blob: cd68dc91181442c14a2a76c9481ad3dfe4167f76 [file] [log] [blame]
/**
* Copyright (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 1999 Antti Koivisto (koivisto@kde.org)
* (C) 2001 Dirk Mueller ( mueller@kde.org )
* Copyright (C) 2003, 2004, 2005, 2006, 2007 Apple Inc. All rights reserved.
* Copyright (C) 2006 Andrew Wellington (proton@wiretapped.net)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include "config.h"
#include "StringImpl.h"
#include "AtomicString.h"
#include "CString.h"
#include "CharacterNames.h"
#include "DeprecatedString.h"
#include "FloatConversion.h"
#include "Length.h"
#include "StringHash.h"
#include "TextBreakIterator.h"
#include "TextEncoding.h"
#include <kjs/dtoa.h>
#include <kjs/identifier.h>
#include <wtf/Assertions.h>
#include <wtf/unicode/Unicode.h>
using namespace WTF;
using namespace Unicode;
using KJS::Identifier;
using KJS::UString;
namespace WebCore {
static inline bool isSpace(UChar c)
{
// Use isspace() for basic Latin-1.
// This will include newlines, which aren't included in unicode DirWS.
return c <= 0x7F ? isspace(c) : direction(c) == WhiteSpaceNeutral;
}
static inline UChar* newUCharVector(unsigned n)
{
return static_cast<UChar*>(fastMalloc(sizeof(UChar) * n));
}
static inline void deleteUCharVector(UChar* p)
{
fastFree(p);
}
StringImpl* StringImpl::empty()
{
static WithOneRef w;
static StringImpl e(w);
return &e;
}
StringImpl::StringImpl(const DeprecatedString& str)
{
init(reinterpret_cast<const UChar*>(str.unicode()), str.length());
}
StringImpl::StringImpl(const UChar* str, unsigned len)
{
init(str, len);
}
StringImpl::StringImpl(const char* str)
{
init(str, strlen(str));
}
StringImpl::StringImpl(const char* str, unsigned len)
{
init(str, len);
}
void StringImpl::init(const char* str, unsigned len)
{
m_hash = 0;
m_inTable = false;
m_hasTerminatingNullCharacter = false;
m_length = len;
if (!m_length || !str) {
m_data = 0;
return;
}
m_data = newUCharVector(m_length);
int i = m_length;
UChar* ptr = m_data;
while (i--) {
unsigned char c = *str++;
*ptr++ = c;
}
}
void StringImpl::init(const UChar* str, unsigned len)
{
m_hash = 0;
m_inTable = false;
m_hasTerminatingNullCharacter = false;
m_length = len;
if (!m_length || !str) {
m_data = 0;
return;
}
m_data = newUCharVector(len);
memcpy(m_data, str, len * sizeof(UChar));
}
StringImpl::~StringImpl()
{
if (m_inTable)
AtomicString::remove(this);
deleteUCharVector(m_data);
}
const UChar* StringImpl::charactersWithNullTermination()
{
if (m_hasTerminatingNullCharacter)
return m_data;
m_data = static_cast<UChar*>(fastRealloc(m_data, (m_length + 1) * sizeof(UChar)));
m_data[m_length] = 0;
m_hasTerminatingNullCharacter = true;
return m_data;
}
void StringImpl::append(const UChar* str, unsigned length)
{
ASSERT(!m_inTable);
if (str && length != 0) {
int newlen = m_length + length;
UChar* c = newUCharVector(newlen);
memcpy(c, m_data, m_length * sizeof(UChar));
memcpy(c + m_length, str, length * sizeof(UChar));
deleteUCharVector(m_data);
m_data = c;
m_length = newlen;
m_hasTerminatingNullCharacter = false;
}
}
void StringImpl::append(const StringImpl* str)
{
if (str)
append(str->m_data, str->m_length);
}
void StringImpl::append(char c)
{
append(UChar(c));
}
void StringImpl::append(UChar c)
{
ASSERT(!m_inTable);
UChar* nc = newUCharVector(m_length + 1);
memcpy(nc, m_data, m_length * sizeof(UChar));
nc[m_length] = c;
deleteUCharVector(m_data);
m_data = nc;
m_length++;
m_hasTerminatingNullCharacter = false;
}
void StringImpl::insert(const UChar* str, unsigned length, unsigned pos)
{
ASSERT(!m_inTable);
if (pos >= m_length) {
append(str, length);
return;
}
if (str && length != 0) {
size_t newlen = m_length + length;
UChar* c = newUCharVector(newlen);
memcpy(c, m_data, pos * sizeof(UChar));
memcpy(c + pos, str, length * sizeof(UChar));
memcpy(c + pos + length, m_data + pos, (m_length - pos) * sizeof(UChar));
deleteUCharVector(m_data);
m_data = c;
m_length = newlen;
m_hasTerminatingNullCharacter = false;
}
}
void StringImpl::insert(const StringImpl* str, unsigned pos)
{
if (str)
insert(str->m_data, str->m_length, pos);
}
void StringImpl::truncate(int len)
{
ASSERT(!m_inTable);
if (len >= (int)m_length)
return;
int nl = len < 1 ? 1 : len;
UChar* c = newUCharVector(nl);
memcpy(c, m_data, nl * sizeof(UChar));
deleteUCharVector(m_data);
m_data = c;
m_length = len;
m_hasTerminatingNullCharacter = false;
}
void StringImpl::remove(unsigned pos, int len)
{
ASSERT(!m_inTable);
if (len <= 0)
return;
if (pos >= m_length)
return;
if ((unsigned)len > m_length - pos)
len = m_length - pos;
unsigned newLen = m_length-len;
UChar* c = newUCharVector(newLen);
memcpy(c, m_data, pos * sizeof(UChar));
memcpy(c + pos, m_data + pos + len, (m_length - len - pos) * sizeof(UChar));
deleteUCharVector(m_data);
m_data = c;
m_length = newLen;
m_hasTerminatingNullCharacter = false;
}
bool StringImpl::containsOnlyWhitespace() const
{
return containsOnlyWhitespace(0, m_length);
}
bool StringImpl::containsOnlyWhitespace(unsigned from, unsigned len) const
{
if (!m_data)
return true;
// FIXME: Both the definition of what whitespace is, and the definition of what
// the "len" parameter means are different here from what's done in RenderText.
// FIXME: No range checking here.
for (unsigned i = from; i < len; i++)
if (m_data[i] > 0x7F || !isspace(m_data[i]))
return false;
return true;
}
StringImpl* StringImpl::substring(unsigned pos, unsigned len)
{
if (pos >= m_length) return
new StringImpl;
if (len > m_length - pos)
len = m_length - pos;
return new StringImpl(m_data + pos, len);
}
static Length parseLength(const UChar* m_data, unsigned int m_length)
{
if (m_length == 0)
return Length(1, Relative);
unsigned i = 0;
while (i < m_length && isSpace(m_data[i]))
++i;
if (i < m_length && (m_data[i] == '+' || m_data[i] == '-'))
++i;
while (i < m_length && Unicode::isDigit(m_data[i]))
++i;
bool ok;
int r = DeprecatedConstString(reinterpret_cast<const DeprecatedChar*>(m_data), i).string().toInt(&ok);
/* Skip over any remaining digits, we are not that accurate (5.5% => 5%) */
while (i < m_length && (Unicode::isDigit(m_data[i]) || m_data[i] == '.'))
++i;
/* IE Quirk: Skip any whitespace (20 % => 20%) */
while (i < m_length && DeprecatedChar(m_data[i]).isSpace())
++i;
if (ok) {
if (i < m_length) {
UChar next = m_data[i];
if (next == '%')
return Length(static_cast<double>(r), Percent);
if (next == '*')
return Length(r, Relative);
}
return Length(r, Fixed);
} else {
if (i < m_length) {
UChar next = m_data[i];
if (next == '*')
return Length(1, Relative);
if (next == '%')
return Length(1, Relative);
}
}
return Length(0, Relative);
}
Length StringImpl::toLength() const
{
return parseLength(m_data, m_length);
}
Length* StringImpl::toCoordsArray(int& len) const
{
UChar* spacified = newUCharVector(m_length);
for (unsigned i = 0; i < m_length; i++) {
UChar cc = m_data[i];
if (cc > '9' || (cc < '0' && cc != '-' && cc != '*' && cc != '.'))
spacified[i] = ' ';
else
spacified[i] = cc;
}
DeprecatedString str(reinterpret_cast<const DeprecatedChar*>(spacified), m_length);
deleteUCharVector(spacified);
str = str.simplifyWhiteSpace();
len = str.contains(' ') + 1;
Length* r = new Length[len];
int i = 0;
int pos = 0;
int pos2;
while((pos2 = str.find(' ', pos)) != -1) {
r[i++] = parseLength(reinterpret_cast<const UChar*>(str.unicode()) + pos, pos2 - pos);
pos = pos2+1;
}
r[i] = parseLength(reinterpret_cast<const UChar*>(str.unicode()) + pos, str.length() - pos);
return r;
}
Length* StringImpl::toLengthArray(int& len) const
{
DeprecatedString str(reinterpret_cast<const DeprecatedChar*>(m_data), m_length);
str = str.simplifyWhiteSpace();
if (!str.length()) {
len = 1;
return 0;
}
len = str.contains(',') + 1;
Length* r = new Length[len];
int i = 0;
int pos = 0;
int pos2;
while ((pos2 = str.find(',', pos)) != -1) {
r[i++] = parseLength(reinterpret_cast<const UChar*>(str.unicode()) + pos, pos2 - pos);
pos = pos2+1;
}
/* IE Quirk: If the last comma is the last char skip it and reduce len by one */
if (str.length()-pos > 0)
r[i] = parseLength(reinterpret_cast<const UChar*>(str.unicode()) + pos, str.length() - pos);
else
len--;
return r;
}
bool StringImpl::isLower() const
{
// Do a faster loop for the case where all the characters are ASCII.
bool allLower = true;
UChar ored = 0;
for (unsigned i = 0; i < m_length; i++) {
UChar c = m_data[i];
// The islower function is only guaranteed to work correctly and
// in a locale-independent fashion for ASCII characters. We mask
// to guarantee we don't pass any non-ASCII values in.
allLower = allLower && islower(c & 0x7F);
ored |= c;
}
if (!(ored & ~0x7F))
return allLower;
// Do a slower check for cases that include non-ASCII characters.
allLower = true;
unsigned i = 0;
while (i < m_length) {
UChar32 character;
U16_NEXT(m_data, i, m_length, character)
allLower = allLower && Unicode::isLower(character);
}
return allLower;
}
StringImpl* StringImpl::lower() const
{
StringImpl* c = new StringImpl;
if (!m_length)
return c;
UChar* data = newUCharVector(m_length);
int length = m_length;
c->m_data = data;
c->m_length = length;
// Do a faster loop for the case where all the characters are ASCII.
UChar ored = 0;
for (int i = 0; i < length; i++) {
UChar c = m_data[i];
ored |= c;
// The tolower function is only guaranteed to work correctly and
// in a locale-independent fashion for ASCII characters. We mask
// to guarantee we don't pass any non-ASCII values in.
data[i] = tolower(c & 0x7F);
}
if (!(ored & ~0x7F))
return c;
// Do a slower implementation for cases that include non-ASCII characters.
bool error;
int32_t realLength = Unicode::toLower(data, length, m_data, m_length, &error);
if (!error && realLength == length)
return c;
if (realLength > length) {
deleteUCharVector(data);
data = newUCharVector(realLength);
}
length = realLength;
c->m_data = data;
c->m_length = length;
Unicode::toLower(data, length, m_data, m_length, &error);
if (error) {
c->ref();
c->deref();
return copy();
}
return c;
}
StringImpl* StringImpl::upper() const
{
StringImpl* c = new StringImpl;
if (!m_length)
return c;
bool error;
int32_t length = Unicode::toUpper(0, 0, m_data, m_length, &error);
c->m_data = newUCharVector(length);
c->m_length = length;
Unicode::toUpper(c->m_data, length, m_data, m_length, &error);
if (error) {
c->ref();
c->deref();
return copy();
}
return c;
}
StringImpl* StringImpl::secure(UChar aChar) const
{
int length = m_length;
UChar* data = newUCharVector(length);
for (int i = 0; i < length; ++i)
data[i] = aChar;
StringImpl* c = new StringImpl;
c->m_data = data;
c->m_length = length;
return c;
}
StringImpl* StringImpl::foldCase() const
{
StringImpl* c = new StringImpl;
if (!m_length)
return c;
bool error;
int32_t length = Unicode::foldCase(0, 0, m_data, m_length, &error);
c->m_data = newUCharVector(length);
c->m_length = length;
Unicode::foldCase(c->m_data, length, m_data, m_length, &error);
if (error) {
c->ref();
c->deref();
return copy();
}
return c;
}
StringImpl* StringImpl::stripWhiteSpace() const
{
StringImpl* c = new StringImpl;
if (!m_length)
return c;
unsigned start = 0;
unsigned end = m_length - 1;
// skip white space from start
while (start <= end && isSpace(m_data[start]))
start++;
// only white space
if (start > end)
return c;
// skip white space from end
while (end && isSpace(m_data[end]))
end--;
int length = end - start + 1;
c->m_data = newUCharVector(length);
c->m_length = length;
memcpy(c->m_data, m_data + start, length * sizeof(UChar));
return c;
}
StringImpl* StringImpl::simplifyWhiteSpace() const
{
StringImpl* c = new StringImpl;
if (!m_length)
return c;
c->m_data = newUCharVector(m_length);
const UChar *from = m_data;
const UChar *fromend = from + m_length;
int outc = 0;
UChar *to = c->m_data;
while (true) {
while (from != fromend && isSpace(*from))
from++;
while (from != fromend && !isSpace(*from))
to[outc++] = *from++;
if (from != fromend)
to[outc++] = ' ';
else
break;
}
if (outc > 0 && to[outc - 1] == ' ')
outc--;
c->m_length = outc;
return c;
}
StringImpl* StringImpl::capitalize(UChar previous) const
{
StringImpl* capitalizedString = new StringImpl;
if (!m_length)
return capitalizedString;
UChar* stringWithPrevious = newUCharVector(m_length + 1);
stringWithPrevious[0] = previous == noBreakSpace ? ' ' : previous;
for (unsigned i = 1; i < m_length + 1; i++) {
// Replace &nbsp with a real space since ICU no longer treats &nbsp as a word separator.
if (m_data[i - 1] == noBreakSpace)
stringWithPrevious[i] = ' ';
else
stringWithPrevious[i] = m_data[i - 1];
}
TextBreakIterator* boundary = wordBreakIterator(stringWithPrevious, m_length + 1);
if (!boundary) {
deleteUCharVector(stringWithPrevious);
return capitalizedString;
}
capitalizedString->m_data = newUCharVector(m_length);
capitalizedString->m_length = m_length;
int32_t endOfWord;
int32_t startOfWord = textBreakFirst(boundary);
for (endOfWord = textBreakNext(boundary); endOfWord != TextBreakDone; startOfWord = endOfWord, endOfWord = textBreakNext(boundary)) {
if (startOfWord != 0) // Ignore first char of previous string
capitalizedString->m_data[startOfWord - 1] = m_data[startOfWord - 1] == noBreakSpace ? noBreakSpace : toTitleCase(stringWithPrevious[startOfWord]);
for (int i = startOfWord + 1; i < endOfWord; i++)
capitalizedString->m_data[i - 1] = m_data[i - 1];
}
deleteUCharVector(stringWithPrevious);
return capitalizedString;
}
int StringImpl::toInt(bool* ok) const
{
unsigned i = 0;
// Allow leading spaces.
for (; i != m_length; ++i)
if (!isSpace(m_data[i]))
break;
// Allow sign.
if (i != m_length && (m_data[i] == '+' || m_data[i] == '-'))
++i;
// Allow digits.
for (; i != m_length; ++i)
if (!Unicode::isDigit(m_data[i]))
break;
return DeprecatedConstString(reinterpret_cast<const DeprecatedChar*>(m_data), i).string().toInt(ok);
}
int64_t StringImpl::toInt64(bool* ok) const
{
unsigned i = 0;
// Allow leading spaces.
for (; i != m_length; ++i)
if (!isSpace(m_data[i]))
break;
// Allow sign.
if (i != m_length && (m_data[i] == '+' || m_data[i] == '-'))
++i;
// Allow digits.
for (; i != m_length; ++i)
if (!Unicode::isDigit(m_data[i]))
break;
return DeprecatedConstString(reinterpret_cast<const DeprecatedChar*>(m_data), i).string().toInt64(ok);
}
uint64_t StringImpl::toUInt64(bool* ok) const
{
unsigned i = 0;
// Allow leading spaces.
for (; i != m_length; ++i)
if (!isSpace(m_data[i]))
break;
// Allow digits.
for (; i != m_length; ++i)
if (!Unicode::isDigit(m_data[i]))
break;
return DeprecatedConstString(reinterpret_cast<const DeprecatedChar*>(m_data), i).string().toUInt64(ok);
}
double StringImpl::toDouble(bool* ok) const
{
if (!m_length) {
if (ok)
*ok = false;
return 0;
}
char *end;
CString latin1String = Latin1Encoding().encode(characters(), length());
double val = kjs_strtod(latin1String.data(), &end);
if (ok)
*ok = end == 0 || *end == '\0';
return val;
}
float StringImpl::toFloat(bool* ok) const
{
// FIXME: this will return ok even when the string does not fit into a float
return narrowPrecisionToFloat(toDouble(ok));
}
static bool equal(const UChar* a, const char* b, int length)
{
ASSERT(length >= 0);
while (length--) {
unsigned char bc = *b++;
if (*a++ != bc)
return false;
}
return true;
}
static bool equalIgnoringCase(const UChar* a, const char* b, int length)
{
ASSERT(length >= 0);
while (length--) {
unsigned char bc = *b++;
if (foldCase(*a++) != foldCase(bc))
return false;
}
return true;
}
static inline bool equalIgnoringCase(const UChar* a, const UChar* b, int length)
{
ASSERT(length >= 0);
return umemcasecmp(a, b, length) == 0;
}
// This function should be as fast as possible, every little bit helps.
// Our usage patterns are typically small strings. In time trials
// this simplistic algorithm is much faster than Boyer-Moore or hash
// based algorithms.
// NOTE: Those time trials were done when this function was part of KWQ's DeprecatedString
// It was copied here and changed slightly since.
int StringImpl::find(const char* chs, int index, bool caseSensitive) const
{
if (!chs || index < 0)
return -1;
int chsLength = strlen(chs);
int n = m_length - index;
if (n < 0)
return -1;
n -= chsLength - 1;
if (n <= 0)
return -1;
const char* chsPlusOne = chs + 1;
int chsLengthMinusOne = chsLength - 1;
const UChar* ptr = m_data + index - 1;
if (caseSensitive) {
UChar c = *chs;
do {
if (*++ptr == c && equal(ptr + 1, chsPlusOne, chsLengthMinusOne))
return m_length - chsLength - n + 1;
} while (--n);
} else {
UChar lc = Unicode::foldCase(*chs);
do {
if (Unicode::foldCase(*++ptr) == lc && equalIgnoringCase(ptr + 1, chsPlusOne, chsLengthMinusOne))
return m_length - chsLength - n + 1;
} while (--n);
}
return -1;
}
int StringImpl::find(const UChar c, int start) const
{
unsigned int index = start;
if (index >= m_length )
return -1;
while(index < m_length) {
if (m_data[index] == c)
return index;
index++;
}
return -1;
}
// This was copied from DeprecatedString and made to work here w/ small modifications.
// FIXME comments were from the DeprecatedString version.
int StringImpl::find(const StringImpl* str, int index, bool caseSensitive) const
{
// FIXME, use the first character algorithm
/*
We use some weird hashing for efficiency's sake. Instead of
comparing strings, we compare the sum of str with that of
a part of this DeprecatedString. Only if that matches, we call memcmp
or ucstrnicmp.
The hash value of a string is the sum of its characters.
*/
ASSERT(str);
if (index < 0)
index += m_length;
int lstr = str->m_length;
int lthis = m_length - index;
if ((unsigned)lthis > m_length)
return -1;
int delta = lthis - lstr;
if (delta < 0)
return -1;
const UChar* uthis = m_data + index;
const UChar* ustr = str->m_data;
unsigned hthis = 0;
unsigned hstr = 0;
if (caseSensitive) {
for (int i = 0; i < lstr; i++) {
hthis += uthis[i];
hstr += ustr[i];
}
int i = 0;
while (1) {
if (hthis == hstr && memcmp(uthis + i, ustr, lstr * sizeof(UChar)) == 0)
return index + i;
if (i == delta)
return -1;
hthis += uthis[i + lstr];
hthis -= uthis[i];
i++;
}
} else {
for (int i = 0; i < lstr; i++ ) {
hthis += tolower(uthis[i]);
hstr += tolower(ustr[i]);
}
int i = 0;
while (1) {
if (hthis == hstr && equalIgnoringCase(uthis + i, ustr, lstr))
return index + i;
if (i == delta)
return -1;
hthis += tolower(uthis[i + lstr]);
hthis -= tolower(uthis[i]);
i++;
}
}
}
int StringImpl::reverseFind(const UChar c, int index) const
{
if (index >= (int)m_length || m_length == 0)
return -1;
if (index < 0)
index += m_length;
while (1) {
if (m_data[index] == c)
return index;
if (index == 0)
return -1;
index--;
}
}
int StringImpl::reverseFind(const StringImpl* str, int index, bool caseSensitive) const
{
// FIXME, use the first character algorithm
/*
See StringImpl::find() for explanations.
*/
ASSERT(str);
int lthis = m_length;
if (index < 0)
index += lthis;
int lstr = str->m_length;
int delta = lthis - lstr;
if ( index < 0 || index > lthis || delta < 0 )
return -1;
if ( index > delta )
index = delta;
const UChar *uthis = m_data;
const UChar *ustr = str->m_data;
unsigned hthis = 0;
unsigned hstr = 0;
int i;
if (caseSensitive) {
for ( i = 0; i < lstr; i++ ) {
hthis += uthis[index + i];
hstr += ustr[i];
}
i = index;
while (1) {
if (hthis == hstr && memcmp(uthis + i, ustr, lstr * sizeof(UChar)) == 0)
return i;
if (i == 0)
return -1;
i--;
hthis -= uthis[i + lstr];
hthis += uthis[i];
}
} else {
for (i = 0; i < lstr; i++) {
hthis += tolower(uthis[index + i]);
hstr += tolower(ustr[i]);
}
i = index;
while (1) {
if (hthis == hstr && equalIgnoringCase(uthis + i, ustr, lstr) )
return i;
if (i == 0)
return -1;
i--;
hthis -= tolower(uthis[i + lstr]);
hthis += tolower(uthis[i]);
}
}
// Should never get here.
return -1;
}
bool StringImpl::endsWith(const StringImpl* m_data, bool caseSensitive) const
{
ASSERT(m_data);
int start = m_length - m_data->m_length;
if (start >= 0)
return (find(m_data, start, caseSensitive) == start);
return false;
}
StringImpl* StringImpl::replace(UChar oldC, UChar newC)
{
if (oldC == newC)
return this;
unsigned i;
for (i = 0; i != m_length; ++i)
if (m_data[i] == oldC)
break;
if (i == m_length)
return this;
StringImpl* c = new StringImpl;
c->m_data = newUCharVector(m_length);
c->m_length = m_length;
for (i = 0; i != m_length; ++i) {
UChar ch = m_data[i];
if (ch == oldC)
ch = newC;
c->m_data[i] = ch;
}
return c;
}
StringImpl* StringImpl::replace(unsigned index, unsigned len, const StringImpl* str)
{
StringImpl* m_data = copy();
m_data->remove(index, len);
m_data->insert(str, index);
return m_data;
}
StringImpl* StringImpl::replace(UChar pattern, const StringImpl* replacement)
{
if (!replacement)
return this;
int repStrLength = replacement->length();
int srcSegmentStart = 0;
int matchCount = 0;
// Count the matches
while ((srcSegmentStart = find(pattern, srcSegmentStart)) >= 0) {
++matchCount;
++srcSegmentStart;
}
// If we have 0 matches, we don't have to do any more work
if (!matchCount)
return this;
// Create the new StringImpl;
StringImpl* dst = new StringImpl();
dst->m_length = m_length - matchCount + (matchCount * repStrLength);
dst->m_data = newUCharVector(dst->m_length);
// Construct the new data
int srcSegmentEnd;
int srcSegmentLength;
srcSegmentStart = 0;
int dstOffset = 0;
while ((srcSegmentEnd = find(pattern, srcSegmentStart)) >= 0) {
srcSegmentLength = srcSegmentEnd - srcSegmentStart;
memcpy(dst->m_data + dstOffset, m_data + srcSegmentStart, srcSegmentLength * sizeof(UChar));
dstOffset += srcSegmentLength;
memcpy(dst->m_data + dstOffset, replacement->m_data, repStrLength * sizeof(UChar));
dstOffset += repStrLength;
srcSegmentStart = srcSegmentEnd + 1;
}
srcSegmentLength = m_length - srcSegmentStart;
memcpy(dst->m_data + dstOffset, m_data + srcSegmentStart, srcSegmentLength * sizeof(UChar));
return dst;
}
StringImpl* StringImpl::replace(const StringImpl* pattern, const StringImpl* replacement)
{
if (!pattern || !replacement)
return this;
int patternLength = pattern->length();
if (!patternLength)
return this;
int repStrLength = replacement->length();
int srcSegmentStart = 0;
int matchCount = 0;
// Count the matches
while ((srcSegmentStart = find(pattern, srcSegmentStart)) >= 0) {
++matchCount;
srcSegmentStart += patternLength;
}
// If we have 0 matches, we don't have to do any more work
if (!matchCount)
return this;
// Create the new StringImpl;
StringImpl* dst = new StringImpl();
dst->m_length = m_length + matchCount * (repStrLength - patternLength);
dst->m_data = newUCharVector(dst->m_length);
// Construct the new data
int srcSegmentEnd;
int srcSegmentLength;
srcSegmentStart = 0;
int dstOffset = 0;
while ((srcSegmentEnd = find(pattern, srcSegmentStart)) >= 0) {
srcSegmentLength = srcSegmentEnd - srcSegmentStart;
memcpy(dst->m_data + dstOffset, m_data + srcSegmentStart, srcSegmentLength * sizeof(UChar));
dstOffset += srcSegmentLength;
memcpy(dst->m_data + dstOffset, replacement->m_data, repStrLength * sizeof(UChar));
dstOffset += repStrLength;
srcSegmentStart = srcSegmentEnd + patternLength;
}
srcSegmentLength = m_length - srcSegmentStart;
memcpy(dst->m_data + dstOffset, m_data + srcSegmentStart, srcSegmentLength * sizeof(UChar));
return dst;
}
bool equal(const StringImpl* a, const StringImpl* b)
{
return StrHash<StringImpl*>::equal(a, b);
}
bool equal(const StringImpl* a, const char* b)
{
if (!a)
return !b;
if (!b)
return !a;
unsigned length = a->length();
const UChar* as = a->characters();
for (unsigned i = 0; i != length; ++i) {
unsigned char bc = b[i];
if (!bc)
return false;
if (as[i] != bc)
return false;
}
return !b[length];
}
bool equalIgnoringCase(const StringImpl* a, const StringImpl* b)
{
return CaseInsensitiveHash<StringImpl*>::equal(a, b);
}
bool equalIgnoringCase(const StringImpl* a, const char* b)
{
if (!a)
return !b;
if (!b)
return !a;
unsigned length = a->length();
const UChar* as = a->characters();
// Do a faster loop for the case where all the characters are ASCII.
UChar ored = 0;
bool equal = true;
for (unsigned i = 0; i != length; ++i) {
unsigned char bc = b[i];
if (!bc)
return false;
UChar ac = as[i];
ored |= ac;
// The tolower function is only guaranteed to work correctly and
// in a locale-independent fashion for ASCII characters. We mask
// to guarantee we don't pass any non-ASCII values in.
ASSERT(!(bc & ~0x7F));
equal = equal && (tolower(ac & 0x7F) == tolower(bc));
}
// Do a slower implementation for cases that include non-ASCII characters.
if (ored & ~0x7F) {
equal = true;
for (unsigned i = 0; i != length; ++i) {
unsigned char bc = b[i];
equal = equal && (foldCase(as[i]) == foldCase(bc));
}
}
return equal && !b[length];
}
// Golden ratio - arbitrary start value to avoid mapping all 0's to all 0's
// or anything like that.
const unsigned PHI = 0x9e3779b9U;
// Paul Hsieh's SuperFastHash
// http://www.azillionmonkeys.com/qed/hash.html
unsigned StringImpl::computeHash(const UChar* m_data, unsigned len)
{
unsigned m_length = len;
uint32_t hash = PHI;
uint32_t tmp;
int rem = m_length & 1;
m_length >>= 1;
// Main loop
for (; m_length > 0; m_length--) {
hash += m_data[0];
tmp = (m_data[1] << 11) ^ hash;
hash = (hash << 16) ^ tmp;
m_data += 2;
hash += hash >> 11;
}
// Handle end case
if (rem) {
hash += m_data[0];
hash ^= hash << 11;
hash += hash >> 17;
}
// Force "avalanching" of final 127 bits
hash ^= hash << 3;
hash += hash >> 5;
hash ^= hash << 2;
hash += hash >> 15;
hash ^= hash << 10;
// this avoids ever returning a hash code of 0, since that is used to
// signal "hash not computed yet", using a value that is likely to be
// effectively the same as 0 when the low bits are masked
if (hash == 0)
hash = 0x80000000;
return hash;
}
// Paul Hsieh's SuperFastHash
// http://www.azillionmonkeys.com/qed/hash.html
unsigned StringImpl::computeHash(const char* m_data)
{
// This hash is designed to work on 16-bit chunks at a time. But since the normal case
// (above) is to hash UTF-16 characters, we just treat the 8-bit chars as if they
// were 16-bit chunks, which should give matching results
unsigned m_length = strlen(m_data);
uint32_t hash = PHI;
uint32_t tmp;
int rem = m_length & 1;
m_length >>= 1;
// Main loop
for (; m_length > 0; m_length--) {
hash += (unsigned char)m_data[0];
tmp = ((unsigned char)m_data[1] << 11) ^ hash;
hash = (hash << 16) ^ tmp;
m_data += 2;
hash += hash >> 11;
}
// Handle end case
if (rem) {
hash += (unsigned char)m_data[0];
hash ^= hash << 11;
hash += hash >> 17;
}
// Force "avalanching" of final 127 bits
hash ^= hash << 3;
hash += hash >> 5;
hash ^= hash << 2;
hash += hash >> 15;
hash ^= hash << 10;
// this avoids ever returning a hash code of 0, since that is used to
// signal "hash not computed yet", using a value that is likely to be
// effectively the same as 0 when the low bits are masked
if (hash == 0)
hash = 0x80000000;
return hash;
}
Vector<char> StringImpl::ascii() const
{
Vector<char> buffer(m_length + 1);
unsigned i;
for (i = 0; i != m_length; ++i) {
UChar c = m_data[i];
if ((c >= 0x20 && c < 0x7F) || c == 0x00)
buffer[i] = c;
else
buffer[i] = '?';
}
buffer[i] = '\0';
return buffer;
}
WTF::Unicode::Direction StringImpl::defaultWritingDirection() const
{
for (unsigned i = 0; i < m_length; ++i) {
WTF::Unicode::Direction charDirection = WTF::Unicode::direction(m_data[i]);
if (charDirection == WTF::Unicode::LeftToRight)
return WTF::Unicode::LeftToRight;
if (charDirection == WTF::Unicode::RightToLeft || charDirection == WTF::Unicode::RightToLeftArabic)
return WTF::Unicode::RightToLeft;
}
return WTF::Unicode::LeftToRight;
}
StringImpl::StringImpl(const Identifier& str)
{
init(reinterpret_cast<const UChar*>(str.data()), str.size());
}
StringImpl::StringImpl(const UString& str)
{
init(reinterpret_cast<const UChar*>(str.data()), str.size());
}
PassRefPtr<StringImpl> StringImpl::createStrippingNull(const UChar* str, unsigned len)
{
StringImpl* result = new StringImpl;
if (!len || !str)
return result;
UChar* strippedCopy = newUCharVector(len);
int strippedLength = 0;
for (unsigned i = 0; i < len; i++)
if (UChar c = str[i])
strippedCopy[strippedLength++] = c;
result->m_data = strippedCopy;
result->m_length = strippedLength;
return result;
}
StringImpl* StringImpl::newUninitialized(size_t length, UChar*& characterBuffer)
{
StringImpl* result = new StringImpl;
result->m_length = length;
if (length)
result->m_data = newUCharVector(length);
characterBuffer = result->m_data;
return result;
}
StringImpl* StringImpl::adopt(Vector<UChar>& buffer)
{
size_t size = buffer.size();
UChar* data = buffer.releaseBuffer();
data = static_cast<UChar*>(fastRealloc(data, size * sizeof(UChar)));
StringImpl* result = new StringImpl;
result->m_length = size;
result->m_data = data;
return result;
}
} // namespace WebCore