| /* |
| * Copyright (C) 2003, 2006 Apple Computer, Inc. All rights reserved. |
| * 2006 Rob Buis <buis@kde.org> |
| * Copyright (C) 2007 Eric Seidel <eric@webkit.org> |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| |
| #include "config.h" |
| #include "Path.h" |
| |
| #include "FloatPoint.h" |
| #include "FloatRect.h" |
| #include "PathTraversalState.h" |
| #include <math.h> |
| #include <wtf/MathExtras.h> |
| |
| const float QUARTER = 0.552f; // approximation of control point positions on a bezier |
| // to simulate a quarter of a circle. |
| namespace WebCore { |
| |
| static void pathLengthApplierFunction(void* info, const PathElement* element) |
| { |
| PathTraversalState& traversalState = *static_cast<PathTraversalState*>(info); |
| if (traversalState.m_success) |
| return; |
| traversalState.m_previous = traversalState.m_current; |
| FloatPoint* points = element->points; |
| float segmentLength = 0.0f; |
| switch (element->type) { |
| case PathElementMoveToPoint: |
| segmentLength = traversalState.moveTo(points[0]); |
| break; |
| case PathElementAddLineToPoint: |
| segmentLength = traversalState.lineTo(points[0]); |
| break; |
| case PathElementAddQuadCurveToPoint: |
| segmentLength = traversalState.quadraticBezierTo(points[0], points[1]); |
| break; |
| case PathElementAddCurveToPoint: |
| segmentLength = traversalState.cubicBezierTo(points[0], points[1], points[2]); |
| break; |
| case PathElementCloseSubpath: |
| segmentLength = traversalState.closeSubpath(); |
| break; |
| } |
| traversalState.m_totalLength += segmentLength; |
| if ((traversalState.m_action == PathTraversalState::TraversalPointAtLength || |
| traversalState.m_action == PathTraversalState::TraversalNormalAngleAtLength) && |
| (traversalState.m_totalLength >= traversalState.m_desiredLength)) { |
| FloatSize change = traversalState.m_current - traversalState.m_previous; |
| float slope = atan2f(change.height(), change.width()); |
| |
| if (traversalState.m_action == PathTraversalState::TraversalPointAtLength) { |
| float offset = traversalState.m_desiredLength - traversalState.m_totalLength; |
| traversalState.m_current.move(offset * cosf(slope), offset * sinf(slope)); |
| } else { |
| static const float rad2deg = 180.0f / piFloat; |
| traversalState.m_normalAngle = slope * rad2deg; |
| } |
| |
| traversalState.m_success = true; |
| } |
| } |
| |
| float Path::length() |
| { |
| PathTraversalState traversalState(PathTraversalState::TraversalTotalLength); |
| apply(&traversalState, pathLengthApplierFunction); |
| return traversalState.m_totalLength; |
| } |
| |
| FloatPoint Path::pointAtLength(float length, bool& ok) |
| { |
| PathTraversalState traversalState(PathTraversalState::TraversalPointAtLength); |
| traversalState.m_desiredLength = length; |
| apply(&traversalState, pathLengthApplierFunction); |
| ok = traversalState.m_success; |
| return traversalState.m_current; |
| } |
| |
| float Path::normalAngleAtLength(float length, bool& ok) |
| { |
| PathTraversalState traversalState(PathTraversalState::TraversalNormalAngleAtLength); |
| traversalState.m_desiredLength = length; |
| apply(&traversalState, pathLengthApplierFunction); |
| ok = traversalState.m_success; |
| return traversalState.m_normalAngle; |
| } |
| |
| Path Path::createRoundedRectangle(const FloatRect& rectangle, const FloatSize& roundingRadii) |
| { |
| Path path; |
| float x = rectangle.x(); |
| float y = rectangle.y(); |
| float width = rectangle.width(); |
| float height = rectangle.height(); |
| float rx = roundingRadii.width(); |
| float ry = roundingRadii.height(); |
| if (width <= 0.0f || height <= 0.0f) |
| return path; |
| |
| float dx = rx, dy = ry; |
| // If rx is greater than half of the width of the rectangle |
| // then set rx to half of the width (required in SVG spec) |
| if (dx > width * 0.5f) |
| dx = width * 0.5f; |
| |
| // If ry is greater than half of the height of the rectangle |
| // then set ry to half of the height (required in SVG spec) |
| if (dy > height * 0.5f) |
| dy = height * 0.5f; |
| |
| path.moveTo(FloatPoint(x + dx, y)); |
| |
| if (dx < width * 0.5f) |
| path.addLineTo(FloatPoint(x + width - rx, y)); |
| |
| path.addBezierCurveTo(FloatPoint(x + width - dx * (1 - QUARTER), y), FloatPoint(x + width, y + dy * (1 - QUARTER)), FloatPoint(x + width, y + dy)); |
| |
| if (dy < height * 0.5) |
| path.addLineTo(FloatPoint(x + width, y + height - dy)); |
| |
| path.addBezierCurveTo(FloatPoint(x + width, y + height - dy * (1 - QUARTER)), FloatPoint(x + width - dx * (1 - QUARTER), y + height), FloatPoint(x + width - dx, y + height)); |
| |
| if (dx < width * 0.5) |
| path.addLineTo(FloatPoint(x + dx, y + height)); |
| |
| path.addBezierCurveTo(FloatPoint(x + dx * (1 - QUARTER), y + height), FloatPoint(x, y + height - dy * (1 - QUARTER)), FloatPoint(x, y + height - dy)); |
| |
| if (dy < height * 0.5) |
| path.addLineTo(FloatPoint(x, y + dy)); |
| |
| path.addBezierCurveTo(FloatPoint(x, y + dy * (1 - QUARTER)), FloatPoint(x + dx * (1 - QUARTER), y), FloatPoint(x + dx, y)); |
| |
| path.closeSubpath(); |
| |
| return path; |
| } |
| |
| Path Path::createRoundedRectangle(const FloatRect& rectangle, const FloatSize& topLeftRadius, const FloatSize& topRightRadius, const FloatSize& bottomLeftRadius, const FloatSize& bottomRightRadius) |
| { |
| Path path; |
| |
| float width = rectangle.width(); |
| float height = rectangle.height(); |
| if (width <= 0.0 || height <= 0.0) |
| return path; |
| |
| if (width < topLeftRadius.width() + topRightRadius.width() |
| || width < bottomLeftRadius.width() + bottomRightRadius.width() |
| || height < topLeftRadius.height() + bottomLeftRadius.height() |
| || height < topRightRadius.height() + bottomRightRadius.height()) |
| // If all the radii cannot be accommodated, return a rect. |
| return createRectangle(rectangle); |
| |
| float x = rectangle.x(); |
| float y = rectangle.y(); |
| |
| path.moveTo(FloatPoint(x + topLeftRadius.width(), y)); |
| |
| path.addLineTo(FloatPoint(x + width - topRightRadius.width(), y)); |
| |
| path.addBezierCurveTo(FloatPoint(x + width - topRightRadius.width() * (1 - QUARTER), y), FloatPoint(x + width, y + topRightRadius.height() * (1 - QUARTER)), FloatPoint(x + width, y + topRightRadius.height())); |
| |
| path.addLineTo(FloatPoint(x + width, y + height - bottomRightRadius.height())); |
| |
| path.addBezierCurveTo(FloatPoint(x + width, y + height - bottomRightRadius.height() * (1 - QUARTER)), FloatPoint(x + width - bottomRightRadius.width() * (1 - QUARTER), y + height), FloatPoint(x + width - bottomRightRadius.width(), y + height)); |
| |
| path.addLineTo(FloatPoint(x + bottomLeftRadius.width(), y + height)); |
| |
| path.addBezierCurveTo(FloatPoint(x + bottomLeftRadius.width() * (1 - QUARTER), y + height), FloatPoint(x, y + height - bottomLeftRadius.height() * (1 - QUARTER)), FloatPoint(x, y + height - bottomLeftRadius.height())); |
| |
| path.addLineTo(FloatPoint(x, y + topLeftRadius.height())); |
| |
| path.addBezierCurveTo(FloatPoint(x, y + topLeftRadius.height() * (1 - QUARTER)), FloatPoint(x + topLeftRadius.width() * (1 - QUARTER), y), FloatPoint(x + topLeftRadius.width(), y)); |
| |
| path.closeSubpath(); |
| |
| return path; |
| } |
| |
| Path Path::createRectangle(const FloatRect& rectangle) |
| { |
| Path path; |
| float x = rectangle.x(); |
| float y = rectangle.y(); |
| float width = rectangle.width(); |
| float height = rectangle.height(); |
| if (width <= 0.0f || height <= 0.0f) |
| return path; |
| |
| path.moveTo(FloatPoint(x, y)); |
| path.addLineTo(FloatPoint(x + width, y)); |
| path.addLineTo(FloatPoint(x + width, y + height)); |
| path.addLineTo(FloatPoint(x, y + height)); |
| path.closeSubpath(); |
| |
| return path; |
| } |
| |
| Path Path::createEllipse(const FloatPoint& center, float rx, float ry) |
| { |
| float cx = center.x(); |
| float cy = center.y(); |
| Path path; |
| if (rx <= 0.0f || ry <= 0.0f) |
| return path; |
| |
| float x = cx; |
| float y = cy; |
| |
| unsigned step = 0, num = 100; |
| bool running = true; |
| while (running) |
| { |
| if (step == num) |
| { |
| running = false; |
| break; |
| } |
| |
| float angle = static_cast<float>(step) / static_cast<float>(num) * 2.0f * piFloat; |
| x = cx + cosf(angle) * rx; |
| y = cy + sinf(angle) * ry; |
| |
| step++; |
| if (step == 1) |
| path.moveTo(FloatPoint(x, y)); |
| else |
| path.addLineTo(FloatPoint(x, y)); |
| } |
| |
| path.closeSubpath(); |
| |
| return path; |
| } |
| |
| Path Path::createCircle(const FloatPoint& center, float r) |
| { |
| return createEllipse(center, r, r); |
| } |
| |
| Path Path::createLine(const FloatPoint& start, const FloatPoint& end) |
| { |
| Path path; |
| if (start.x() == end.x() && start.y() == end.y()) |
| return path; |
| |
| path.moveTo(start); |
| path.addLineTo(end); |
| |
| return path; |
| } |
| |
| } |