blob: b574e677a989586dab0b1b3c46ff8f6b03267057 [file] [log] [blame]
/*
* (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 2000 Gunnstein Lye (gunnstein@netcom.no)
* (C) 2000 Frederik Holljen (frederik.holljen@hig.no)
* (C) 2001 Peter Kelly (pmk@post.com)
* Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Apple Inc. All rights reserved.
* Copyright (C) 2011 Motorola Mobility. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include "config.h"
#include "Range.h"
#include "Comment.h"
#include "DOMRect.h"
#include "DOMRectList.h"
#include "DocumentFragment.h"
#include "Editing.h"
#include "Event.h"
#include "Frame.h"
#include "FrameView.h"
#include "HTMLBodyElement.h"
#include "HTMLElement.h"
#include "HTMLHtmlElement.h"
#include "HTMLNames.h"
#include "NodeTraversal.h"
#include "NodeWithIndex.h"
#include "ProcessingInstruction.h"
#include "RenderBlock.h"
#include "RenderBoxModelObject.h"
#include "RenderText.h"
#include "RenderView.h"
#include "ScopedEventQueue.h"
#include "TextIterator.h"
#include "VisiblePosition.h"
#include "VisibleUnits.h"
#include "markup.h"
#include <stdio.h>
#include <wtf/RefCountedLeakCounter.h>
#include <wtf/text/CString.h>
#include <wtf/text/StringBuilder.h>
#if PLATFORM(IOS_FAMILY)
#include "SelectionRect.h"
#endif
namespace WebCore {
using namespace HTMLNames;
DEFINE_DEBUG_ONLY_GLOBAL(WTF::RefCountedLeakCounter, rangeCounter, ("Range"));
enum ContentsProcessDirection { ProcessContentsForward, ProcessContentsBackward };
enum class CoordinateSpace { Absolute, Client };
static ExceptionOr<void> processNodes(Range::ActionType, Vector<Ref<Node>>&, Node* oldContainer, RefPtr<Node> newContainer);
static ExceptionOr<RefPtr<Node>> processContentsBetweenOffsets(Range::ActionType, RefPtr<DocumentFragment>, RefPtr<Node> container, unsigned startOffset, unsigned endOffset);
static ExceptionOr<RefPtr<Node>> processAncestorsAndTheirSiblings(Range::ActionType, Node* container, ContentsProcessDirection, ExceptionOr<RefPtr<Node>>&& passedClonedContainer, Node* commonRoot);
inline Range::Range(Document& ownerDocument)
: m_ownerDocument(ownerDocument)
, m_start(&ownerDocument)
, m_end(&ownerDocument)
{
#ifndef NDEBUG
rangeCounter.increment();
#endif
m_ownerDocument->attachRange(*this);
}
Ref<Range> Range::create(Document& ownerDocument)
{
return adoptRef(*new Range(ownerDocument));
}
inline Range::Range(Document& ownerDocument, Node* startContainer, int startOffset, Node* endContainer, int endOffset)
: m_ownerDocument(ownerDocument)
, m_start(&ownerDocument)
, m_end(&ownerDocument)
{
#ifndef NDEBUG
rangeCounter.increment();
#endif
m_ownerDocument->attachRange(*this);
// Simply setting the containers and offsets directly would not do any of the checking
// that setStart and setEnd do, so we call those functions.
if (startContainer)
setStart(*startContainer, startOffset);
if (endContainer)
setEnd(*endContainer, endOffset);
}
Ref<Range> Range::create(Document& ownerDocument, RefPtr<Node>&& startContainer, int startOffset, RefPtr<Node>&& endContainer, int endOffset)
{
return adoptRef(*new Range(ownerDocument, startContainer.get(), startOffset, endContainer.get(), endOffset));
}
Ref<Range> Range::create(Document& ownerDocument, const Position& start, const Position& end)
{
return adoptRef(*new Range(ownerDocument, start.containerNode(), start.computeOffsetInContainerNode(), end.containerNode(), end.computeOffsetInContainerNode()));
}
Ref<Range> Range::create(Document& ownerDocument, const VisiblePosition& visibleStart, const VisiblePosition& visibleEnd)
{
Position start = visibleStart.deepEquivalent().parentAnchoredEquivalent();
Position end = visibleEnd.deepEquivalent().parentAnchoredEquivalent();
return adoptRef(*new Range(ownerDocument, start.anchorNode(), start.deprecatedEditingOffset(), end.anchorNode(), end.deprecatedEditingOffset()));
}
Range::~Range()
{
m_ownerDocument->detachRange(*this);
#ifndef NDEBUG
rangeCounter.decrement();
#endif
}
void Range::setDocument(Document& document)
{
ASSERT(m_ownerDocument.ptr() != &document);
m_ownerDocument->detachRange(*this);
m_ownerDocument = document;
m_start.setToStartOfNode(document);
m_end.setToStartOfNode(document);
m_ownerDocument->attachRange(*this);
}
Node* Range::commonAncestorContainer(Node* containerA, Node* containerB)
{
for (Node* parentA = containerA; parentA; parentA = parentA->parentNode()) {
for (Node* parentB = containerB; parentB; parentB = parentB->parentNode()) {
if (parentA == parentB)
return parentA;
}
}
return nullptr;
}
static inline bool checkForDifferentRootContainer(const RangeBoundaryPoint& start, const RangeBoundaryPoint& end)
{
Node* endRootContainer = end.container();
while (endRootContainer->parentNode())
endRootContainer = endRootContainer->parentNode();
Node* startRootContainer = start.container();
while (startRootContainer->parentNode())
startRootContainer = startRootContainer->parentNode();
return startRootContainer != endRootContainer || Range::compareBoundaryPoints(start, end).releaseReturnValue() > 0;
}
ExceptionOr<void> Range::setStart(Ref<Node>&& refNode, unsigned offset)
{
bool didMoveDocument = false;
if (&refNode->document() != &ownerDocument()) {
setDocument(refNode->document());
didMoveDocument = true;
}
auto childNode = checkNodeWOffset(refNode, offset);
if (childNode.hasException())
return childNode.releaseException();
m_start.set(WTFMove(refNode), offset, childNode.releaseReturnValue());
if (didMoveDocument || checkForDifferentRootContainer(m_start, m_end))
collapse(true);
return { };
}
ExceptionOr<void> Range::setEnd(Ref<Node>&& refNode, unsigned offset)
{
bool didMoveDocument = false;
if (&refNode->document() != &ownerDocument()) {
setDocument(refNode->document());
didMoveDocument = true;
}
auto childNode = checkNodeWOffset(refNode, offset);
if (childNode.hasException())
return childNode.releaseException();
m_end.set(WTFMove(refNode), offset, childNode.releaseReturnValue());
if (didMoveDocument || checkForDifferentRootContainer(m_start, m_end))
collapse(false);
return { };
}
ExceptionOr<void> Range::setStart(const Position& start)
{
Position parentAnchored = start.parentAnchoredEquivalent();
if (!parentAnchored.containerNode())
return Exception { TypeError };
return setStart(*parentAnchored.containerNode(), parentAnchored.offsetInContainerNode());
}
ExceptionOr<void> Range::setEnd(const Position& end)
{
Position parentAnchored = end.parentAnchoredEquivalent();
if (!parentAnchored.containerNode())
return Exception { TypeError };
return setEnd(*parentAnchored.containerNode(), parentAnchored.offsetInContainerNode());
}
void Range::collapse(bool toStart)
{
if (toStart)
m_end = m_start;
else
m_start = m_end;
}
ExceptionOr<bool> Range::isPointInRange(Node& refNode, unsigned offset)
{
if (&refNode.document() != &ownerDocument())
return false;
auto checkNodeResult = checkNodeWOffset(refNode, offset);
if (checkNodeResult.hasException()) {
// DOM4 spec requires us to check whether refNode and start container have the same root first
// but we do it in the reverse order to avoid O(n) operation here in common case.
if (!commonAncestorContainer(&refNode, &startContainer()))
return false;
return checkNodeResult.releaseException();
}
auto startCompareResult = compareBoundaryPoints(&refNode, offset, &startContainer(), m_start.offset());
if (!(!startCompareResult.hasException() && startCompareResult.releaseReturnValue() >= 0))
return false;
auto endCompareResult = compareBoundaryPoints(&refNode, offset, &endContainer(), m_end.offset());
return !endCompareResult.hasException() && endCompareResult.releaseReturnValue() <= 0;
}
ExceptionOr<short> Range::comparePoint(Node& refNode, unsigned offset) const
{
// http://developer.mozilla.org/en/docs/DOM:range.comparePoint
// This method returns -1, 0 or 1 depending on if the point described by the
// refNode node and an offset within the node is before, same as, or after the range respectively.
if (&refNode.document() != &ownerDocument())
return Exception { WrongDocumentError };
auto checkNodeResult = checkNodeWOffset(refNode, offset);
if (checkNodeResult.hasException()) {
// DOM4 spec requires us to check whether refNode and start container have the same root first
// but we do it in the reverse order to avoid O(n) operation here in common case.
if (!refNode.isConnected() && !commonAncestorContainer(&refNode, &startContainer()))
return Exception { WrongDocumentError };
return checkNodeResult.releaseException();
}
// compare to start, and point comes before
auto startCompareResult = compareBoundaryPoints(&refNode, offset, &startContainer(), m_start.offset());
if (startCompareResult.hasException())
return startCompareResult.releaseException();
if (startCompareResult.releaseReturnValue() < 0)
return -1;
// compare to end, and point comes after
auto endCompareResult = compareBoundaryPoints(&refNode, offset, &endContainer(), m_end.offset());
if (endCompareResult.hasException())
return endCompareResult.releaseException();
if (endCompareResult.releaseReturnValue() > 0)
return 1;
// point is in the middle of this range, or on the boundary points
return 0;
}
ExceptionOr<Range::CompareResults> Range::compareNode(Node& refNode) const
{
// http://developer.mozilla.org/en/docs/DOM:range.compareNode
// This method returns 0, 1, 2, or 3 based on if the node is before, after,
// before and after(surrounds), or inside the range, respectively
if (!refNode.isConnected()) {
// Firefox doesn't throw an exception for this case; it returns 0.
return NODE_BEFORE;
}
if (&refNode.document() != &ownerDocument()) {
// Firefox doesn't throw an exception for this case; it returns 0.
return NODE_BEFORE;
}
auto* parentNode = refNode.parentNode();
if (!parentNode) {
// If the node is the top of the tree we should return NODE_BEFORE_AND_AFTER,
// but we throw to match firefox behavior.
return Exception { NotFoundError };
}
auto nodeIndex = refNode.computeNodeIndex();
auto nodeStartCompareResult = comparePoint(*parentNode, nodeIndex);
if (nodeStartCompareResult.hasException())
return nodeStartCompareResult.releaseException();
auto nodeEndCompareResult = comparePoint(*parentNode, nodeIndex + 1);
if (nodeEndCompareResult.hasException())
return nodeEndCompareResult.releaseException();
bool nodeStartsBeforeRange = nodeStartCompareResult.releaseReturnValue() < 0;
bool nodeEndsAfterRange = nodeEndCompareResult.releaseReturnValue() > 0;
return nodeStartsBeforeRange
? (nodeEndsAfterRange ? NODE_BEFORE_AND_AFTER : NODE_BEFORE)
: (nodeEndsAfterRange ? NODE_AFTER : NODE_INSIDE);
}
static inline Node* top(Node& node)
{
auto* top = &node;
while (auto* parent = top->parentNode())
top = parent;
return top;
}
ExceptionOr<short> Range::compareBoundaryPoints(CompareHow how, const Range& sourceRange) const
{
auto* thisContainer = commonAncestorContainer();
auto* sourceContainer = sourceRange.commonAncestorContainer();
if (!thisContainer || !sourceContainer || &thisContainer->document() != &sourceContainer->document() || top(*thisContainer) != top(*sourceContainer))
return Exception { WrongDocumentError };
switch (how) {
case START_TO_START:
return compareBoundaryPoints(m_start, sourceRange.m_start);
case START_TO_END:
return compareBoundaryPoints(m_end, sourceRange.m_start);
case END_TO_END:
return compareBoundaryPoints(m_end, sourceRange.m_end);
case END_TO_START:
return compareBoundaryPoints(m_start, sourceRange.m_end);
}
return Exception { SyntaxError };
}
ExceptionOr<short> Range::compareBoundaryPointsForBindings(unsigned short how, const Range& sourceRange) const
{
switch (how) {
case START_TO_START:
case START_TO_END:
case END_TO_END:
case END_TO_START:
return compareBoundaryPoints(static_cast<CompareHow>(how), sourceRange);
}
return Exception { NotSupportedError };
}
ExceptionOr<short> Range::compareBoundaryPoints(Node* containerA, unsigned offsetA, Node* containerB, unsigned offsetB)
{
ASSERT(containerA);
ASSERT(containerB);
if (!containerA)
return -1;
if (!containerB)
return 1;
// see DOM2 traversal & range section 2.5
// case 1: both points have the same container
if (containerA == containerB) {
if (offsetA == offsetB)
return 0; // A is equal to B
if (offsetA < offsetB)
return -1; // A is before B
return 1; // A is after B
}
// case 2: node C (container B or an ancestor) is a child node of A
Node* c = containerB;
while (c && c->parentNode() != containerA)
c = c->parentNode();
if (c) {
unsigned offsetC = 0;
Node* n = containerA->firstChild();
while (n != c && offsetC < offsetA) {
offsetC++;
n = n->nextSibling();
}
if (offsetA <= offsetC)
return -1; // A is before B
return 1; // A is after B
}
// case 3: node C (container A or an ancestor) is a child node of B
c = containerA;
while (c && c->parentNode() != containerB)
c = c->parentNode();
if (c) {
unsigned offsetC = 0;
Node* n = containerB->firstChild();
while (n != c && offsetC < offsetB) {
offsetC++;
n = n->nextSibling();
}
if (offsetC < offsetB)
return -1; // A is before B
return 1; // A is after B
}
// case 4: containers A & B are siblings, or children of siblings
// ### we need to do a traversal here instead
auto* commonAncestor = commonAncestorContainer(containerA, containerB);
if (!commonAncestor)
return Exception { WrongDocumentError };
Node* childA = containerA;
while (childA && childA->parentNode() != commonAncestor)
childA = childA->parentNode();
if (!childA)
childA = commonAncestor;
Node* childB = containerB;
while (childB && childB->parentNode() != commonAncestor)
childB = childB->parentNode();
if (!childB)
childB = commonAncestor;
if (childA == childB)
return 0; // A is equal to B
Node* n = commonAncestor->firstChild();
while (n) {
if (n == childA)
return -1; // A is before B
if (n == childB)
return 1; // A is after B
n = n->nextSibling();
}
// Should never reach this point.
ASSERT_NOT_REACHED();
return 0;
}
ExceptionOr<short> Range::compareBoundaryPoints(const RangeBoundaryPoint& boundaryA, const RangeBoundaryPoint& boundaryB)
{
return compareBoundaryPoints(boundaryA.container(), boundaryA.offset(), boundaryB.container(), boundaryB.offset());
}
bool Range::boundaryPointsValid() const
{
auto result = compareBoundaryPoints(m_start, m_end);
return !result.hasException() && result.releaseReturnValue() <= 0;
}
ExceptionOr<void> Range::deleteContents()
{
auto result = processContents(Delete);
if (result.hasException())
return result.releaseException();
return { };
}
ExceptionOr<bool> Range::intersectsNode(Node& refNode) const
{
if (!refNode.isConnected() || &refNode.document() != &ownerDocument())
return false;
ContainerNode* parentNode = refNode.parentNode();
if (!parentNode)
return true;
unsigned nodeIndex = refNode.computeNodeIndex();
// If (parent, offset) is before end and (parent, offset + 1) is after start, return true.
// Otherwise, return false.
auto result = comparePoint(*parentNode, nodeIndex);
if (result.hasException())
return result.releaseException();
auto compareFirst = result.releaseReturnValue();
result = comparePoint(*parentNode, nodeIndex + 1);
if (result.hasException())
return result.releaseException();
auto compareSecond = result.releaseReturnValue();
bool isFirstBeforeEnd = m_start == m_end ? compareFirst < 0 : compareFirst <= 0;
bool isSecondAfterStart = m_start == m_end ? compareSecond > 0 : compareSecond >= 0;
return isFirstBeforeEnd && isSecondAfterStart;
}
static inline Node* highestAncestorUnderCommonRoot(Node* node, Node* commonRoot)
{
if (node == commonRoot)
return 0;
ASSERT(commonRoot->contains(node));
while (node->parentNode() != commonRoot)
node = node->parentNode();
return node;
}
static inline Node* childOfCommonRootBeforeOffset(Node* container, unsigned offset, Node* commonRoot)
{
ASSERT(container);
ASSERT(commonRoot);
if (!commonRoot->contains(container))
return 0;
if (container == commonRoot) {
container = container->firstChild();
for (unsigned i = 0; container && i < offset; i++)
container = container->nextSibling();
} else {
while (container->parentNode() != commonRoot)
container = container->parentNode();
}
return container;
}
static inline unsigned lengthOfContentsInNode(Node& node)
{
// This switch statement must be consistent with that of Range::processContentsBetweenOffsets.
switch (node.nodeType()) {
case Node::DOCUMENT_TYPE_NODE:
case Node::ATTRIBUTE_NODE:
return 0;
case Node::TEXT_NODE:
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
case Node::PROCESSING_INSTRUCTION_NODE:
return downcast<CharacterData>(node).length();
case Node::ELEMENT_NODE:
case Node::DOCUMENT_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
return downcast<ContainerNode>(node).countChildNodes();
}
ASSERT_NOT_REACHED();
return 0;
}
ExceptionOr<RefPtr<DocumentFragment>> Range::processContents(ActionType action)
{
RefPtr<DocumentFragment> fragment;
if (action == Extract || action == Clone)
fragment = DocumentFragment::create(ownerDocument());
if (collapsed())
return fragment;
RefPtr<Node> commonRoot = commonAncestorContainer();
ASSERT(commonRoot);
if (&startContainer() == &endContainer()) {
auto result = processContentsBetweenOffsets(action, fragment, &startContainer(), m_start.offset(), m_end.offset());
if (result.hasException())
return result.releaseException();
return fragment;
}
// Since mutation events can modify the range during the process, the boundary points need to be saved.
RangeBoundaryPoint originalStart(m_start);
RangeBoundaryPoint originalEnd(m_end);
// what is the highest node that partially selects the start / end of the range?
RefPtr<Node> partialStart = highestAncestorUnderCommonRoot(originalStart.container(), commonRoot.get());
RefPtr<Node> partialEnd = highestAncestorUnderCommonRoot(originalEnd.container(), commonRoot.get());
// Start and end containers are different.
// There are three possibilities here:
// 1. Start container == commonRoot (End container must be a descendant)
// 2. End container == commonRoot (Start container must be a descendant)
// 3. Neither is commonRoot, they are both descendants
//
// In case 3, we grab everything after the start (up until a direct child
// of commonRoot) into leftContents, and everything before the end (up until
// a direct child of commonRoot) into rightContents. Then we process all
// commonRoot children between leftContents and rightContents
//
// In case 1 or 2, we skip either processing of leftContents or rightContents,
// in which case the last lot of nodes either goes from the first or last
// child of commonRoot.
//
// These are deleted, cloned, or extracted (i.e. both) depending on action.
// Note that we are verifying that our common root hierarchy is still intact
// after any DOM mutation event, at various stages below. See webkit bug 60350.
RefPtr<Node> leftContents;
if (originalStart.container() != commonRoot && commonRoot->contains(originalStart.container())) {
auto firstResult = processContentsBetweenOffsets(action, nullptr, originalStart.container(), originalStart.offset(), lengthOfContentsInNode(*originalStart.container()));
auto secondResult = processAncestorsAndTheirSiblings(action, originalStart.container(), ProcessContentsForward, WTFMove(firstResult), commonRoot.get());
// FIXME: A bit peculiar that we silently ignore the exception here, but we do have at least some regression tests that rely on this behavior.
if (!secondResult.hasException())
leftContents = secondResult.releaseReturnValue();
}
RefPtr<Node> rightContents;
if (&endContainer() != commonRoot && commonRoot->contains(originalEnd.container())) {
auto firstResult = processContentsBetweenOffsets(action, nullptr, originalEnd.container(), 0, originalEnd.offset());
auto secondResult = processAncestorsAndTheirSiblings(action, originalEnd.container(), ProcessContentsBackward, WTFMove(firstResult), commonRoot.get());
// FIXME: A bit peculiar that we silently ignore the exception here, but we do have at least some regression tests that rely on this behavior.
if (!secondResult.hasException())
rightContents = secondResult.releaseReturnValue();
}
// delete all children of commonRoot between the start and end container
RefPtr<Node> processStart = childOfCommonRootBeforeOffset(originalStart.container(), originalStart.offset(), commonRoot.get());
if (processStart && originalStart.container() != commonRoot) // processStart contains nodes before m_start.
processStart = processStart->nextSibling();
RefPtr<Node> processEnd = childOfCommonRootBeforeOffset(originalEnd.container(), originalEnd.offset(), commonRoot.get());
// Collapse the range, making sure that the result is not within a node that was partially selected.
if (action == Extract || action == Delete) {
if (partialStart && commonRoot->contains(partialStart.get())) {
auto result = setStart(*partialStart->parentNode(), partialStart->computeNodeIndex() + 1);
if (result.hasException())
return result.releaseException();
} else if (partialEnd && commonRoot->contains(partialEnd.get())) {
auto result = setStart(*partialEnd->parentNode(), partialEnd->computeNodeIndex());
if (result.hasException())
return result.releaseException();
}
m_end = m_start;
}
// Now add leftContents, stuff in between, and rightContents to the fragment
// (or just delete the stuff in between)
if ((action == Extract || action == Clone) && leftContents) {
auto result = fragment->appendChild(*leftContents);
if (result.hasException())
return result.releaseException();
}
if (processStart) {
Vector<Ref<Node>> nodes;
for (Node* node = processStart.get(); node && node != processEnd; node = node->nextSibling())
nodes.append(*node);
auto result = processNodes(action, nodes, commonRoot.get(), fragment.get());
if (result.hasException())
return result.releaseException();
}
if ((action == Extract || action == Clone) && rightContents) {
auto result = fragment->appendChild(*rightContents);
if (result.hasException())
return result.releaseException();
}
return fragment;
}
static inline ExceptionOr<void> deleteCharacterData(CharacterData& data, unsigned startOffset, unsigned endOffset)
{
if (data.length() - endOffset) {
auto result = data.deleteData(endOffset, data.length() - endOffset);
if (result.hasException())
return result.releaseException();
}
if (startOffset) {
auto result = data.deleteData(0, startOffset);
if (result.hasException())
return result.releaseException();
}
return { };
}
static ExceptionOr<RefPtr<Node>> processContentsBetweenOffsets(Range::ActionType action, RefPtr<DocumentFragment> fragment, RefPtr<Node> container, unsigned startOffset, unsigned endOffset)
{
ASSERT(container);
ASSERT(startOffset <= endOffset);
RefPtr<Node> result;
// This switch statement must be consistent with that of lengthOfContentsInNode.
switch (container->nodeType()) {
case Node::TEXT_NODE:
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
endOffset = std::min(endOffset, downcast<CharacterData>(*container).length());
startOffset = std::min(startOffset, endOffset);
if (action == Range::Extract || action == Range::Clone) {
Ref<CharacterData> characters = downcast<CharacterData>(container->cloneNode(true).get());
auto deleteResult = deleteCharacterData(characters, startOffset, endOffset);
if (deleteResult.hasException())
return deleteResult.releaseException();
if (fragment) {
result = fragment;
auto appendResult = result->appendChild(characters);
if (appendResult.hasException())
return appendResult.releaseException();
} else
result = WTFMove(characters);
}
if (action == Range::Extract || action == Range::Delete) {
auto deleteResult = downcast<CharacterData>(*container).deleteData(startOffset, endOffset - startOffset);
if (deleteResult.hasException())
return deleteResult.releaseException();
}
break;
case Node::PROCESSING_INSTRUCTION_NODE: {
auto& instruction = downcast<ProcessingInstruction>(*container);
endOffset = std::min(endOffset, downcast<ProcessingInstruction>(*container).data().length());
startOffset = std::min(startOffset, endOffset);
if (action == Range::Extract || action == Range::Clone) {
Ref<ProcessingInstruction> processingInstruction = downcast<ProcessingInstruction>(container->cloneNode(true).get());
processingInstruction->setData(processingInstruction->data().substring(startOffset, endOffset - startOffset));
if (fragment) {
result = fragment;
auto appendResult = result->appendChild(processingInstruction);
if (appendResult.hasException())
return appendResult.releaseException();
} else
result = WTFMove(processingInstruction);
}
if (action == Range::Extract || action == Range::Delete) {
String data { instruction.data() };
data.remove(startOffset, endOffset - startOffset);
instruction.setData(data);
}
break;
}
case Node::ELEMENT_NODE:
case Node::ATTRIBUTE_NODE:
case Node::DOCUMENT_NODE:
case Node::DOCUMENT_TYPE_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
// FIXME: Should we assert that some nodes never appear here?
if (action == Range::Extract || action == Range::Clone) {
if (fragment)
result = fragment;
else
result = container->cloneNode(false);
}
Vector<Ref<Node>> nodes;
Node* n = container->firstChild();
for (unsigned i = startOffset; n && i; i--)
n = n->nextSibling();
for (unsigned i = startOffset; n && i < endOffset; i++, n = n->nextSibling()) {
if (action != Range::Delete && n->isDocumentTypeNode()) {
return Exception { HierarchyRequestError };
}
nodes.append(*n);
}
auto processResult = processNodes(action, nodes, container.get(), result);
if (processResult.hasException())
return processResult.releaseException();
break;
}
return result;
}
static ExceptionOr<void> processNodes(Range::ActionType action, Vector<Ref<Node>>& nodes, Node* oldContainer, RefPtr<Node> newContainer)
{
for (auto& node : nodes) {
switch (action) {
case Range::Delete: {
auto result = oldContainer->removeChild(node);
if (result.hasException())
return result.releaseException();
break;
}
case Range::Extract: {
auto result = newContainer->appendChild(node); // will remove node from its parent
if (result.hasException())
return result.releaseException();
break;
}
case Range::Clone: {
auto result = newContainer->appendChild(node->cloneNode(true));
if (result.hasException())
return result.releaseException();
break;
}
}
}
return { };
}
ExceptionOr<RefPtr<Node>> processAncestorsAndTheirSiblings(Range::ActionType action, Node* container, ContentsProcessDirection direction, ExceptionOr<RefPtr<Node>>&& passedClonedContainer, Node* commonRoot)
{
if (passedClonedContainer.hasException())
return WTFMove(passedClonedContainer);
RefPtr<Node> clonedContainer = passedClonedContainer.releaseReturnValue();
Vector<Ref<ContainerNode>> ancestors;
for (ContainerNode* ancestor = container->parentNode(); ancestor && ancestor != commonRoot; ancestor = ancestor->parentNode())
ancestors.append(*ancestor);
RefPtr<Node> firstChildInAncestorToProcess = direction == ProcessContentsForward ? container->nextSibling() : container->previousSibling();
for (auto& ancestor : ancestors) {
if (action == Range::Extract || action == Range::Clone) {
auto clonedAncestor = ancestor->cloneNode(false); // Might have been removed already during mutation event.
if (clonedContainer) {
auto result = clonedAncestor->appendChild(*clonedContainer);
if (result.hasException())
return result.releaseException();
}
clonedContainer = WTFMove(clonedAncestor);
}
// Copy siblings of an ancestor of start/end containers
// FIXME: This assertion may fail if DOM is modified during mutation event
// FIXME: Share code with Range::processNodes
ASSERT(!firstChildInAncestorToProcess || firstChildInAncestorToProcess->parentNode() == ancestor.ptr());
Vector<Ref<Node>> nodes;
for (Node* child = firstChildInAncestorToProcess.get(); child;
child = (direction == ProcessContentsForward) ? child->nextSibling() : child->previousSibling())
nodes.append(*child);
for (auto& child : nodes) {
switch (action) {
case Range::Delete: {
auto result = ancestor->removeChild(child);
if (result.hasException())
return result.releaseException();
break;
}
case Range::Extract: // will remove child from ancestor
if (direction == ProcessContentsForward) {
auto result = clonedContainer->appendChild(child);
if (result.hasException())
return result.releaseException();
} else {
auto result = clonedContainer->insertBefore(child, clonedContainer->firstChild());
if (result.hasException())
return result.releaseException();
}
break;
case Range::Clone:
if (direction == ProcessContentsForward) {
auto result = clonedContainer->appendChild(child->cloneNode(true));
if (result.hasException())
return result.releaseException();
} else {
auto result = clonedContainer->insertBefore(child->cloneNode(true), clonedContainer->firstChild());
if (result.hasException())
return result.releaseException();
}
break;
}
}
firstChildInAncestorToProcess = direction == ProcessContentsForward ? ancestor->nextSibling() : ancestor->previousSibling();
}
return clonedContainer;
}
ExceptionOr<Ref<DocumentFragment>> Range::extractContents()
{
auto result = processContents(Extract);
if (result.hasException())
return result.releaseException();
return result.releaseReturnValue().releaseNonNull();
}
ExceptionOr<Ref<DocumentFragment>> Range::cloneContents()
{
auto result = processContents(Clone);
if (result.hasException())
return result.releaseException();
return result.releaseReturnValue().releaseNonNull();
}
ExceptionOr<void> Range::insertNode(Ref<Node>&& node)
{
auto startContainerNodeType = startContainer().nodeType();
if (startContainerNodeType == Node::COMMENT_NODE || startContainerNodeType == Node::PROCESSING_INSTRUCTION_NODE)
return Exception { HierarchyRequestError };
bool startIsText = startContainerNodeType == Node::TEXT_NODE;
if (startIsText && !startContainer().parentNode())
return Exception { HierarchyRequestError };
if (node.ptr() == &startContainer())
return Exception { HierarchyRequestError };
RefPtr<Node> referenceNode = startIsText ? &startContainer() : startContainer().traverseToChildAt(startOffset());
Node* parentNode = referenceNode ? referenceNode->parentNode() : &startContainer();
if (!is<ContainerNode>(parentNode))
return Exception { HierarchyRequestError };
Ref<ContainerNode> parent = downcast<ContainerNode>(*parentNode);
auto result = parent->ensurePreInsertionValidity(node, referenceNode.get());
if (result.hasException())
return result.releaseException();
EventQueueScope scope;
if (startIsText) {
auto result = downcast<Text>(startContainer()).splitText(startOffset());
if (result.hasException())
return result.releaseException();
referenceNode = result.releaseReturnValue();
}
if (referenceNode == node.ptr())
referenceNode = referenceNode->nextSibling();
auto removeResult = node->remove();
if (removeResult.hasException())
return removeResult.releaseException();
unsigned newOffset = referenceNode ? referenceNode->computeNodeIndex() : parent->countChildNodes();
if (is<DocumentFragment>(node))
newOffset += downcast<DocumentFragment>(node.get()).countChildNodes();
else
++newOffset;
auto insertResult = parent->insertBefore(node, referenceNode.get());
if (insertResult.hasException())
return insertResult.releaseException();
if (collapsed())
return setEnd(WTFMove(parent), newOffset);
return { };
}
String Range::toString() const
{
StringBuilder builder;
Node* pastLast = pastLastNode();
for (Node* node = firstNode(); node != pastLast; node = NodeTraversal::next(*node)) {
auto type = node->nodeType();
if (type == Node::TEXT_NODE || type == Node::CDATA_SECTION_NODE) {
auto& data = downcast<CharacterData>(*node).data();
unsigned length = data.length();
unsigned start = node == &startContainer() ? std::min(m_start.offset(), length) : 0U;
unsigned end = node == &endContainer() ? std::min(std::max(start, m_end.offset()), length) : length;
builder.appendSubstring(data, start, end - start);
}
}
return builder.toString();
}
String Range::text() const
{
// We need to update layout, since plainText uses line boxes in the render tree.
// FIXME: As with innerText, we'd like this to work even if there are no render objects.
startContainer().document().updateLayout();
return plainText(this);
}
// https://w3c.github.io/DOM-Parsing/#widl-Range-createContextualFragment-DocumentFragment-DOMString-fragment
ExceptionOr<Ref<DocumentFragment>> Range::createContextualFragment(const String& markup)
{
Node& node = startContainer();
RefPtr<Element> element;
if (is<Document>(node) || is<DocumentFragment>(node))
element = nullptr;
else if (is<Element>(node))
element = &downcast<Element>(node);
else
element = node.parentElement();
if (!element || (element->document().isHTMLDocument() && is<HTMLHtmlElement>(*element)))
element = HTMLBodyElement::create(node.document());
return WebCore::createContextualFragment(*element, markup, AllowScriptingContentAndDoNotMarkAlreadyStarted);
}
void Range::detach()
{
// This is now a no-op as per the DOM specification.
}
ExceptionOr<Node*> Range::checkNodeWOffset(Node& node, unsigned offset) const
{
switch (node.nodeType()) {
case Node::DOCUMENT_TYPE_NODE:
return Exception { InvalidNodeTypeError };
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
case Node::TEXT_NODE:
case Node::PROCESSING_INSTRUCTION_NODE:
if (offset > downcast<CharacterData>(node).length())
return Exception { IndexSizeError };
return nullptr;
case Node::ATTRIBUTE_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
case Node::DOCUMENT_NODE:
case Node::ELEMENT_NODE: {
if (!offset)
return nullptr;
Node* childBefore = node.traverseToChildAt(offset - 1);
if (!childBefore)
return Exception { IndexSizeError };
return childBefore;
}
}
ASSERT_NOT_REACHED();
return Exception { InvalidNodeTypeError };
}
Ref<Range> Range::cloneRange() const
{
return Range::create(ownerDocument(), &startContainer(), m_start.offset(), &endContainer(), m_end.offset());
}
ExceptionOr<void> Range::setStartAfter(Node& refNode)
{
if (!refNode.parentNode())
return Exception { InvalidNodeTypeError };
return setStart(*refNode.parentNode(), refNode.computeNodeIndex() + 1);
}
ExceptionOr<void> Range::setEndBefore(Node& refNode)
{
if (!refNode.parentNode())
return Exception { InvalidNodeTypeError };
return setEnd(*refNode.parentNode(), refNode.computeNodeIndex());
}
ExceptionOr<void> Range::setEndAfter(Node& refNode)
{
if (!refNode.parentNode())
return Exception { InvalidNodeTypeError };
return setEnd(*refNode.parentNode(), refNode.computeNodeIndex() + 1);
}
ExceptionOr<void> Range::selectNode(Node& refNode)
{
if (!refNode.parentNode())
return Exception { InvalidNodeTypeError };
if (&ownerDocument() != &refNode.document())
setDocument(refNode.document());
unsigned index = refNode.computeNodeIndex();
auto result = setStart(*refNode.parentNode(), index);
if (result.hasException())
return result.releaseException();
return setEnd(*refNode.parentNode(), index + 1);
}
ExceptionOr<void> Range::selectNodeContents(Node& refNode)
{
if (refNode.isDocumentTypeNode())
return Exception { InvalidNodeTypeError };
if (&ownerDocument() != &refNode.document())
setDocument(refNode.document());
m_start.setToStartOfNode(refNode);
m_end.setToEndOfNode(refNode);
return { };
}
// https://dom.spec.whatwg.org/#dom-range-surroundcontents
ExceptionOr<void> Range::surroundContents(Node& newParent)
{
Ref<Node> protectedNewParent(newParent);
// Step 1: If a non-Text node is partially contained in the context object, then throw an InvalidStateError.
Node* startNonTextContainer = &startContainer();
if (startNonTextContainer->nodeType() == Node::TEXT_NODE)
startNonTextContainer = startNonTextContainer->parentNode();
Node* endNonTextContainer = &endContainer();
if (endNonTextContainer->nodeType() == Node::TEXT_NODE)
endNonTextContainer = endNonTextContainer->parentNode();
if (startNonTextContainer != endNonTextContainer)
return Exception { InvalidStateError };
// Step 2: If newParent is a Document, DocumentType, or DocumentFragment node, then throw an InvalidNodeTypeError.
switch (newParent.nodeType()) {
case Node::ATTRIBUTE_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
case Node::DOCUMENT_NODE:
case Node::DOCUMENT_TYPE_NODE:
return Exception { InvalidNodeTypeError };
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
case Node::ELEMENT_NODE:
case Node::PROCESSING_INSTRUCTION_NODE:
case Node::TEXT_NODE:
break;
}
// Step 3: Let fragment be the result of extracting context object.
auto fragment = extractContents();
if (fragment.hasException())
return fragment.releaseException();
// Step 4: If newParent has children, replace all with null within newParent.
if (newParent.hasChildNodes())
downcast<ContainerNode>(newParent).replaceAllChildren(nullptr);
// Step 5: Insert newParent into context object.
auto insertResult = insertNode(newParent);
if (insertResult.hasException())
return insertResult.releaseException();
// Step 6: Append fragment to newParent.
auto appendResult = newParent.appendChild(fragment.releaseReturnValue());
if (appendResult.hasException())
return appendResult.releaseException();
// Step 7: Select newParent within context object.
return selectNode(newParent);
}
ExceptionOr<void> Range::setStartBefore(Node& refNode)
{
if (!refNode.parentNode())
return Exception { InvalidNodeTypeError };
return setStart(*refNode.parentNode(), refNode.computeNodeIndex());
}
Node* Range::firstNode() const
{
if (startContainer().isCharacterDataNode())
return &startContainer();
if (Node* child = startContainer().traverseToChildAt(m_start.offset()))
return child;
if (!m_start.offset())
return &startContainer();
return NodeTraversal::nextSkippingChildren(startContainer());
}
ShadowRoot* Range::shadowRoot() const
{
return startContainer().containingShadowRoot();
}
Node* Range::pastLastNode() const
{
if (endContainer().isCharacterDataNode())
return NodeTraversal::nextSkippingChildren(endContainer());
if (Node* child = endContainer().traverseToChildAt(m_end.offset()))
return child;
return NodeTraversal::nextSkippingChildren(endContainer());
}
IntRect Range::absoluteBoundingBox() const
{
IntRect result;
Vector<IntRect> rects;
absoluteTextRects(rects);
for (auto& rect : rects)
result.unite(rect);
return result;
}
Vector<FloatRect> Range::absoluteRectsForRangeInText(Node* node, RenderText& renderText, bool useSelectionHeight, bool& isFixed, OptionSet<BoundingRectBehavior> rectOptions) const
{
unsigned startOffset = node == &startContainer() ? m_start.offset() : 0;
unsigned endOffset = node == &endContainer() ? m_end.offset() : std::numeric_limits<unsigned>::max();
auto textQuads = renderText.absoluteQuadsForRange(startOffset, endOffset, useSelectionHeight, &isFixed);
if (rectOptions.contains(BoundingRectBehavior::RespectClipping)) {
Vector<FloatRect> clippedRects;
clippedRects.reserveInitialCapacity(textQuads.size());
auto absoluteClippedOverflowRect = renderText.absoluteClippedOverflowRect();
for (auto& quad : textQuads) {
auto clippedRect = intersection(quad.boundingBox(), absoluteClippedOverflowRect);
if (!clippedRect.isEmpty())
clippedRects.uncheckedAppend(clippedRect);
}
return clippedRects;
}
Vector<FloatRect> floatRects;
floatRects.reserveInitialCapacity(textQuads.size());
for (auto& quad : textQuads)
floatRects.uncheckedAppend(quad.boundingBox());
return floatRects;
}
void Range::absoluteTextRects(Vector<IntRect>& rects, bool useSelectionHeight, RangeInFixedPosition* inFixed, OptionSet<BoundingRectBehavior> rectOptions) const
{
// FIXME: This function should probably return FloatRects.
bool allFixed = true;
bool someFixed = false;
Node* stopNode = pastLastNode();
for (Node* node = firstNode(); node != stopNode; node = NodeTraversal::next(*node)) {
RenderObject* renderer = node->renderer();
if (!renderer)
continue;
bool isFixed = false;
if (renderer->isBR())
renderer->absoluteRects(rects, flooredLayoutPoint(renderer->localToAbsolute()));
else if (is<RenderText>(*renderer)) {
auto rectsForRenderer = absoluteRectsForRangeInText(node, downcast<RenderText>(*renderer), useSelectionHeight, isFixed, rectOptions);
for (auto& rect : rectsForRenderer)
rects.append(enclosingIntRect(rect));
} else
continue;
allFixed &= isFixed;
someFixed |= isFixed;
}
if (inFixed)
*inFixed = allFixed ? EntirelyFixedPosition : (someFixed ? PartiallyFixedPosition : NotFixedPosition);
}
void Range::absoluteTextQuads(Vector<FloatQuad>& quads, bool useSelectionHeight, RangeInFixedPosition* inFixed) const
{
bool allFixed = true;
bool someFixed = false;
Node* stopNode = pastLastNode();
for (Node* node = firstNode(); node != stopNode; node = NodeTraversal::next(*node)) {
RenderObject* renderer = node->renderer();
if (!renderer)
continue;
bool isFixed = false;
if (renderer->isBR())
renderer->absoluteQuads(quads, &isFixed);
else if (is<RenderText>(*renderer)) {
unsigned startOffset = node == &startContainer() ? m_start.offset() : 0;
unsigned endOffset = node == &endContainer() ? m_end.offset() : std::numeric_limits<unsigned>::max();
quads.appendVector(downcast<RenderText>(*renderer).absoluteQuadsForRange(startOffset, endOffset, useSelectionHeight, &isFixed));
} else
continue;
allFixed &= isFixed;
someFixed |= isFixed;
}
if (inFixed)
*inFixed = allFixed ? EntirelyFixedPosition : (someFixed ? PartiallyFixedPosition : NotFixedPosition);
}
#if PLATFORM(IOS_FAMILY)
static bool intervalsSufficientlyOverlap(int startA, int endA, int startB, int endB)
{
if (endA <= startA || endB <= startB)
return false;
const float sufficientOverlap = .75;
int lengthA = endA - startA;
int lengthB = endB - startB;
int maxStart = std::max(startA, startB);
int minEnd = std::min(endA, endB);
if (maxStart > minEnd)
return false;
return minEnd - maxStart >= sufficientOverlap * std::min(lengthA, lengthB);
}
static inline void adjustLineHeightOfSelectionRects(Vector<SelectionRect>& rects, size_t numberOfRects, int lineNumber, int lineTop, int lineHeight)
{
ASSERT(rects.size() >= numberOfRects);
for (size_t i = numberOfRects; i; ) {
--i;
if (rects[i].lineNumber())
break;
rects[i].setLineNumber(lineNumber);
rects[i].setLogicalTop(lineTop);
rects[i].setLogicalHeight(lineHeight);
}
}
static SelectionRect coalesceSelectionRects(const SelectionRect& original, const SelectionRect& previous)
{
SelectionRect result(unionRect(previous.rect(), original.rect()), original.isHorizontal(), original.pageNumber());
result.setDirection(original.containsStart() || original.containsEnd() ? original.direction() : previous.direction());
result.setContainsStart(previous.containsStart() || original.containsStart());
result.setContainsEnd(previous.containsEnd() || original.containsEnd());
result.setIsFirstOnLine(previous.isFirstOnLine() || original.isFirstOnLine());
result.setIsLastOnLine(previous.isLastOnLine() || original.isLastOnLine());
return result;
}
// This function is similar in spirit to addLineBoxRects, but annotates the returned rectangles
// with additional state which helps iOS draw selections in its unique way.
int Range::collectSelectionRectsWithoutUnionInteriorLines(Vector<SelectionRect>& rects) const
{
auto& startContainer = this->startContainer();
auto& endContainer = this->endContainer();
int startOffset = m_start.offset();
int endOffset = m_end.offset();
Vector<SelectionRect> newRects;
Node* stopNode = pastLastNode();
bool hasFlippedWritingMode = startContainer.renderer() && startContainer.renderer()->style().isFlippedBlocksWritingMode();
bool containsDifferentWritingModes = false;
for (Node* node = firstNode(); node && node != stopNode; node = NodeTraversal::next(*node)) {
RenderObject* renderer = node->renderer();
// Only ask leaf render objects for their line box rects.
if (renderer && !renderer->firstChildSlow() && renderer->style().userSelect() != UserSelect::None) {
bool isStartNode = renderer->node() == &startContainer;
bool isEndNode = renderer->node() == &endContainer;
if (hasFlippedWritingMode != renderer->style().isFlippedBlocksWritingMode())
containsDifferentWritingModes = true;
// FIXME: Sending 0 for the startOffset is a weird way of telling the renderer that the selection
// doesn't start inside it, since we'll also send 0 if the selection *does* start in it, at offset 0.
//
// FIXME: Selection endpoints aren't always inside leaves, and we only build SelectionRects for leaves,
// so we can't accurately determine which SelectionRects contain the selection start and end using
// only the offsets of the start and end. We need to pass the whole Range.
int beginSelectionOffset = isStartNode ? startOffset : 0;
int endSelectionOffset = isEndNode ? endOffset : std::numeric_limits<int>::max();
renderer->collectSelectionRects(newRects, beginSelectionOffset, endSelectionOffset);
for (auto& selectionRect : newRects) {
if (selectionRect.containsStart() && !isStartNode)
selectionRect.setContainsStart(false);
if (selectionRect.containsEnd() && !isEndNode)
selectionRect.setContainsEnd(false);
if (selectionRect.logicalWidth() || selectionRect.logicalHeight())
rects.append(selectionRect);
}
newRects.shrink(0);
}
}
// The range could span over nodes with different writing modes.
// If this is the case, we use the writing mode of the common ancestor.
if (containsDifferentWritingModes) {
if (Node* ancestor = commonAncestorContainer(&startContainer, &endContainer))
hasFlippedWritingMode = ancestor->renderer()->style().isFlippedBlocksWritingMode();
}
const size_t numberOfRects = rects.size();
// If the selection ends in a BR, then add the line break bit to the last
// rect we have. This will cause its selection rect to extend to the
// end of the line.
if (stopNode && stopNode->hasTagName(HTMLNames::brTag) && numberOfRects) {
// Only set the line break bit if the end of the range actually
// extends all the way to include the <br>. VisiblePosition helps to
// figure this out.
VisiblePosition endPosition(createLegacyEditingPosition(&endContainer, endOffset), VP_DEFAULT_AFFINITY);
VisiblePosition brPosition(createLegacyEditingPosition(stopNode, 0), VP_DEFAULT_AFFINITY);
if (endPosition == brPosition)
rects.last().setIsLineBreak(true);
}
int lineTop = std::numeric_limits<int>::max();
int lineBottom = std::numeric_limits<int>::min();
int lastLineTop = lineTop;
int lastLineBottom = lineBottom;
int lineNumber = 0;
for (size_t i = 0; i < numberOfRects; ++i) {
int currentRectTop = rects[i].logicalTop();
int currentRectBottom = currentRectTop + rects[i].logicalHeight();
// We don't want to count the ruby text as a separate line.
if (intervalsSufficientlyOverlap(currentRectTop, currentRectBottom, lineTop, lineBottom) || (i && rects[i].isRubyText())) {
// Grow the current line bounds.
lineTop = std::min(lineTop, currentRectTop);
lineBottom = std::max(lineBottom, currentRectBottom);
// Avoid overlap with the previous line.
if (!hasFlippedWritingMode)
lineTop = std::max(lastLineBottom, lineTop);
else
lineBottom = std::min(lastLineTop, lineBottom);
} else {
adjustLineHeightOfSelectionRects(rects, i, lineNumber, lineTop, lineBottom - lineTop);
if (!hasFlippedWritingMode) {
lastLineTop = lineTop;
if (currentRectBottom >= lastLineTop) {
lastLineBottom = lineBottom;
lineTop = lastLineBottom;
} else {
lineTop = currentRectTop;
lastLineBottom = std::numeric_limits<int>::min();
}
lineBottom = currentRectBottom;
} else {
lastLineBottom = lineBottom;
if (currentRectTop <= lastLineBottom && i && rects[i].pageNumber() == rects[i - 1].pageNumber()) {
lastLineTop = lineTop;
lineBottom = lastLineTop;
} else {
lastLineTop = std::numeric_limits<int>::max();
lineBottom = currentRectBottom;
}
lineTop = currentRectTop;
}
++lineNumber;
}
}
// Adjust line height.
adjustLineHeightOfSelectionRects(rects, numberOfRects, lineNumber, lineTop, lineBottom - lineTop);
// Sort the rectangles and make sure there are no gaps. The rectangles could be unsorted when
// there is ruby text and we could have gaps on the line when adjacent elements on the line
// have a different orientation.
size_t firstRectWithCurrentLineNumber = 0;
for (size_t currentRect = 1; currentRect < numberOfRects; ++currentRect) {
if (rects[currentRect].lineNumber() != rects[currentRect - 1].lineNumber()) {
firstRectWithCurrentLineNumber = currentRect;
continue;
}
if (rects[currentRect].logicalLeft() >= rects[currentRect - 1].logicalLeft())
continue;
SelectionRect selectionRect = rects[currentRect];
size_t i;
for (i = currentRect; i > firstRectWithCurrentLineNumber && selectionRect.logicalLeft() < rects[i - 1].logicalLeft(); --i)
rects[i] = rects[i - 1];
rects[i] = selectionRect;
}
for (size_t j = 1; j < numberOfRects; ++j) {
if (rects[j].lineNumber() != rects[j - 1].lineNumber())
continue;
SelectionRect& previousRect = rects[j - 1];
bool previousRectMayNotReachRightEdge = (previousRect.direction() == TextDirection::LTR && previousRect.containsEnd()) || (previousRect.direction() == TextDirection::RTL && previousRect.containsStart());
if (previousRectMayNotReachRightEdge)
continue;
int adjustedWidth = rects[j].logicalLeft() - previousRect.logicalLeft();
if (adjustedWidth > previousRect.logicalWidth())
previousRect.setLogicalWidth(adjustedWidth);
}
int maxLineNumber = lineNumber;
// Extend rects out to edges as needed.
for (size_t i = 0; i < numberOfRects; ++i) {
SelectionRect& selectionRect = rects[i];
if (!selectionRect.isLineBreak() && selectionRect.lineNumber() >= maxLineNumber)
continue;
if (selectionRect.direction() == TextDirection::RTL && selectionRect.isFirstOnLine()) {
selectionRect.setLogicalWidth(selectionRect.logicalWidth() + selectionRect.logicalLeft() - selectionRect.minX());
selectionRect.setLogicalLeft(selectionRect.minX());
} else if (selectionRect.direction() == TextDirection::LTR && selectionRect.isLastOnLine())
selectionRect.setLogicalWidth(selectionRect.maxX() - selectionRect.logicalLeft());
}
return maxLineNumber;
}
void Range::collectSelectionRects(Vector<SelectionRect>& rects) const
{
int maxLineNumber = collectSelectionRectsWithoutUnionInteriorLines(rects);
const size_t numberOfRects = rects.size();
// Union all the rectangles on interior lines (i.e. not first or last).
// On first and last lines, just avoid having overlaps by merging intersecting rectangles.
Vector<SelectionRect> unionedRects;
IntRect interiorUnionRect;
for (size_t i = 0; i < numberOfRects; ++i) {
SelectionRect& currentRect = rects[i];
if (currentRect.lineNumber() == 1) {
ASSERT(interiorUnionRect.isEmpty());
if (!unionedRects.isEmpty()) {
SelectionRect& previousRect = unionedRects.last();
if (previousRect.rect().intersects(currentRect.rect())) {
previousRect = coalesceSelectionRects(currentRect, previousRect);
continue;
}
}
// Couldn't merge with previous rect, so just appending.
unionedRects.append(currentRect);
} else if (currentRect.lineNumber() < maxLineNumber) {
if (interiorUnionRect.isEmpty()) {
// Start collecting interior rects.
interiorUnionRect = currentRect.rect();
} else if (interiorUnionRect.intersects(currentRect.rect())
|| interiorUnionRect.maxX() == currentRect.rect().x()
|| interiorUnionRect.maxY() == currentRect.rect().y()
|| interiorUnionRect.x() == currentRect.rect().maxX()
|| interiorUnionRect.y() == currentRect.rect().maxY()) {
// Only union the lines that are attached.
// For iBooks, the interior lines may cross multiple horizontal pages.
interiorUnionRect.unite(currentRect.rect());
} else {
unionedRects.append(SelectionRect(interiorUnionRect, currentRect.isHorizontal(), currentRect.pageNumber()));
interiorUnionRect = currentRect.rect();
}
} else {
// Processing last line.
if (!interiorUnionRect.isEmpty()) {
unionedRects.append(SelectionRect(interiorUnionRect, currentRect.isHorizontal(), currentRect.pageNumber()));
interiorUnionRect = IntRect();
}
ASSERT(!unionedRects.isEmpty());
SelectionRect& previousRect = unionedRects.last();
if (previousRect.logicalTop() == currentRect.logicalTop() && previousRect.rect().intersects(currentRect.rect())) {
// previousRect is also on the last line, and intersects the current one.
previousRect = coalesceSelectionRects(currentRect, previousRect);
continue;
}
// Couldn't merge with previous rect, so just appending.
unionedRects.append(currentRect);
}
}
rects.swap(unionedRects);
}
#endif
#if ENABLE(TREE_DEBUGGING)
void Range::formatForDebugger(char* buffer, unsigned length) const
{
StringBuilder result;
const int FormatBufferSize = 1024;
char s[FormatBufferSize];
result.appendLiteral("from offset ");
result.appendNumber(m_start.offset());
result.appendLiteral(" of ");
startContainer().formatForDebugger(s, FormatBufferSize);
result.append(s);
result.appendLiteral(" to offset ");
result.appendNumber(m_end.offset());
result.appendLiteral(" of ");
endContainer().formatForDebugger(s, FormatBufferSize);
result.append(s);
strncpy(buffer, result.toString().utf8().data(), length - 1);
}
#endif
bool Range::contains(const Range& other) const
{
if (commonAncestorContainer()->ownerDocument() != other.commonAncestorContainer()->ownerDocument())
return false;
auto startToStart = compareBoundaryPoints(Range::START_TO_START, other);
if (startToStart.hasException() || startToStart.releaseReturnValue() > 0)
return false;
auto endToEnd = compareBoundaryPoints(Range::END_TO_END, other);
return !endToEnd.hasException() && endToEnd.releaseReturnValue() >= 0;
}
bool Range::contains(const VisiblePosition& position) const
{
RefPtr<Range> positionRange = makeRange(position, position);
if (!positionRange)
return false;
return contains(*positionRange);
}
bool areRangesEqual(const Range* a, const Range* b)
{
if (a == b)
return true;
if (!a || !b)
return false;
return a->startPosition() == b->startPosition() && a->endPosition() == b->endPosition();
}
bool rangesOverlap(const Range* a, const Range* b)
{
if (!a || !b)
return false;
if (a == b)
return true;
if (a->commonAncestorContainer()->ownerDocument() != b->commonAncestorContainer()->ownerDocument())
return false;
short startToStart = a->compareBoundaryPoints(Range::START_TO_START, *b).releaseReturnValue();
short endToEnd = a->compareBoundaryPoints(Range::END_TO_END, *b).releaseReturnValue();
// First range contains the second range.
if (startToStart <= 0 && endToEnd >= 0)
return true;
// End of first range is inside second range.
if (a->compareBoundaryPoints(Range::START_TO_END, *b).releaseReturnValue() >= 0 && endToEnd <= 0)
return true;
// Start of first range is inside second range.
if (startToStart >= 0 && a->compareBoundaryPoints(Range::END_TO_START, *b).releaseReturnValue() <= 0)
return true;
return false;
}
Ref<Range> rangeOfContents(Node& node)
{
auto range = Range::create(node.document());
range->selectNodeContents(node);
return range;
}
static inline void boundaryNodeChildrenChanged(RangeBoundaryPoint& boundary, ContainerNode& container)
{
if (!boundary.childBefore())
return;
if (boundary.container() != &container)
return;
boundary.invalidateOffset();
}
void Range::nodeChildrenChanged(ContainerNode& container)
{
ASSERT(&container.document() == &ownerDocument());
boundaryNodeChildrenChanged(m_start, container);
boundaryNodeChildrenChanged(m_end, container);
}
static inline void boundaryNodeChildrenWillBeRemoved(RangeBoundaryPoint& boundary, ContainerNode& container)
{
for (Node* nodeToBeRemoved = container.firstChild(); nodeToBeRemoved; nodeToBeRemoved = nodeToBeRemoved->nextSibling()) {
if (boundary.childBefore() == nodeToBeRemoved) {
boundary.setToStartOfNode(container);
return;
}
for (Node* n = boundary.container(); n; n = n->parentNode()) {
if (n == nodeToBeRemoved) {
boundary.setToStartOfNode(container);
return;
}
}
}
}
void Range::nodeChildrenWillBeRemoved(ContainerNode& container)
{
ASSERT(&container.document() == &ownerDocument());
boundaryNodeChildrenWillBeRemoved(m_start, container);
boundaryNodeChildrenWillBeRemoved(m_end, container);
}
static inline void boundaryNodeWillBeRemoved(RangeBoundaryPoint& boundary, Node& nodeToBeRemoved)
{
if (boundary.childBefore() == &nodeToBeRemoved) {
boundary.childBeforeWillBeRemoved();
return;
}
for (Node* n = boundary.container(); n; n = n->parentNode()) {
if (n == &nodeToBeRemoved) {
boundary.setToBeforeChild(nodeToBeRemoved);
return;
}
}
}
void Range::nodeWillBeRemoved(Node& node)
{
ASSERT(&node.document() == &ownerDocument());
ASSERT(&node != &ownerDocument());
ASSERT(node.parentNode());
boundaryNodeWillBeRemoved(m_start, node);
boundaryNodeWillBeRemoved(m_end, node);
}
static inline void boundaryTextInserted(RangeBoundaryPoint& boundary, Node& text, unsigned offset, unsigned length)
{
if (boundary.container() != &text)
return;
unsigned boundaryOffset = boundary.offset();
if (offset >= boundaryOffset)
return;
boundary.setOffset(boundaryOffset + length);
}
void Range::textInserted(Node& text, unsigned offset, unsigned length)
{
ASSERT(&text.document() == &ownerDocument());
boundaryTextInserted(m_start, text, offset, length);
boundaryTextInserted(m_end, text, offset, length);
}
static inline void boundaryTextRemoved(RangeBoundaryPoint& boundary, Node& text, unsigned offset, unsigned length)
{
if (boundary.container() != &text)
return;
unsigned boundaryOffset = boundary.offset();
if (offset >= boundaryOffset)
return;
if (offset + length >= boundaryOffset)
boundary.setOffset(offset);
else
boundary.setOffset(boundaryOffset - length);
}
void Range::textRemoved(Node& text, unsigned offset, unsigned length)
{
ASSERT(&text.document() == &ownerDocument());
boundaryTextRemoved(m_start, text, offset, length);
boundaryTextRemoved(m_end, text, offset, length);
}
static inline void boundaryTextNodesMerged(RangeBoundaryPoint& boundary, NodeWithIndex& oldNode, unsigned offset)
{
if (boundary.container() == oldNode.node())
boundary.set(*oldNode.node()->previousSibling(), boundary.offset() + offset, 0);
else if (boundary.container() == oldNode.node()->parentNode() && static_cast<int>(boundary.offset()) == oldNode.index())
boundary.set(*oldNode.node()->previousSibling(), offset, 0);
}
void Range::textNodesMerged(NodeWithIndex& oldNode, unsigned offset)
{
ASSERT(oldNode.node());
ASSERT(&oldNode.node()->document() == &ownerDocument());
ASSERT(oldNode.node()->parentNode());
ASSERT(oldNode.node()->isTextNode());
ASSERT(oldNode.node()->previousSibling());
ASSERT(oldNode.node()->previousSibling()->isTextNode());
boundaryTextNodesMerged(m_start, oldNode, offset);
boundaryTextNodesMerged(m_end, oldNode, offset);
}
static inline void boundaryTextNodesSplit(RangeBoundaryPoint& boundary, Text& oldNode)
{
auto* parent = oldNode.parentNode();
if (boundary.container() == &oldNode) {
unsigned splitOffset = oldNode.length();
unsigned boundaryOffset = boundary.offset();
if (boundaryOffset > splitOffset) {
if (parent)
boundary.set(*oldNode.nextSibling(), boundaryOffset - splitOffset, 0);
else
boundary.setOffset(splitOffset);
}
return;
}
if (!parent)
return;
if (boundary.container() == parent && boundary.childBefore() == &oldNode) {
auto* newChild = oldNode.nextSibling();
ASSERT(newChild);
boundary.setToAfterChild(*newChild);
}
}
void Range::textNodeSplit(Text& oldNode)
{
ASSERT(&oldNode.document() == &ownerDocument());
ASSERT(!oldNode.parentNode() || oldNode.nextSibling());
ASSERT(!oldNode.parentNode() || oldNode.nextSibling()->isTextNode());
boundaryTextNodesSplit(m_start, oldNode);
boundaryTextNodesSplit(m_end, oldNode);
}
ExceptionOr<void> Range::expand(const String& unit)
{
VisiblePosition start { startPosition() };
VisiblePosition end { endPosition() };
if (unit == "word") {
start = startOfWord(start);
end = endOfWord(end);
} else if (unit == "sentence") {
start = startOfSentence(start);
end = endOfSentence(end);
} else if (unit == "block") {
start = startOfParagraph(start);
end = endOfParagraph(end);
} else if (unit == "document") {
start = startOfDocument(start);
end = endOfDocument(end);
} else
return { };
auto* startContainer = start.deepEquivalent().containerNode();
if (!startContainer)
return Exception { TypeError };
auto result = setStart(*startContainer, start.deepEquivalent().computeOffsetInContainerNode());
if (result.hasException())
return result.releaseException();
auto* endContainer = end.deepEquivalent().containerNode();
if (!endContainer)
return Exception { TypeError };
return setEnd(*endContainer, end.deepEquivalent().computeOffsetInContainerNode());
}
Ref<DOMRectList> Range::getClientRects() const
{
return DOMRectList::create(borderAndTextRects(CoordinateSpace::Client));
}
Ref<DOMRect> Range::getBoundingClientRect() const
{
return DOMRect::create(boundingRect(CoordinateSpace::Client));
}
Vector<FloatRect> Range::borderAndTextRects(CoordinateSpace space, OptionSet<BoundingRectBehavior> rectOptions) const
{
Vector<FloatRect> rects;
ownerDocument().updateLayoutIgnorePendingStylesheets();
Node* stopNode = pastLastNode();
bool useVisibleBounds = rectOptions.contains(BoundingRectBehavior::UseVisibleBounds);
HashSet<Node*> selectedElementsSet;
for (Node* node = firstNode(); node != stopNode; node = NodeTraversal::next(*node)) {
if (is<Element>(*node))
selectedElementsSet.add(node);
}
// Don't include elements that are only partially selected.
Node* lastNode = m_end.childBefore() ? m_end.childBefore() : &endContainer();
for (Node* parent = lastNode->parentNode(); parent; parent = parent->parentNode())
selectedElementsSet.remove(parent);
OptionSet<RenderObject::VisibleRectContextOption> visibleRectOptions = { RenderObject::VisibleRectContextOption::UseEdgeInclusiveIntersection, RenderObject::VisibleRectContextOption::ApplyCompositedClips, RenderObject::VisibleRectContextOption::ApplyCompositedContainerScrolls };
for (Node* node = firstNode(); node != stopNode; node = NodeTraversal::next(*node)) {
if (is<Element>(*node) && selectedElementsSet.contains(node) && (useVisibleBounds || !node->parentNode() || !selectedElementsSet.contains(node->parentNode()))) {
if (auto* renderer = downcast<Element>(*node).renderBoxModelObject()) {
if (useVisibleBounds) {
auto localBounds = renderer->borderBoundingBox();
auto rootClippedBounds = renderer->computeVisibleRectInContainer(localBounds, &renderer->view(), { false, false, visibleRectOptions });
if (!rootClippedBounds)
continue;
auto snappedBounds = snapRectToDevicePixels(*rootClippedBounds, node->document().deviceScaleFactor());
if (space == CoordinateSpace::Client)
node->document().convertAbsoluteToClientRect(snappedBounds, renderer->style());
rects.append(snappedBounds);
continue;
}
Vector<FloatQuad> elementQuads;
renderer->absoluteQuads(elementQuads);
if (space == CoordinateSpace::Client)
node->document().convertAbsoluteToClientQuads(elementQuads, renderer->style());
for (auto& quad : elementQuads)
rects.append(quad.boundingBox());
}
} else if (is<Text>(*node)) {
if (auto* renderer = downcast<Text>(*node).renderer()) {
bool isFixed;
auto clippedRects = absoluteRectsForRangeInText(node, *renderer, false, isFixed, rectOptions);
if (space == CoordinateSpace::Client)
node->document().convertAbsoluteToClientRects(clippedRects, renderer->style());
rects.appendVector(clippedRects);
}
}
}
if (rectOptions.contains(BoundingRectBehavior::IgnoreTinyRects)) {
rects.removeAllMatching([&] (const FloatRect& rect) -> bool {
return rect.area() <= 1;
});
}
return rects;
}
FloatRect Range::boundingRect(CoordinateSpace space, OptionSet<BoundingRectBehavior> rectOptions) const
{
FloatRect result;
for (auto& rect : borderAndTextRects(space, rectOptions))
result.uniteIfNonZero(rect);
return result;
}
FloatRect Range::absoluteBoundingRect(OptionSet<BoundingRectBehavior> rectOptions) const
{
return boundingRect(CoordinateSpace::Absolute, rectOptions);
}
WTF::TextStream& operator<<(WTF::TextStream& ts, const RangeBoundaryPoint& r)
{
return ts << r.toPosition();
}
WTF::TextStream& operator<<(WTF::TextStream& ts, const Range& r)
{
return ts << "Range: " << "start: " << r.startPosition() << " end: " << r.endPosition();
}
} // namespace WebCore
#if ENABLE(TREE_DEBUGGING)
void showTree(const WebCore::Range* range)
{
if (range && range->boundaryPointsValid()) {
range->startContainer().showTreeAndMark(&range->startContainer(), "S", &range->endContainer(), "E");
fprintf(stderr, "start offset: %d, end offset: %d\n", range->startOffset(), range->endOffset());
}
}
#endif