| /* |
| * Copyright (C) 2012 Adobe Systems Incorporated. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * 2. Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, |
| * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "RectangleShape.h" |
| |
| #include <wtf/MathExtras.h> |
| |
| namespace WebCore { |
| |
| static inline float ellipseXIntercept(float y, float rx, float ry) |
| { |
| ASSERT(ry > 0); |
| return rx * sqrt(1 - (y * y) / (ry * ry)); |
| } |
| |
| static inline float ellipseYIntercept(float x, float rx, float ry) |
| { |
| ASSERT(rx > 0); |
| return ry * sqrt(1 - (x * x) / (rx * rx)); |
| } |
| |
| FloatRoundedRect FloatRoundedRect::paddingBounds(float padding) const |
| { |
| ASSERT(padding >= 0); |
| if (!padding || isEmpty()) |
| return *this; |
| |
| float boundsX = x() + std::min(width() / 2, padding); |
| float boundsY = y() + std::min(height() / 2, padding); |
| float boundsWidth = std::max(0.0f, width() - padding * 2); |
| float boundsHeight = std::max(0.0f, height() - padding * 2); |
| float boundsRadiusX = std::max(0.0f, rx() - padding); |
| float boundsRadiusY = std::max(0.0f, ry() - padding); |
| return FloatRoundedRect(FloatRect(boundsX, boundsY, boundsWidth, boundsHeight), FloatSize(boundsRadiusX, boundsRadiusY)); |
| } |
| |
| FloatRoundedRect FloatRoundedRect::marginBounds(float margin) const |
| { |
| ASSERT(margin >= 0); |
| if (!margin) |
| return *this; |
| |
| float boundsX = x() - margin; |
| float boundsY = y() - margin; |
| float boundsWidth = width() + margin * 2; |
| float boundsHeight = height() + margin * 2; |
| float boundsRadiusX = rx() + margin; |
| float boundsRadiusY = ry() + margin; |
| return FloatRoundedRect(FloatRect(boundsX, boundsY, boundsWidth, boundsHeight), FloatSize(boundsRadiusX, boundsRadiusY)); |
| } |
| |
| FloatPoint FloatRoundedRect::cornerInterceptForWidth(float widthAtIntercept) const |
| { |
| float xi = (width() - widthAtIntercept) / 2; |
| float yi = ry() - ellipseYIntercept(rx() - xi, rx(), ry()); |
| return FloatPoint(xi, yi); |
| } |
| |
| FloatRoundedRect RectangleShape::shapePaddingBounds() const |
| { |
| if (!m_haveInitializedPaddingBounds) { |
| m_haveInitializedPaddingBounds = true; |
| m_paddingBounds = m_bounds.paddingBounds(shapePadding()); |
| } |
| return m_paddingBounds; |
| } |
| |
| FloatRoundedRect RectangleShape::shapeMarginBounds() const |
| { |
| if (!m_haveInitializedMarginBounds) { |
| m_haveInitializedMarginBounds = true; |
| m_marginBounds = m_bounds.marginBounds(shapeMargin()); |
| } |
| return m_marginBounds; |
| } |
| |
| void RectangleShape::getExcludedIntervals(LayoutUnit logicalTop, LayoutUnit logicalHeight, SegmentList& result) const |
| { |
| const FloatRoundedRect& bounds = shapeMarginBounds(); |
| if (bounds.isEmpty()) |
| return; |
| |
| float y1 = logicalTop; |
| float y2 = logicalTop + logicalHeight; |
| |
| if (y2 < bounds.y() || y1 >= bounds.maxY()) |
| return; |
| |
| float x1 = bounds.x(); |
| float x2 = bounds.maxX(); |
| |
| if (bounds.ry() > 0) { |
| if (y2 < bounds.y() + bounds.ry()) { |
| float yi = y2 - bounds.y() - bounds.ry(); |
| float xi = ellipseXIntercept(yi, bounds.rx(), bounds.ry()); |
| x1 = bounds.x() + bounds.rx() - xi; |
| x2 = bounds.maxX() - bounds.rx() + xi; |
| } else if (y1 > bounds.maxY() - bounds.ry()) { |
| float yi = y1 - (bounds.maxY() - bounds.ry()); |
| float xi = ellipseXIntercept(yi, bounds.rx(), bounds.ry()); |
| x1 = bounds.x() + bounds.rx() - xi; |
| x2 = bounds.maxX() - bounds.rx() + xi; |
| } |
| } |
| |
| result.append(LineSegment(x1, x2)); |
| } |
| |
| void RectangleShape::getIncludedIntervals(LayoutUnit logicalTop, LayoutUnit logicalHeight, SegmentList& result) const |
| { |
| const FloatRoundedRect& bounds = shapePaddingBounds(); |
| if (bounds.isEmpty()) |
| return; |
| |
| float y1 = logicalTop; |
| float y2 = logicalTop + logicalHeight; |
| |
| if (y1 < bounds.y() || y2 > bounds.maxY()) |
| return; |
| |
| float x1 = bounds.x(); |
| float x2 = bounds.maxX(); |
| |
| if (bounds.ry() > 0) { |
| bool y1InterceptsCorner = y1 < bounds.y() + bounds.ry(); |
| bool y2InterceptsCorner = y2 > bounds.maxY() - bounds.ry(); |
| float xi = 0; |
| |
| if (y1InterceptsCorner && y2InterceptsCorner) { |
| if (y1 < bounds.height() + 2 * bounds.y() - y2) { |
| float yi = y1 - bounds.y() - bounds.ry(); |
| xi = ellipseXIntercept(yi, bounds.rx(), bounds.ry()); |
| } else { |
| float yi = y2 - (bounds.maxY() - bounds.ry()); |
| xi = ellipseXIntercept(yi, bounds.rx(), bounds.ry()); |
| } |
| } else if (y1InterceptsCorner) { |
| float yi = y1 - bounds.y() - bounds.ry(); |
| xi = ellipseXIntercept(yi, bounds.rx(), bounds.ry()); |
| } else if (y2InterceptsCorner) { |
| float yi = y2 - (bounds.maxY() - bounds.ry()); |
| xi = ellipseXIntercept(yi, bounds.rx(), bounds.ry()); |
| } |
| |
| if (y1InterceptsCorner || y2InterceptsCorner) { |
| x1 = bounds.x() + bounds.rx() - xi; |
| x2 = bounds.maxX() - bounds.rx() + xi; |
| } |
| } |
| |
| result.append(LineSegment(x1, x2)); |
| } |
| |
| bool RectangleShape::firstIncludedIntervalLogicalTop(LayoutUnit minLogicalIntervalTop, const LayoutSize& minLogicalIntervalSize, LayoutUnit& result) const |
| { |
| float minIntervalTop = minLogicalIntervalTop; |
| float minIntervalHeight = minLogicalIntervalSize.height(); |
| float minIntervalWidth = minLogicalIntervalSize.width(); |
| |
| const FloatRoundedRect& bounds = shapePaddingBounds(); |
| if (bounds.isEmpty() || minIntervalWidth > bounds.width()) |
| return false; |
| |
| float minY = std::max(bounds.y(), minIntervalTop); |
| float maxY = minY + minIntervalHeight; |
| |
| if (maxY > bounds.maxY()) |
| return false; |
| |
| bool intervalOverlapsMinCorner = minY < bounds.y() + bounds.ry(); |
| bool intervalOverlapsMaxCorner = maxY > bounds.maxY() - bounds.ry(); |
| |
| if (!intervalOverlapsMinCorner && !intervalOverlapsMaxCorner) { |
| result = minY; |
| return true; |
| } |
| |
| float centerY = bounds.y() + bounds.height() / 2; |
| bool minCornerDefinesX = fabs(centerY - minY) > fabs(centerY - maxY); |
| bool intervalFitsWithinCorners = minIntervalWidth + 2 * bounds.rx() <= bounds.width(); |
| FloatPoint cornerIntercept = bounds.cornerInterceptForWidth(minIntervalWidth); |
| |
| if (intervalOverlapsMinCorner && (!intervalOverlapsMaxCorner || minCornerDefinesX)) { |
| if (intervalFitsWithinCorners || bounds.y() + cornerIntercept.y() < minY) { |
| result = minY; |
| return true; |
| } |
| if (minIntervalHeight < bounds.height() - (2 * cornerIntercept.y())) { |
| result = ceiledLayoutUnit(bounds.y() + cornerIntercept.y()); |
| return true; |
| } |
| } |
| |
| if (intervalOverlapsMaxCorner && (!intervalOverlapsMinCorner || !minCornerDefinesX)) { |
| if (intervalFitsWithinCorners || minY <= bounds.maxY() - cornerIntercept.y() - minIntervalHeight) { |
| result = minY; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| } // namespace WebCore |