| // |
| // Copyright 2014 The ANGLE Project Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| // |
| |
| // ProgramD3D.cpp: Defines the rx::ProgramD3D class which implements rx::ProgramImpl. |
| |
| #include "libANGLE/renderer/d3d/ProgramD3D.h" |
| |
| #include "common/MemoryBuffer.h" |
| #include "common/bitset_utils.h" |
| #include "common/string_utils.h" |
| #include "common/utilities.h" |
| #include "libANGLE/Context.h" |
| #include "libANGLE/Framebuffer.h" |
| #include "libANGLE/FramebufferAttachment.h" |
| #include "libANGLE/Program.h" |
| #include "libANGLE/ProgramLinkedResources.h" |
| #include "libANGLE/Uniform.h" |
| #include "libANGLE/VertexArray.h" |
| #include "libANGLE/features.h" |
| #include "libANGLE/queryconversions.h" |
| #include "libANGLE/renderer/ContextImpl.h" |
| #include "libANGLE/renderer/d3d/ContextD3D.h" |
| #include "libANGLE/renderer/d3d/DynamicHLSL.h" |
| #include "libANGLE/renderer/d3d/FramebufferD3D.h" |
| #include "libANGLE/renderer/d3d/ShaderD3D.h" |
| #include "libANGLE/renderer/d3d/ShaderExecutableD3D.h" |
| #include "libANGLE/renderer/d3d/VertexDataManager.h" |
| #include "libANGLE/renderer/renderer_utils.h" |
| |
| using namespace angle; |
| |
| namespace rx |
| { |
| |
| namespace |
| { |
| |
| void GetDefaultInputLayoutFromShader(gl::Shader *vertexShader, gl::InputLayout *inputLayoutOut) |
| { |
| inputLayoutOut->clear(); |
| |
| if (!vertexShader) |
| { |
| return; |
| } |
| |
| for (const sh::ShaderVariable &shaderAttr : vertexShader->getActiveAttributes()) |
| { |
| if (shaderAttr.type != GL_NONE) |
| { |
| GLenum transposedType = gl::TransposeMatrixType(shaderAttr.type); |
| |
| for (size_t rowIndex = 0; |
| static_cast<int>(rowIndex) < gl::VariableRowCount(transposedType); ++rowIndex) |
| { |
| GLenum componentType = gl::VariableComponentType(transposedType); |
| GLuint components = static_cast<GLuint>(gl::VariableColumnCount(transposedType)); |
| bool pureInt = (componentType != GL_FLOAT); |
| |
| gl::VertexAttribType attribType = |
| gl::FromGLenum<gl::VertexAttribType>(componentType); |
| |
| angle::FormatID defaultID = |
| gl::GetVertexFormatID(attribType, GL_FALSE, components, pureInt); |
| |
| inputLayoutOut->push_back(defaultID); |
| } |
| } |
| } |
| } |
| |
| size_t GetMaxOutputIndex(const std::vector<PixelShaderOutputVariable> &shaderOutputVars, |
| size_t location) |
| { |
| size_t maxIndex = 0; |
| for (auto &outputVar : shaderOutputVars) |
| { |
| if (outputVar.outputLocation == location) |
| { |
| maxIndex = std::max(maxIndex, outputVar.outputIndex); |
| } |
| } |
| return maxIndex; |
| } |
| |
| void GetDefaultOutputLayoutFromShader( |
| const std::vector<PixelShaderOutputVariable> &shaderOutputVars, |
| std::vector<GLenum> *outputLayoutOut) |
| { |
| outputLayoutOut->clear(); |
| |
| if (!shaderOutputVars.empty()) |
| { |
| size_t location = shaderOutputVars[0].outputLocation; |
| size_t maxIndex = GetMaxOutputIndex(shaderOutputVars, location); |
| outputLayoutOut->assign(maxIndex + 1, |
| GL_COLOR_ATTACHMENT0 + static_cast<unsigned int>(location)); |
| } |
| } |
| |
| void GetDefaultImage2DBindLayoutFromComputeShader( |
| const std::vector<sh::ShaderVariable> &image2DUniforms, |
| gl::ImageUnitTextureTypeMap *image2DBindLayout) |
| { |
| image2DBindLayout->clear(); |
| |
| for (const sh::ShaderVariable &image2D : image2DUniforms) |
| { |
| if (gl::IsImage2DType(image2D.type)) |
| { |
| if (image2D.binding == -1) |
| { |
| image2DBindLayout->insert(std::make_pair(0, gl::TextureType::_2D)); |
| } |
| else |
| { |
| for (unsigned int index = 0; index < image2D.getArraySizeProduct(); index++) |
| { |
| image2DBindLayout->insert( |
| std::make_pair(image2D.binding + index, gl::TextureType::_2D)); |
| } |
| } |
| } |
| } |
| } |
| |
| gl::PrimitiveMode GetGeometryShaderTypeFromDrawMode(gl::PrimitiveMode drawMode) |
| { |
| switch (drawMode) |
| { |
| // Uses the point sprite geometry shader. |
| case gl::PrimitiveMode::Points: |
| return gl::PrimitiveMode::Points; |
| |
| // All line drawing uses the same geometry shader. |
| case gl::PrimitiveMode::Lines: |
| case gl::PrimitiveMode::LineStrip: |
| case gl::PrimitiveMode::LineLoop: |
| return gl::PrimitiveMode::Lines; |
| |
| // The triangle fan primitive is emulated with strips in D3D11. |
| case gl::PrimitiveMode::Triangles: |
| case gl::PrimitiveMode::TriangleFan: |
| return gl::PrimitiveMode::Triangles; |
| |
| // Special case for triangle strips. |
| case gl::PrimitiveMode::TriangleStrip: |
| return gl::PrimitiveMode::TriangleStrip; |
| |
| default: |
| UNREACHABLE(); |
| return gl::PrimitiveMode::InvalidEnum; |
| } |
| } |
| |
| bool HasFlatInterpolationVarying(const std::vector<sh::ShaderVariable> &varyings) |
| { |
| // Note: this assumes nested structs can only be packed with one interpolation. |
| for (const auto &varying : varyings) |
| { |
| if (varying.interpolation == sh::INTERPOLATION_FLAT) |
| { |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool FindFlatInterpolationVaryingPerShader(gl::Shader *shader) |
| { |
| ASSERT(shader); |
| switch (shader->getType()) |
| { |
| case gl::ShaderType::Vertex: |
| return HasFlatInterpolationVarying(shader->getOutputVaryings()); |
| case gl::ShaderType::Fragment: |
| return HasFlatInterpolationVarying(shader->getInputVaryings()); |
| case gl::ShaderType::Geometry: |
| return HasFlatInterpolationVarying(shader->getInputVaryings()) || |
| HasFlatInterpolationVarying(shader->getOutputVaryings()); |
| default: |
| UNREACHABLE(); |
| return false; |
| } |
| } |
| |
| bool FindFlatInterpolationVarying(const gl::ShaderMap<gl::Shader *> &shaders) |
| { |
| for (gl::ShaderType shaderType : gl::kAllGraphicsShaderTypes) |
| { |
| gl::Shader *shader = shaders[shaderType]; |
| if (!shader) |
| { |
| continue; |
| } |
| |
| if (FindFlatInterpolationVaryingPerShader(shader)) |
| { |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| // Helper class that gathers uniform info from the default uniform block. |
| class UniformEncodingVisitorD3D : public sh::BlockEncoderVisitor |
| { |
| public: |
| UniformEncodingVisitorD3D(gl::ShaderType shaderType, |
| HLSLRegisterType registerType, |
| sh::BlockLayoutEncoder *encoder, |
| D3DUniformMap *uniformMapOut) |
| : sh::BlockEncoderVisitor("", "", encoder), |
| mShaderType(shaderType), |
| mRegisterType(registerType), |
| mUniformMapOut(uniformMapOut) |
| {} |
| |
| void visitNamedSampler(const sh::ShaderVariable &sampler, |
| const std::string &name, |
| const std::string &mappedName, |
| const std::vector<unsigned int> &arraySizes) override |
| { |
| auto uniformMapEntry = mUniformMapOut->find(name); |
| if (uniformMapEntry == mUniformMapOut->end()) |
| { |
| (*mUniformMapOut)[name] = |
| new D3DUniform(sampler.type, mRegisterType, name, sampler.arraySizes, true); |
| } |
| } |
| |
| void encodeVariable(const sh::ShaderVariable &variable, |
| const sh::BlockMemberInfo &variableInfo, |
| const std::string &name, |
| const std::string &mappedName) override |
| { |
| auto uniformMapEntry = mUniformMapOut->find(name); |
| D3DUniform *d3dUniform = nullptr; |
| |
| if (uniformMapEntry != mUniformMapOut->end()) |
| { |
| d3dUniform = uniformMapEntry->second; |
| } |
| else |
| { |
| d3dUniform = |
| new D3DUniform(variable.type, mRegisterType, name, variable.arraySizes, true); |
| (*mUniformMapOut)[name] = d3dUniform; |
| } |
| |
| d3dUniform->registerElement = static_cast<unsigned int>( |
| sh::BlockLayoutEncoder::GetBlockRegisterElement(variableInfo)); |
| unsigned int reg = |
| static_cast<unsigned int>(sh::BlockLayoutEncoder::GetBlockRegister(variableInfo)); |
| |
| ASSERT(mShaderType != gl::ShaderType::InvalidEnum); |
| d3dUniform->mShaderRegisterIndexes[mShaderType] = reg; |
| } |
| |
| private: |
| gl::ShaderType mShaderType; |
| HLSLRegisterType mRegisterType; |
| D3DUniformMap *mUniformMapOut; |
| }; |
| |
| class HLSLBlockLayoutEncoderFactory : public gl::CustomBlockLayoutEncoderFactory |
| { |
| public: |
| sh::BlockLayoutEncoder *makeEncoder() override |
| { |
| return new sh::HLSLBlockEncoder(sh::HLSLBlockEncoder::ENCODE_PACKED, false); |
| } |
| }; |
| } // anonymous namespace |
| |
| // D3DUniform Implementation |
| |
| D3DUniform::D3DUniform(GLenum type, |
| HLSLRegisterType reg, |
| const std::string &nameIn, |
| const std::vector<unsigned int> &arraySizesIn, |
| bool defaultBlock) |
| : typeInfo(gl::GetUniformTypeInfo(type)), |
| name(nameIn), |
| arraySizes(arraySizesIn), |
| mShaderData({}), |
| regType(reg), |
| registerCount(0), |
| registerElement(0) |
| { |
| mShaderRegisterIndexes.fill(GL_INVALID_INDEX); |
| |
| // We use data storage for default block uniforms to cache values that are sent to D3D during |
| // rendering |
| // Uniform blocks/buffers are treated separately by the Renderer (ES3 path only) |
| if (defaultBlock) |
| { |
| // Use the row count as register count, will work for non-square matrices. |
| registerCount = typeInfo.rowCount * getArraySizeProduct(); |
| } |
| } |
| |
| D3DUniform::~D3DUniform() {} |
| |
| unsigned int D3DUniform::getArraySizeProduct() const |
| { |
| return gl::ArraySizeProduct(arraySizes); |
| } |
| |
| const uint8_t *D3DUniform::getDataPtrToElement(size_t elementIndex) const |
| { |
| ASSERT((!isArray() && elementIndex == 0) || |
| (isArray() && elementIndex < getArraySizeProduct())); |
| |
| if (isSampler()) |
| { |
| return reinterpret_cast<const uint8_t *>(&mSamplerData[elementIndex]); |
| } |
| |
| return firstNonNullData() + (elementIndex > 0 ? (typeInfo.internalSize * elementIndex) : 0u); |
| } |
| |
| bool D3DUniform::isSampler() const |
| { |
| return typeInfo.isSampler; |
| } |
| |
| bool D3DUniform::isImage() const |
| { |
| return typeInfo.isImageType; |
| } |
| |
| bool D3DUniform::isImage2D() const |
| { |
| return gl::IsImage2DType(typeInfo.type); |
| } |
| |
| bool D3DUniform::isReferencedByShader(gl::ShaderType shaderType) const |
| { |
| return mShaderRegisterIndexes[shaderType] != GL_INVALID_INDEX; |
| } |
| |
| const uint8_t *D3DUniform::firstNonNullData() const |
| { |
| if (!mSamplerData.empty()) |
| { |
| return reinterpret_cast<const uint8_t *>(mSamplerData.data()); |
| } |
| |
| for (gl::ShaderType shaderType : gl::AllShaderTypes()) |
| { |
| if (mShaderData[shaderType]) |
| { |
| return mShaderData[shaderType]; |
| } |
| } |
| |
| UNREACHABLE(); |
| return nullptr; |
| } |
| |
| // D3DInterfaceBlock Implementation |
| D3DInterfaceBlock::D3DInterfaceBlock() |
| { |
| mShaderRegisterIndexes.fill(GL_INVALID_INDEX); |
| } |
| |
| D3DInterfaceBlock::D3DInterfaceBlock(const D3DInterfaceBlock &other) = default; |
| |
| // D3DVarying Implementation |
| |
| D3DVarying::D3DVarying() : semanticIndex(0), componentCount(0), outputSlot(0) {} |
| |
| D3DVarying::D3DVarying(const std::string &semanticNameIn, |
| unsigned int semanticIndexIn, |
| unsigned int componentCountIn, |
| unsigned int outputSlotIn) |
| : semanticName(semanticNameIn), |
| semanticIndex(semanticIndexIn), |
| componentCount(componentCountIn), |
| outputSlot(outputSlotIn) |
| {} |
| |
| // ProgramD3DMetadata Implementation |
| |
| ProgramD3DMetadata::ProgramD3DMetadata(RendererD3D *renderer, |
| const gl::ShaderMap<const ShaderD3D *> &attachedShaders, |
| EGLenum clientType) |
| : mRendererMajorShaderModel(renderer->getMajorShaderModel()), |
| mShaderModelSuffix(renderer->getShaderModelSuffix()), |
| mUsesInstancedPointSpriteEmulation( |
| renderer->getFeatures().useInstancedPointSpriteEmulation.enabled), |
| mUsesViewScale(renderer->presentPathFastEnabled()), |
| mCanSelectViewInVertexShader(renderer->canSelectViewInVertexShader()), |
| mAttachedShaders(attachedShaders), |
| mClientType(clientType) |
| {} |
| |
| ProgramD3DMetadata::~ProgramD3DMetadata() = default; |
| |
| int ProgramD3DMetadata::getRendererMajorShaderModel() const |
| { |
| return mRendererMajorShaderModel; |
| } |
| |
| bool ProgramD3DMetadata::usesBroadcast(const gl::State &data) const |
| { |
| const rx::ShaderD3D *shader = mAttachedShaders[gl::ShaderType::Fragment]; |
| return (shader && shader->usesFragColor() && shader->usesMultipleRenderTargets() && |
| data.getClientMajorVersion() < 3); |
| } |
| |
| bool ProgramD3DMetadata::usesSecondaryColor() const |
| { |
| const rx::ShaderD3D *shader = mAttachedShaders[gl::ShaderType::Fragment]; |
| return (shader && shader->usesSecondaryColor()); |
| } |
| |
| bool ProgramD3DMetadata::usesFragDepth() const |
| { |
| const rx::ShaderD3D *shader = mAttachedShaders[gl::ShaderType::Fragment]; |
| return (shader && shader->usesFragDepth()); |
| } |
| |
| bool ProgramD3DMetadata::usesPointCoord() const |
| { |
| const rx::ShaderD3D *shader = mAttachedShaders[gl::ShaderType::Fragment]; |
| return (shader && shader->usesPointCoord()); |
| } |
| |
| bool ProgramD3DMetadata::usesFragCoord() const |
| { |
| const rx::ShaderD3D *shader = mAttachedShaders[gl::ShaderType::Fragment]; |
| return (shader && shader->usesFragCoord()); |
| } |
| |
| bool ProgramD3DMetadata::usesPointSize() const |
| { |
| const rx::ShaderD3D *shader = mAttachedShaders[gl::ShaderType::Vertex]; |
| return (shader && shader->usesPointSize()); |
| } |
| |
| bool ProgramD3DMetadata::usesInsertedPointCoordValue() const |
| { |
| return (!usesPointSize() || !mUsesInstancedPointSpriteEmulation) && usesPointCoord() && |
| mRendererMajorShaderModel >= 4; |
| } |
| |
| bool ProgramD3DMetadata::usesViewScale() const |
| { |
| return mUsesViewScale; |
| } |
| |
| bool ProgramD3DMetadata::hasANGLEMultiviewEnabled() const |
| { |
| const rx::ShaderD3D *shader = mAttachedShaders[gl::ShaderType::Vertex]; |
| return (shader && shader->hasANGLEMultiviewEnabled()); |
| } |
| |
| bool ProgramD3DMetadata::usesVertexID() const |
| { |
| const rx::ShaderD3D *shader = mAttachedShaders[gl::ShaderType::Vertex]; |
| return (shader && shader->usesVertexID()); |
| } |
| |
| bool ProgramD3DMetadata::usesViewID() const |
| { |
| const rx::ShaderD3D *shader = mAttachedShaders[gl::ShaderType::Fragment]; |
| return (shader && shader->usesViewID()); |
| } |
| |
| bool ProgramD3DMetadata::canSelectViewInVertexShader() const |
| { |
| return mCanSelectViewInVertexShader; |
| } |
| |
| bool ProgramD3DMetadata::addsPointCoordToVertexShader() const |
| { |
| // PointSprite emulation requiress that gl_PointCoord is present in the vertex shader |
| // VS_OUTPUT structure to ensure compatibility with the generated PS_INPUT of the pixel shader. |
| // Even with a geometry shader, the app can render triangles or lines and reference |
| // gl_PointCoord in the fragment shader, requiring us to provide a dummy value. For |
| // simplicity, we always add this to the vertex shader when the fragment shader |
| // references gl_PointCoord, even if we could skip it in the geometry shader. |
| return (mUsesInstancedPointSpriteEmulation && usesPointCoord()) || |
| usesInsertedPointCoordValue(); |
| } |
| |
| bool ProgramD3DMetadata::usesTransformFeedbackGLPosition() const |
| { |
| // gl_Position only needs to be outputted from the vertex shader if transform feedback is |
| // active. This isn't supported on D3D11 Feature Level 9_3, so we don't output gl_Position from |
| // the vertex shader in this case. This saves us 1 output vector. |
| return !(mRendererMajorShaderModel >= 4 && mShaderModelSuffix != ""); |
| } |
| |
| bool ProgramD3DMetadata::usesSystemValuePointSize() const |
| { |
| return !mUsesInstancedPointSpriteEmulation && usesPointSize(); |
| } |
| |
| bool ProgramD3DMetadata::usesMultipleFragmentOuts() const |
| { |
| const rx::ShaderD3D *shader = mAttachedShaders[gl::ShaderType::Fragment]; |
| return (shader && shader->usesMultipleRenderTargets()); |
| } |
| |
| bool ProgramD3DMetadata::usesCustomOutVars() const |
| { |
| |
| const rx::ShaderD3D *shader = mAttachedShaders[gl::ShaderType::Vertex]; |
| int version = shader ? shader->getData().getShaderVersion() : -1; |
| |
| switch (mClientType) |
| { |
| case EGL_OPENGL_API: |
| return version >= 130; |
| default: |
| return version >= 300; |
| } |
| } |
| |
| const ShaderD3D *ProgramD3DMetadata::getFragmentShader() const |
| { |
| return mAttachedShaders[gl::ShaderType::Fragment]; |
| } |
| |
| // ProgramD3D::GetExecutableTask class |
| class ProgramD3D::GetExecutableTask : public Closure, public d3d::Context |
| { |
| public: |
| GetExecutableTask(ProgramD3D *program) : mProgram(program) {} |
| |
| virtual angle::Result run() = 0; |
| |
| void operator()() override { mResult = run(); } |
| |
| angle::Result getResult() const { return mResult; } |
| const gl::InfoLog &getInfoLog() const { return mInfoLog; } |
| ShaderExecutableD3D *getExecutable() { return mExecutable; } |
| |
| void handleResult(HRESULT hr, |
| const char *message, |
| const char *file, |
| const char *function, |
| unsigned int line) override |
| { |
| mStoredHR = hr; |
| mStoredMessage = message; |
| mStoredFile = file; |
| mStoredFunction = function; |
| mStoredLine = line; |
| } |
| |
| void popError(d3d::Context *context) |
| { |
| ASSERT(mStoredFile); |
| ASSERT(mStoredFunction); |
| context->handleResult(mStoredHR, mStoredMessage.c_str(), mStoredFile, mStoredFunction, |
| mStoredLine); |
| } |
| |
| protected: |
| ProgramD3D *mProgram = nullptr; |
| angle::Result mResult = angle::Result::Continue; |
| gl::InfoLog mInfoLog; |
| ShaderExecutableD3D *mExecutable = nullptr; |
| HRESULT mStoredHR = S_OK; |
| std::string mStoredMessage; |
| const char *mStoredFile = nullptr; |
| const char *mStoredFunction = nullptr; |
| unsigned int mStoredLine = 0; |
| }; |
| |
| // ProgramD3D Implementation |
| |
| ProgramD3D::VertexExecutable::VertexExecutable(const gl::InputLayout &inputLayout, |
| const Signature &signature, |
| ShaderExecutableD3D *shaderExecutable) |
| : mInputs(inputLayout), mSignature(signature), mShaderExecutable(shaderExecutable) |
| {} |
| |
| ProgramD3D::VertexExecutable::~VertexExecutable() |
| { |
| SafeDelete(mShaderExecutable); |
| } |
| |
| // static |
| ProgramD3D::VertexExecutable::HLSLAttribType ProgramD3D::VertexExecutable::GetAttribType( |
| GLenum type) |
| { |
| switch (type) |
| { |
| case GL_INT: |
| return HLSLAttribType::SIGNED_INT; |
| case GL_UNSIGNED_INT: |
| return HLSLAttribType::UNSIGNED_INT; |
| case GL_SIGNED_NORMALIZED: |
| case GL_UNSIGNED_NORMALIZED: |
| case GL_FLOAT: |
| return HLSLAttribType::FLOAT; |
| default: |
| UNREACHABLE(); |
| return HLSLAttribType::FLOAT; |
| } |
| } |
| |
| // static |
| void ProgramD3D::VertexExecutable::getSignature(RendererD3D *renderer, |
| const gl::InputLayout &inputLayout, |
| Signature *signatureOut) |
| { |
| signatureOut->assign(inputLayout.size(), HLSLAttribType::FLOAT); |
| |
| for (size_t index = 0; index < inputLayout.size(); ++index) |
| { |
| angle::FormatID vertexFormatID = inputLayout[index]; |
| if (vertexFormatID == angle::FormatID::NONE) |
| continue; |
| |
| VertexConversionType conversionType = renderer->getVertexConversionType(vertexFormatID); |
| if ((conversionType & VERTEX_CONVERT_GPU) == 0) |
| continue; |
| |
| GLenum componentType = renderer->getVertexComponentType(vertexFormatID); |
| (*signatureOut)[index] = GetAttribType(componentType); |
| } |
| } |
| |
| bool ProgramD3D::VertexExecutable::matchesSignature(const Signature &signature) const |
| { |
| size_t limit = std::max(mSignature.size(), signature.size()); |
| for (size_t index = 0; index < limit; ++index) |
| { |
| // treat undefined indexes as FLOAT |
| auto a = index < signature.size() ? signature[index] : HLSLAttribType::FLOAT; |
| auto b = index < mSignature.size() ? mSignature[index] : HLSLAttribType::FLOAT; |
| if (a != b) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| ProgramD3D::PixelExecutable::PixelExecutable(const std::vector<GLenum> &outputSignature, |
| ShaderExecutableD3D *shaderExecutable) |
| : mOutputSignature(outputSignature), mShaderExecutable(shaderExecutable) |
| {} |
| |
| ProgramD3D::PixelExecutable::~PixelExecutable() |
| { |
| SafeDelete(mShaderExecutable); |
| } |
| |
| ProgramD3D::ComputeExecutable::ComputeExecutable( |
| const gl::ImageUnitTextureTypeMap &signature, |
| std::unique_ptr<ShaderExecutableD3D> shaderExecutable) |
| : mSignature(signature), mShaderExecutable(std::move(shaderExecutable)) |
| {} |
| |
| ProgramD3D::ComputeExecutable::~ComputeExecutable() {} |
| |
| ProgramD3D::Sampler::Sampler() |
| : active(false), logicalTextureUnit(0), textureType(gl::TextureType::_2D) |
| {} |
| |
| ProgramD3D::Image::Image() : active(false), logicalImageUnit(0) {} |
| |
| unsigned int ProgramD3D::mCurrentSerial = 1; |
| |
| ProgramD3D::ProgramD3D(const gl::ProgramState &state, RendererD3D *renderer) |
| : ProgramImpl(state), |
| mRenderer(renderer), |
| mDynamicHLSL(nullptr), |
| mUsesPointSize(false), |
| mUsesFlatInterpolation(false), |
| mUsedShaderSamplerRanges({}), |
| mDirtySamplerMapping(true), |
| mUsedComputeImageRange(0, 0), |
| mUsedComputeReadonlyImageRange(0, 0), |
| mUsedComputeAtomicCounterRange(0, 0), |
| mSerial(issueSerial()) |
| { |
| mDynamicHLSL = new DynamicHLSL(renderer); |
| } |
| |
| ProgramD3D::~ProgramD3D() |
| { |
| reset(); |
| SafeDelete(mDynamicHLSL); |
| } |
| |
| bool ProgramD3D::usesPointSpriteEmulation() const |
| { |
| return mUsesPointSize && mRenderer->getMajorShaderModel() >= 4; |
| } |
| |
| bool ProgramD3D::usesGeometryShaderForPointSpriteEmulation() const |
| { |
| return usesPointSpriteEmulation() && !usesInstancedPointSpriteEmulation(); |
| } |
| |
| bool ProgramD3D::usesGetDimensionsIgnoresBaseLevel() const |
| { |
| return mRenderer->getFeatures().getDimensionsIgnoresBaseLevel.enabled; |
| } |
| |
| bool ProgramD3D::usesGeometryShader(const gl::State &state, const gl::PrimitiveMode drawMode) const |
| { |
| if (mHasANGLEMultiviewEnabled && !mRenderer->canSelectViewInVertexShader()) |
| { |
| return true; |
| } |
| if (drawMode != gl::PrimitiveMode::Points) |
| { |
| if (!mUsesFlatInterpolation) |
| { |
| return false; |
| } |
| return state.getProvokingVertex() == gl::ProvokingVertexConvention::LastVertexConvention; |
| } |
| return usesGeometryShaderForPointSpriteEmulation(); |
| } |
| |
| bool ProgramD3D::usesInstancedPointSpriteEmulation() const |
| { |
| return mRenderer->getFeatures().useInstancedPointSpriteEmulation.enabled; |
| } |
| |
| GLint ProgramD3D::getSamplerMapping(gl::ShaderType type, |
| unsigned int samplerIndex, |
| const gl::Caps &caps) const |
| { |
| GLint logicalTextureUnit = -1; |
| |
| ASSERT(type != gl::ShaderType::InvalidEnum); |
| |
| ASSERT(samplerIndex < caps.maxShaderTextureImageUnits[type]); |
| |
| const auto &samplers = mShaderSamplers[type]; |
| if (samplerIndex < samplers.size() && samplers[samplerIndex].active) |
| { |
| logicalTextureUnit = samplers[samplerIndex].logicalTextureUnit; |
| } |
| |
| if (logicalTextureUnit >= 0 && |
| logicalTextureUnit < static_cast<GLint>(caps.maxCombinedTextureImageUnits)) |
| { |
| return logicalTextureUnit; |
| } |
| |
| return -1; |
| } |
| |
| // Returns the texture type for a given Direct3D 9 sampler type and |
| // index (0-15 for the pixel shader and 0-3 for the vertex shader). |
| gl::TextureType ProgramD3D::getSamplerTextureType(gl::ShaderType type, |
| unsigned int samplerIndex) const |
| { |
| ASSERT(type != gl::ShaderType::InvalidEnum); |
| |
| const auto &samplers = mShaderSamplers[type]; |
| ASSERT(samplerIndex < samplers.size()); |
| ASSERT(samplers[samplerIndex].active); |
| |
| return samplers[samplerIndex].textureType; |
| } |
| |
| gl::RangeUI ProgramD3D::getUsedSamplerRange(gl::ShaderType type) const |
| { |
| ASSERT(type != gl::ShaderType::InvalidEnum); |
| return mUsedShaderSamplerRanges[type]; |
| } |
| |
| ProgramD3D::SamplerMapping ProgramD3D::updateSamplerMapping() |
| { |
| if (!mDirtySamplerMapping) |
| { |
| return SamplerMapping::WasClean; |
| } |
| |
| mDirtySamplerMapping = false; |
| |
| // Retrieve sampler uniform values |
| for (const D3DUniform *d3dUniform : mD3DUniforms) |
| { |
| if (!d3dUniform->isSampler()) |
| continue; |
| |
| int count = d3dUniform->getArraySizeProduct(); |
| |
| for (gl::ShaderType shaderType : gl::AllShaderTypes()) |
| { |
| if (!d3dUniform->isReferencedByShader(shaderType)) |
| { |
| continue; |
| } |
| |
| unsigned int firstIndex = d3dUniform->mShaderRegisterIndexes[shaderType]; |
| |
| std::vector<Sampler> &samplers = mShaderSamplers[shaderType]; |
| for (int i = 0; i < count; i++) |
| { |
| unsigned int samplerIndex = firstIndex + i; |
| |
| if (samplerIndex < samplers.size()) |
| { |
| ASSERT(samplers[samplerIndex].active); |
| samplers[samplerIndex].logicalTextureUnit = d3dUniform->mSamplerData[i]; |
| } |
| } |
| } |
| } |
| |
| return SamplerMapping::WasDirty; |
| } |
| |
| GLint ProgramD3D::getImageMapping(gl::ShaderType type, |
| unsigned int imageIndex, |
| bool readonly, |
| const gl::Caps &caps) const |
| { |
| GLint logicalImageUnit = -1; |
| ASSERT(imageIndex < caps.maxImageUnits); |
| switch (type) |
| { |
| case gl::ShaderType::Compute: |
| if (readonly && imageIndex < mReadonlyImagesCS.size() && |
| mReadonlyImagesCS[imageIndex].active) |
| { |
| logicalImageUnit = mReadonlyImagesCS[imageIndex].logicalImageUnit; |
| } |
| else if (imageIndex < mImagesCS.size() && mImagesCS[imageIndex].active) |
| { |
| logicalImageUnit = mImagesCS[imageIndex].logicalImageUnit; |
| } |
| break; |
| // TODO(xinghua.cao@intel.com): add image mapping for vertex shader and pixel shader. |
| default: |
| UNREACHABLE(); |
| } |
| |
| if (logicalImageUnit >= 0 && logicalImageUnit < static_cast<GLint>(caps.maxImageUnits)) |
| { |
| return logicalImageUnit; |
| } |
| |
| return -1; |
| } |
| |
| gl::RangeUI ProgramD3D::getUsedImageRange(gl::ShaderType type, bool readonly) const |
| { |
| switch (type) |
| { |
| case gl::ShaderType::Compute: |
| return readonly ? mUsedComputeReadonlyImageRange : mUsedComputeImageRange; |
| // TODO(xinghua.cao@intel.com): add real image range of vertex shader and pixel shader. |
| case gl::ShaderType::Vertex: |
| case gl::ShaderType::Fragment: |
| return {0, 0}; |
| default: |
| UNREACHABLE(); |
| return {0, 0}; |
| } |
| } |
| |
| class ProgramD3D::LoadBinaryTask : public ProgramD3D::GetExecutableTask |
| { |
| public: |
| LoadBinaryTask(ProgramD3D *program, gl::BinaryInputStream *stream, gl::InfoLog &infoLog) |
| : ProgramD3D::GetExecutableTask(program), mProgram(program), mInfoLog(infoLog) |
| { |
| ASSERT(mProgram); |
| ASSERT(stream); |
| |
| // Copy the remaining data from the stream locally so that the client can't modify it when |
| // loading off thread. |
| size_t dataSize = stream->remainingSize(); |
| mDataCopySucceeded = mStreamData.resize(dataSize); |
| if (mDataCopySucceeded) |
| { |
| memcpy(mStreamData.data(), stream->data() + stream->offset(), dataSize); |
| } |
| } |
| |
| angle::Result run() override |
| { |
| if (!mDataCopySucceeded) |
| { |
| mInfoLog << "Failed to copy program binary data to local buffer."; |
| return angle::Result::Incomplete; |
| } |
| |
| gl::BinaryInputStream stream(mStreamData.data(), mStreamData.size()); |
| return mProgram->loadBinaryShaderExecutables(this, &stream, mInfoLog); |
| } |
| |
| private: |
| ProgramD3D *mProgram; |
| gl::InfoLog &mInfoLog; |
| |
| bool mDataCopySucceeded; |
| angle::MemoryBuffer mStreamData; |
| }; |
| |
| class ProgramD3D::LoadBinaryLinkEvent final : public LinkEvent |
| { |
| public: |
| LoadBinaryLinkEvent(std::shared_ptr<WorkerThreadPool> workerPool, |
| ProgramD3D *program, |
| gl::BinaryInputStream *stream, |
| gl::InfoLog &infoLog) |
| : mTask(std::make_shared<ProgramD3D::LoadBinaryTask>(program, stream, infoLog)), |
| mWaitableEvent(angle::WorkerThreadPool::PostWorkerTask(workerPool, mTask)) |
| {} |
| |
| angle::Result wait(const gl::Context *context) override |
| { |
| mWaitableEvent->wait(); |
| |
| // Continue and Incomplete are not errors. For Stop, pass the error to the ContextD3D. |
| if (mTask->getResult() != angle::Result::Stop) |
| { |
| return angle::Result::Continue; |
| } |
| |
| ContextD3D *contextD3D = GetImplAs<ContextD3D>(context); |
| mTask->popError(contextD3D); |
| return angle::Result::Stop; |
| } |
| |
| bool isLinking() override { return !mWaitableEvent->isReady(); } |
| |
| private: |
| std::shared_ptr<ProgramD3D::LoadBinaryTask> mTask; |
| std::shared_ptr<WaitableEvent> mWaitableEvent; |
| }; |
| |
| std::unique_ptr<rx::LinkEvent> ProgramD3D::load(const gl::Context *context, |
| gl::BinaryInputStream *stream, |
| gl::InfoLog &infoLog) |
| { |
| |
| // TODO(jmadill): Use Renderer from contextImpl. |
| |
| reset(); |
| |
| DeviceIdentifier binaryDeviceIdentifier = {0}; |
| stream->readBytes(reinterpret_cast<unsigned char *>(&binaryDeviceIdentifier), |
| sizeof(DeviceIdentifier)); |
| |
| DeviceIdentifier identifier = mRenderer->getAdapterIdentifier(); |
| if (memcmp(&identifier, &binaryDeviceIdentifier, sizeof(DeviceIdentifier)) != 0) |
| { |
| infoLog << "Invalid program binary, device configuration has changed."; |
| return std::make_unique<LinkEventDone>(angle::Result::Incomplete); |
| } |
| |
| int compileFlags = stream->readInt<int>(); |
| if (compileFlags != ANGLE_COMPILE_OPTIMIZATION_LEVEL) |
| { |
| infoLog << "Mismatched compilation flags."; |
| return std::make_unique<LinkEventDone>(angle::Result::Incomplete); |
| } |
| |
| for (int &index : mAttribLocationToD3DSemantic) |
| { |
| stream->readInt(&index); |
| } |
| |
| for (gl::ShaderType shaderType : gl::AllShaderTypes()) |
| { |
| const unsigned int samplerCount = stream->readInt<unsigned int>(); |
| for (unsigned int i = 0; i < samplerCount; ++i) |
| { |
| Sampler sampler; |
| stream->readBool(&sampler.active); |
| stream->readInt(&sampler.logicalTextureUnit); |
| stream->readEnum(&sampler.textureType); |
| mShaderSamplers[shaderType].push_back(sampler); |
| } |
| |
| unsigned int samplerRangeLow, samplerRangeHigh; |
| stream->readInt(&samplerRangeLow); |
| stream->readInt(&samplerRangeHigh); |
| mUsedShaderSamplerRanges[shaderType] = gl::RangeUI(samplerRangeLow, samplerRangeHigh); |
| } |
| |
| const unsigned int csImageCount = stream->readInt<unsigned int>(); |
| for (unsigned int i = 0; i < csImageCount; ++i) |
| { |
| Image image; |
| stream->readBool(&image.active); |
| stream->readInt(&image.logicalImageUnit); |
| mImagesCS.push_back(image); |
| } |
| |
| const unsigned int csReadonlyImageCount = stream->readInt<unsigned int>(); |
| for (unsigned int i = 0; i < csReadonlyImageCount; ++i) |
| { |
| Image image; |
| stream->readBool(&image.active); |
| stream->readInt(&image.logicalImageUnit); |
| mReadonlyImagesCS.push_back(image); |
| } |
| |
| unsigned int computeImageRangeLow, computeImageRangeHigh, computeReadonlyImageRangeLow, |
| computeReadonlyImageRangeHigh; |
| stream->readInt(&computeImageRangeLow); |
| stream->readInt(&computeImageRangeHigh); |
| stream->readInt(&computeReadonlyImageRangeLow); |
| stream->readInt(&computeReadonlyImageRangeHigh); |
| mUsedComputeImageRange = gl::RangeUI(computeImageRangeLow, computeImageRangeHigh); |
| mUsedComputeReadonlyImageRange = |
| gl::RangeUI(computeReadonlyImageRangeLow, computeReadonlyImageRangeHigh); |
| |
| unsigned int atomicCounterRangeLow, atomicCounterRangeHigh; |
| stream->readInt(&atomicCounterRangeLow); |
| stream->readInt(&atomicCounterRangeHigh); |
| mUsedComputeAtomicCounterRange = gl::RangeUI(atomicCounterRangeLow, atomicCounterRangeHigh); |
| |
| const unsigned int shaderStorageBlockCount = stream->readInt<unsigned int>(); |
| if (stream->error()) |
| { |
| infoLog << "Invalid program binary."; |
| return std::make_unique<LinkEventDone>(angle::Result::Incomplete); |
| } |
| |
| ASSERT(mD3DShaderStorageBlocks.empty()); |
| for (unsigned int blockIndex = 0; blockIndex < shaderStorageBlockCount; ++blockIndex) |
| { |
| D3DInterfaceBlock shaderStorageBlock; |
| for (gl::ShaderType shaderType : gl::AllShaderTypes()) |
| { |
| stream->readInt(&shaderStorageBlock.mShaderRegisterIndexes[shaderType]); |
| } |
| mD3DShaderStorageBlocks.push_back(shaderStorageBlock); |
| } |
| |
| for (unsigned int ii = 0; ii < gl::IMPLEMENTATION_MAX_ATOMIC_COUNTER_BUFFERS; ++ii) |
| { |
| unsigned int index = stream->readInt<unsigned int>(); |
| mComputeAtomicCounterBufferRegisterIndices[ii] = index; |
| } |
| |
| const unsigned int uniformCount = stream->readInt<unsigned int>(); |
| if (stream->error()) |
| { |
| infoLog << "Invalid program binary."; |
| return std::make_unique<LinkEventDone>(angle::Result::Incomplete); |
| } |
| |
| const auto &linkedUniforms = mState.getUniforms(); |
| ASSERT(mD3DUniforms.empty()); |
| for (unsigned int uniformIndex = 0; uniformIndex < uniformCount; uniformIndex++) |
| { |
| const gl::LinkedUniform &linkedUniform = linkedUniforms[uniformIndex]; |
| |
| D3DUniform *d3dUniform = |
| new D3DUniform(linkedUniform.type, HLSLRegisterType::None, linkedUniform.name, |
| linkedUniform.arraySizes, linkedUniform.isInDefaultBlock()); |
| stream->readInt<HLSLRegisterType>(&d3dUniform->regType); |
| for (gl::ShaderType shaderType : gl::AllShaderTypes()) |
| { |
| stream->readInt(&d3dUniform->mShaderRegisterIndexes[shaderType]); |
| } |
| stream->readInt(&d3dUniform->registerCount); |
| stream->readInt(&d3dUniform->registerElement); |
| |
| mD3DUniforms.push_back(d3dUniform); |
| } |
| |
| const unsigned int blockCount = stream->readInt<unsigned int>(); |
| if (stream->error()) |
| { |
| infoLog << "Invalid program binary."; |
| return std::make_unique<LinkEventDone>(angle::Result::Incomplete); |
| } |
| |
| ASSERT(mD3DUniformBlocks.empty()); |
| for (unsigned int blockIndex = 0; blockIndex < blockCount; ++blockIndex) |
| { |
| D3DInterfaceBlock uniformBlock; |
| for (gl::ShaderType shaderType : gl::AllShaderTypes()) |
| { |
| stream->readInt(&uniformBlock.mShaderRegisterIndexes[shaderType]); |
| } |
| mD3DUniformBlocks.push_back(uniformBlock); |
| } |
| |
| const unsigned int streamOutVaryingCount = stream->readInt<unsigned int>(); |
| mStreamOutVaryings.resize(streamOutVaryingCount); |
| for (unsigned int varyingIndex = 0; varyingIndex < streamOutVaryingCount; ++varyingIndex) |
| { |
| D3DVarying *varying = &mStreamOutVaryings[varyingIndex]; |
| |
| stream->readString(&varying->semanticName); |
| stream->readInt(&varying->semanticIndex); |
| stream->readInt(&varying->componentCount); |
| stream->readInt(&varying->outputSlot); |
| } |
| |
| for (gl::ShaderType shaderType : gl::AllShaderTypes()) |
| { |
| stream->readString(&mShaderHLSL[shaderType]); |
| stream->readBytes(reinterpret_cast<unsigned char *>(&mShaderWorkarounds[shaderType]), |
| sizeof(angle::CompilerWorkaroundsD3D)); |
| } |
| |
| stream->readBool(&mUsesFragDepth); |
| stream->readBool(&mHasANGLEMultiviewEnabled); |
| stream->readBool(&mUsesVertexID); |
| stream->readBool(&mUsesViewID); |
| stream->readBool(&mUsesPointSize); |
| stream->readBool(&mUsesFlatInterpolation); |
| |
| const size_t pixelShaderKeySize = stream->readInt<unsigned int>(); |
| mPixelShaderKey.resize(pixelShaderKeySize); |
| for (size_t pixelShaderKeyIndex = 0; pixelShaderKeyIndex < pixelShaderKeySize; |
| pixelShaderKeyIndex++) |
| { |
| stream->readInt(&mPixelShaderKey[pixelShaderKeyIndex].type); |
| stream->readString(&mPixelShaderKey[pixelShaderKeyIndex].name); |
| stream->readString(&mPixelShaderKey[pixelShaderKeyIndex].source); |
| stream->readInt(&mPixelShaderKey[pixelShaderKeyIndex].outputLocation); |
| stream->readInt(&mPixelShaderKey[pixelShaderKeyIndex].outputIndex); |
| } |
| |
| stream->readString(&mGeometryShaderPreamble); |
| |
| return std::make_unique<LoadBinaryLinkEvent>(context->getWorkerThreadPool(), this, stream, |
| infoLog); |
| } |
| |
| angle::Result ProgramD3D::loadBinaryShaderExecutables(d3d::Context *contextD3D, |
| gl::BinaryInputStream *stream, |
| gl::InfoLog &infoLog) |
| { |
| const unsigned char *binary = reinterpret_cast<const unsigned char *>(stream->data()); |
| |
| bool separateAttribs = (mState.getTransformFeedbackBufferMode() == GL_SEPARATE_ATTRIBS); |
| |
| const unsigned int vertexShaderCount = stream->readInt<unsigned int>(); |
| for (unsigned int vertexShaderIndex = 0; vertexShaderIndex < vertexShaderCount; |
| vertexShaderIndex++) |
| { |
| size_t inputLayoutSize = stream->readInt<size_t>(); |
| gl::InputLayout inputLayout(inputLayoutSize, angle::FormatID::NONE); |
| |
| for (size_t inputIndex = 0; inputIndex < inputLayoutSize; inputIndex++) |
| { |
| inputLayout[inputIndex] = stream->readInt<angle::FormatID>(); |
| } |
| |
| unsigned int vertexShaderSize = stream->readInt<unsigned int>(); |
| const unsigned char *vertexShaderFunction = binary + stream->offset(); |
| |
| ShaderExecutableD3D *shaderExecutable = nullptr; |
| |
| ANGLE_TRY(mRenderer->loadExecutable(contextD3D, vertexShaderFunction, vertexShaderSize, |
| gl::ShaderType::Vertex, mStreamOutVaryings, |
| separateAttribs, &shaderExecutable)); |
| |
| if (!shaderExecutable) |
| { |
| infoLog << "Could not create vertex shader."; |
| return angle::Result::Incomplete; |
| } |
| |
| // generated converted input layout |
| VertexExecutable::Signature signature; |
| VertexExecutable::getSignature(mRenderer, inputLayout, &signature); |
| |
| // add new binary |
| mVertexExecutables.push_back(std::unique_ptr<VertexExecutable>( |
| new VertexExecutable(inputLayout, signature, shaderExecutable))); |
| |
| stream->skip(vertexShaderSize); |
| } |
| |
| const size_t pixelShaderCount = stream->readInt<unsigned int>(); |
| for (size_t pixelShaderIndex = 0; pixelShaderIndex < pixelShaderCount; pixelShaderIndex++) |
| { |
| const size_t outputCount = stream->readInt<unsigned int>(); |
| std::vector<GLenum> outputs(outputCount); |
| for (size_t outputIndex = 0; outputIndex < outputCount; outputIndex++) |
| { |
| stream->readInt(&outputs[outputIndex]); |
| } |
| |
| const size_t pixelShaderSize = stream->readInt<unsigned int>(); |
| const unsigned char *pixelShaderFunction = binary + stream->offset(); |
| ShaderExecutableD3D *shaderExecutable = nullptr; |
| |
| ANGLE_TRY(mRenderer->loadExecutable(contextD3D, pixelShaderFunction, pixelShaderSize, |
| gl::ShaderType::Fragment, mStreamOutVaryings, |
| separateAttribs, &shaderExecutable)); |
| |
| if (!shaderExecutable) |
| { |
| infoLog << "Could not create pixel shader."; |
| return angle::Result::Incomplete; |
| } |
| |
| // add new binary |
| mPixelExecutables.push_back( |
| std::unique_ptr<PixelExecutable>(new PixelExecutable(outputs, shaderExecutable))); |
| |
| stream->skip(pixelShaderSize); |
| } |
| |
| for (auto &geometryExe : mGeometryExecutables) |
| { |
| unsigned int geometryShaderSize = stream->readInt<unsigned int>(); |
| if (geometryShaderSize == 0) |
| { |
| continue; |
| } |
| |
| const unsigned char *geometryShaderFunction = binary + stream->offset(); |
| |
| ShaderExecutableD3D *geometryExecutable = nullptr; |
| ANGLE_TRY(mRenderer->loadExecutable(contextD3D, geometryShaderFunction, geometryShaderSize, |
| gl::ShaderType::Geometry, mStreamOutVaryings, |
| separateAttribs, &geometryExecutable)); |
| |
| if (!geometryExecutable) |
| { |
| infoLog << "Could not create geometry shader."; |
| return angle::Result::Incomplete; |
| } |
| |
| geometryExe.reset(geometryExecutable); |
| |
| stream->skip(geometryShaderSize); |
| } |
| |
| const size_t computeShaderCount = stream->readInt<unsigned int>(); |
| for (size_t computeShaderIndex = 0; computeShaderIndex < computeShaderCount; |
| computeShaderIndex++) |
| { |
| const size_t signatureCount = stream->readInt<unsigned int>(); |
| gl::ImageUnitTextureTypeMap signatures; |
| for (size_t signatureIndex = 0; signatureIndex < signatureCount; signatureIndex++) |
| { |
| unsigned int imageUint; |
| gl::TextureType textureType; |
| stream->readInt<unsigned int>(&imageUint); |
| stream->readInt<gl::TextureType>(&textureType); |
| signatures.insert(std::pair<unsigned int, gl::TextureType>(imageUint, textureType)); |
| } |
| |
| const size_t computeShaderSize = stream->readInt<unsigned int>(); |
| const unsigned char *computeShaderFunction = binary + stream->offset(); |
| |
| ShaderExecutableD3D *computeExecutable = nullptr; |
| ANGLE_TRY(mRenderer->loadExecutable(contextD3D, computeShaderFunction, computeShaderSize, |
| gl::ShaderType::Compute, std::vector<D3DVarying>(), |
| false, &computeExecutable)); |
| |
| if (!computeExecutable) |
| { |
| infoLog << "Could not create compute shader."; |
| return angle::Result::Incomplete; |
| } |
| |
| // add new binary |
| mComputeExecutables.push_back(std::unique_ptr<ComputeExecutable>(new ComputeExecutable( |
| signatures, std::unique_ptr<ShaderExecutableD3D>(computeExecutable)))); |
| |
| stream->skip(computeShaderSize); |
| } |
| |
| const size_t bindLayoutCount = stream->readInt<unsigned int>(); |
| for (size_t bindLayoutIndex = 0; bindLayoutIndex < bindLayoutCount; bindLayoutIndex++) |
| { |
| mComputeShaderImage2DBindLayoutCache.insert(std::pair<unsigned int, gl::TextureType>( |
| stream->readInt<unsigned int>(), gl::TextureType::_2D)); |
| } |
| |
| initializeUniformStorage(mState.getLinkedShaderStages()); |
| |
| dirtyAllUniforms(); |
| |
| return angle::Result::Continue; |
| } |
| |
| void ProgramD3D::save(const gl::Context *context, gl::BinaryOutputStream *stream) |
| { |
| // Output the DeviceIdentifier before we output any shader code |
| // When we load the binary again later, we can validate the device identifier before trying to |
| // compile any HLSL |
| DeviceIdentifier binaryIdentifier = mRenderer->getAdapterIdentifier(); |
| stream->writeBytes(reinterpret_cast<unsigned char *>(&binaryIdentifier), |
| sizeof(DeviceIdentifier)); |
| |
| stream->writeInt(ANGLE_COMPILE_OPTIMIZATION_LEVEL); |
| |
| for (int d3dSemantic : mAttribLocationToD3DSemantic) |
| { |
| stream->writeInt(d3dSemantic); |
| } |
| |
| for (gl::ShaderType shaderType : gl::AllShaderTypes()) |
| { |
| stream->writeInt(mShaderSamplers[shaderType].size()); |
| for (unsigned int i = 0; i < mShaderSamplers[shaderType].size(); ++i) |
| { |
| stream->writeInt(mShaderSamplers[shaderType][i].active); |
| stream->writeInt(mShaderSamplers[shaderType][i].logicalTextureUnit); |
| stream->writeEnum(mShaderSamplers[shaderType][i].textureType); |
| } |
| |
| stream->writeInt(mUsedShaderSamplerRanges[shaderType].low()); |
| stream->writeInt(mUsedShaderSamplerRanges[shaderType].high()); |
| } |
| |
| stream->writeInt(mImagesCS.size()); |
| for (unsigned int i = 0; i < mImagesCS.size(); ++i) |
| { |
| stream->writeInt(mImagesCS[i].active); |
| stream->writeInt(mImagesCS[i].logicalImageUnit); |
| } |
| |
| stream->writeInt(mReadonlyImagesCS.size()); |
| for (unsigned int i = 0; i < mReadonlyImagesCS.size(); ++i) |
| { |
| stream->writeInt(mReadonlyImagesCS[i].active); |
| stream->writeInt(mReadonlyImagesCS[i].logicalImageUnit); |
| } |
| |
| stream->writeInt(mUsedComputeImageRange.low()); |
| stream->writeInt(mUsedComputeImageRange.high()); |
| stream->writeInt(mUsedComputeReadonlyImageRange.low()); |
| stream->writeInt(mUsedComputeReadonlyImageRange.high()); |
| stream->writeInt(mUsedComputeAtomicCounterRange.low()); |
| stream->writeInt(mUsedComputeAtomicCounterRange.high()); |
| |
| stream->writeInt(mD3DShaderStorageBlocks.size()); |
| for (const D3DInterfaceBlock &shaderStorageBlock : mD3DShaderStorageBlocks) |
| { |
| for (gl::ShaderType shaderType : gl::AllShaderTypes()) |
| { |
| stream->writeIntOrNegOne(shaderStorageBlock.mShaderRegisterIndexes[shaderType]); |
| } |
| } |
| |
| for (unsigned int ii = 0; ii < gl::IMPLEMENTATION_MAX_ATOMIC_COUNTER_BUFFERS; ++ii) |
| { |
| stream->writeInt(mComputeAtomicCounterBufferRegisterIndices[ii]); |
| } |
| |
| stream->writeInt(mD3DUniforms.size()); |
| for (const D3DUniform *uniform : mD3DUniforms) |
| { |
| // Type, name and arraySize are redundant, so aren't stored in the binary. |
| stream->writeInt(static_cast<unsigned int>(uniform->regType)); |
| for (gl::ShaderType shaderType : gl::AllShaderTypes()) |
| { |
| stream->writeIntOrNegOne(uniform->mShaderRegisterIndexes[shaderType]); |
| } |
| stream->writeInt(uniform->registerCount); |
| stream->writeInt(uniform->registerElement); |
| } |
| |
| stream->writeInt(mD3DUniformBlocks.size()); |
| for (const D3DInterfaceBlock &uniformBlock : mD3DUniformBlocks) |
| { |
| for (gl::ShaderType shaderType : gl::AllShaderTypes()) |
| { |
| stream->writeIntOrNegOne(uniformBlock.mShaderRegisterIndexes[shaderType]); |
| } |
| } |
| |
| stream->writeInt(mStreamOutVaryings.size()); |
| for (const auto &varying : mStreamOutVaryings) |
| { |
| stream->writeString(varying.semanticName); |
| stream->writeInt(varying.semanticIndex); |
| stream->writeInt(varying.componentCount); |
| stream->writeInt(varying.outputSlot); |
| } |
| |
| for (gl::ShaderType shaderType : gl::AllShaderTypes()) |
| { |
| stream->writeString(mShaderHLSL[shaderType]); |
| stream->writeBytes(reinterpret_cast<unsigned char *>(&mShaderWorkarounds[shaderType]), |
| sizeof(angle::CompilerWorkaroundsD3D)); |
| } |
| |
| stream->writeInt(mUsesFragDepth); |
| stream->writeInt(mHasANGLEMultiviewEnabled); |
| stream->writeInt(mUsesVertexID); |
| stream->writeInt(mUsesViewID); |
| stream->writeInt(mUsesPointSize); |
| stream->writeInt(mUsesFlatInterpolation); |
| |
| const std::vector<PixelShaderOutputVariable> &pixelShaderKey = mPixelShaderKey; |
| stream->writeInt(pixelShaderKey.size()); |
| for (size_t pixelShaderKeyIndex = 0; pixelShaderKeyIndex < pixelShaderKey.size(); |
| pixelShaderKeyIndex++) |
| { |
| const PixelShaderOutputVariable &variable = pixelShaderKey[pixelShaderKeyIndex]; |
| stream->writeInt(variable.type); |
| stream->writeString(variable.name); |
| stream->writeString(variable.source); |
| stream->writeInt(variable.outputLocation); |
| stream->writeInt(variable.outputIndex); |
| } |
| |
| stream->writeString(mGeometryShaderPreamble); |
| |
| stream->writeInt(mVertexExecutables.size()); |
| for (size_t vertexExecutableIndex = 0; vertexExecutableIndex < mVertexExecutables.size(); |
| vertexExecutableIndex++) |
| { |
| VertexExecutable *vertexExecutable = mVertexExecutables[vertexExecutableIndex].get(); |
| |
| const auto &inputLayout = vertexExecutable->inputs(); |
| stream->writeInt(inputLayout.size()); |
| |
| for (size_t inputIndex = 0; inputIndex < inputLayout.size(); inputIndex++) |
| { |
| stream->writeInt(static_cast<unsigned int>(inputLayout[inputIndex])); |
| } |
| |
| size_t vertexShaderSize = vertexExecutable->shaderExecutable()->getLength(); |
| stream->writeInt(vertexShaderSize); |
| |
| const uint8_t *vertexBlob = vertexExecutable->shaderExecutable()->getFunction(); |
| stream->writeBytes(vertexBlob, vertexShaderSize); |
| } |
| |
| stream->writeInt(mPixelExecutables.size()); |
| for (size_t pixelExecutableIndex = 0; pixelExecutableIndex < mPixelExecutables.size(); |
| pixelExecutableIndex++) |
| { |
| PixelExecutable *pixelExecutable = mPixelExecutables[pixelExecutableIndex].get(); |
| |
| const std::vector<GLenum> outputs = pixelExecutable->outputSignature(); |
| stream->writeInt(outputs.size()); |
| for (size_t outputIndex = 0; outputIndex < outputs.size(); outputIndex++) |
| { |
| stream->writeInt(outputs[outputIndex]); |
| } |
| |
| size_t pixelShaderSize = pixelExecutable->shaderExecutable()->getLength(); |
| stream->writeInt(pixelShaderSize); |
| |
| const uint8_t *pixelBlob = pixelExecutable->shaderExecutable()->getFunction(); |
| stream->writeBytes(pixelBlob, pixelShaderSize); |
| } |
| |
| for (auto const &geometryExecutable : mGeometryExecutables) |
| { |
| if (!geometryExecutable) |
| { |
| stream->writeInt(0); |
| continue; |
| } |
| |
| size_t geometryShaderSize = geometryExecutable->getLength(); |
| stream->writeInt(geometryShaderSize); |
| stream->writeBytes(geometryExecutable->getFunction(), geometryShaderSize); |
| } |
| |
| stream->writeInt(mComputeExecutables.size()); |
| for (size_t computeExecutableIndex = 0; computeExecutableIndex < mComputeExecutables.size(); |
| computeExecutableIndex++) |
| { |
| ComputeExecutable *computeExecutable = mComputeExecutables[computeExecutableIndex].get(); |
| |
| const gl::ImageUnitTextureTypeMap signatures = computeExecutable->signature(); |
| stream->writeInt(signatures.size()); |
| for (const auto &signature : signatures) |
| { |
| stream->writeInt(signature.first); |
| stream->writeInt(static_cast<unsigned int>(signature.second)); |
| } |
| |
| size_t computeShaderSize = computeExecutable->shaderExecutable()->getLength(); |
| stream->writeInt(computeShaderSize); |
| |
| const uint8_t *computeBlob = computeExecutable->shaderExecutable()->getFunction(); |
| stream->writeBytes(computeBlob, computeShaderSize); |
| } |
| |
| stream->writeInt(mComputeShaderImage2DBindLayoutCache.size()); |
| for (auto &image2DBindLayout : mComputeShaderImage2DBindLayoutCache) |
| { |
| stream->writeInt(image2DBindLayout.first); |
| } |
| } |
| |
| void ProgramD3D::setBinaryRetrievableHint(bool /* retrievable */) {} |
| |
| void ProgramD3D::setSeparable(bool /* separable */) {} |
| |
| angle::Result ProgramD3D::getPixelExecutableForCachedOutputLayout( |
| d3d::Context *context, |
| ShaderExecutableD3D **outExecutable, |
| gl::InfoLog *infoLog) |
| { |
| if (mCachedPixelExecutableIndex.valid()) |
| { |
| *outExecutable = mPixelExecutables[mCachedPixelExecutableIndex.value()]->shaderExecutable(); |
| return angle::Result::Continue; |
| } |
| |
| std::string finalPixelHLSL = mDynamicHLSL->generatePixelShaderForOutputSignature( |
| mShaderHLSL[gl::ShaderType::Fragment], mPixelShaderKey, mUsesFragDepth, |
| mPixelShaderOutputLayoutCache); |
| |
| // Generate new pixel executable |
| ShaderExecutableD3D *pixelExecutable = nullptr; |
| |
| gl::InfoLog tempInfoLog; |
| gl::InfoLog *currentInfoLog = infoLog ? infoLog : &tempInfoLog; |
| |
| ANGLE_TRY(mRenderer->compileToExecutable( |
| context, *currentInfoLog, finalPixelHLSL, gl::ShaderType::Fragment, mStreamOutVaryings, |
| (mState.getTransformFeedbackBufferMode() == GL_SEPARATE_ATTRIBS), |
| mShaderWorkarounds[gl::ShaderType::Fragment], &pixelExecutable)); |
| |
| if (pixelExecutable) |
| { |
| mPixelExecutables.push_back(std::unique_ptr<PixelExecutable>( |
| new PixelExecutable(mPixelShaderOutputLayoutCache, pixelExecutable))); |
| mCachedPixelExecutableIndex = mPixelExecutables.size() - 1; |
| } |
| else if (!infoLog) |
| { |
| ERR() << "Error compiling dynamic pixel executable:" << std::endl |
| << tempInfoLog.str() << std::endl; |
| } |
| |
| *outExecutable = pixelExecutable; |
| return angle::Result::Continue; |
| } |
| |
| angle::Result ProgramD3D::getVertexExecutableForCachedInputLayout( |
| d3d::Context *context, |
| ShaderExecutableD3D **outExectuable, |
| gl::InfoLog *infoLog) |
| { |
| if (mCachedVertexExecutableIndex.valid()) |
| { |
| *outExectuable = |
| mVertexExecutables[mCachedVertexExecutableIndex.value()]->shaderExecutable(); |
| return angle::Result::Continue; |
| } |
| |
| // Generate new dynamic layout with attribute conversions |
| std::string finalVertexHLSL = mDynamicHLSL->generateVertexShaderForInputLayout( |
| mShaderHLSL[gl::ShaderType::Vertex], mCachedInputLayout, mState.getProgramInputs()); |
| |
| // Generate new vertex executable |
| ShaderExecutableD3D *vertexExecutable = nullptr; |
| |
| gl::InfoLog tempInfoLog; |
| gl::InfoLog *currentInfoLog = infoLog ? infoLog : &tempInfoLog; |
| |
| ANGLE_TRY(mRenderer->compileToExecutable( |
| context, *currentInfoLog, finalVertexHLSL, gl::ShaderType::Vertex, mStreamOutVaryings, |
| (mState.getTransformFeedbackBufferMode() == GL_SEPARATE_ATTRIBS), |
| mShaderWorkarounds[gl::ShaderType::Vertex], &vertexExecutable)); |
| |
| if (vertexExecutable) |
| { |
| mVertexExecutables.push_back(std::unique_ptr<VertexExecutable>( |
| new VertexExecutable(mCachedInputLayout, mCachedVertexSignature, vertexExecutable))); |
| mCachedVertexExecutableIndex = mVertexExecutables.size() - 1; |
| } |
| else if (!infoLog) |
| { |
| ERR() << "Error compiling dynamic vertex executable:" << std::endl |
| << tempInfoLog.str() << std::endl; |
| } |
| |
| *outExectuable = vertexExecutable; |
| return angle::Result::Continue; |
| } |
| |
| angle::Result ProgramD3D::getGeometryExecutableForPrimitiveType(d3d::Context *context, |
| const gl::State &state, |
| gl::PrimitiveMode drawMode, |
| ShaderExecutableD3D **outExecutable, |
| gl::InfoLog *infoLog) |
| { |
| if (outExecutable) |
| { |
| *outExecutable = nullptr; |
| } |
| |
| // Return a null shader if the current rendering doesn't use a geometry shader |
| if (!usesGeometryShader(state, drawMode)) |
| { |
| return angle::Result::Continue; |
| } |
| |
| gl::PrimitiveMode geometryShaderType = GetGeometryShaderTypeFromDrawMode(drawMode); |
| |
| if (mGeometryExecutables[geometryShaderType]) |
| { |
| if (outExecutable) |
| { |
| *outExecutable = mGeometryExecutables[geometryShaderType].get(); |
| } |
| return angle::Result::Continue; |
| } |
| const gl::Caps &caps = state.getCaps(); |
| std::string geometryHLSL = mDynamicHLSL->generateGeometryShaderHLSL( |
| caps, geometryShaderType, mState, mRenderer->presentPathFastEnabled(), |
| mHasANGLEMultiviewEnabled, mRenderer->canSelectViewInVertexShader(), |
| usesGeometryShaderForPointSpriteEmulation(), mGeometryShaderPreamble); |
| |
| gl::InfoLog tempInfoLog; |
| gl::InfoLog *currentInfoLog = infoLog ? infoLog : &tempInfoLog; |
| |
| ShaderExecutableD3D *geometryExecutable = nullptr; |
| angle::Result result = mRenderer->compileToExecutable( |
| context, *currentInfoLog, geometryHLSL, gl::ShaderType::Geometry, mStreamOutVaryings, |
| (mState.getTransformFeedbackBufferMode() == GL_SEPARATE_ATTRIBS), |
| angle::CompilerWorkaroundsD3D(), &geometryExecutable); |
| |
| if (!infoLog && result == angle::Result::Stop) |
| { |
| ERR() << "Error compiling dynamic geometry executable:" << std::endl |
| << tempInfoLog.str() << std::endl; |
| } |
| |
| if (geometryExecutable != nullptr) |
| { |
| mGeometryExecutables[geometryShaderType].reset(geometryExecutable); |
| } |
| |
| if (outExecutable) |
| { |
| *outExecutable = mGeometryExecutables[geometryShaderType].get(); |
| } |
| return result; |
| } |
| |
| class ProgramD3D::GetVertexExecutableTask : public ProgramD3D::GetExecutableTask |
| { |
| public: |
| GetVertexExecutableTask(ProgramD3D *program) : GetExecutableTask(program) {} |
| angle::Result run() override |
| { |
| if (!mProgram->mState.getAttachedShader(gl::ShaderType::Vertex)) |
| { |
| return angle::Result::Continue; |
| } |
| |
| mProgram->updateCachedInputLayoutFromShader(); |
| |
| ANGLE_TRY(mProgram->getVertexExecutableForCachedInputLayout(this, &mExecutable, &mInfoLog)); |
| |
| return angle::Result::Continue; |
| } |
| }; |
| |
| void ProgramD3D::updateCachedInputLayoutFromShader() |
| { |
| GetDefaultInputLayoutFromShader(mState.getAttachedShader(gl::ShaderType::Vertex), |
| &mCachedInputLayout); |
| VertexExecutable::getSignature(mRenderer, mCachedInputLayout, &mCachedVertexSignature); |
| updateCachedVertexExecutableIndex(); |
| } |
| |
| class ProgramD3D::GetPixelExecutableTask : public ProgramD3D::GetExecutableTask |
| { |
| public: |
| GetPixelExecutableTask(ProgramD3D *program) : GetExecutableTask(program) {} |
| angle::Result run() override |
| { |
| if (!mProgram->mState.getAttachedShader(gl::ShaderType::Fragment)) |
| { |
| return angle::Result::Continue; |
| } |
| |
| mProgram->updateCachedOutputLayoutFromShader(); |
| |
| ANGLE_TRY(mProgram->getPixelExecutableForCachedOutputLayout(this, &mExecutable, &mInfoLog)); |
| |
| return angle::Result::Continue; |
| } |
| }; |
| |
| void ProgramD3D::updateCachedOutputLayoutFromShader() |
| { |
| GetDefaultOutputLayoutFromShader(mPixelShaderKey, &mPixelShaderOutputLayoutCache); |
| updateCachedPixelExecutableIndex(); |
| } |
| |
| void ProgramD3D::updateCachedImage2DBindLayoutFromComputeShader() |
| { |
| GetDefaultImage2DBindLayoutFromComputeShader(mImage2DUniforms, |
| &mComputeShaderImage2DBindLayoutCache); |
| updateCachedComputeExecutableIndex(); |
| } |
| |
| class ProgramD3D::GetGeometryExecutableTask : public ProgramD3D::GetExecutableTask |
| { |
| public: |
| GetGeometryExecutableTask(ProgramD3D *program, const gl::State &state) |
| : GetExecutableTask(program), mState(state) |
| {} |
| |
| angle::Result run() override |
| { |
| // Auto-generate the geometry shader here, if we expect to be using point rendering in |
| // D3D11. |
| if (mProgram->usesGeometryShader(mState, gl::PrimitiveMode::Points)) |
| { |
| ANGLE_TRY(mProgram->getGeometryExecutableForPrimitiveType( |
| this, mState, gl::PrimitiveMode::Points, &mExecutable, &mInfoLog)); |
| } |
| |
| return angle::Result::Continue; |
| } |
| |
| private: |
| const gl::State &mState; |
| }; |
| |
| class ProgramD3D::GetComputeExecutableTask : public ProgramD3D::GetExecutableTask |
| { |
| public: |
| GetComputeExecutableTask(ProgramD3D *program) : GetExecutableTask(program) {} |
| angle::Result run() override |
| { |
| mProgram->updateCachedImage2DBindLayoutFromComputeShader(); |
| ShaderExecutableD3D *computeExecutable = nullptr; |
| ANGLE_TRY(mProgram->getComputeExecutableForImage2DBindLayout(this, &computeExecutable, |
| &mInfoLog)); |
| |
| return computeExecutable ? angle::Result::Continue : angle::Result::Incomplete; |
| } |
| }; |
| |
| // The LinkEvent implementation for linking a rendering(VS, FS, GS) program. |
| class ProgramD3D::GraphicsProgramLinkEvent final : public LinkEvent |
| { |
| public: |
| GraphicsProgramLinkEvent(gl::InfoLog &infoLog, |
| std::shared_ptr<WorkerThreadPool> workerPool, |
| std::shared_ptr<ProgramD3D::GetVertexExecutableTask> vertexTask, |
| std::shared_ptr<ProgramD3D::GetPixelExecutableTask> pixelTask, |
| std::shared_ptr<ProgramD3D::GetGeometryExecutableTask> geometryTask, |
| bool useGS, |
| const ShaderD3D *vertexShader, |
| const ShaderD3D *fragmentShader) |
| : mInfoLog(infoLog), |
| mVertexTask(vertexTask), |
| mPixelTask(pixelTask), |
| mGeometryTask(geometryTask), |
| mWaitEvents({{std::shared_ptr<WaitableEvent>( |
| angle::WorkerThreadPool::PostWorkerTask(workerPool, mVertexTask)), |
| std::shared_ptr<WaitableEvent>( |
| angle::WorkerThreadPool::PostWorkerTask(workerPool, mPixelTask)), |
| std::shared_ptr<WaitableEvent>( |
| angle::WorkerThreadPool::PostWorkerTask(workerPool, mGeometryTask))}}), |
| mUseGS(useGS), |
| mVertexShader(vertexShader), |
| mFragmentShader(fragmentShader) |
| {} |
| |
| angle::Result wait(const gl::Context *context) override |
| { |
| WaitableEvent::WaitMany(&mWaitEvents); |
| |
| ANGLE_TRY(checkTask(context, mVertexTask.get())); |
| ANGLE_TRY(checkTask(context, mPixelTask.get())); |
| ANGLE_TRY(checkTask(context, mGeometryTask.get())); |
| |
| if (mVertexTask->getResult() == angle::Result::Incomplete || |
| mPixelTask->getResult() == angle::Result::Incomplete || |
| mGeometryTask->getResult() == angle::Result::Incomplete) |
| { |
| return angle::Result::Incomplete; |
| } |
| |
| ShaderExecutableD3D *defaultVertexExecutable = mVertexTask->getExecutable(); |
| ShaderExecutableD3D *defaultPixelExecutable = mPixelTask->getExecutable(); |
| ShaderExecutableD3D *pointGS = mGeometryTask->getExecutable(); |
| |
| if (mUseGS && pointGS) |
| { |
| // Geometry shaders are currently only used internally, so there is no corresponding |
| // shader object at the interface level. For now the geometry shader debug info is |
| // prepended to the vertex shader. |
| mVertexShader->appendDebugInfo("// GEOMETRY SHADER BEGIN\n\n"); |
| mVertexShader->appendDebugInfo(pointGS->getDebugInfo()); |
| mVertexShader->appendDebugInfo("\nGEOMETRY SHADER END\n\n\n"); |
| } |
| |
| if (defaultVertexExecutable) |
| { |
| mVertexShader->appendDebugInfo(defaultVertexExecutable->getDebugInfo()); |
| } |
| |
| if (defaultPixelExecutable) |
| { |
| mFragmentShader->appendDebugInfo(defaultPixelExecutable->getDebugInfo()); |
| } |
| |
| bool isLinked = (defaultVertexExecutable && defaultPixelExecutable && (!mUseGS || pointGS)); |
| if (!isLinked) |
| { |
| mInfoLog << "Failed to create D3D Shaders"; |
| } |
| return isLinked ? angle::Result::Continue : angle::Result::Incomplete; |
| } |
| |
| bool isLinking() override |
| { |
| for (auto &event : mWaitEvents) |
| { |
| if (!event->isReady()) |
| { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| private: |
| angle::Result checkTask(const gl::Context *context, ProgramD3D::GetExecutableTask *task) |
| { |
| if (!task->getInfoLog().empty()) |
| { |
| mInfoLog << task->getInfoLog().str(); |
| } |
| |
| // Continue and Incomplete are not errors. For Stop, pass the error to the ContextD3D. |
| if (task->getResult() != angle::Result::Stop) |
| { |
| return angle::Result::Continue; |
| } |
| |
| ContextD3D *contextD3D = GetImplAs<ContextD3D>(context); |
| task->popError(contextD3D); |
| return angle::Result::Stop; |
| } |
| |
| gl::InfoLog &mInfoLog; |
| std::shared_ptr<ProgramD3D::GetVertexExecutableTask> mVertexTask; |
| std::shared_ptr<ProgramD3D::GetPixelExecutableTask> mPixelTask; |
| std::shared_ptr<ProgramD3D::GetGeometryExecutableTask> mGeometryTask; |
| std::array<std::shared_ptr<WaitableEvent>, 3> mWaitEvents; |
| bool mUseGS; |
| const ShaderD3D *mVertexShader; |
| const ShaderD3D *mFragmentShader; |
| }; |
| |
| // The LinkEvent implementation for linking a computing program. |
| class ProgramD3D::ComputeProgramLinkEvent final : public LinkEvent |
| { |
| public: |
| ComputeProgramLinkEvent(gl::InfoLog &infoLog, |
| std::shared_ptr<ProgramD3D::GetComputeExecutableTask> computeTask, |
| std::shared_ptr<WaitableEvent> event) |
| : mInfoLog(infoLog), mComputeTask(computeTask), mWaitEvent(event) |
| {} |
| |
| bool isLinking() override { return !mWaitEvent->isReady(); } |
| |
| angle::Result wait(const gl::Context *context) override |
| { |
| mWaitEvent->wait(); |
| |
| angle::Result result = mComputeTask->getResult(); |
| if (result != angle::Result::Continue) |
| { |
| mInfoLog << "Failed to create D3D compute shader."; |
| } |
| return result; |
| } |
| |
| private: |
| gl::InfoLog &mInfoLog; |
| std::shared_ptr<ProgramD3D::GetComputeExecutableTask> mComputeTask; |
| std::shared_ptr<WaitableEvent> mWaitEvent; |
| }; |
| |
| std::unique_ptr<LinkEvent> ProgramD3D::compileProgramExecutables(const gl::Context *context, |
| gl::InfoLog &infoLog) |
| { |
| // Ensure the compiler is initialized to avoid race conditions. |
| angle::Result result = mRenderer->ensureHLSLCompilerInitialized(GetImplAs<ContextD3D>(context)); |
| if (result != angle::Result::Continue) |
| { |
| return std::make_unique<LinkEventDone>(result); |
| } |
| |
| auto vertexTask = std::make_shared<GetVertexExecutableTask>(this); |
| auto pixelTask = std::make_shared<GetPixelExecutableTask>(this); |
| auto geometryTask = std::make_shared<GetGeometryExecutableTask>(this, context->getState()); |
| bool useGS = usesGeometryShader(context->getState(), gl::PrimitiveMode::Points); |
| gl::Shader *vertexShader = mState.getAttachedShader(gl::ShaderType::Vertex); |
| gl::Shader *fragmentShader = mState.getAttachedShader(gl::ShaderType::Fragment); |
| const ShaderD3D *vertexShaderD3D = vertexShader ? GetImplAs<ShaderD3D>(vertexShader) : nullptr; |
| const ShaderD3D *fragmentShaderD3D = |
| fragmentShader ? GetImplAs<ShaderD3D>(fragmentShader) : nullptr; |
| |
| return std::make_unique<GraphicsProgramLinkEvent>(infoLog, context->getWorkerThreadPool(), |
| vertexTask, pixelTask, geometryTask, useGS, |
| vertexShaderD3D, fragmentShaderD3D); |
| } |
| |
| std::unique_ptr<LinkEvent> ProgramD3D::compileComputeExecutable(const gl::Context *context, |
| gl::InfoLog &infoLog) |
| { |
| // Ensure the compiler is initialized to avoid race conditions. |
| angle::Result result = mRenderer->ensureHLSLCompilerInitialized(GetImplAs<ContextD3D>(context)); |
| if (result != angle::Result::Continue) |
| { |
| return std::make_unique<LinkEventDone>(result); |
| } |
| auto computeTask = std::make_shared<GetComputeExecutableTask>(this); |
| |
| std::shared_ptr<WaitableEvent> waitableEvent; |
| |
| // TODO(jie.a.chen@intel.com): Fix the flaky bug. |
| // http://anglebug.com/3349 |
| bool compileInParallel = false; |
| if (!compileInParallel) |
| { |
| (*computeTask)(); |
| waitableEvent = std::make_shared<WaitableEventDone>(); |
| } |
| else |
| { |
| waitableEvent = |
| WorkerThreadPool::PostWorkerTask(context->getWorkerThreadPool(), computeTask); |
| } |
| |
| return std::make_unique<ComputeProgramLinkEvent>(infoLog, computeTask, waitableEvent); |
| } |
| |
| angle::Result ProgramD3D::getComputeExecutableForImage2DBindLayout( |
| d3d::Context *context, |
| ShaderExecutableD3D **outExecutable, |
| gl::InfoLog *infoLog) |
| { |
| if (mCachedComputeExecutableIndex.valid()) |
| { |
| *outExecutable = |
| mComputeExecutables[mCachedComputeExecutableIndex.value()]->shaderExecutable(); |
| return angle::Result::Continue; |
| } |
| |
| std::string finalComputeHLSL = mDynamicHLSL->generateComputeShaderForImage2DBindSignature( |
| context, *this, mState, mImage2DUniforms, mComputeShaderImage2DBindLayoutCache); |
| |
| // Generate new compute executable |
| ShaderExecutableD3D *computeExecutable = nullptr; |
| |
| gl::InfoLog tempInfoLog; |
| gl::InfoLog *currentInfoLog = infoLog ? infoLog : &tempInfoLog; |
| |
| ANGLE_TRY(mRenderer->compileToExecutable( |
| context, *currentInfoLog, finalComputeHLSL, gl::ShaderType::Compute, |
| std::vector<D3DVarying>(), false, angle::CompilerWorkaroundsD3D(), &computeExecutable)); |
| |
| if (computeExecutable) |
| { |
| mComputeExecutables.push_back(std::unique_ptr<ComputeExecutable>( |
| new ComputeExecutable(mComputeShaderImage2DBindLayoutCache, |
| std::unique_ptr<ShaderExecutableD3D>(computeExecutable)))); |
| mCachedComputeExecutableIndex = mComputeExecutables.size() - 1; |
| } |
| else if (!infoLog) |
| { |
| ERR() << "Error compiling dynamic compute executable:" << std::endl |
| << tempInfoLog.str() << std::endl; |
| } |
| *outExecutable = computeExecutable; |
| |
| return angle::Result::Continue; |
| } |
| |
| std::unique_ptr<LinkEvent> ProgramD3D::link(const gl::Context *context, |
| const gl::ProgramLinkedResources &resources, |
| gl::InfoLog &infoLog) |
| { |
| const auto &data = context->getState(); |
| |
| reset(); |
| |
| gl::Shader *computeShader = mState.getAttachedShader(gl::ShaderType::Compute); |
| if (computeShader) |
| { |
| mShaderSamplers[gl::ShaderType::Compute].resize( |
| data.getCaps().maxShaderTextureImageUnits[gl::ShaderType::Compute]); |
| mImagesCS.resize(data.getCaps().maxImageUnits); |
| mReadonlyImagesCS.resize(data.getCaps().maxImageUnits); |
| |
| mShaderUniformsDirty.set(gl::ShaderType::Compute); |
| |
| linkResources(resources); |
| |
| for (const sh::ShaderVariable &uniform : computeShader->getUniforms()) |
| { |
| if (gl::IsImageType(uniform.type) && gl::IsImage2DType(uniform.type)) |
| { |
| mImage2DUniforms.push_back(uniform); |
| } |
| } |
| |
| defineUniformsAndAssignRegisters(); |
| |
| return compileComputeExecutable(context, infoLog); |
| } |
| else |
| { |
| gl::ShaderMap<const ShaderD3D *> shadersD3D = {}; |
| for (gl::ShaderType shaderType : gl::kAllGraphicsShaderTypes) |
| { |
| if (mState.getAttachedShader(shaderType)) |
| { |
| shadersD3D[shaderType] = GetImplAs<ShaderD3D>(mState.getAttachedShader(shaderType)); |
| |
| mShaderSamplers[shaderType].resize( |
| data.getCaps().maxShaderTextureImageUnits[shaderType]); |
| |
| shadersD3D[shaderType]->generateWorkarounds(&mShaderWorkarounds[shaderType]); |
| |
| mShaderUniformsDirty.set(shaderType); |
| } |
| } |
| |
| if (mRenderer->getNativeLimitations().noFrontFacingSupport) |
| { |
| const ShaderD3D *fragmentShader = shadersD3D[gl::ShaderType::Fragment]; |
| if (fragmentShader && fragmentShader->usesFrontFacing()) |
| { |
| infoLog << "The current renderer doesn't support gl_FrontFacing"; |
| return std::make_unique<LinkEventDone>(angle::Result::Incomplete); |
| } |
| } |
| |
| ProgramD3DMetadata metadata(mRenderer, shadersD3D, context->getClientType()); |
| BuiltinVaryingsD3D builtins(metadata, resources.varyingPacking); |
| |
| mDynamicHLSL->generateShaderLinkHLSL(context->getCaps(), mState, metadata, |
| resources.varyingPacking, builtins, &mShaderHLSL); |
| |
| const ShaderD3D *vertexShader = shadersD3D[gl::ShaderType::Vertex]; |
| mUsesPointSize = vertexShader && vertexShader->usesPointSize(); |
| mDynamicHLSL->getPixelShaderOutputKey(data, mState, metadata, &mPixelShaderKey); |
| mUsesFragDepth = metadata.usesFragDepth(); |
| mUsesVertexID = metadata.usesVertexID(); |
| mUsesViewID = metadata.usesViewID(); |
| mHasANGLEMultiviewEnabled = metadata.hasANGLEMultiviewEnabled(); |
| |
| // Cache if we use flat shading |
| mUsesFlatInterpolation = FindFlatInterpolationVarying(mState.getAttachedShaders()); |
| |
| if (mRenderer->getMajorShaderModel() >= 4) |
| { |
| mGeometryShaderPreamble = mDynamicHLSL->generateGeometryShaderPreamble( |
| resources.varyingPacking, builtins, mHasANGLEMultiviewEnabled, |
| metadata.canSelectViewInVertexShader()); |
| } |
| |
| initAttribLocationsToD3DSemantic(); |
| |
| defineUniformsAndAssignRegisters(); |
| |
| gatherTransformFeedbackVaryings(resources.varyingPacking, builtins[gl::ShaderType::Vertex]); |
| |
| linkResources(resources); |
| |
| return compileProgramExecutables(context, infoLog); |
| } |
| } |
| |
| GLboolean ProgramD3D::validate(const gl::Caps & /*caps*/, gl::InfoLog * /*infoLog*/) |
| { |
| // TODO(jmadill): Do something useful here? |
| return GL_TRUE; |
| } |
| |
| void ProgramD3D::initializeShaderStorageBlocks() |
| { |
| if (mState.getShaderStorageBlocks().empty()) |
| { |
| return; |
| } |
| |
| ASSERT(mD3DShaderStorageBlocks.empty()); |
| |
| // Assign registers and update sizes. |
| gl::ShaderMap<const ShaderD3D *> shadersD3D = {}; |
| for (gl::ShaderType shaderType : gl::AllShaderTypes()) |
| { |
| shadersD3D[shaderType] = SafeGetImplAs<ShaderD3D>(mState.getAttachedShader(shaderType)); |
| } |
| |
| for (const gl::InterfaceBlock &shaderStorageBlock : mState.getShaderStorageBlocks()) |
| { |
| unsigned int shaderStorageBlockElement = |
| shaderStorageBlock.isArray ? shaderStorageBlock.arrayElement : 0; |
| |
| D3DInterfaceBlock d3dShaderStorageBlock; |
| |
| for (gl::ShaderType shaderType : gl::AllShaderTypes()) |
| { |
| if (shaderStorageBlock.isActive(shaderType)) |
| { |
| ASSERT(shadersD3D[shaderType]); |
| unsigned int baseRegister = |
| shadersD3D[shaderType]->getShaderStorageBlockRegister(shaderStorageBlock.name); |
| d3dShaderStorageBlock.mShaderRegisterIndexes[shaderType] = |
| baseRegister + shaderStorageBlockElement; |
| } |
| } |
| |
| mD3DShaderStorageBlocks.push_back(d3dShaderStorageBlock); |
| } |
| } |
| |
| void ProgramD3D::initializeUniformBlocks() |
| { |
| if (mState.getUniformBlocks().empty()) |
| { |
| return; |
| } |
| |
| ASSERT(mD3DUniformBlocks.empty()); |
| |
| // Assign registers and update sizes. |
| gl::ShaderMap<const ShaderD3D *> shadersD3D = {}; |
| for (gl::ShaderType shaderType : gl::AllShaderTypes()) |
| { |
| shadersD3D[shaderType] = SafeGetImplAs<ShaderD3D>(mState.getAttachedShader(shaderType)); |
| } |
| |
| for (const gl::InterfaceBlock &uniformBlock : mState.getUniformBlocks()) |
| { |
| unsigned int uniformBlockElement = uniformBlock.isArray ? uniformBlock.arrayElement : 0; |
| |
| D3DInterfaceBlock d3dUniformBlock; |
| |
| for (gl::ShaderType shaderType : gl::AllShaderTypes()) |
| { |
| if (uniformBlock.isActive(shaderType)) |
| { |
| ASSERT(shadersD3D[shaderType]); |
| unsigned int baseRegister = |
| shadersD3D[shaderType]->getUniformBlockRegister(uniformBlock.name); |
| d3dUniformBlock.mShaderRegisterIndexes[shaderType] = |
| baseRegister + uniformBlockElement; |
| } |
| } |
| |
| mD3DUniformBlocks.push_back(d3dUniformBlock); |
| } |
| } |
| |
| void ProgramD3D::initializeUniformStorage(const gl::ShaderBitSet &availableShaderStages) |
| { |
| // Compute total default block size |
| gl::ShaderMap<unsigned int> shaderRegisters = {}; |
| for (const D3DUniform *d3dUniform : mD3DUniforms) |
| { |
| if (d3dUniform->isSampler()) |
| { |
| continue; |
| } |
| |
| for (gl::ShaderType shaderType : availableShaderStages) |
| { |
| if (d3dUniform->isReferencedByShader(shaderType)) |
| { |
| shaderRegisters[shaderType] = std::max( |
| shaderRegisters[shaderType], |
| d3dUniform->mShaderRegisterIndexes[shaderType] + d3dUniform->registerCount); |
| } |
| } |
| } |
| |
| // We only reset uniform storages for the shader stages available in the program (attached |
| // shaders in ProgramD3D::link() and linkedShaderStages in ProgramD3D::load()). |
| for (gl::ShaderType shaderType : availableShaderStages) |
| { |
| mShaderUniformStorages[shaderType].reset( |
| mRenderer->createUniformStorage(shaderRegisters[shaderType] * 16u)); |
| } |
| |
| // Iterate the uniforms again to assign data pointers to default block uniforms. |
| for (D3DUniform *d3dUniform : mD3DUniforms) |
| { |
| if (d3dUniform->isSampler()) |
| { |
| d3dUniform->mSamplerData.resize(d3dUniform->getArraySizeProduct(), 0); |
| continue; |
| } |
| |
| for (gl::ShaderType shaderType : availableShaderStages) |
| { |
| if (d3dUniform->isReferencedByShader(shaderType)) |
| { |
| d3dUniform->mShaderData[shaderType] = |
| mShaderUniformStorages[shaderType]->getDataPointer( |
| d3dUniform->mShaderRegisterIndexes[shaderType], |
| d3dUniform->registerElement); |
| } |
| } |
| } |
| } |
| |
| void ProgramD3D::updateUniformBufferCache( |
| const gl::Caps &caps, |
| const gl::ShaderMap<unsigned int> &reservedShaderRegisterIndexes) |
| { |
| if (mState.getUniformBlocks().empty()) |
| { |
| return; |
| } |
| |
| for (gl::ShaderType shaderType : gl::AllShaderTypes()) |
| { |
| mShaderUBOCaches[shaderType].clear(); |
| } |
| |
| for (unsigned int uniformBlockIndex = 0; uniformBlockIndex < mD3DUniformBlocks.size(); |
| uniformBlockIndex++) |
| { |
| const D3DInterfaceBlock &uniformBlock = mD3DUniformBlocks[uniformBlockIndex]; |
| GLuint blockBinding = mState.getUniformBlockBinding(uniformBlockIndex); |
| |
| // Unnecessary to apply an unreferenced standard or shared UBO |
| for (gl::ShaderType shaderType : gl::AllShaderTypes()) |
| { |
| if (!uniformBlock.activeInShader(shaderType)) |
| { |
| continue; |
| } |
| |
| unsigned int registerIndex = uniformBlock.mShaderRegisterIndexes[shaderType] - |
| reservedShaderRegisterIndexes[shaderType]; |
| ASSERT(registerIndex < caps.maxShaderUniformBlocks[shaderType]); |
| |
| std::vector<int> &shaderUBOcache = mShaderUBOCaches[shaderType]; |
| if (shaderUBOcache.size() <= registerIndex) |
| { |
| shaderUBOcache.resize(registerIndex + 1, -1); |
| } |
| |
| ASSERT(shaderUBOcache[registerIndex] == -1); |
| shaderUBOcache[registerIndex] = blockBinding; |
| } |
| } |
| } |
| |
| unsigned int ProgramD3D::getAtomicCounterBufferRegisterIndex(GLuint binding, |
| gl::ShaderType shaderType) const |
| { |
| if (shaderType != gl::ShaderType::Compute) |
| { |
| // Implement atomic counters for non-compute shaders |
| // http://anglebug.com/1729 |
| UNIMPLEMENTED(); |
| } |
| return mComputeAtomicCounterBufferRegisterIndices[binding]; |
| } |
| |
| unsigned int ProgramD3D::getShaderStorageBufferRegisterIndex(GLuint blockIndex, |
| gl::ShaderType shaderType) const |
| { |
| return mD3DShaderStorageBlocks[blockIndex].mShaderRegisterIndexes[shaderType]; |
| } |
| |
| const std::vector<GLint> &ProgramD3D::getShaderUniformBufferCache(gl::ShaderType shaderType) const |
| { |
| return mShaderUBOCaches[shaderType]; |
| } |
| |
| void ProgramD3D::dirtyAllUniforms() |
| { |
| mShaderUniformsDirty = mState.getLinkedShaderStages(); |
| } |
| |
| void ProgramD3D::markUniformsClean() |
| { |
| mShaderUniformsDirty.reset(); |
| } |
| |
| void ProgramD3D::setUniform1fv(GLint location, GLsizei count, const GLfloat *v) |
| { |
| setUniformInternal(location, count, v, GL_FLOAT); |
| } |
| |
| void ProgramD3D::setUniform2fv(GLint location, GLsizei count, const GLfloat *v) |
| { |
| setUniformInternal(location, count, v, GL_FLOAT_VEC2); |
| } |
| |
| void ProgramD3D::setUniform3fv(GLint location, GLsizei count, const GLfloat *v) |
| { |
| setUniformInternal(location, count, v, GL_FLOAT_VEC3); |
| } |
| |
| void ProgramD3D::setUniform4fv(GLint location, GLsizei count, const GLfloat *v) |
| { |
| setUniformInternal(location, count, v, GL_FLOAT_VEC4); |
| } |
| |
| void ProgramD3D::setUniformMatrix2fv(GLint location, |
| GLsizei count, |
| GLboolean transpose, |
| const GLfloat *value) |
| { |
| setUniformMatrixfvInternal<2, 2>(location, count, transpose, value); |
| } |
| |
| void ProgramD3D::setUniformMatrix3fv(GLint location, |
| GLsizei count, |
| GLboolean transpose, |
| const GLfloat *value) |
| { |
| setUniformMatrixfvInternal<3, 3>(location, count, transpose, value); |
| } |
| |
| void ProgramD3D::setUniformMatrix4fv(GLint location, |
| GLsizei count, |
| GLboolean transpose, |
| const GLfloat *value) |
| { |
| setUniformMatrixfvInternal<4, 4>(location, count, transpose, value); |
| } |
| |
| void ProgramD3D::setUniformMatrix2x3fv(GLint location, |
| GLsizei count, |
| GLboolean transpose, |
| const GLfloat *value) |
| { |
| setUniformMatrixfvInternal<2, 3>(location, count, transpose, value); |
| } |
| |
| void ProgramD3D::setUniformMatrix3x2fv(GLint location, |
| GLsizei count, |
| GLboolean transpose, |
| const GLfloat *value) |
| { |
| setUniformMatrixfvInternal<3, 2>(location, count, transpose, value); |
| } |
| |
| void ProgramD3D::setUniformMatrix2x4fv(GLint location, |
| GLsizei count, |
| GLboolean transpose, |
| const GLfloat *value) |
| { |
| setUniformMatrixfvInternal<2, 4>(location, count, transpose, value); |
| } |
| |
| void ProgramD3D::setUniformMatrix4x2fv(GLint location, |
| GLsizei count, |
| GLboolean transpose, |
| const GLfloat *value) |
| { |
| setUniformMatrixfvInternal<4, 2>(location, count, transpose, value); |
| } |
| |
| void ProgramD3D::setUniformMatrix3x4fv(GLint location, |
| GLsizei count, |
| GLboolean transpose, |
| const GLfloat *value) |
| { |
| setUniformMatrixfvInternal<3, 4>(location, count, transpose, value); |
| } |
| |
| void ProgramD3D::setUniformMatrix4x3fv(GLint location, |
| GLsizei count, |
| GLboolean transpose, |
| const GLfloat *value) |
| { |
| setUniformMatrixfvInternal<4, 3>(location, count, transpose, value); |
| } |
| |
| void ProgramD3D::setUniform1iv(GLint location, GLsizei count, const GLint *v) |
| { |
| setUniformInternal(location, count, v, GL_INT); |
| } |
| |
| void ProgramD3D::setUniform2iv(GLint location, GLsizei count, const GLint *v) |
| { |
| setUniformInternal(location, count, v, GL_INT_VEC2); |
| } |
| |
| void ProgramD3D::setUniform3iv(GLint location, GLsizei count, const GLint *v) |
| { |
| setUniformInternal(location, count, v, GL_INT_VEC3); |
| } |
| |
| void ProgramD3D::setUniform4iv(GLint location, GLsizei count, const GLint *v) |
| { |
| setUniformInternal(location, count, v, GL_INT_VEC4); |
| } |
| |
| void ProgramD3D::setUniform1uiv(GLint location, GLsizei count, const GLuint *v) |
| { |
| setUniformInternal(location, count, v, GL_UNSIGNED_INT); |
| } |
| |
| void ProgramD3D::setUniform2uiv(GLint location, GLsizei count, const GLuint *v) |
| { |
| setUniformInternal(location, count, v, GL_UNSIGNED_INT_VEC2); |
| } |
| |
| void ProgramD3D::setUniform3uiv(GLint location, GLsizei count, const GLuint *v) |
| { |
| setUniformInternal(location, count, v, GL_UNSIGNED_INT_VEC3); |
| } |
| |
| void ProgramD3D::setUniform4uiv(GLint location, GLsizei count, const GLuint *v) |
| { |
| setUniformInternal(location, count, v, GL_UNSIGNED_INT_VEC4); |
| } |
| |
| void ProgramD3D::defineUniformsAndAssignRegisters() |
| { |
| D3DUniformMap uniformMap; |
| |
| gl::ShaderBitSet attachedShaders; |
| for (gl::ShaderType shaderType : gl::AllShaderTypes()) |
| { |
| gl::Shader *shader = mState.getAttachedShader(shaderType); |
| if (shader) |
| { |
| for (const sh::ShaderVariable &uniform : shader->getUniforms()) |
| { |
| if (uniform.active) |
| { |
| defineUniformBase(shader, uniform, &uniformMap); |
| } |
| } |
| |
| attachedShaders.set(shader->getType()); |
| } |
| } |
| |
| // Initialize the D3DUniform list to mirror the indexing of the GL layer. |
| for (const gl::LinkedUniform &glUniform : mState.getUniforms()) |
| { |
| if (!glUniform.isInDefaultBlock()) |
| continue; |
| |
| std::string name = glUniform.name; |
| if (glUniform.isArray()) |
| { |
| // In the program state, array uniform names include [0] as in the program resource |
| // spec. Here we don't include it. |
| // TODO(oetuaho@nvidia.com): consider using the same uniform naming here as in the GL |
| // layer. |
| ASSERT(angle::EndsWith(name, "[0]")); |
| name.resize(name.length() - 3); |
| } |
| auto mapEntry = uniformMap.find(name); |
| ASSERT(mapEntry != uniformMap.end()); |
| mD3DUniforms.push_back(mapEntry->second); |
| } |
| |
| assignAllSamplerRegisters(); |
| assignAllAtomicCounterRegisters(); |
| // Samplers and readonly images share shader input resource slot, adjust low value of |
| // readonly image range. |
| mUsedComputeReadonlyImageRange = |
| gl::RangeUI(mUsedShaderSamplerRanges[gl::ShaderType::Compute].high(), |
| mUsedShaderSamplerRanges[gl::ShaderType::Compute].high()); |
| // Atomic counter buffers and non-readonly images share input resource slots |
| mUsedComputeImageRange = |
| gl::RangeUI(mUsedComputeAtomicCounterRange.high(), mUsedComputeAtomicCounterRange.high()); |
| assignAllImageRegisters(); |
| initializeUniformStorage(attachedShaders); |
| } |
| |
| void ProgramD3D::defineUniformBase(const gl::Shader *shader, |
| const sh::ShaderVariable &uniform, |
| D3DUniformMap *uniformMap) |
| { |
| sh::DummyBlockEncoder dummyEncoder; |
| |
| // Samplers get their registers assigned in assignAllSamplerRegisters, and images get their |
| // registers assigned in assignAllImageRegisters. |
| if (gl::IsSamplerType(uniform.type)) |
| { |
| UniformEncodingVisitorD3D visitor(shader->getType(), HLSLRegisterType::Texture, |
| &dummyEncoder, uniformMap); |
| sh::TraverseShaderVariable(uniform, false, &visitor); |
| return; |
| } |
| |
| if (gl::IsImageType(uniform.type)) |
| { |
| if (uniform.readonly) |
| { |
| UniformEncodingVisitorD3D visitor(shader->getType(), HLSLRegisterType::Texture, |
| &dummyEncoder, uniformMap); |
| sh::TraverseShaderVariable(uniform, false, &visitor); |
| } |
| else |
| { |
| UniformEncodingVisitorD3D visitor(shader->getType(), |
| HLSLRegisterType::UnorderedAccessView, &dummyEncoder, |
| uniformMap); |
| sh::TraverseShaderVariable(uniform, false, &visitor); |
| } |
| mImageBindingMap[uniform.name] = uniform.binding; |
| return; |
| } |
| |
| if (uniform.isBuiltIn() && !uniform.isEmulatedBuiltIn()) |
| { |
| UniformEncodingVisitorD3D visitor(shader->getType(), HLSLRegisterType::None, &dummyEncoder, |
| uniformMap); |
| sh::TraverseShaderVariable(uniform, false, &visitor); |
| return; |
| } |
| else if (gl::IsAtomicCounterType(uniform.type)) |
| { |
| UniformEncodingVisitorD3D visitor(shader->getType(), HLSLRegisterType::UnorderedAccessView, |
| &dummyEncoder, uniformMap); |
| sh::TraverseShaderVariable(uniform, false, &visitor); |
| mAtomicBindingMap[uniform.name] = uniform.binding; |
| return; |
| } |
| |
| const ShaderD3D *shaderD3D = GetImplAs<ShaderD3D>(shader); |
| unsigned int startRegister = shaderD3D->getUniformRegister(uniform.name); |
| ShShaderOutput outputType = shaderD3D->getCompilerOutputType(); |
| sh::HLSLBlockEncoder encoder(sh::HLSLBlockEncoder::GetStrategyFor(outputType), true); |
| encoder.skipRegisters(startRegister); |
| |
| UniformEncodingVisitorD3D visitor(shader->getType(), HLSLRegisterType::None, &encoder, |
| uniformMap); |
| sh::TraverseShaderVariable(uniform, false, &visitor); |
| } |
| |
| bool ProgramD3D::hasNamedUniform(const std::string &name) |
| { |
| for (D3DUniform *d3dUniform : mD3DUniforms) |
| { |
| if (d3dUniform->name == name) |
| { |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| // Assume count is already clamped. |
| template <typename T> |
| void ProgramD3D::setUniformImpl(const gl::VariableLocation &locationInfo, |
| GLsizei count, |
| const T *v, |
| uint8_t *targetData, |
| GLenum uniformType) |
| { |
| D3DUniform *targetUniform = mD3DUniforms[locationInfo.index]; |
| const int components = targetUniform->typeInfo.componentCount; |
| const unsigned int arrayElementOffset = locationInfo.arrayIndex; |
| |
| if (targetUniform->typeInfo.type == uniformType) |
| { |
| T *dest = reinterpret_cast<T *>(targetData) + arrayElementOffset * 4; |
| const T *source = v; |
| |
| for (GLint i = 0; i < count; i++, dest += 4, source += components) |
| { |
| memcpy(dest, source, components * sizeof(T)); |
| } |
| } |
| else |
| { |
| ASSERT(targetUniform->typeInfo.type == gl::VariableBoolVectorType(uniformType)); |
| GLint *boolParams = reinterpret_cast<GLint *>(targetData) + arrayElementOffset * 4; |
| |
| for (GLint i = 0; i < count; i++) |
| { |
| GLint *dest = boolParams + (i * 4); |
| const T *source = v + (i * components); |
| |
| for (int c = 0; c < components; c++) |
| { |
| dest[c] = (source[c] == static_cast<T>(0)) ? GL_FALSE : GL_TRUE; |
| } |
| } |
| } |
| } |
| |
| template <typename T> |
| void ProgramD3D::setUniformInternal(GLint location, GLsizei count, const T *v, GLenum uniformType) |
| { |
| const gl::VariableLocation &locationInfo = mState.getUniformLocations()[location]; |
| D3DUniform *targetUniform = mD3DUniforms[locationInfo.index]; |
| |
| if (targetUniform->typeInfo.isSampler) |
| { |
| ASSERT(uniformType == GL_INT); |
| size_t size = count * sizeof(T); |
| GLint *dest = &targetUniform->mSamplerData[locationInfo.arrayIndex]; |
| if (memcmp(dest, v, size) != 0) |
| { |
| memcpy(dest, v, size); |
| mDirtySamplerMapping = true; |
| } |
| return; |
| } |
| |
| for (gl::ShaderType shaderType : gl::AllShaderTypes()) |
| { |
| if (targetUniform->mShaderData[shaderType]) |
| { |
| setUniformImpl(locationInfo, count, v, targetUniform->mShaderData[shaderType], |
| uniformType); |
| mShaderUniformsDirty.set(shaderType); |
| } |
| } |
| } |
| |
| template <int cols, int rows> |
| void ProgramD3D::setUniformMatrixfvInternal(GLint location, |
| GLsizei countIn, |
| GLboolean transpose, |
| const GLfloat *value) |
| { |
| D3DUniform *targetUniform = getD3DUniformFromLocation(location); |
| const gl::VariableLocation &uniformLocation = mState.getUniformLocations()[location]; |
| unsigned int arrayElementOffset = uniformLocation.arrayIndex; |
| unsigned int elementCount = targetUniform->getArraySizeProduct(); |
| |
| for (gl::ShaderType shaderType : gl::AllShaderTypes()) |
| { |
| if (targetUniform->mShaderData[shaderType]) |
| { |
| SetFloatUniformMatrixHLSL<cols, rows>::Run(arrayElementOffset, elementCount, countIn, |
| transpose, value, |
| targetUniform->mShaderData[shaderType]); |
| mShaderUniformsDirty.set(shaderType); |
| } |
| } |
| } |
| |
| void ProgramD3D::assignAllSamplerRegisters() |
| { |
| for (size_t uniformIndex = 0; uniformIndex < mD3DUniforms.size(); ++uniformIndex) |
| { |
| if (mD3DUniforms[uniformIndex]->isSampler()) |
| { |
| assignSamplerRegisters(uniformIndex); |
| } |
| } |
| } |
| |
| void ProgramD3D::assignSamplerRegisters(size_t uniformIndex) |
| { |
| D3DUniform *d3dUniform = mD3DUniforms[uniformIndex]; |
| ASSERT(d3dUniform->isSampler()); |
| // If the uniform is an array of arrays, then we have separate entries for each inner array in |
| // mD3DUniforms. However, the sampler register info is stored in the shader only for the |
| // outermost array. |
| std::vector<unsigned int> subscripts; |
| const std::string baseName = gl::ParseResourceName(d3dUniform->name, &subscripts); |
| unsigned int registerOffset = |
| mState.getUniforms()[uniformIndex].parentArrayIndex() * d3dUniform->getArraySizeProduct(); |
| |
| bool hasUniform = false; |
| for (gl::ShaderType shaderType : gl::AllShaderTypes()) |
| { |
| if (!mState.getAttachedShader(shaderType)) |
| { |
| continue; |
| } |
| |
| const ShaderD3D *shaderD3D = GetImplAs<ShaderD3D>(mState.getAttachedShader(shaderType)); |
| if (shaderD3D->hasUniform(baseName)) |
| { |
| d3dUniform->mShaderRegisterIndexes[shaderType] = |
| shaderD3D->getUniformRegister(baseName) + registerOffset; |
| ASSERT(d3dUniform->mShaderRegisterIndexes[shaderType] != GL_INVALID_VALUE); |
| |
| AssignSamplers(d3dUniform->mShaderRegisterIndexes[shaderType], d3dUniform->typeInfo, |
| d3dUniform->getArraySizeProduct(), mShaderSamplers[shaderType], |
| &mUsedShaderSamplerRanges[shaderType]); |
| hasUniform = true; |
| } |
| } |
| |
| ASSERT(hasUniform); |
| } |
| |
| // static |
| void ProgramD3D::AssignSamplers(unsigned int startSamplerIndex, |
| const gl::UniformTypeInfo &typeInfo, |
| unsigned int samplerCount, |
| std::vector<Sampler> &outSamplers, |
| gl::RangeUI *outUsedRange) |
| { |
| unsigned int samplerIndex = startSamplerIndex; |
| unsigned int low = outUsedRange->low(); |
| unsigned int high = outUsedRange->high(); |
| |
| do |
| { |
| ASSERT(samplerIndex < outSamplers.size()); |
| Sampler *sampler = &outSamplers[samplerIndex]; |
| sampler->active = true; |
| sampler->textureType = gl::FromGLenum<gl::TextureType>(typeInfo.textureType); |
| sampler->logicalTextureUnit = 0; |
| low = std::min(samplerIndex, low); |
| high = std::max(samplerIndex + 1, high); |
| samplerIndex++; |
| } while (samplerIndex < startSamplerIndex + samplerCount); |
| |
| ASSERT(low < high); |
| *outUsedRange = gl::RangeUI(low, high); |
| } |
| |
| void ProgramD3D::assignAllImageRegisters() |
| { |
| for (size_t uniformIndex = 0; uniformIndex < mD3DUniforms.size(); ++uniformIndex) |
| { |
| if (mD3DUniforms[uniformIndex]->isImage() && !mD3DUniforms[uniformIndex]->isImage2D()) |
| { |
| assignImageRegisters(uniformIndex); |
| } |
| } |
| } |
| |
| void ProgramD3D::assignAllAtomicCounterRegisters() |
| { |
| if (mAtomicBindingMap.empty()) |
| { |
| return; |
| } |
| gl::ShaderType shaderType = gl::ShaderType::Compute; |
| const gl::Shader *computeShader = mState.getAttachedShader(shaderType); |
| if (computeShader) |
| { |
| const ShaderD3D *computeShaderD3D = GetImplAs<ShaderD3D>(computeShader); |
| auto ®isterIndices = mComputeAtomicCounterBufferRegisterIndices; |
| unsigned int firstRegister = GL_INVALID_VALUE; |
| unsigned int lastRegister = 0; |
| for (auto &atomicBinding : mAtomicBindingMap) |
| { |
| ASSERT(computeShaderD3D->hasUniform(atomicBinding.first)); |
| unsigned int currentRegister = |
| computeShaderD3D->getUniformRegister(atomicBinding.first); |
| ASSERT(currentRegister != GL_INVALID_INDEX); |
| const int kBinding = atomicBinding.second; |
| |
| registerIndices[kBinding] = currentRegister; |
| |
| firstRegister = std::min(firstRegister, currentRegister); |
| lastRegister = std::max(lastRegister, currentRegister); |
| } |
| ASSERT(firstRegister != GL_INVALID_VALUE); |
| ASSERT(lastRegister != GL_INVALID_VALUE); |
| mUsedComputeAtomicCounterRange = gl::RangeUI(firstRegister, lastRegister + 1); |
| } |
| else |
| { |
| // Implement atomic counters for non-compute shaders |
| // http://anglebug.com/1729 |
| UNIMPLEMENTED(); |
| } |
| } |
| |
| void ProgramD3D::assignImageRegisters(size_t uniformIndex) |
| { |
| D3DUniform *d3dUniform = mD3DUniforms[uniformIndex]; |
| ASSERT(d3dUniform->isImage()); |
| // If the uniform is an array of arrays, then we have separate entries for each inner array in |
| // mD3DUniforms. However, the image register info is stored in the shader only for the |
| // outermost array. |
| std::vector<unsigned int> subscripts; |
| const std::string baseName = gl::ParseResourceName(d3dUniform->name, &subscripts); |
| unsigned int registerOffset = |
| mState.getUniforms()[uniformIndex].parentArrayIndex() * d3dUniform->getArraySizeProduct(); |
| |
| const gl::Shader *computeShader = mState.getAttachedShader(gl::ShaderType::Compute); |
| if (computeShader) |
| { |
| const ShaderD3D *computeShaderD3D = |
| GetImplAs<ShaderD3D>(mState.getAttachedShader(gl::ShaderType::Compute)); |
| ASSERT(computeShaderD3D->hasUniform(baseName)); |
| d3dUniform->mShaderRegisterIndexes[gl::ShaderType::Compute] = |
| computeShaderD3D->getUniformRegister(baseName) + registerOffset; |
| ASSERT(d3dUniform->mShaderRegisterIndexes[gl::ShaderType::Compute] != GL_INVALID_INDEX); |
| auto bindingIter = mImageBindingMap.find(baseName); |
| ASSERT(bindingIter != mImageBindingMap.end()); |
| if (d3dUniform->regType == HLSLRegisterType::Texture) |
| { |
| AssignImages(d3dUniform->mShaderRegisterIndexes[gl::ShaderType::Compute], |
| bindingIter->second, d3dUniform->getArraySizeProduct(), mReadonlyImagesCS, |
| &mUsedComputeReadonlyImageRange); |
| } |
| else if (d3dUniform->regType == HLSLRegisterType::UnorderedAccessView) |
| { |
| AssignImages(d3dUniform->mShaderRegisterIndexes[gl::ShaderType::Compute], |
| bindingIter->second, d3dUniform->getArraySizeProduct(), mImagesCS, |
| &mUsedComputeImageRange); |
| } |
| else |
| { |
| UNREACHABLE(); |
| } |
| } |
| else |
| { |
| // TODO(xinghua.cao@intel.com): Implement image variables in vertex shader and pixel shader. |
| UNIMPLEMENTED(); |
| } |
| } |
| |
| // static |
| void ProgramD3D::AssignImages(unsigned int startImageIndex, |
| int startLogicalImageUnit, |
| unsigned int imageCount, |
| std::vector<Image> &outImages, |
| gl::RangeUI *outUsedRange) |
| { |
| unsigned int imageIndex = startImageIndex; |
| unsigned int low = outUsedRange->low(); |
| unsigned int high = outUsedRange->high(); |
| |
| // If declare without a binding qualifier, any uniform image variable (include all elements of |
| // unbound image array) shoud be bound to unit zero. |
| if (startLogicalImageUnit == -1) |
| { |
| ASSERT(imageIndex < outImages.size()); |
| Image *image = &outImages[imageIndex]; |
| image->active = true; |
| image->logicalImageUnit = 0; |
| low = std::min(imageIndex, low); |
| high = std::max(imageIndex + 1, high); |
| ASSERT(low < high); |
| *outUsedRange = gl::RangeUI(low, high); |
| return; |
| } |
| |
| unsigned int logcalImageUnit = startLogicalImageUnit; |
| do |
| { |
| ASSERT(imageIndex < outImages.size()); |
| Image *image = &outImages[imageIndex]; |
| image->active = true; |
| image->logicalImageUnit = logcalImageUnit; |
| low = std::min(imageIndex, low); |
| high = std::max(imageIndex + 1, high); |
| imageIndex++; |
| logcalImageUnit++; |
| } while (imageIndex < startImageIndex + imageCount); |
| |
| ASSERT(low < high); |
| *outUsedRange = gl::RangeUI(low, high); |
| } |
| |
| void ProgramD3D::assignImage2DRegisters(unsigned int startImageIndex, |
| int startLogicalImageUnit, |
| bool readonly) |
| { |
| if (readonly) |
| { |
| AssignImages(startImageIndex, startLogicalImageUnit, 1, mReadonlyImagesCS, |
| &mUsedComputeReadonlyImageRange); |
| } |
| else |
| { |
| AssignImages(startImageIndex, startLogicalImageUnit, 1, mImagesCS, &mUsedComputeImageRange); |
| } |
| } |
| |
| void ProgramD3D::reset() |
| { |
| mVertexExecutables.clear(); |
| mPixelExecutables.clear(); |
| mComputeExecutables.clear(); |
| |
| for (auto &geometryExecutable : mGeometryExecutables) |
| { |
| geometryExecutable.reset(nullptr); |
| } |
| |
| for (gl::ShaderType shaderType : gl::AllShaderTypes()) |
| { |
| mShaderHLSL[shaderType].clear(); |
| } |
| |
| mUsesFragDepth = false; |
| mHasANGLEMultiviewEnabled = false; |
| mUsesVertexID = false; |
| mUsesViewID = false; |
| mPixelShaderKey.clear(); |
| mUsesPointSize = false; |
| mUsesFlatInterpolation = false; |
| |
| SafeDeleteContainer(mD3DUniforms); |
| mD3DUniformBlocks.clear(); |
| mD3DShaderStorageBlocks.clear(); |
| mComputeAtomicCounterBufferRegisterIndices.fill({}); |
| |
| for (gl::ShaderType shaderType : gl::AllShaderTypes()) |
| { |
| mShaderUniformStorages[shaderType].reset(); |
| mShaderSamplers[shaderType].clear(); |
| } |
| |
| mImagesCS.clear(); |
| mReadonlyImagesCS.clear(); |
| |
| mUsedShaderSamplerRanges.fill({0, 0}); |
| mUsedComputeAtomicCounterRange = {0, 0}; |
| mDirtySamplerMapping = true; |
| mUsedComputeImageRange = {0, 0}; |
| mUsedComputeReadonlyImageRange = {0, 0}; |
| |
| mAttribLocationToD3DSemantic.fill(-1); |
| |
| mStreamOutVaryings.clear(); |
| |
| mGeometryShaderPreamble.clear(); |
| |
| markUniformsClean(); |
| |
| mCachedPixelExecutableIndex.reset(); |
| mCachedVertexExecutableIndex.reset(); |
| } |
| |
| unsigned int ProgramD3D::getSerial() const |
| { |
| return mSerial; |
| } |
| |
| unsigned int ProgramD3D::issueSerial() |
| { |
| return mCurrentSerial++; |
| } |
| |
| void ProgramD3D::initAttribLocationsToD3DSemantic() |
| { |
| gl::Shader *vertexShader = mState.getAttachedShader(gl::ShaderType::Vertex); |
| if (!vertexShader) |
| { |
| return; |
| } |
| |
| // Init semantic index |
| int semanticIndex = 0; |
| for (const sh::ShaderVariable &attribute : vertexShader->getActiveAttributes()) |
| { |
| int regCount = gl::VariableRegisterCount(attribute.type); |
| GLuint location = mState.getAttributeLocation(attribute.name); |
| ASSERT(location != std::numeric_limits<GLuint>::max()); |
| |
| for (int reg = 0; reg < regCount; ++reg) |
| { |
| mAttribLocationToD3DSemantic[location + reg] = semanticIndex++; |
| } |
| } |
| } |
| |
| void ProgramD3D::updateCachedInputLayout(Serial associatedSerial, const gl::State &state) |
| { |
| if (mCurrentVertexArrayStateSerial == associatedSerial) |
| { |
| return; |
| } |
| |
| mCurrentVertexArrayStateSerial = associatedSerial; |
| mCachedInputLayout.clear(); |
| |
| const auto &vertexAttributes = state.getVertexArray()->getVertexAttributes(); |
| |
| for (size_t locationIndex : mState.getActiveAttribLocationsMask()) |
| { |
| int d3dSemantic = mAttribLocationToD3DSemantic[locationIndex]; |
| |
| if (d3dSemantic != -1) |
| { |
| if (mCachedInputLayout.size() < static_cast<size_t>(d3dSemantic + 1)) |
| { |
| mCachedInputLayout.resize(d3dSemantic + 1, angle::FormatID::NONE); |
| } |
| mCachedInputLayout[d3dSemantic] = |
| GetVertexFormatID(vertexAttributes[locationIndex], |
| state.getVertexAttribCurrentValue(locationIndex).Type); |
| } |
| } |
| |
| VertexExecutable::getSignature(mRenderer, mCachedInputLayout, &mCachedVertexSignature); |
| |
| updateCachedVertexExecutableIndex(); |
| } |
| |
| void ProgramD3D::updateCachedOutputLayout(const gl::Context *context, |
| const gl::Framebuffer *framebuffer) |
| { |
| mPixelShaderOutputLayoutCache.clear(); |
| |
| FramebufferD3D *fboD3D = GetImplAs<FramebufferD3D>(framebuffer); |
| const auto &colorbuffers = fboD3D->getColorAttachmentsForRender(context); |
| |
| for (size_t colorAttachment = 0; colorAttachment < colorbuffers.size(); ++colorAttachment) |
| { |
| const gl::FramebufferAttachment *colorbuffer = colorbuffers[colorAttachment]; |
| |
| if (colorbuffer) |
| { |
| auto binding = colorbuffer->getBinding() == GL_BACK ? GL_COLOR_ATTACHMENT0 |
| : colorbuffer->getBinding(); |
| size_t maxIndex = binding != GL_NONE ? GetMaxOutputIndex(mPixelShaderKey, |
| binding - GL_COLOR_ATTACHMENT0) |
| : 0; |
| mPixelShaderOutputLayoutCache.insert(mPixelShaderOutputLayoutCache.end(), maxIndex + 1, |
| binding); |
| } |
| else |
| { |
| mPixelShaderOutputLayoutCache.push_back(GL_NONE); |
| } |
| } |
| |
| updateCachedPixelExecutableIndex(); |
| } |
| |
| void ProgramD3D::updateCachedComputeImage2DBindLayout(const gl::Context *context) |
| { |
| const auto &glState = context->getState(); |
| for (auto &image2DBindLayout : mComputeShaderImage2DBindLayoutCache) |
| { |
| const gl::ImageUnit &imageUnit = glState.getImageUnit(image2DBindLayout.first); |
| if (imageUnit.texture.get()) |
| { |
| image2DBindLayout.second = imageUnit.texture->getType(); |
| } |
| else |
| { |
| image2DBindLayout.second = gl::TextureType::_2D; |
| } |
| } |
| |
| updateCachedComputeExecutableIndex(); |
| } |
| |
| void ProgramD3D::gatherTransformFeedbackVaryings(const gl::VaryingPacking &varyingPacking, |
| const BuiltinInfo &builtins) |
| { |
| const std::string &varyingSemantic = |
| GetVaryingSemantic(mRenderer->getMajorShaderModel(), usesPointSize()); |
| |
| // Gather the linked varyings that are used for transform feedback, they should all exist. |
| mStreamOutVaryings.clear(); |
| |
| const auto &tfVaryingNames = mState.getTransformFeedbackVaryingNames(); |
| for (unsigned int outputSlot = 0; outputSlot < static_cast<unsigned int>(tfVaryingNames.size()); |
| ++outputSlot) |
| { |
| const auto &tfVaryingName = tfVaryingNames[outputSlot]; |
| if (tfVaryingName == "gl_Position") |
| { |
| if (builtins.glPosition.enabled) |
| { |
| mStreamOutVaryings.emplace_back(builtins.glPosition.semantic, |
| builtins.glPosition.index, 4, outputSlot); |
| } |
| } |
| else if (tfVaryingName == "gl_FragCoord") |
| { |
| if (builtins.glFragCoord.enabled) |
| { |
| mStreamOutVaryings.emplace_back(builtins.glFragCoord.semantic, |
| builtins.glFragCoord.index, 4, outputSlot); |
| } |
| } |
| else if (tfVaryingName == "gl_PointSize") |
| { |
| if (builtins.glPointSize.enabled) |
| { |
| mStreamOutVaryings.emplace_back("PSIZE", 0, 1, outputSlot); |
| } |
| } |
| else |
| { |
| const auto ®isterInfos = varyingPacking.getRegisterList(); |
| for (GLuint registerIndex = 0u; registerIndex < registerInfos.size(); ++registerIndex) |
| { |
| const auto ®isterInfo = registerInfos[registerIndex]; |
| const auto &varying = *registerInfo.packedVarying->varying; |
| GLenum transposedType = gl::TransposeMatrixType(varying.type); |
| int componentCount = gl::VariableColumnCount(transposedType); |
| ASSERT(!varying.isBuiltIn() && !varying.isStruct()); |
| |
| // There can be more than one register assigned to a particular varying, and each |
| // register needs its own stream out entry. |
| if (registerInfo.tfVaryingName() == tfVaryingName) |
| { |
| mStreamOutVaryings.emplace_back(varyingSemantic, registerIndex, componentCount, |
| outputSlot); |
| } |
| } |
| } |
| } |
| } |
| |
| D3DUniform *ProgramD3D::getD3DUniformFromLocation(GLint location) |
| { |
| return mD3DUniforms[mState.getUniformLocations()[location].index]; |
| } |
| |
| const D3DUniform *ProgramD3D::getD3DUniformFromLocation(GLint location) const |
| { |
| return mD3DUniforms[mState.getUniformLocations()[location].index]; |
| } |
| |
| void ProgramD3D::setPathFragmentInputGen(const std::string &inputName, |
| GLenum genMode, |
| GLint components, |
| const GLfloat *coeffs) |
| { |
| UNREACHABLE(); |
| } |
| |
| bool ProgramD3D::hasVertexExecutableForCachedInputLayout() |
| { |
| return mCachedVertexExecutableIndex.valid(); |
| } |
| |
| bool ProgramD3D::hasGeometryExecutableForPrimitiveType(const gl::State &state, |
| gl::PrimitiveMode drawMode) |
| { |
| if (!usesGeometryShader(state, drawMode)) |
| { |
| // No shader necessary mean we have the required (null) executable. |
| return true; |
| } |
| |
| gl::PrimitiveMode geometryShaderType = GetGeometryShaderTypeFromDrawMode(drawMode); |
| return mGeometryExecutables[geometryShaderType].get() != nullptr; |
| } |
| |
| bool ProgramD3D::hasPixelExecutableForCachedOutputLayout() |
| { |
| return mCachedPixelExecutableIndex.valid(); |
| } |
| |
| bool ProgramD3D::hasComputeExecutableForCachedImage2DBindLayout() |
| { |
| return mCachedComputeExecutableIndex.valid(); |
| } |
| |
| template <typename DestT> |
| void ProgramD3D::getUniformInternal(GLint location, DestT *dataOut) const |
| { |
| const gl::VariableLocation &locationInfo = mState.getUniformLocations()[location]; |
| const gl::LinkedUniform &uniform = mState.getUniforms()[locationInfo.index]; |
| |
| const D3DUniform *targetUniform = getD3DUniformFromLocation(location); |
| const uint8_t *srcPointer = targetUniform->getDataPtrToElement(locationInfo.arrayIndex); |
| |
| if (gl::IsMatrixType(uniform.type)) |
| { |
| GetMatrixUniform(uniform.type, dataOut, reinterpret_cast<const DestT *>(srcPointer), true); |
| } |
| else |
| { |
| memcpy(dataOut, srcPointer, uniform.getElementSize()); |
| } |
| } |
| |
| void ProgramD3D::getUniformfv(const gl::Context *context, GLint location, GLfloat *params) const |
| { |
| getUniformInternal(location, params); |
| } |
| |
| void ProgramD3D::getUniformiv(const gl::Context *context, GLint location, GLint *params) const |
| { |
| getUniformInternal(location, params); |
| } |
| |
| void ProgramD3D::getUniformuiv(const gl::Context *context, GLint location, GLuint *params) const |
| { |
| getUniformInternal(location, params); |
| } |
| |
| void ProgramD3D::updateCachedVertexExecutableIndex() |
| { |
| mCachedVertexExecutableIndex.reset(); |
| for (size_t executableIndex = 0; executableIndex < mVertexExecutables.size(); executableIndex++) |
| { |
| if (mVertexExecutables[executableIndex]->matchesSignature(mCachedVertexSignature)) |
| { |
| mCachedVertexExecutableIndex = executableIndex; |
| break; |
| } |
| } |
| } |
| |
| void ProgramD3D::updateCachedPixelExecutableIndex() |
| { |
| mCachedPixelExecutableIndex.reset(); |
| for (size_t executableIndex = 0; executableIndex < mPixelExecutables.size(); executableIndex++) |
| { |
| if (mPixelExecutables[executableIndex]->matchesSignature(mPixelShaderOutputLayoutCache)) |
| { |
| mCachedPixelExecutableIndex = executableIndex; |
| break; |
| } |
| } |
| } |
| |
| void ProgramD3D::updateCachedComputeExecutableIndex() |
| { |
| mCachedComputeExecutableIndex.reset(); |
| for (size_t executableIndex = 0; executableIndex < mComputeExecutables.size(); |
| executableIndex++) |
| { |
| if (mComputeExecutables[executableIndex]->matchesSignature( |
| mComputeShaderImage2DBindLayoutCache)) |
| { |
| mCachedComputeExecutableIndex = executableIndex; |
| break; |
| } |
| } |
| } |
| |
| void ProgramD3D::linkResources(const gl::ProgramLinkedResources &resources) |
| { |
| HLSLBlockLayoutEncoderFactory hlslEncoderFactory; |
| gl::ProgramLinkedResourcesLinker linker(&hlslEncoderFactory); |
| |
| linker.linkResources(mState, resources); |
| |
| initializeUniformBlocks(); |
| initializeShaderStorageBlocks(); |
| } |
| |
| } // namespace rx |