blob: d75547140fce7b5647d341258304b3496692fd75 [file] [log] [blame]
/*
* Copyright (C) 2011, 2013 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#if ENABLE(DFG_JIT)
#include "DFGOSREntry.h"
#include "CallFrame.h"
#include "CodeBlock.h"
#include "DFGJITCode.h"
#include "DFGNode.h"
#include "JIT.h"
#include "JSStackInlines.h"
#include "Operations.h"
namespace JSC { namespace DFG {
void* prepareOSREntry(ExecState* exec, CodeBlock* codeBlock, unsigned bytecodeIndex)
{
ASSERT(JITCode::isOptimizingJIT(codeBlock->jitType()));
ASSERT(codeBlock->alternative());
ASSERT(codeBlock->alternative()->jitType() == JITCode::BaselineJIT);
ASSERT(!codeBlock->jitCodeMap());
if (!Options::enableOSREntryToDFG())
return 0;
if (Options::verboseOSR()) {
dataLog(
"DFG OSR in ", *codeBlock->alternative(), " -> ", *codeBlock,
" from bc#", bytecodeIndex, "\n");
}
VM* vm = &exec->vm();
sanitizeStackForVM(vm);
if (codeBlock->jitType() != JITCode::DFGJIT) {
RELEASE_ASSERT(codeBlock->jitType() == JITCode::FTLJIT);
// When will this happen? We could have:
//
// - An exit from the FTL JIT into the baseline JIT followed by an attempt
// to reenter. We're fine with allowing this to fail. If it happens
// enough we'll just reoptimize. It basically means that the OSR exit cost
// us dearly and so reoptimizing is the right thing to do.
//
// - We have recursive code with hot loops. Consider that foo has a hot loop
// that calls itself. We have two foo's on the stack, lets call them foo1
// and foo2, with foo1 having called foo2 from foo's hot loop. foo2 gets
// optimized all the way into the FTL. Then it returns into foo1, and then
// foo1 wants to get optimized. It might reach this conclusion from its
// hot loop and attempt to OSR enter. And we'll tell it that it can't. It
// might be worth addressing this case, but I just think this case will
// be super rare. For now, if it does happen, it'll cause some compilation
// thrashing.
if (Options::verboseOSR())
dataLog(" OSR failed because the target code block is not DFG.\n");
return 0;
}
JITCode* jitCode = codeBlock->jitCode()->dfg();
OSREntryData* entry = jitCode->osrEntryDataForBytecodeIndex(bytecodeIndex);
if (!entry) {
if (Options::verboseOSR())
dataLogF(" OSR failed because the entrypoint was optimized out.\n");
return 0;
}
ASSERT(entry->m_bytecodeIndex == bytecodeIndex);
// The code below checks if it is safe to perform OSR entry. It may find
// that it is unsafe to do so, for any number of reasons, which are documented
// below. If the code decides not to OSR then it returns 0, and it's the caller's
// responsibility to patch up the state in such a way as to ensure that it's
// both safe and efficient to continue executing baseline code for now. This
// should almost certainly include calling either codeBlock->optimizeAfterWarmUp()
// or codeBlock->dontOptimizeAnytimeSoon().
// 1) Verify predictions. If the predictions are inconsistent with the actual
// values, then OSR entry is not possible at this time. It's tempting to
// assume that we could somehow avoid this case. We can certainly avoid it
// for first-time loop OSR - that is, OSR into a CodeBlock that we have just
// compiled. Then we are almost guaranteed that all of the predictions will
// check out. It would be pretty easy to make that a hard guarantee. But
// then there would still be the case where two call frames with the same
// baseline CodeBlock are on the stack at the same time. The top one
// triggers compilation and OSR. In that case, we may no longer have
// accurate value profiles for the one deeper in the stack. Hence, when we
// pop into the CodeBlock that is deeper on the stack, we might OSR and
// realize that the predictions are wrong. Probably, in most cases, this is
// just an anomaly in the sense that the older CodeBlock simply went off
// into a less-likely path. So, the wisest course of action is to simply not
// OSR at this time.
for (size_t argument = 0; argument < entry->m_expectedValues.numberOfArguments(); ++argument) {
if (argument >= exec->argumentCountIncludingThis()) {
if (Options::verboseOSR()) {
dataLogF(" OSR failed because argument %zu was not passed, expected ", argument);
entry->m_expectedValues.argument(argument).dump(WTF::dataFile());
dataLogF(".\n");
}
return 0;
}
JSValue value;
if (!argument)
value = exec->hostThisValue();
else
value = exec->argument(argument - 1);
if (!entry->m_expectedValues.argument(argument).validate(value)) {
if (Options::verboseOSR()) {
dataLog(
" OSR failed because argument ", argument, " is ", value,
", expected ", entry->m_expectedValues.argument(argument), ".\n");
}
return 0;
}
}
for (size_t local = 0; local < entry->m_expectedValues.numberOfLocals(); ++local) {
int localOffset = virtualRegisterForLocal(local).offset();
if (entry->m_localsForcedDouble.get(local)) {
if (!exec->registers()[localOffset].jsValue().isNumber()) {
if (Options::verboseOSR()) {
dataLog(
" OSR failed because variable ", localOffset, " is ",
exec->registers()[localOffset].jsValue(), ", expected number.\n");
}
return 0;
}
continue;
}
if (entry->m_localsForcedMachineInt.get(local)) {
if (!exec->registers()[localOffset].jsValue().isMachineInt()) {
if (Options::verboseOSR()) {
dataLog(
" OSR failed because variable ", localOffset, " is ",
exec->registers()[localOffset].jsValue(), ", expected ",
"machine int.\n");
}
return 0;
}
continue;
}
if (!entry->m_expectedValues.local(local).validate(exec->registers()[localOffset].jsValue())) {
if (Options::verboseOSR()) {
dataLog(
" OSR failed because variable ", localOffset, " is ",
exec->registers()[localOffset].jsValue(), ", expected ",
entry->m_expectedValues.local(local), ".\n");
}
return 0;
}
}
// 2) Check the stack height. The DFG JIT may require a taller stack than the
// baseline JIT, in some cases. If we can't grow the stack, then don't do
// OSR right now. That's the only option we have unless we want basic block
// boundaries to start throwing RangeErrors. Although that would be possible,
// it seems silly: you'd be diverting the program to error handling when it
// would have otherwise just kept running albeit less quickly.
unsigned frameSize = jitCode->common.requiredRegisterCountForExecutionAndExit();
if (!vm->interpreter->stack().ensureCapacityFor(&exec->registers()[virtualRegisterForLocal(frameSize - 1).offset()])) {
if (Options::verboseOSR())
dataLogF(" OSR failed because stack growth failed.\n");
return 0;
}
if (Options::verboseOSR())
dataLogF(" OSR should succeed.\n");
// 3) Perform data format conversions.
for (size_t local = 0; local < entry->m_expectedValues.numberOfLocals(); ++local) {
if (entry->m_localsForcedDouble.get(local))
*bitwise_cast<double*>(exec->registers() + virtualRegisterForLocal(local).offset()) = exec->registers()[virtualRegisterForLocal(local).offset()].jsValue().asNumber();
if (entry->m_localsForcedMachineInt.get(local))
*bitwise_cast<int64_t*>(exec->registers() + virtualRegisterForLocal(local).offset()) = exec->registers()[virtualRegisterForLocal(local).offset()].jsValue().asMachineInt() << JSValue::int52ShiftAmount;
}
// 4) Reshuffle those registers that need reshuffling.
Vector<EncodedJSValue> temporaryLocals(entry->m_reshufflings.size());
EncodedJSValue* registers = bitwise_cast<EncodedJSValue*>(exec->registers());
for (unsigned i = entry->m_reshufflings.size(); i--;)
temporaryLocals[i] = registers[entry->m_reshufflings[i].fromOffset];
for (unsigned i = entry->m_reshufflings.size(); i--;)
registers[entry->m_reshufflings[i].toOffset] = temporaryLocals[i];
// 5) Clear those parts of the call frame that the DFG ain't using. This helps GC on some
// programs by eliminating some stale pointer pathologies.
#if 0 // FIXME: CStack - This needs to be verified before being enabled
for (unsigned i = frameSize; i--;) {
if (entry->m_machineStackUsed.get(i))
continue;
registers[virtualRegisterForLocal(i).offset()] = JSValue::encode(JSValue());
}
#endif
// 6) Fix the call frame.
exec->setCodeBlock(codeBlock);
// 7) Find and return the destination machine code address.
void* result = codeBlock->jitCode()->executableAddressAtOffset(entry->m_machineCodeOffset);
if (Options::verboseOSR())
dataLogF(" OSR returning machine code address %p.\n", result);
return result;
}
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)