32(NativeCode));
// Check argCount matches callee arity.
Jump arityCheckOkay3 = branch32(Equal, Address(regT0, OBJECT_OFFSETOF(CodeBlock, m_numParameters)), regT1);
preverveReturnAddressAfterCall(regT3);
emitPutJITStubArg(regT3, 2);
emitPutJITStubArg(regT0, 4);
restoreArgumentReference();
Call callArityCheck3 = call();
move(regT1, callFrameRegister);
emitGetJITStubArg(1, regT2);
emitGetJITStubArg(3, regT1);
restoreReturnAddressBeforeReturn(regT3);
loadPtr(Address(regT2, OBJECT_OFFSETOF(JSFunction, m_body)), regT3); // reload the function body nody, so we can reload the code pointer.
arityCheckOkay3.link(this);
isNativeFunc3.link(this);
// load ctiCode from the new codeBlock.
loadPtr(Address(regT3, OBJECT_OFFSETOF(FunctionBodyNode, m_jitCode)), regT0);
compileOpCallInitializeCallFrame();
jump(regT0);
Label nativeCallThunk = align();
preverveReturnAddressAfterCall(regT0);
emitPutToCallFrameHeader(regT0, RegisterFile::ReturnPC); // Push return address
// Load caller frame's scope chain into this callframe so that whatever we call can
// get to its global data.
emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, regT1);
emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT1, regT1);
emitPutToCallFrameHeader(regT1, RegisterFile::ScopeChain);
#if PLATFORM(X86_64)
emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, X86::ecx);
// Allocate stack space for our arglist
subPtr(Imm32(sizeof(ArgList)), stackPointerRegister);
COMPILE_ASSERT((sizeof(ArgList) & 0xf) == 0, ArgList_should_by_16byte_aligned);
// Set up arguments
subPtr(Imm32(1), X86::ecx); // Don't include 'this' in argcount
// Push argcount
storePtr(X86::ecx, Address(stackPointerRegister, OBJECT_OFFSETOF(ArgList, m_argCount)));
// Calculate the start of the callframe header, and store in edx
addPtr(Imm32(-RegisterFile::CallFrameHeaderSize * (int32_t)sizeof(Register)), callFrameRegister, X86::edx);
// Calculate start of arguments as callframe header - sizeof(Register) * argcount (ecx)
mul32(Imm32(sizeof(Register)), X86::ecx, X86::ecx);
subPtr(X86::ecx, X86::edx);
// push pointer to arguments
storePtr(X86::edx, Address(stackPointerRegister, OBJECT_OFFSETOF(ArgList, m_args)));
// ArgList is passed by reference so is stackPointerRegister
move(stackPointerRegister, X86::ecx);
// edx currently points to the first argument, edx-sizeof(Register) points to 'this'
loadPtr(Address(X86::edx, -(int32_t)sizeof(Register)), X86::edx);
emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, X86::esi);
move(callFrameRegister, X86::edi);
call(Address(X86::esi, OBJECT_OFFSETOF(JSFunction, m_data)));
addPtr(Imm32(sizeof(ArgList)), stackPointerRegister);
#elif PLATFORM(X86)
emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, regT0);
/* We have two structs that we use to describe the stackframe we set up for our
* call to native code. NativeCallFrameStructure describes the how we set up the stack
* in advance of the call. NativeFunctionCalleeSignature describes the callframe
* as the native code expects it. We do this as we are using the fastcall calling
* convention which results in the callee popping its arguments off the stack, but
* not the rest of the callframe so we need a nice way to ensure we increment the
* stack pointer by the right amount after the call.
*/
#if COMPILER(MSVC) || PLATFORM(LINUX)
struct NativeCallFrameStructure {
// CallFrame* callFrame; // passed in EDX
JSObject* callee;
JSValue thisValue;
ArgList* argPointer;
ArgList args;
JSValue result;
};
struct NativeFunctionCalleeSignature {
JSObject* callee;
JSValue thisValue;
ArgList* argPointer;
};
#else
struct NativeCallFrameStructure {
// CallFrame* callFrame; // passed in ECX
// JSObject* callee; // passed in EDX
JSValue thisValue;
ArgList* argPointer;
ArgList args;
};
struct NativeFunctionCalleeSignature {
JSValue thisValue;
ArgList* argPointer;
};
#endif
const int NativeCallFrameSize = (sizeof(NativeCallFrameStructure) + 15) & ~15;
// Allocate system stack frame
subPtr(Imm32(NativeCallFrameSize), stackPointerRegister);
// Set up arguments
subPtr(Imm32(1), regT0); // Don't include 'this' in argcount
// push argcount
storePtr(regT0, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, args) + OBJECT_OFFSETOF(ArgList, m_argCount)));
// Calculate the start of the callframe header, and store in regT1
addPtr(Imm32(-RegisterFile::CallFrameHeaderSize * (int)sizeof(Register)), callFrameRegister, regT1);
// Calculate start of arguments as callframe header - sizeof(Register) * argcount (regT0)
mul32(Imm32(sizeof(Register)), regT0, regT0);
subPtr(regT0, regT1);
storePtr(regT1, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, args) + OBJECT_OFFSETOF(ArgList, m_args)));
// ArgList is passed by reference so is stackPointerRegister + 4 * sizeof(Register)
addPtr(Imm32(OBJECT_OFFSETOF(NativeCallFrameStructure, args)), stackPointerRegister, regT0);
storePtr(regT0, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, argPointer)));
// regT1 currently points to the first argument, regT1 - sizeof(Register) points to 'this'
loadPtr(Address(regT1, -(int)sizeof(Register)), regT1);
storePtr(regT1, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, thisValue)));
#if COMPILER(MSVC) || PLATFORM(LINUX)
// ArgList is passed by reference so is stackPointerRegister + 4 * sizeof(Register)
addPtr(Imm32(OBJECT_OFFSETOF(NativeCallFrameStructure, result)), stackPointerRegister, X86::ecx);
// Plant callee
emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, X86::eax);
storePtr(X86::eax, Address(stackPointerRegister, OBJECT_OFFSETOF(NativeCallFrameStructure, callee)));
// Plant callframe
move(callFrameRegister, X86::edx);
call(Address(X86::eax, OBJECT_OFFSETOF(JSFunction, m_data)));
// JSValue is a non-POD type
loadPtr(Address(X86::eax), X86::eax);
#else
// Plant callee
emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, X86::edx);
// Plant callframe
move(callFrameRegister, X86::ecx);
call(Address(X86::edx, OBJECT_OFFSETOF(JSFunction, m_data)));
#endif
// We've put a few temporaries on the stack in addition to the actual arguments
// so pull them off now
addPtr(Imm32(NativeCallFrameSize - sizeof(NativeFunctionCalleeSignature)), stackPointerRegister);
#elif ENABLE(JIT_OPTIMIZE_NATIVE_CALL)
#error "JIT_OPTIMIZE_NATIVE_CALL not yet supported on this platform."
#else
breakpoint();
#endif
// Check for an exception
loadPtr(&(globalData->exception), regT2);
Jump exceptionHandler = branchTestPtr(NonZero, regT2);
// Grab the return address.
emitGetFromCallFrameHeaderPtr(RegisterFile::ReturnPC, regT1);
// Restore our caller's "r".
emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, callFrameRegister);
// Return.
restoreReturnAddressBeforeReturn(regT1);
ret();
// Handle an exception
exceptionHandler.link(this);
// Grab the return address.
emitGetFromCallFrameHeaderPtr(RegisterFile::ReturnPC, regT1);
move(ImmPtr(&globalData->exceptionLocation), regT2);
storePtr(regT1, regT2);
move(ImmPtr(reinterpret_cast<void*>(ctiVMThrowTrampoline)), regT2);
emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, callFrameRegister);
poke(callFrameRegister, OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof (void*));
restoreReturnAddressBeforeReturn(regT2);
ret();
#if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS)
Call array_failureCases1Call = makeTailRecursiveCall(array_failureCases1);
Call array_failureCases2Call = makeTailRecursiveCall(array_failureCases2);
Call array_failureCases3Call = makeTailRecursiveCall(array_failureCases3);
Call string_failureCases1Call = makeTailRecursiveCall(string_failureCases1);
Call string_failureCases2Call = makeTailRecursiveCall(string_failureCases2);
Call string_failureCases3Call = makeTailRecursiveCall(string_failureCases3);
#endif
// All trampolines constructed! copy the code, link up calls, and set the pointers on the Machine object.
LinkBuffer patchBuffer(this, m_globalData->executableAllocator.poolForSize(m_assembler.size()));
#if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS)
patchBuffer.link(array_failureCases1Call, FunctionPtr(JITStubs::cti_op_get_by_id_array_fail));
patchBuffer.link(array_failureCases2Call, FunctionPtr(JITStubs::cti_op_get_by_id_array_fail));
patchBuffer.link(array_failureCases3Call, FunctionPtr(JITStubs::cti_op_get_by_id_array_fail));
patchBuffer.link(string_failureCases1Call, FunctionPtr(JITStubs::cti_op_get_by_id_string_fail));
patchBuffer.link(string_failureCases2Call, FunctionPtr(JITStubs::cti_op_get_by_id_string_fail));
patchBuffer.link(string_failureCases3Call, FunctionPtr(JITStubs::cti_op_get_by_id_string_fail));
#endif
patchBuffer.link(callArityCheck1, FunctionPtr(JITStubs::cti_op_call_arityCheck));
patchBuffer.link(callArityCheck2, FunctionPtr(JITStubs::cti_op_call_arityCheck));
patchBuffer.link(callArityCheck3, FunctionPtr(JITStubs::cti_op_call_arityCheck));
patchBuffer.link(callJSFunction1, FunctionPtr(JITStubs::cti_op_call_JSFunction));
patchBuffer.link(callJSFunction2, FunctionPtr(JITStubs::cti_op_call_JSFunction));
patchBuffer.link(callJSFunction3, FunctionPtr(JITStubs::cti_op_call_JSFunction));
patchBuffer.link(callDontLazyLinkCall, FunctionPtr(JITStubs::cti_vm_dontLazyLinkCall));
patchBuffer.link(callLazyLinkCall, FunctionPtr(JITStubs::cti_vm_lazyLinkCall));
CodeRef finalCode = patchBuffer.finalizeCode();
*executablePool = finalCode.m_executablePool;
*ctiVirtualCallPreLink = trampolineAt(finalCode, virtualCallPreLinkBegin);
*ctiVirtualCallLink = trampolineAt(finalCode, virtualCallLinkBegin);
*ctiVirtualCall = trampolineAt(finalCode, virtualCallBegin);
*ctiNativeCallThunk = trampolineAt(finalCode, nativeCallThunk);
#if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS)
*ctiArrayLengthTrampoline = trampolineAt(finalCode, arrayLengthBegin);
*ctiStringLengthTrampoline = trampolineAt(finalCode, stringLengthBegin);
#else
UNUSED_PARAM(ctiArrayLengthTrampoline);
UNUSED_PARAM(ctiStringLengthTrampoline);
#endif
}
void JIT::emitGetVariableObjectRegister(RegisterID variableObject, int index, RegisterID dst)
{
loadPtr(Address(variableObject, OBJECT_OFFSETOF(JSVariableObject, d)), dst);
loadPtr(Address(dst, OBJECT_OFFSETOF(JSVariableObject::JSVariableObjectData, registers)), dst);
loadPtr(Address(dst, index * sizeof(Register)), dst);
}
void JIT::emitPutVariableObjectRegister(RegisterID src, RegisterID variableObject, int index)
{
loadPtr(Address(variableObject, OBJECT_OFFSETOF(JSVariableObject, d)), variableObject);
loadPtr(Address(variableObject, OBJECT_OFFSETOF(JSVariableObject::JSVariableObjectData, registers)), variableObject);
storePtr(src, Address(variableObject, index * sizeof(Register)));
}
void JIT::unlinkCall(CallLinkInfo* callLinkInfo)
{
// When the JSFunction is deleted the pointer embedded in the instruction stream will no longer be valid
// (and, if a new JSFunction happened to be constructed at the same location, we could get a false positive
// match). Reset the check so it no longer matches.
RepatchBuffer repatchBuffer;
repatchBuffer.repatch(callLinkInfo->hotPathBegin, JSValue::encode(JSValue()));
}
void JIT::linkCall(JSFunction* callee, CodeBlock* calleeCodeBlock, JITCode& code, CallLinkInfo* callLinkInfo, int callerArgCount, JSGlobalData* globalData)
{
ASSERT(calleeCodeBlock);
RepatchBuffer repatchBuffer;
// Currently we only link calls with the exact number of arguments.
// If this is a native call calleeCodeBlock is null so the number of parameters is unimportant
if (callerArgCount == calleeCodeBlock->m_numParameters || calleeCodeBlock->codeType() == NativeCode) {
ASSERT(!callLinkInfo->isLinked());
if (calleeCodeBlock)
calleeCodeBlock->addCaller(callLinkInfo);
repatchBuffer.repatch(callLinkInfo->hotPathBegin, callee);
repatchBuffer.relink(callLinkInfo->hotPathOther, code.addressForCall());
}
// patch the call so we do not continue to try to link.
repatchBuffer.relink(callLinkInfo->callReturnLocation, globalData->jitStubs.ctiVirtualCall());
}
} // namespace JSC
#endif // ENABLE(JIT)
// This probably does not belong here; adding here for now as a quick Windows build fix.
#if ENABLE(ASSEMBLER)
#if PLATFORM(X86) && !PLATFORM(MAC)
JSC::MacroAssemblerX86Common::SSE2CheckState JSC::MacroAssemblerX86Common::s_sse2CheckState = NotCheckedSSE2;
#endif
#endif