blob: 7527fcfa72af3c930055e593b9f54c747a4170aa [file] [log] [blame]
/*
* Copyright (C) 2012 Adobe Systems Incorporated. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "RectangleShape.h"
#include <wtf/MathExtras.h>
namespace WebCore {
static inline float ellipseXIntercept(float y, float rx, float ry)
{
ASSERT(ry > 0);
return rx * sqrt(1 - (y * y) / (ry * ry));
}
static inline float ellipseYIntercept(float x, float rx, float ry)
{
ASSERT(rx > 0);
return ry * sqrt(1 - (x * x) / (rx * rx));
}
FloatRoundedRect FloatRoundedRect::paddingBounds(float padding) const
{
ASSERT(padding >= 0);
if (!padding || isEmpty())
return *this;
float boundsX = x() + std::min(width() / 2, padding);
float boundsY = y() + std::min(height() / 2, padding);
float boundsWidth = std::max(0.0f, width() - padding * 2);
float boundsHeight = std::max(0.0f, height() - padding * 2);
float boundsRadiusX = std::max(0.0f, rx() - padding);
float boundsRadiusY = std::max(0.0f, ry() - padding);
return FloatRoundedRect(FloatRect(boundsX, boundsY, boundsWidth, boundsHeight), FloatSize(boundsRadiusX, boundsRadiusY));
}
FloatRoundedRect FloatRoundedRect::marginBounds(float margin) const
{
ASSERT(margin >= 0);
if (!margin)
return *this;
float boundsX = x() - margin;
float boundsY = y() - margin;
float boundsWidth = width() + margin * 2;
float boundsHeight = height() + margin * 2;
float boundsRadiusX = rx() + margin;
float boundsRadiusY = ry() + margin;
return FloatRoundedRect(FloatRect(boundsX, boundsY, boundsWidth, boundsHeight), FloatSize(boundsRadiusX, boundsRadiusY));
}
FloatPoint FloatRoundedRect::cornerInterceptForWidth(float widthAtIntercept) const
{
float xi = (width() - widthAtIntercept) / 2;
float yi = ry() - ellipseYIntercept(rx() - xi, rx(), ry());
return FloatPoint(xi, yi);
}
FloatRoundedRect RectangleShape::shapePaddingBounds() const
{
if (!m_haveInitializedPaddingBounds) {
m_haveInitializedPaddingBounds = true;
m_paddingBounds = m_bounds.paddingBounds(shapePadding());
}
return m_paddingBounds;
}
FloatRoundedRect RectangleShape::shapeMarginBounds() const
{
if (!m_haveInitializedMarginBounds) {
m_haveInitializedMarginBounds = true;
m_marginBounds = m_bounds.marginBounds(shapeMargin());
}
return m_marginBounds;
}
void RectangleShape::getExcludedIntervals(LayoutUnit logicalTop, LayoutUnit logicalHeight, SegmentList& result) const
{
const FloatRoundedRect& bounds = shapeMarginBounds();
if (bounds.isEmpty())
return;
float y1 = logicalTop;
float y2 = logicalTop + logicalHeight;
if (y2 < bounds.y() || y1 >= bounds.maxY())
return;
float x1 = bounds.x();
float x2 = bounds.maxX();
if (bounds.ry() > 0) {
if (y2 < bounds.y() + bounds.ry()) {
float yi = y2 - bounds.y() - bounds.ry();
float xi = ellipseXIntercept(yi, bounds.rx(), bounds.ry());
x1 = bounds.x() + bounds.rx() - xi;
x2 = bounds.maxX() - bounds.rx() + xi;
} else if (y1 > bounds.maxY() - bounds.ry()) {
float yi = y1 - (bounds.maxY() - bounds.ry());
float xi = ellipseXIntercept(yi, bounds.rx(), bounds.ry());
x1 = bounds.x() + bounds.rx() - xi;
x2 = bounds.maxX() - bounds.rx() + xi;
}
}
result.append(LineSegment(x1, x2));
}
void RectangleShape::getIncludedIntervals(LayoutUnit logicalTop, LayoutUnit logicalHeight, SegmentList& result) const
{
const FloatRoundedRect& bounds = shapePaddingBounds();
if (bounds.isEmpty())
return;
float y1 = logicalTop;
float y2 = logicalTop + logicalHeight;
if (y1 < bounds.y() || y2 > bounds.maxY())
return;
float x1 = bounds.x();
float x2 = bounds.maxX();
if (bounds.ry() > 0) {
bool y1InterceptsCorner = y1 < bounds.y() + bounds.ry();
bool y2InterceptsCorner = y2 > bounds.maxY() - bounds.ry();
float xi = 0;
if (y1InterceptsCorner && y2InterceptsCorner) {
if (y1 < bounds.height() + 2 * bounds.y() - y2) {
float yi = y1 - bounds.y() - bounds.ry();
xi = ellipseXIntercept(yi, bounds.rx(), bounds.ry());
} else {
float yi = y2 - (bounds.maxY() - bounds.ry());
xi = ellipseXIntercept(yi, bounds.rx(), bounds.ry());
}
} else if (y1InterceptsCorner) {
float yi = y1 - bounds.y() - bounds.ry();
xi = ellipseXIntercept(yi, bounds.rx(), bounds.ry());
} else if (y2InterceptsCorner) {
float yi = y2 - (bounds.maxY() - bounds.ry());
xi = ellipseXIntercept(yi, bounds.rx(), bounds.ry());
}
if (y1InterceptsCorner || y2InterceptsCorner) {
x1 = bounds.x() + bounds.rx() - xi;
x2 = bounds.maxX() - bounds.rx() + xi;
}
}
result.append(LineSegment(x1, x2));
}
bool RectangleShape::firstIncludedIntervalLogicalTop(LayoutUnit minLogicalIntervalTop, const LayoutSize& minLogicalIntervalSize, LayoutUnit& result) const
{
float minIntervalTop = minLogicalIntervalTop;
float minIntervalHeight = minLogicalIntervalSize.height();
float minIntervalWidth = minLogicalIntervalSize.width();
const FloatRoundedRect& bounds = shapePaddingBounds();
if (bounds.isEmpty() || minIntervalWidth > bounds.width())
return false;
float minY = std::max(bounds.y(), minIntervalTop);
float maxY = minY + minIntervalHeight;
if (maxY > bounds.maxY())
return false;
bool intervalOverlapsMinCorner = minY < bounds.y() + bounds.ry();
bool intervalOverlapsMaxCorner = maxY > bounds.maxY() - bounds.ry();
if (!intervalOverlapsMinCorner && !intervalOverlapsMaxCorner) {
result = minY;
return true;
}
float centerY = bounds.y() + bounds.height() / 2;
bool minCornerDefinesX = fabs(centerY - minY) > fabs(centerY - maxY);
bool intervalFitsWithinCorners = minIntervalWidth + 2 * bounds.rx() <= bounds.width();
FloatPoint cornerIntercept = bounds.cornerInterceptForWidth(minIntervalWidth);
if (intervalOverlapsMinCorner && (!intervalOverlapsMaxCorner || minCornerDefinesX)) {
if (intervalFitsWithinCorners || bounds.y() + cornerIntercept.y() < minY) {
result = minY;
return true;
}
if (minIntervalHeight < bounds.height() - (2 * cornerIntercept.y())) {
result = ceiledLayoutUnit(bounds.y() + cornerIntercept.y());
return true;
}
}
if (intervalOverlapsMaxCorner && (!intervalOverlapsMinCorner || !minCornerDefinesX)) {
if (intervalFitsWithinCorners || minY <= bounds.maxY() - cornerIntercept.y() - minIntervalHeight) {
result = minY;
return true;
}
}
return false;
}
} // namespace WebCore