| /* |
| * Copyright (C) 2020 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS |
| * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
| * THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "SimpleRange.h" |
| |
| #include "CharacterData.h" |
| #include "NodeTraversal.h" |
| #include "ShadowRoot.h" |
| |
| namespace WebCore { |
| |
| SimpleRange::SimpleRange(const BoundaryPoint& start, const BoundaryPoint& end) |
| : start(start) |
| , end(end) |
| { |
| } |
| |
| SimpleRange::SimpleRange(BoundaryPoint&& start, BoundaryPoint&& end) |
| : start(WTFMove(start)) |
| , end(WTFMove(end)) |
| { |
| } |
| |
| bool operator==(const SimpleRange& a, const SimpleRange& b) |
| { |
| return a.start == b.start && a.end == b.end; |
| } |
| |
| // FIXME: Create BoundaryPoint.cpp and move this there. |
| Optional<BoundaryPoint> makeBoundaryPointBeforeNode(Node& node) |
| { |
| auto parent = node.parentNode(); |
| if (!parent) |
| return WTF::nullopt; |
| return BoundaryPoint { *parent, node.computeNodeIndex() }; |
| } |
| |
| // FIXME: Create BoundaryPoint.cpp and move this there. |
| Optional<BoundaryPoint> makeBoundaryPointAfterNode(Node& node) |
| { |
| auto parent = node.parentNode(); |
| if (!parent) |
| return WTF::nullopt; |
| return BoundaryPoint { *parent, node.computeNodeIndex() + 1 }; |
| } |
| |
| // FIXME: Create BoundaryPoint.cpp and move this there. |
| static bool isOffsetBeforeChild(ContainerNode& container, unsigned offset, Node& child) |
| { |
| if (!offset) |
| return true; |
| // If the container is not the parent, the child is part of a shadow tree, which we sort between offset 0 and offset 1. |
| if (child.parentNode() != &container) |
| return false; |
| unsigned currentOffset = 0; |
| for (auto currentChild = container.firstChild(); currentChild && currentChild != &child; currentChild = currentChild->nextSibling()) { |
| if (offset <= ++currentOffset) |
| return true; |
| } |
| return false; |
| } |
| |
| // FIXME: Create BoundaryPoint.cpp and move this there. |
| // FIXME: Once we move to C++20, replace with the C++20 <=> operator. |
| // FIXME: This could return std::strong_ordering if we had that, or the equivalent. |
| static PartialOrdering order(unsigned a, unsigned b) |
| { |
| if (a < b) |
| return PartialOrdering::less; |
| if (a > b) |
| return PartialOrdering::greater; |
| return PartialOrdering::equivalent; |
| } |
| |
| // FIXME: Create BoundaryPoint.cpp and move this there. |
| PartialOrdering documentOrder(const BoundaryPoint& a, const BoundaryPoint& b) |
| { |
| if (a.container.ptr() == b.container.ptr()) |
| return order(a.offset, b.offset); |
| |
| for (auto ancestor = b.container.ptr(); ancestor; ) { |
| auto nextAncestor = ancestor->parentInComposedTree(); |
| if (nextAncestor == a.container.ptr()) |
| return isOffsetBeforeChild(*nextAncestor, a.offset, *ancestor) ? PartialOrdering::less : PartialOrdering::greater; |
| ancestor = nextAncestor; |
| } |
| |
| for (auto ancestor = a.container.ptr(); ancestor; ) { |
| auto nextAncestor = ancestor->parentInComposedTree(); |
| if (nextAncestor == b.container.ptr()) |
| return isOffsetBeforeChild(*nextAncestor, b.offset, *ancestor) ? PartialOrdering::greater : PartialOrdering::less; |
| ancestor = nextAncestor; |
| } |
| |
| return documentOrder(a.container, b.container); |
| } |
| |
| Optional<SimpleRange> makeRangeSelectingNode(Node& node) |
| { |
| auto parent = node.parentNode(); |
| if (!parent) |
| return WTF::nullopt; |
| unsigned offset = node.computeNodeIndex(); |
| return SimpleRange { { *parent, offset }, { *parent, offset + 1 } }; |
| } |
| |
| SimpleRange makeRangeSelectingNodeContents(Node& node) |
| { |
| return { makeBoundaryPointBeforeNodeContents(node), makeBoundaryPointAfterNodeContents(node) }; |
| } |
| |
| OffsetRange characterDataOffsetRange(const SimpleRange& range, const Node& node) |
| { |
| return { &node == range.start.container.ptr() ? range.start.offset : 0, |
| &node == range.end.container.ptr() ? range.end.offset : std::numeric_limits<unsigned>::max() }; |
| } |
| |
| static RefPtr<Node> firstIntersectingNode(const SimpleRange& range) |
| { |
| if (range.start.container->isCharacterDataNode()) |
| return range.start.container.ptr(); |
| if (auto child = range.start.container->traverseToChildAt(range.start.offset)) |
| return child; |
| return NodeTraversal::nextSkippingChildren(range.start.container); |
| } |
| |
| static RefPtr<Node> nodePastLastIntersectingNode(const SimpleRange& range) |
| { |
| if (range.end.container->isCharacterDataNode()) |
| return NodeTraversal::nextSkippingChildren(range.end.container); |
| if (auto child = range.end.container->traverseToChildAt(range.end.offset)) |
| return child; |
| return NodeTraversal::nextSkippingChildren(range.end.container); |
| } |
| |
| static RefPtr<Node> firstIntersectingNodeWithDeprecatedZeroOffsetStartQuirk(const SimpleRange& range) |
| { |
| if (range.start.container->isCharacterDataNode()) |
| return range.start.container.ptr(); |
| if (auto child = range.start.container->traverseToChildAt(range.start.offset)) |
| return child; |
| if (!range.start.offset) |
| return range.start.container.ptr(); |
| return NodeTraversal::nextSkippingChildren(range.start.container); |
| } |
| |
| IntersectingNodeIterator::IntersectingNodeIterator(const SimpleRange& range) |
| : m_node(firstIntersectingNode(range)) |
| , m_pastLastNode(nodePastLastIntersectingNode(range)) |
| { |
| enforceEndInvariant(); |
| } |
| |
| IntersectingNodeIterator::IntersectingNodeIterator(const SimpleRange& range, QuirkFlag) |
| : m_node(firstIntersectingNodeWithDeprecatedZeroOffsetStartQuirk(range)) |
| , m_pastLastNode(nodePastLastIntersectingNode(range)) |
| { |
| enforceEndInvariant(); |
| } |
| |
| void IntersectingNodeIterator::advance() |
| { |
| ASSERT(m_node); |
| m_node = NodeTraversal::next(*m_node); |
| enforceEndInvariant(); |
| } |
| |
| void IntersectingNodeIterator::advanceSkippingChildren() |
| { |
| ASSERT(m_node); |
| m_node = m_node->contains(m_pastLastNode.get()) ? nullptr : NodeTraversal::nextSkippingChildren(*m_node); |
| enforceEndInvariant(); |
| } |
| |
| void IntersectingNodeIterator::enforceEndInvariant() |
| { |
| if (m_node == m_pastLastNode || !m_node) { |
| m_node = nullptr; |
| m_pastLastNode = nullptr; |
| } |
| } |
| |
| RefPtr<Node> commonInclusiveAncestor(const SimpleRange& range) |
| { |
| return commonInclusiveAncestor(range.start.container, range.end.container); |
| } |
| |
| bool isPointInRange(const SimpleRange& range, const BoundaryPoint& point) |
| { |
| return is_lteq(documentOrder(range.start, point)) && is_lteq(documentOrder(point, range.end)); |
| } |
| |
| bool isPointInRange(const SimpleRange& range, const Optional<BoundaryPoint>& point) |
| { |
| return point && isPointInRange(range, *point); |
| } |
| |
| PartialOrdering documentOrder(const SimpleRange& range, const BoundaryPoint& point) |
| { |
| if (auto order = documentOrder(range.start, point); !is_lt(order)) |
| return order; |
| if (auto order = documentOrder(range.end, point); !is_gt(order)) |
| return order; |
| return PartialOrdering::equivalent; |
| } |
| |
| PartialOrdering documentOrder(const BoundaryPoint& point, const SimpleRange& range) |
| { |
| if (auto order = documentOrder(point, range.start); !is_gt(order)) |
| return order; |
| if (auto order = documentOrder(point, range.end); !is_lt(order)) |
| return order; |
| return PartialOrdering::equivalent; |
| } |
| |
| bool contains(const SimpleRange& outerRange, const SimpleRange& innerRange) |
| { |
| return is_lteq(documentOrder(outerRange.start, innerRange.start)) && is_gteq(documentOrder(outerRange.end, innerRange.end)); |
| } |
| |
| bool intersects(const SimpleRange& a, const SimpleRange& b) |
| { |
| return is_lteq(documentOrder(a.start, b.end)) && is_lteq(documentOrder(b.start, a.end)); |
| } |
| |
| SimpleRange unionRange(const SimpleRange& a, const SimpleRange& b) |
| { |
| auto& start = is_lteq(documentOrder(a.start, b.start)) ? a : b; |
| auto& end = is_lteq(documentOrder(a.end, b.end)) ? b : a; |
| return { start.start, end.end }; |
| } |
| |
| bool contains(const SimpleRange& range, const Node& node) |
| { |
| // FIXME: Consider a more efficient algorithm that avoids always computing the node index. |
| // FIXME: Does this const_cast point to a design problem? |
| auto nodeRange = makeRangeSelectingNode(const_cast<Node&>(node)); |
| return nodeRange && contains(range, *nodeRange); |
| } |
| |
| bool intersects(const SimpleRange& range, const Node& node) |
| { |
| // FIXME: Consider a more efficient algorithm that avoids always computing the node index. |
| // FIXME: Does this const_cast point to a design problem? |
| auto nodeRange = makeRangeSelectingNode(const_cast<Node&>(node)); |
| if (!nodeRange) |
| return node.contains(range.start.container.ptr()); |
| return is_lt(documentOrder(nodeRange->start, range.end)) && is_lt(documentOrder(range.start, nodeRange->end)); |
| |
| } |
| |
| } |