blob: b6fcdca6dffbbcbbad161b3667a835e43a350bba [file] [log] [blame]
/*
* Copyright (C) 2016-2019 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "B3EliminateCommonSubexpressions.h"
#if ENABLE(B3_JIT)
#include "B3BasicBlockInlines.h"
#include "B3BlockWorklist.h"
#include "B3Dominators.h"
#include "B3HeapRange.h"
#include "B3InsertionSetInlines.h"
#include "B3MemoryValue.h"
#include "B3PhaseScope.h"
#include "B3ProcedureInlines.h"
#include "B3PureCSE.h"
#include "B3SlotBaseValue.h"
#include "B3StackSlot.h"
#include "B3ValueKey.h"
#include "B3ValueInlines.h"
#include "B3Variable.h"
#include "B3VariableValue.h"
#include "DFGGraph.h"
#include <wtf/CommaPrinter.h>
#include <wtf/HashMap.h>
#include <wtf/ListDump.h>
#include <wtf/RangeSet.h>
namespace JSC { namespace B3 {
namespace {
namespace B3EliminateCommonSubexpressionsInternal {
static constexpr bool verbose = false;
}
// FIXME: We could treat Patchpoints with a non-empty set of reads as a "memory value" and somehow
// eliminate redundant ones. We would need some way of determining if two patchpoints are replacable.
// It doesn't seem right to use the reads set for this. We could use the generator, but that feels
// lame because the FTL will pretty much use a unique generator for each patchpoint even when two
// patchpoints have the same semantics as far as CSE would be concerned. We could invent something
// like a "value ID" for patchpoints. By default, each one gets a unique value ID, but FTL could force
// some patchpoints to share the same one as a signal that they will return the same value if executed
// in the same heap with the same inputs.
typedef Vector<MemoryValue*, 1> MemoryMatches;
class MemoryValueMap {
public:
MemoryValueMap() { }
void add(MemoryValue* memory)
{
Matches& matches = m_map.add(memory->lastChild(), Matches()).iterator->value;
if (matches.contains(memory))
return;
matches.append(memory);
}
template<typename Functor>
void removeIf(const Functor& functor)
{
m_map.removeIf(
[&] (HashMap<Value*, Matches>::KeyValuePairType& entry) -> bool {
entry.value.removeAllMatching(
[&] (Value* value) -> bool {
if (MemoryValue* memory = value->as<MemoryValue>())
return functor(memory);
return true;
});
return entry.value.isEmpty();
});
}
Matches* find(Value* ptr)
{
auto iter = m_map.find(ptr);
if (iter == m_map.end())
return nullptr;
return &iter->value;
}
template<typename Functor>
MemoryValue* find(Value* ptr, const Functor& functor)
{
if (B3EliminateCommonSubexpressionsInternal::verbose)
dataLog(" Looking for ", pointerDump(ptr), " in ", *this, "\n");
if (Matches* matches = find(ptr)) {
if (B3EliminateCommonSubexpressionsInternal::verbose)
dataLog(" Matches: ", pointerListDump(*matches), "\n");
for (Value* candidateValue : *matches) {
if (B3EliminateCommonSubexpressionsInternal::verbose)
dataLog(" Having candidate: ", pointerDump(candidateValue), "\n");
if (MemoryValue* candidateMemory = candidateValue->as<MemoryValue>()) {
if (functor(candidateMemory))
return candidateMemory;
}
}
}
return nullptr;
}
void dump(PrintStream& out) const
{
out.print("{");
CommaPrinter comma;
for (auto& entry : m_map)
out.print(comma, pointerDump(entry.key), "=>", pointerListDump(entry.value));
out.print("}");
}
private:
// This uses Matches for two reasons:
// - It cannot be a MemoryValue* because the key is imprecise. Many MemoryValues could have the
// same key while being unaliased.
// - It can't be a MemoryMatches array because the MemoryValue*'s could be turned into Identity's.
HashMap<Value*, Matches> m_map;
};
struct ImpureBlockData {
void dump(PrintStream& out) const
{
out.print(
"{reads = ", reads, ", writes = ", writes, ", storesAtHead = ", storesAtHead,
", memoryValuesAtTail = ", memoryValuesAtTail, "}");
}
RangeSet<HeapRange> reads; // This only gets used for forward store elimination.
RangeSet<HeapRange> writes; // This gets used for both load and store elimination.
bool fence;
MemoryValueMap storesAtHead;
MemoryValueMap memoryValuesAtTail;
};
class CSE {
public:
CSE(Procedure& proc)
: m_proc(proc)
, m_dominators(proc.dominators())
, m_impureBlockData(proc.size())
, m_insertionSet(proc)
{
}
bool run()
{
if (B3EliminateCommonSubexpressionsInternal::verbose)
dataLog("B3 before CSE:\n", m_proc);
m_proc.resetValueOwners();
// Summarize the impure effects of each block, and the impure values available at the end of
// each block. This doesn't edit code yet.
for (BasicBlock* block : m_proc) {
ImpureBlockData& data = m_impureBlockData[block];
for (Value* value : *block) {
Effects effects = value->effects();
MemoryValue* memory = value->as<MemoryValue>();
if (memory && memory->isStore()
&& !data.reads.overlaps(memory->range())
&& !data.writes.overlaps(memory->range())
&& (!data.fence || !memory->hasFence()))
data.storesAtHead.add(memory);
data.reads.add(effects.reads);
if (HeapRange writes = effects.writes)
clobber(data, writes);
data.fence |= effects.fence;
if (memory)
data.memoryValuesAtTail.add(memory);
}
if (B3EliminateCommonSubexpressionsInternal::verbose)
dataLog("Block ", *block, ": ", data, "\n");
}
// Perform CSE. This edits code.
Vector<BasicBlock*> postOrder = m_proc.blocksInPostOrder();
for (unsigned i = postOrder.size(); i--;) {
m_block = postOrder[i];
if (B3EliminateCommonSubexpressionsInternal::verbose)
dataLog("Looking at ", *m_block, ":\n");
m_data = ImpureBlockData();
for (m_index = 0; m_index < m_block->size(); ++m_index) {
m_value = m_block->at(m_index);
process();
}
m_insertionSet.execute(m_block);
m_impureBlockData[m_block] = m_data;
}
// The previous pass might have requested that we insert code in some basic block other than
// the one that it was looking at. This inserts them.
for (BasicBlock* block : m_proc) {
for (unsigned valueIndex = 0; valueIndex < block->size(); ++valueIndex) {
auto iter = m_sets.find(block->at(valueIndex));
if (iter == m_sets.end())
continue;
for (Value* value : iter->value)
m_insertionSet.insertValue(valueIndex + 1, value);
}
m_insertionSet.execute(block);
}
if (B3EliminateCommonSubexpressionsInternal::verbose)
dataLog("B3 after CSE:\n", m_proc);
return m_changed;
}
private:
void process()
{
m_value->performSubstitution();
if (m_pureCSE.process(m_value, m_dominators)) {
ASSERT(!m_value->effects().writes);
m_changed = true;
return;
}
MemoryValue* memory = m_value->as<MemoryValue>();
if (memory && processMemoryBeforeClobber(memory))
return;
if (HeapRange writes = m_value->effects().writes)
clobber(m_data, writes);
if (memory)
processMemoryAfterClobber(memory);
}
// Return true if we got rid of the operation. If you changed IR in this function, you have to
// set m_changed even if you also return true.
bool processMemoryBeforeClobber(MemoryValue* memory)
{
Value* value = memory->child(0);
Value* ptr = memory->lastChild();
HeapRange range = memory->range();
Value::OffsetType offset = memory->offset();
switch (memory->opcode()) {
case Store8:
return handleStoreBeforeClobber(
ptr, range,
[&] (MemoryValue* candidate) -> bool {
return candidate->offset() == offset
&& ((candidate->opcode() == Store8 && candidate->child(0) == value)
|| ((candidate->opcode() == Load8Z || candidate->opcode() == Load8S)
&& candidate == value));
});
case Store16:
return handleStoreBeforeClobber(
ptr, range,
[&] (MemoryValue* candidate) -> bool {
return candidate->offset() == offset
&& ((candidate->opcode() == Store16 && candidate->child(0) == value)
|| ((candidate->opcode() == Load16Z || candidate->opcode() == Load16S)
&& candidate == value));
});
case Store:
return handleStoreBeforeClobber(
ptr, range,
[&] (MemoryValue* candidate) -> bool {
return candidate->offset() == offset
&& ((candidate->opcode() == Store && candidate->child(0) == value)
|| (candidate->opcode() == Load && candidate == value));
});
default:
return false;
}
}
void clobber(ImpureBlockData& data, HeapRange writes)
{
data.writes.add(writes);
data.memoryValuesAtTail.removeIf(
[&] (MemoryValue* memory) {
return memory->range().overlaps(writes);
});
}
void processMemoryAfterClobber(MemoryValue* memory)
{
Value* ptr = memory->lastChild();
HeapRange range = memory->range();
Value::OffsetType offset = memory->offset();
Type type = memory->type();
// FIXME: Empower this to insert more casts and shifts. For example, a Load8 could match a
// Store and mask the result. You could even have:
//
// Store(@value, @ptr, offset = 0)
// Load8Z(@ptr, offset = 2)
//
// Which could be turned into something like this:
//
// Store(@value, @ptr, offset = 0)
// ZShr(@value, 16)
switch (memory->opcode()) {
case Load8Z: {
handleMemoryValue(
ptr, range,
[&] (MemoryValue* candidate) -> bool {
return candidate->offset() == offset
&& (candidate->opcode() == Load8Z || candidate->opcode() == Store8);
},
[&] (MemoryValue* match, Vector<Value*>& fixups) -> Value* {
if (match->opcode() == Store8) {
Value* mask = m_proc.add<Const32Value>(m_value->origin(), 0xff);
fixups.append(mask);
Value* zext = m_proc.add<Value>(
BitAnd, m_value->origin(), match->child(0), mask);
fixups.append(zext);
return zext;
}
return nullptr;
});
break;
}
case Load8S: {
handleMemoryValue(
ptr, range,
[&] (MemoryValue* candidate) -> bool {
return candidate->offset() == offset
&& (candidate->opcode() == Load8S || candidate->opcode() == Store8);
},
[&] (MemoryValue* match, Vector<Value*>& fixups) -> Value* {
if (match->opcode() == Store8) {
Value* sext = m_proc.add<Value>(
SExt8, m_value->origin(), match->child(0));
fixups.append(sext);
return sext;
}
return nullptr;
});
break;
}
case Load16Z: {
handleMemoryValue(
ptr, range,
[&] (MemoryValue* candidate) -> bool {
return candidate->offset() == offset
&& (candidate->opcode() == Load16Z || candidate->opcode() == Store16);
},
[&] (MemoryValue* match, Vector<Value*>& fixups) -> Value* {
if (match->opcode() == Store16) {
Value* mask = m_proc.add<Const32Value>(m_value->origin(), 0xffff);
fixups.append(mask);
Value* zext = m_proc.add<Value>(
BitAnd, m_value->origin(), match->child(0), mask);
fixups.append(zext);
return zext;
}
return nullptr;
});
break;
}
case Load16S: {
handleMemoryValue(
ptr, range, [&] (MemoryValue* candidate) -> bool {
return candidate->offset() == offset
&& (candidate->opcode() == Load16S || candidate->opcode() == Store16);
},
[&] (MemoryValue* match, Vector<Value*>& fixups) -> Value* {
if (match->opcode() == Store16) {
Value* sext = m_proc.add<Value>(
SExt16, m_value->origin(), match->child(0));
fixups.append(sext);
return sext;
}
return nullptr;
});
break;
}
case Load: {
handleMemoryValue(
ptr, range,
[&] (MemoryValue* candidate) -> bool {
if (B3EliminateCommonSubexpressionsInternal::verbose)
dataLog(" Consdering ", pointerDump(candidate), "\n");
if (candidate->offset() != offset)
return false;
if (B3EliminateCommonSubexpressionsInternal::verbose)
dataLog(" offset ok.\n");
if (candidate->opcode() == Load && candidate->type() == type)
return true;
if (B3EliminateCommonSubexpressionsInternal::verbose)
dataLog(" not a load with ok type.\n");
if (candidate->opcode() == Store && candidate->child(0)->type() == type)
return true;
if (B3EliminateCommonSubexpressionsInternal::verbose)
dataLog(" not a store with ok type.\n");
return false;
});
break;
}
case Store8: {
handleStoreAfterClobber(
ptr, range,
[&] (MemoryValue* candidate) -> bool {
return candidate->opcode() == Store8
&& candidate->offset() == offset;
});
break;
}
case Store16: {
handleStoreAfterClobber(
ptr, range,
[&] (MemoryValue* candidate) -> bool {
return candidate->opcode() == Store16
&& candidate->offset() == offset;
});
break;
}
case Store: {
handleStoreAfterClobber(
ptr, range,
[&] (MemoryValue* candidate) -> bool {
return candidate->opcode() == Store
&& candidate->offset() == offset;
});
break;
}
default:
break;
}
}
template<typename Filter>
bool handleStoreBeforeClobber(Value* ptr, HeapRange range, const Filter& filter)
{
MemoryMatches matches = findMemoryValue(ptr, range, filter);
if (matches.isEmpty())
return false;
m_value->replaceWithNop();
m_changed = true;
return true;
}
template<typename Filter>
void handleStoreAfterClobber(Value* ptr, HeapRange range, const Filter& filter)
{
if (!m_value->traps() && findStoreAfterClobber(ptr, range, filter)) {
m_value->replaceWithNop();
m_changed = true;
return;
}
m_data.memoryValuesAtTail.add(m_value->as<MemoryValue>());
}
template<typename Filter>
bool findStoreAfterClobber(Value* ptr, HeapRange range, const Filter& filter)
{
if (m_value->as<MemoryValue>()->hasFence())
return false;
// We can eliminate a store if every forward path hits a store to the same location before
// hitting any operation that observes the store. This search seems like it should be
// expensive, but in the overwhelming majority of cases it will almost immediately hit an
// operation that interferes.
if (B3EliminateCommonSubexpressionsInternal::verbose)
dataLog(*m_value, ": looking forward for stores to ", *ptr, "...\n");
// First search forward in this basic block.
// FIXME: It would be cool to get rid of this linear search. It's not super critical since
// we will probably bail out very quickly, but it *is* annoying.
for (unsigned index = m_index + 1; index < m_block->size(); ++index) {
Value* value = m_block->at(index);
if (MemoryValue* memoryValue = value->as<MemoryValue>()) {
if (memoryValue->lastChild() == ptr && filter(memoryValue))
return true;
}
Effects effects = value->effects();
if (effects.reads.overlaps(range) || effects.writes.overlaps(range))
return false;
}
if (!m_block->numSuccessors())
return false;
BlockWorklist worklist;
worklist.pushAll(m_block->successorBlocks());
while (BasicBlock* block = worklist.pop()) {
ImpureBlockData& data = m_impureBlockData[block];
MemoryValue* match = data.storesAtHead.find(ptr, filter);
if (match && match != m_value)
continue;
if (data.writes.overlaps(range) || data.reads.overlaps(range))
return false;
if (!block->numSuccessors())
return false;
worklist.pushAll(block->successorBlocks());
}
return true;
}
template<typename Filter>
void handleMemoryValue(Value* ptr, HeapRange range, const Filter& filter)
{
handleMemoryValue(
ptr, range, filter,
[] (MemoryValue*, Vector<Value*>&) -> Value* {
return nullptr;
});
}
template<typename Filter, typename Replace>
void handleMemoryValue(
Value* ptr, HeapRange range, const Filter& filter, const Replace& replace)
{
MemoryMatches matches = findMemoryValue(ptr, range, filter);
if (replaceMemoryValue(matches, replace))
return;
m_data.memoryValuesAtTail.add(m_value->as<MemoryValue>());
}
template<typename Replace>
bool replaceMemoryValue(const MemoryMatches& matches, const Replace& replace)
{
if (matches.isEmpty())
return false;
if (B3EliminateCommonSubexpressionsInternal::verbose)
dataLog("Eliminating ", *m_value, " due to ", pointerListDump(matches), "\n");
m_changed = true;
if (matches.size() == 1) {
MemoryValue* dominatingMatch = matches[0];
RELEASE_ASSERT(m_dominators.dominates(dominatingMatch->owner, m_block));
if (B3EliminateCommonSubexpressionsInternal::verbose)
dataLog(" Eliminating using ", *dominatingMatch, "\n");
Vector<Value*> extraValues;
if (Value* value = replace(dominatingMatch, extraValues)) {
for (Value* extraValue : extraValues)
m_insertionSet.insertValue(m_index, extraValue);
m_value->replaceWithIdentity(value);
} else {
if (dominatingMatch->isStore())
m_value->replaceWithIdentity(dominatingMatch->child(0));
else
m_value->replaceWithIdentity(dominatingMatch);
}
return true;
}
// FIXME: It would be way better if this phase just did SSA calculation directly.
// Right now we're relying on the fact that CSE's position in the phase order is
// almost right before SSA fixup.
Variable* variable = m_proc.addVariable(m_value->type());
VariableValue* get = m_insertionSet.insert<VariableValue>(
m_index, Get, m_value->origin(), variable);
if (B3EliminateCommonSubexpressionsInternal::verbose)
dataLog(" Inserting get of value: ", *get, "\n");
m_value->replaceWithIdentity(get);
for (MemoryValue* match : matches) {
Vector<Value*>& sets = m_sets.add(match, Vector<Value*>()).iterator->value;
Value* value = replace(match, sets);
if (!value) {
if (match->isStore())
value = match->child(0);
else
value = match;
}
Value* set = m_proc.add<VariableValue>(Set, m_value->origin(), variable, value);
sets.append(set);
}
return true;
}
template<typename Filter>
MemoryMatches findMemoryValue(Value* ptr, HeapRange range, const Filter& filter)
{
if (B3EliminateCommonSubexpressionsInternal::verbose) {
dataLog(*m_value, ": looking backward for ", *ptr, "...\n");
dataLog(" Full value: ", deepDump(m_value), "\n");
}
if (m_value->as<MemoryValue>()->hasFence()) {
if (B3EliminateCommonSubexpressionsInternal::verbose)
dataLog(" Giving up because fences.\n");
return { };
}
if (MemoryValue* match = m_data.memoryValuesAtTail.find(ptr, filter)) {
if (B3EliminateCommonSubexpressionsInternal::verbose)
dataLog(" Found ", *match, " locally.\n");
return { match };
}
if (m_data.writes.overlaps(range)) {
if (B3EliminateCommonSubexpressionsInternal::verbose)
dataLog(" Giving up because of writes.\n");
return { };
}
BlockWorklist worklist;
worklist.pushAll(m_block->predecessors());
MemoryMatches matches;
while (BasicBlock* block = worklist.pop()) {
if (B3EliminateCommonSubexpressionsInternal::verbose)
dataLog(" Looking at ", *block, "\n");
ImpureBlockData& data = m_impureBlockData[block];
MemoryValue* match = data.memoryValuesAtTail.find(ptr, filter);
if (B3EliminateCommonSubexpressionsInternal::verbose)
dataLog(" Consdering match: ", pointerDump(match), "\n");
if (match && match != m_value) {
if (B3EliminateCommonSubexpressionsInternal::verbose)
dataLog(" Found match: ", *match, "\n");
matches.append(match);
continue;
}
if (data.writes.overlaps(range)) {
if (B3EliminateCommonSubexpressionsInternal::verbose)
dataLog(" Giving up because of writes.\n");
return { };
}
if (!block->numPredecessors()) {
if (B3EliminateCommonSubexpressionsInternal::verbose)
dataLog(" Giving up because it's live at root.\n");
// This essentially proves that this is live at the prologue. That means that we
// cannot reliably optimize this case.
return { };
}
worklist.pushAll(block->predecessors());
}
if (B3EliminateCommonSubexpressionsInternal::verbose)
dataLog(" Got matches: ", pointerListDump(matches), "\n");
return matches;
}
Procedure& m_proc;
Dominators& m_dominators;
PureCSE m_pureCSE;
IndexMap<BasicBlock*, ImpureBlockData> m_impureBlockData;
ImpureBlockData m_data;
BasicBlock* m_block;
unsigned m_index;
Value* m_value;
HashMap<Value*, Vector<Value*>> m_sets;
InsertionSet m_insertionSet;
bool m_changed { false };
};
} // anonymous namespace
bool eliminateCommonSubexpressions(Procedure& proc)
{
PhaseScope phaseScope(proc, "eliminateCommonSubexpressions");
CSE cse(proc);
return cse.run();
}
} } // namespace JSC::B3
#endif // ENABLE(B3_JIT)