| # Copyright (C) 2015 Apple Inc. All rights reserved. |
| # |
| # Redistribution and use in source and binary forms, with or without |
| # modification, are permitted provided that the following conditions |
| # are met: |
| # 1. Redistributions of source code must retain the above copyright |
| # notice, this list of conditions and the following disclaimer. |
| # 2. Redistributions in binary form must reproduce the above copyright |
| # notice, this list of conditions and the following disclaimer in the |
| # documentation and/or other materials provided with the distribution. |
| # |
| # THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY |
| # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| # DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON |
| # ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| import json |
| import math |
| import re |
| import sys |
| |
| |
| class BenchmarkResults(object): |
| |
| aggregators = { |
| 'Total': (lambda values: sum(values)), |
| 'Arithmetic': (lambda values: sum(values) / len(values)), |
| 'Geometric': (lambda values: math.exp(sum(map(math.log, values)) / len(values))), |
| } |
| metric_to_unit = { |
| 'FrameRate': 'fps', |
| 'Runs': '/s', |
| 'Time': 'ms', |
| 'Duration': 'ms', |
| 'Malloc': 'B', |
| 'Heap': 'B', |
| 'Allocations': 'B', |
| 'Score': 'pt', |
| } |
| SI_prefixes = ['n', 'u', 'm', '', 'K', 'M', 'G', 'T', 'P', 'E'] |
| |
| def __init__(self, results): |
| self._lint_results(results) |
| self._results = self._aggregate_results(results) |
| |
| def format(self, scale_unit=True, show_iteration_values=False, max_depth=sys.maxsize): |
| return self._format_tests(self._results, scale_unit, show_iteration_values, max_depth) |
| |
| @classmethod |
| def _format_tests(cls, tests, scale_unit, show_iteration_values, max_depth, indent=''): |
| output = '' |
| config_name = 'current' |
| for test_name in sorted(tests.keys()): |
| is_first = True |
| test = tests[test_name] |
| metrics = test.get('metrics', {}) |
| for metric_name in sorted(metrics.keys()): |
| metric = metrics[metric_name] |
| for aggregator_name in sorted(metric.keys()): |
| output += indent |
| if is_first: |
| output += test_name |
| is_first = False |
| else: |
| output += ' ' * len(test_name) |
| output += ':' + metric_name + ':' |
| if aggregator_name: |
| output += aggregator_name + ':' |
| output += ' ' + cls._format_values(metric_name, metric[aggregator_name][config_name], scale_unit, show_iteration_values) + '\n' |
| if 'tests' in test and max_depth > 1: |
| output += cls._format_tests(test['tests'], scale_unit, show_iteration_values, max_depth - 1, indent=(indent + ' ' * len(test_name))) |
| return output |
| |
| @classmethod |
| def _format_values(cls, metric_name, values, scale_unit=True, show_iteration_values=False): |
| values = map(float, values) |
| total = sum(values) |
| mean = total / len(values) |
| square_sum = sum(map(lambda x: x * x, values)) |
| sample_count = len(values) |
| |
| # With sum and sum of squares, we can compute the sample standard deviation in O(1). |
| # See https://rniwa.com/2012-11-10/sample-standard-deviation-in-terms-of-sum-and-square-sum-of-samples/ |
| if sample_count <= 1: |
| sample_stdev = 0 |
| else: |
| # Be careful about round-off error when sample_stdev is 0. |
| sample_stdev = math.sqrt(max(0, square_sum / (sample_count - 1) - total * total / (sample_count - 1) / sample_count)) |
| |
| unit = cls._unit_from_metric(metric_name) |
| |
| if not scale_unit: |
| formatted_value = '{mean:.3f}{unit} stdev={delta:.1%}'.format(mean=mean, delta=sample_stdev / mean, unit=unit) |
| if show_iteration_values: |
| formatted_value += ' [' + ', '.join(map(lambda value: '{value:.3f}'.format(value=value), values)) + ']' |
| return formatted_value |
| |
| if unit == 'ms': |
| unit = 's' |
| mean = float(mean) / 1000 |
| values = map(lambda value: float(value) / 1000, values) |
| sample_stdev /= 1000 |
| |
| base = 1024 if unit == 'B' else 1000 |
| value_sig_fig = 1 - math.floor(math.log10(sample_stdev / mean)) if sample_stdev else 3 |
| SI_magnitude = math.floor(math.log(mean, base)) |
| |
| scaling_factor = math.pow(base, -SI_magnitude) |
| scaled_mean = mean * scaling_factor |
| SI_prefix = cls.SI_prefixes[int(SI_magnitude) + 3] |
| |
| non_floating_digits = 1 + math.floor(math.log10(scaled_mean)) |
| floating_points_count = max(0, value_sig_fig - non_floating_digits) |
| |
| def format_scaled(value): |
| return ('{value:.' + str(int(floating_points_count)) + 'f}').format(value=value) |
| |
| formatted_value = '{mean}{prefix}{unit} stdev={delta:.1%}'.format(mean=format_scaled(scaled_mean), delta=sample_stdev / mean, prefix=SI_prefix, unit=unit) |
| if show_iteration_values: |
| formatted_value += ' [' + ', '.join(map(lambda value: format_scaled(value * scaling_factor), values)) + ']' |
| return formatted_value |
| |
| @classmethod |
| def _unit_from_metric(cls, metric_name): |
| # FIXME: Detect unknown mettric names |
| suffix = re.match(r'.*?([A-z][a-z]+|FrameRate)$', metric_name) |
| return cls.metric_to_unit[suffix.group(1)] |
| |
| @classmethod |
| def _aggregate_results(cls, tests): |
| results = {} |
| for test_name, test in tests.iteritems(): |
| results[test_name] = cls._aggregate_results_for_test(test) |
| return results |
| |
| @classmethod |
| def _aggregate_results_for_test(cls, test): |
| subtest_results = cls._aggregate_results(test['tests']) if 'tests' in test else {} |
| results = {} |
| for metric_name, metric in test.get('metrics', {}).iteritems(): |
| if not isinstance(metric, list): |
| results[metric_name] = {None: {}} |
| for config_name, values in metric.iteritems(): |
| results[metric_name][None][config_name] = cls._flatten_list(values) |
| continue |
| |
| aggregator_list = metric |
| results[metric_name] = {} |
| for aggregator in aggregator_list: |
| values_by_config_iteration = cls._subtest_values_by_config_iteration(subtest_results, metric_name, aggregator) |
| for config_name, values_by_iteration in values_by_config_iteration.iteritems(): |
| results[metric_name].setdefault(aggregator, {}) |
| results[metric_name][aggregator][config_name] = [cls._aggregate_values(aggregator, values) for values in values_by_iteration] |
| |
| return {'metrics': results, 'tests': subtest_results} |
| |
| @classmethod |
| def _flatten_list(cls, nested_list): |
| flattened_list = [] |
| for item in nested_list: |
| if isinstance(item, list): |
| flattened_list += cls._flatten_list(item) |
| else: |
| flattened_list.append(item) |
| return flattened_list |
| |
| @classmethod |
| def _subtest_values_by_config_iteration(cls, subtest_results, metric_name, aggregator): |
| values_by_config_iteration = {} |
| for subtest_name, subtest in subtest_results.iteritems(): |
| results_for_metric = subtest['metrics'].get(metric_name, {}) |
| if aggregator in results_for_metric: |
| results_for_aggregator = results_for_metric.get(aggregator) |
| elif None in results_for_metric: |
| results_for_aggregator = results_for_metric.get(None) |
| elif len(results_for_metric.keys()) == 1: |
| results_for_aggregator = results_for_metric.get(results_for_metric.keys()[0]) |
| else: |
| results_for_aggregator = {} |
| for config_name, values in results_for_aggregator.iteritems(): |
| values_by_config_iteration.setdefault(config_name, [[] for _ in values]) |
| for iteration, value in enumerate(values): |
| values_by_config_iteration[config_name][iteration].append(value) |
| return values_by_config_iteration |
| |
| @classmethod |
| def _aggregate_values(cls, aggregator, values): |
| return cls.aggregators[aggregator](values) |
| |
| @classmethod |
| def _lint_results(cls, tests): |
| cls._lint_subtest_results(tests, None, None) |
| return True |
| |
| @classmethod |
| def _lint_subtest_results(cls, subtests, parent_test, parent_aggregator_list): |
| iteration_groups_by_config = {} |
| for test_name, test in subtests.iteritems(): |
| aggregator_list = None |
| |
| if 'metrics' not in test and 'tests' not in test: |
| raise TypeError('"%s" does not contain metrics or tests' % test_name) |
| |
| if 'metrics' in test: |
| metrics = test['metrics'] |
| if not isinstance(metrics, dict): |
| raise TypeError('The metrics in "%s" is not a dictionary' % test_name) |
| for metric_name, metric in metrics.iteritems(): |
| if isinstance(metric, list): |
| cls._lint_aggregator_list(test_name, metric_name, metric, parent_test, parent_aggregator_list) |
| aggregator_list = metric |
| elif isinstance(metric, dict): |
| cls._lint_configuration(test_name, metric_name, metric, parent_test, parent_aggregator_list, iteration_groups_by_config) |
| else: |
| raise TypeError('"%s" metric of "%s" was not an aggregator list or a dictionary of configurations: %s' % (metric_name, test_name, str(metric))) |
| |
| if 'tests' in test: |
| cls._lint_subtest_results(test['tests'], test_name, aggregator_list) |
| elif aggregator_list: |
| raise TypeError('"%s" requires aggregation but it has no subtests' % (test_name)) |
| return iteration_groups_by_config |
| |
| @classmethod |
| def _lint_aggregator_list(cls, test_name, metric_name, aggregator_list, parent_test, parent_aggregator_list): |
| if len(aggregator_list) != len(set(aggregator_list)): |
| raise TypeError('"%s" metric of "%s" had invalid aggregator list: %s' % (metric_name, test_name, json.dumps(aggregator_list))) |
| if not aggregator_list: |
| raise TypeError('The aggregator list is empty in "%s" metric of "%s"' % (metric_name, test_name)) |
| for aggregator_name in aggregator_list: |
| if cls._is_numeric(aggregator_name): |
| raise TypeError('"%s" metric of "%s" is not wrapped by a configuration; e.g. "current"' % (metric_name, test_name)) |
| if aggregator_name not in cls.aggregators: |
| raise TypeError('"%s" metric of "%s" uses unknown aggregator: %s' % (metric_name, test_name, aggregator_name)) |
| if not parent_aggregator_list: |
| return |
| for parent_aggregator in parent_aggregator_list: |
| if parent_aggregator not in aggregator_list and len(aggregator_list) > 1: |
| raise TypeError('"%s" metric of "%s" has no value to aggregate as "%s" in a subtest "%s"' % ( |
| metric_name, parent_test, parent_aggregator, test_name)) |
| |
| @classmethod |
| def _lint_configuration(cls, test_name, metric_name, configurations, parent_test, parent_aggregator_list, iteration_groups_by_config): |
| # FIXME: Check that config_name is always "current". |
| for config_name, values in configurations.iteritems(): |
| nested_list_count = [isinstance(value, list) for value in values].count(True) |
| if nested_list_count not in [0, len(values)]: |
| raise TypeError('"%s" metric of "%s" had malformed values: %s' % (metric_name, test_name, json.dumps(values))) |
| |
| if nested_list_count: |
| value_shape = [] |
| for value_group in values: |
| value_shape.append(len(value_group)) |
| cls._lint_values(test_name, metric_name, value_group) |
| else: |
| value_shape = len(values) |
| cls._lint_values(test_name, metric_name, values) |
| |
| iteration_groups_by_config.setdefault(metric_name, {}).setdefault(config_name, value_shape) |
| if parent_aggregator_list and value_shape != iteration_groups_by_config[metric_name][config_name]: |
| raise TypeError('"%s" metric of "%s" had a mismatching subtest values' % (metric_name, parent_test)) |
| |
| @classmethod |
| def _lint_values(cls, test_name, metric_name, values): |
| if any([not cls._is_numeric(value) for value in values]): |
| raise TypeError('"%s" metric of "%s" contains non-numeric value: %s' % (metric_name, test_name, json.dumps(values))) |
| |
| @classmethod |
| def _is_numeric(cls, value): |
| return isinstance(value, int) or isinstance(value, float) |