blob: dbff2d71761fcedc16bf3d12c455c47e64e82977 [file] [log] [blame]
/*
* Copyright (C) 2012-2019 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#if ENABLE(ASSEMBLER)
#include "ARM64Assembler.h"
#include "AbstractMacroAssembler.h"
#include <wtf/MathExtras.h>
#include <wtf/Optional.h>
namespace JSC {
using Assembler = TARGET_ASSEMBLER;
class Reg;
class MacroAssemblerARM64 : public AbstractMacroAssembler<Assembler> {
public:
static constexpr unsigned numGPRs = 32;
static constexpr unsigned numFPRs = 32;
static constexpr RegisterID dataTempRegister = ARM64Registers::ip0;
static constexpr RegisterID memoryTempRegister = ARM64Registers::ip1;
RegisterID scratchRegister()
{
RELEASE_ASSERT(m_allowScratchRegister);
return getCachedDataTempRegisterIDAndInvalidate();
}
protected:
static constexpr ARM64Registers::FPRegisterID fpTempRegister = ARM64Registers::q31;
static constexpr Assembler::SetFlags S = Assembler::S;
static constexpr int64_t maskHalfWord0 = 0xffffl;
static constexpr int64_t maskHalfWord1 = 0xffff0000l;
static constexpr int64_t maskUpperWord = 0xffffffff00000000l;
static constexpr size_t INSTRUCTION_SIZE = 4;
// N instructions to load the pointer + 1 call instruction.
static constexpr ptrdiff_t REPATCH_OFFSET_CALL_TO_POINTER = -((Assembler::MAX_POINTER_BITS / 16 + 1) * INSTRUCTION_SIZE);
public:
MacroAssemblerARM64()
: m_dataMemoryTempRegister(this, dataTempRegister)
, m_cachedMemoryTempRegister(this, memoryTempRegister)
, m_makeJumpPatchable(false)
{
}
typedef Assembler::LinkRecord LinkRecord;
typedef Assembler::JumpType JumpType;
typedef Assembler::JumpLinkType JumpLinkType;
typedef Assembler::Condition Condition;
static constexpr Assembler::Condition DefaultCondition = Assembler::ConditionInvalid;
static constexpr Assembler::JumpType DefaultJump = Assembler::JumpNoConditionFixedSize;
Vector<LinkRecord, 0, UnsafeVectorOverflow>& jumpsToLink() { return m_assembler.jumpsToLink(); }
static bool canCompact(JumpType jumpType) { return Assembler::canCompact(jumpType); }
static JumpLinkType computeJumpType(JumpType jumpType, const uint8_t* from, const uint8_t* to) { return Assembler::computeJumpType(jumpType, from, to); }
static JumpLinkType computeJumpType(LinkRecord& record, const uint8_t* from, const uint8_t* to) { return Assembler::computeJumpType(record, from, to); }
static int jumpSizeDelta(JumpType jumpType, JumpLinkType jumpLinkType) { return Assembler::jumpSizeDelta(jumpType, jumpLinkType); }
template <Assembler::CopyFunction copy>
static void link(LinkRecord& record, uint8_t* from, const uint8_t* fromInstruction, uint8_t* to) { return Assembler::link<copy>(record, from, fromInstruction, to); }
static constexpr Scale ScalePtr = TimesEight;
static bool isCompactPtrAlignedAddressOffset(ptrdiff_t value)
{
// This is the largest 32-bit access allowed, aligned to 64-bit boundary.
return !(value & ~0x3ff8);
}
enum RelationalCondition {
Equal = Assembler::ConditionEQ,
NotEqual = Assembler::ConditionNE,
Above = Assembler::ConditionHI,
AboveOrEqual = Assembler::ConditionHS,
Below = Assembler::ConditionLO,
BelowOrEqual = Assembler::ConditionLS,
GreaterThan = Assembler::ConditionGT,
GreaterThanOrEqual = Assembler::ConditionGE,
LessThan = Assembler::ConditionLT,
LessThanOrEqual = Assembler::ConditionLE
};
enum ResultCondition {
Overflow = Assembler::ConditionVS,
Signed = Assembler::ConditionMI,
PositiveOrZero = Assembler::ConditionPL,
Zero = Assembler::ConditionEQ,
NonZero = Assembler::ConditionNE
};
enum ZeroCondition {
IsZero = Assembler::ConditionEQ,
IsNonZero = Assembler::ConditionNE
};
enum DoubleCondition {
// These conditions will only evaluate to true if the comparison is ordered - i.e. neither operand is NaN.
DoubleEqual = Assembler::ConditionEQ,
DoubleNotEqual = Assembler::ConditionVC, // Not the right flag! check for this & handle differently.
DoubleGreaterThan = Assembler::ConditionGT,
DoubleGreaterThanOrEqual = Assembler::ConditionGE,
DoubleLessThan = Assembler::ConditionLO,
DoubleLessThanOrEqual = Assembler::ConditionLS,
// If either operand is NaN, these conditions always evaluate to true.
DoubleEqualOrUnordered = Assembler::ConditionVS, // Not the right flag! check for this & handle differently.
DoubleNotEqualOrUnordered = Assembler::ConditionNE,
DoubleGreaterThanOrUnordered = Assembler::ConditionHI,
DoubleGreaterThanOrEqualOrUnordered = Assembler::ConditionHS,
DoubleLessThanOrUnordered = Assembler::ConditionLT,
DoubleLessThanOrEqualOrUnordered = Assembler::ConditionLE,
};
static constexpr RegisterID stackPointerRegister = ARM64Registers::sp;
static constexpr RegisterID framePointerRegister = ARM64Registers::fp;
static constexpr RegisterID linkRegister = ARM64Registers::lr;
// FIXME: Get reasonable implementations for these
static bool shouldBlindForSpecificArch(uint32_t value) { return value >= 0x00ffffff; }
static bool shouldBlindForSpecificArch(uint64_t value) { return value >= 0x00ffffff; }
// Integer operations:
void add32(RegisterID a, RegisterID b, RegisterID dest)
{
ASSERT(a != ARM64Registers::sp && b != ARM64Registers::sp);
m_assembler.add<32>(dest, a, b);
}
void add32(RegisterID src, RegisterID dest)
{
m_assembler.add<32>(dest, dest, src);
}
void add32(TrustedImm32 imm, RegisterID dest)
{
add32(imm, dest, dest);
}
void add32(TrustedImm32 imm, RegisterID src, RegisterID dest)
{
if (isUInt12(imm.m_value))
m_assembler.add<32>(dest, src, UInt12(imm.m_value));
else if (isUInt12(-imm.m_value))
m_assembler.sub<32>(dest, src, UInt12(-imm.m_value));
else if (src != dest) {
move(imm, dest);
add32(src, dest);
} else {
move(imm, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.add<32>(dest, src, dataTempRegister);
}
}
void add32(TrustedImm32 imm, Address address)
{
load32(address, getCachedDataTempRegisterIDAndInvalidate());
if (isUInt12(imm.m_value))
m_assembler.add<32>(dataTempRegister, dataTempRegister, UInt12(imm.m_value));
else if (isUInt12(-imm.m_value))
m_assembler.sub<32>(dataTempRegister, dataTempRegister, UInt12(-imm.m_value));
else {
move(imm, getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.add<32>(dataTempRegister, dataTempRegister, memoryTempRegister);
}
store32(dataTempRegister, address);
}
void add32(TrustedImm32 imm, AbsoluteAddress address)
{
load32(address.m_ptr, getCachedDataTempRegisterIDAndInvalidate());
if (isUInt12(imm.m_value)) {
m_assembler.add<32>(dataTempRegister, dataTempRegister, UInt12(imm.m_value));
store32(dataTempRegister, address.m_ptr);
return;
}
if (isUInt12(-imm.m_value)) {
m_assembler.sub<32>(dataTempRegister, dataTempRegister, UInt12(-imm.m_value));
store32(dataTempRegister, address.m_ptr);
return;
}
move(imm, getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.add<32>(dataTempRegister, dataTempRegister, memoryTempRegister);
store32(dataTempRegister, address.m_ptr);
}
void add32(Address src, RegisterID dest)
{
load32(src, getCachedDataTempRegisterIDAndInvalidate());
add32(dataTempRegister, dest);
}
void add64(RegisterID a, RegisterID b, RegisterID dest)
{
ASSERT(a != ARM64Registers::sp || b != ARM64Registers::sp);
if (b == ARM64Registers::sp)
std::swap(a, b);
m_assembler.add<64>(dest, a, b);
}
void add64(RegisterID src, RegisterID dest)
{
if (src == ARM64Registers::sp)
m_assembler.add<64>(dest, src, dest);
else
m_assembler.add<64>(dest, dest, src);
}
void add64(TrustedImm32 imm, RegisterID dest)
{
if (isUInt12(imm.m_value)) {
m_assembler.add<64>(dest, dest, UInt12(imm.m_value));
return;
}
if (isUInt12(-imm.m_value)) {
m_assembler.sub<64>(dest, dest, UInt12(-imm.m_value));
return;
}
signExtend32ToPtr(imm, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.add<64>(dest, dest, dataTempRegister);
}
void add64(TrustedImm64 imm, RegisterID dest)
{
intptr_t immediate = imm.m_value;
if (isUInt12(immediate)) {
m_assembler.add<64>(dest, dest, UInt12(static_cast<int32_t>(immediate)));
return;
}
if (isUInt12(-immediate)) {
m_assembler.sub<64>(dest, dest, UInt12(static_cast<int32_t>(-immediate)));
return;
}
move(imm, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.add<64>(dest, dest, dataTempRegister);
}
void add64(TrustedImm32 imm, RegisterID src, RegisterID dest)
{
if (isUInt12(imm.m_value)) {
m_assembler.add<64>(dest, src, UInt12(imm.m_value));
return;
}
if (isUInt12(-imm.m_value)) {
m_assembler.sub<64>(dest, src, UInt12(-imm.m_value));
return;
}
signExtend32ToPtr(imm, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.add<64>(dest, src, dataTempRegister);
}
void add64(TrustedImm32 imm, Address address)
{
load64(address, getCachedDataTempRegisterIDAndInvalidate());
if (isUInt12(imm.m_value))
m_assembler.add<64>(dataTempRegister, dataTempRegister, UInt12(imm.m_value));
else if (isUInt12(-imm.m_value))
m_assembler.sub<64>(dataTempRegister, dataTempRegister, UInt12(-imm.m_value));
else {
signExtend32ToPtr(imm, getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.add<64>(dataTempRegister, dataTempRegister, memoryTempRegister);
}
store64(dataTempRegister, address);
}
void add64(TrustedImm32 imm, AbsoluteAddress address)
{
load64(address.m_ptr, getCachedDataTempRegisterIDAndInvalidate());
if (isUInt12(imm.m_value)) {
m_assembler.add<64>(dataTempRegister, dataTempRegister, UInt12(imm.m_value));
store64(dataTempRegister, address.m_ptr);
return;
}
if (isUInt12(-imm.m_value)) {
m_assembler.sub<64>(dataTempRegister, dataTempRegister, UInt12(-imm.m_value));
store64(dataTempRegister, address.m_ptr);
return;
}
signExtend32ToPtr(imm, getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.add<64>(dataTempRegister, dataTempRegister, memoryTempRegister);
store64(dataTempRegister, address.m_ptr);
}
void addPtrNoFlags(TrustedImm32 imm, RegisterID srcDest)
{
add64(imm, srcDest);
}
void add64(Address src, RegisterID dest)
{
load64(src, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.add<64>(dest, dest, dataTempRegister);
}
void add64(AbsoluteAddress src, RegisterID dest)
{
load64(src.m_ptr, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.add<64>(dest, dest, dataTempRegister);
}
void and32(RegisterID src, RegisterID dest)
{
and32(dest, src, dest);
}
void and32(RegisterID op1, RegisterID op2, RegisterID dest)
{
m_assembler.and_<32>(dest, op1, op2);
}
void and32(TrustedImm32 imm, RegisterID dest)
{
and32(imm, dest, dest);
}
void and32(TrustedImm32 imm, RegisterID src, RegisterID dest)
{
LogicalImmediate logicalImm = LogicalImmediate::create32(imm.m_value);
if (logicalImm.isValid()) {
m_assembler.and_<32>(dest, src, logicalImm);
return;
}
move(imm, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.and_<32>(dest, src, dataTempRegister);
}
void and32(Address src, RegisterID dest)
{
load32(src, getCachedDataTempRegisterIDAndInvalidate());
and32(dataTempRegister, dest);
}
void and16(Address src, RegisterID dest)
{
load16(src, getCachedDataTempRegisterIDAndInvalidate());
and32(dataTempRegister, dest);
}
void and64(RegisterID src1, RegisterID src2, RegisterID dest)
{
m_assembler.and_<64>(dest, src1, src2);
}
void and64(TrustedImm64 imm, RegisterID src, RegisterID dest)
{
LogicalImmediate logicalImm = LogicalImmediate::create64(imm.m_value);
if (logicalImm.isValid()) {
m_assembler.and_<64>(dest, src, logicalImm);
return;
}
move(imm, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.and_<64>(dest, src, dataTempRegister);
}
void and64(RegisterID src, RegisterID dest)
{
m_assembler.and_<64>(dest, dest, src);
}
void and64(TrustedImm32 imm, RegisterID dest)
{
LogicalImmediate logicalImm = LogicalImmediate::create64(static_cast<intptr_t>(static_cast<int64_t>(imm.m_value)));
if (logicalImm.isValid()) {
m_assembler.and_<64>(dest, dest, logicalImm);
return;
}
signExtend32ToPtr(imm, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.and_<64>(dest, dest, dataTempRegister);
}
void and64(TrustedImmPtr imm, RegisterID dest)
{
LogicalImmediate logicalImm = LogicalImmediate::create64(reinterpret_cast<uint64_t>(imm.m_value));
if (logicalImm.isValid()) {
m_assembler.and_<64>(dest, dest, logicalImm);
return;
}
move(imm, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.and_<64>(dest, dest, dataTempRegister);
}
void countLeadingZeros32(RegisterID src, RegisterID dest)
{
m_assembler.clz<32>(dest, src);
}
void countLeadingZeros64(RegisterID src, RegisterID dest)
{
m_assembler.clz<64>(dest, src);
}
void countTrailingZeros32(RegisterID src, RegisterID dest)
{
// Arm does not have a count trailing zeros only a count leading zeros.
m_assembler.rbit<32>(dest, src);
m_assembler.clz<32>(dest, dest);
}
void countTrailingZeros64(RegisterID src, RegisterID dest)
{
// Arm does not have a count trailing zeros only a count leading zeros.
m_assembler.rbit<64>(dest, src);
m_assembler.clz<64>(dest, dest);
}
void byteSwap16(RegisterID dst)
{
m_assembler.rev16<32>(dst, dst);
zeroExtend16To32(dst, dst);
}
void byteSwap32(RegisterID dst)
{
m_assembler.rev<32>(dst, dst);
}
void byteSwap64(RegisterID dst)
{
m_assembler.rev<64>(dst, dst);
}
// Only used for testing purposes.
void illegalInstruction()
{
m_assembler.illegalInstruction();
}
void lshift32(RegisterID src, RegisterID shiftAmount, RegisterID dest)
{
m_assembler.lsl<32>(dest, src, shiftAmount);
}
void lshift32(RegisterID src, TrustedImm32 imm, RegisterID dest)
{
m_assembler.lsl<32>(dest, src, imm.m_value & 0x1f);
}
void lshift32(RegisterID shiftAmount, RegisterID dest)
{
lshift32(dest, shiftAmount, dest);
}
void lshift32(TrustedImm32 imm, RegisterID dest)
{
lshift32(dest, imm, dest);
}
void lshift64(RegisterID src, RegisterID shiftAmount, RegisterID dest)
{
m_assembler.lsl<64>(dest, src, shiftAmount);
}
void lshift64(RegisterID src, TrustedImm32 imm, RegisterID dest)
{
m_assembler.lsl<64>(dest, src, imm.m_value & 0x3f);
}
void lshift64(RegisterID shiftAmount, RegisterID dest)
{
lshift64(dest, shiftAmount, dest);
}
void lshift64(TrustedImm32 imm, RegisterID dest)
{
lshift64(dest, imm, dest);
}
void mul32(RegisterID left, RegisterID right, RegisterID dest)
{
m_assembler.mul<32>(dest, left, right);
}
void mul32(RegisterID src, RegisterID dest)
{
m_assembler.mul<32>(dest, dest, src);
}
void mul32(TrustedImm32 imm, RegisterID src, RegisterID dest)
{
move(imm, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.mul<32>(dest, src, dataTempRegister);
}
void mul64(RegisterID src, RegisterID dest)
{
m_assembler.mul<64>(dest, dest, src);
}
void mul64(RegisterID left, RegisterID right, RegisterID dest)
{
m_assembler.mul<64>(dest, left, right);
}
void multiplyAdd32(RegisterID mulLeft, RegisterID mulRight, RegisterID summand, RegisterID dest)
{
m_assembler.madd<32>(dest, mulLeft, mulRight, summand);
}
void multiplySub32(RegisterID mulLeft, RegisterID mulRight, RegisterID minuend, RegisterID dest)
{
m_assembler.msub<32>(dest, mulLeft, mulRight, minuend);
}
void multiplyNeg32(RegisterID mulLeft, RegisterID mulRight, RegisterID dest)
{
m_assembler.msub<32>(dest, mulLeft, mulRight, ARM64Registers::zr);
}
void multiplyAdd64(RegisterID mulLeft, RegisterID mulRight, RegisterID summand, RegisterID dest)
{
m_assembler.madd<64>(dest, mulLeft, mulRight, summand);
}
void multiplySub64(RegisterID mulLeft, RegisterID mulRight, RegisterID minuend, RegisterID dest)
{
m_assembler.msub<64>(dest, mulLeft, mulRight, minuend);
}
void multiplyNeg64(RegisterID mulLeft, RegisterID mulRight, RegisterID dest)
{
m_assembler.msub<64>(dest, mulLeft, mulRight, ARM64Registers::zr);
}
void multiplySignExtend32(RegisterID left, RegisterID right, RegisterID dest)
{
m_assembler.smull(dest, left, right);
}
void div32(RegisterID dividend, RegisterID divisor, RegisterID dest)
{
m_assembler.sdiv<32>(dest, dividend, divisor);
}
void div64(RegisterID dividend, RegisterID divisor, RegisterID dest)
{
m_assembler.sdiv<64>(dest, dividend, divisor);
}
void uDiv32(RegisterID dividend, RegisterID divisor, RegisterID dest)
{
m_assembler.udiv<32>(dest, dividend, divisor);
}
void uDiv64(RegisterID dividend, RegisterID divisor, RegisterID dest)
{
m_assembler.udiv<64>(dest, dividend, divisor);
}
void neg32(RegisterID dest)
{
m_assembler.neg<32>(dest, dest);
}
void neg32(RegisterID src, RegisterID dest)
{
m_assembler.neg<32>(dest, src);
}
void neg64(RegisterID dest)
{
m_assembler.neg<64>(dest, dest);
}
void neg64(RegisterID src, RegisterID dest)
{
m_assembler.neg<64>(dest, src);
}
void or16(TrustedImm32 imm, AbsoluteAddress address)
{
LogicalImmediate logicalImm = LogicalImmediate::create32(imm.m_value);
if (logicalImm.isValid()) {
load16(address.m_ptr, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.orr<32>(dataTempRegister, dataTempRegister, logicalImm);
store16(dataTempRegister, address.m_ptr);
} else {
load16(address.m_ptr, getCachedMemoryTempRegisterIDAndInvalidate());
or32(imm, memoryTempRegister, getCachedDataTempRegisterIDAndInvalidate());
store16(dataTempRegister, address.m_ptr);
}
}
void or32(RegisterID src, RegisterID dest)
{
or32(dest, src, dest);
}
void or32(RegisterID op1, RegisterID op2, RegisterID dest)
{
m_assembler.orr<32>(dest, op1, op2);
}
void or32(TrustedImm32 imm, RegisterID dest)
{
or32(imm, dest, dest);
}
void or32(TrustedImm32 imm, RegisterID src, RegisterID dest)
{
LogicalImmediate logicalImm = LogicalImmediate::create32(imm.m_value);
if (logicalImm.isValid()) {
m_assembler.orr<32>(dest, src, logicalImm);
return;
}
ASSERT(src != dataTempRegister);
move(imm, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.orr<32>(dest, src, dataTempRegister);
}
void or32(RegisterID src, AbsoluteAddress address)
{
load32(address.m_ptr, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.orr<32>(dataTempRegister, dataTempRegister, src);
store32(dataTempRegister, address.m_ptr);
}
void or32(TrustedImm32 imm, AbsoluteAddress address)
{
LogicalImmediate logicalImm = LogicalImmediate::create32(imm.m_value);
if (logicalImm.isValid()) {
load32(address.m_ptr, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.orr<32>(dataTempRegister, dataTempRegister, logicalImm);
store32(dataTempRegister, address.m_ptr);
} else {
load32(address.m_ptr, getCachedMemoryTempRegisterIDAndInvalidate());
or32(imm, memoryTempRegister, getCachedDataTempRegisterIDAndInvalidate());
store32(dataTempRegister, address.m_ptr);
}
}
void or32(TrustedImm32 imm, Address address)
{
load32(address, getCachedDataTempRegisterIDAndInvalidate());
or32(imm, dataTempRegister, dataTempRegister);
store32(dataTempRegister, address);
}
void or64(RegisterID src, RegisterID dest)
{
or64(dest, src, dest);
}
void or64(RegisterID op1, RegisterID op2, RegisterID dest)
{
m_assembler.orr<64>(dest, op1, op2);
}
void or64(TrustedImm32 imm, RegisterID dest)
{
or64(imm, dest, dest);
}
void or64(TrustedImm32 imm, RegisterID src, RegisterID dest)
{
LogicalImmediate logicalImm = LogicalImmediate::create64(static_cast<intptr_t>(static_cast<int64_t>(imm.m_value)));
if (logicalImm.isValid()) {
m_assembler.orr<64>(dest, src, logicalImm);
return;
}
signExtend32ToPtr(imm, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.orr<64>(dest, src, dataTempRegister);
}
void or64(TrustedImm64 imm, RegisterID src, RegisterID dest)
{
LogicalImmediate logicalImm = LogicalImmediate::create64(imm.m_value);
if (logicalImm.isValid()) {
m_assembler.orr<64>(dest, src, logicalImm);
return;
}
move(imm, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.orr<64>(dest, src, dataTempRegister);
}
void or64(TrustedImm64 imm, RegisterID dest)
{
LogicalImmediate logicalImm = LogicalImmediate::create64(static_cast<intptr_t>(static_cast<int64_t>(imm.m_value)));
if (logicalImm.isValid()) {
m_assembler.orr<64>(dest, dest, logicalImm);
return;
}
move(imm, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.orr<64>(dest, dest, dataTempRegister);
}
void rotateRight32(RegisterID src, TrustedImm32 imm, RegisterID dest)
{
m_assembler.ror<32>(dest, src, imm.m_value & 31);
}
void rotateRight32(TrustedImm32 imm, RegisterID srcDst)
{
rotateRight32(srcDst, imm, srcDst);
}
void rotateRight32(RegisterID src, RegisterID shiftAmmount, RegisterID dest)
{
m_assembler.ror<32>(dest, src, shiftAmmount);
}
void rotateRight64(RegisterID src, TrustedImm32 imm, RegisterID dest)
{
m_assembler.ror<64>(dest, src, imm.m_value & 63);
}
void rotateRight64(TrustedImm32 imm, RegisterID srcDst)
{
rotateRight64(srcDst, imm, srcDst);
}
void rotateRight64(RegisterID src, RegisterID shiftAmmount, RegisterID dest)
{
m_assembler.ror<64>(dest, src, shiftAmmount);
}
void rshift32(RegisterID src, RegisterID shiftAmount, RegisterID dest)
{
m_assembler.asr<32>(dest, src, shiftAmount);
}
void rshift32(RegisterID src, TrustedImm32 imm, RegisterID dest)
{
m_assembler.asr<32>(dest, src, imm.m_value & 0x1f);
}
void rshift32(RegisterID shiftAmount, RegisterID dest)
{
rshift32(dest, shiftAmount, dest);
}
void rshift32(TrustedImm32 imm, RegisterID dest)
{
rshift32(dest, imm, dest);
}
void rshift64(RegisterID src, RegisterID shiftAmount, RegisterID dest)
{
m_assembler.asr<64>(dest, src, shiftAmount);
}
void rshift64(RegisterID src, TrustedImm32 imm, RegisterID dest)
{
m_assembler.asr<64>(dest, src, imm.m_value & 0x3f);
}
void rshift64(RegisterID shiftAmount, RegisterID dest)
{
rshift64(dest, shiftAmount, dest);
}
void rshift64(TrustedImm32 imm, RegisterID dest)
{
rshift64(dest, imm, dest);
}
void sub32(RegisterID src, RegisterID dest)
{
m_assembler.sub<32>(dest, dest, src);
}
void sub32(RegisterID left, RegisterID right, RegisterID dest)
{
m_assembler.sub<32>(dest, left, right);
}
void sub32(TrustedImm32 imm, RegisterID dest)
{
if (isUInt12(imm.m_value)) {
m_assembler.sub<32>(dest, dest, UInt12(imm.m_value));
return;
}
if (isUInt12(-imm.m_value)) {
m_assembler.add<32>(dest, dest, UInt12(-imm.m_value));
return;
}
move(imm, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.sub<32>(dest, dest, dataTempRegister);
}
void sub32(TrustedImm32 imm, Address address)
{
load32(address, getCachedDataTempRegisterIDAndInvalidate());
if (isUInt12(imm.m_value))
m_assembler.sub<32>(dataTempRegister, dataTempRegister, UInt12(imm.m_value));
else if (isUInt12(-imm.m_value))
m_assembler.add<32>(dataTempRegister, dataTempRegister, UInt12(-imm.m_value));
else {
move(imm, getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.sub<32>(dataTempRegister, dataTempRegister, memoryTempRegister);
}
store32(dataTempRegister, address);
}
void sub32(TrustedImm32 imm, AbsoluteAddress address)
{
load32(address.m_ptr, getCachedDataTempRegisterIDAndInvalidate());
if (isUInt12(imm.m_value)) {
m_assembler.sub<32>(dataTempRegister, dataTempRegister, UInt12(imm.m_value));
store32(dataTempRegister, address.m_ptr);
return;
}
if (isUInt12(-imm.m_value)) {
m_assembler.add<32>(dataTempRegister, dataTempRegister, UInt12(-imm.m_value));
store32(dataTempRegister, address.m_ptr);
return;
}
move(imm, getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.sub<32>(dataTempRegister, dataTempRegister, memoryTempRegister);
store32(dataTempRegister, address.m_ptr);
}
void sub32(Address src, RegisterID dest)
{
load32(src, getCachedDataTempRegisterIDAndInvalidate());
sub32(dataTempRegister, dest);
}
void sub64(RegisterID src, RegisterID dest)
{
m_assembler.sub<64>(dest, dest, src);
}
void sub64(RegisterID a, RegisterID b, RegisterID dest)
{
m_assembler.sub<64>(dest, a, b);
}
void sub64(TrustedImm32 imm, RegisterID dest)
{
if (isUInt12(imm.m_value)) {
m_assembler.sub<64>(dest, dest, UInt12(imm.m_value));
return;
}
if (isUInt12(-imm.m_value)) {
m_assembler.add<64>(dest, dest, UInt12(-imm.m_value));
return;
}
signExtend32ToPtr(imm, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.sub<64>(dest, dest, dataTempRegister);
}
void sub64(TrustedImm64 imm, RegisterID dest)
{
intptr_t immediate = imm.m_value;
if (isUInt12(immediate)) {
m_assembler.sub<64>(dest, dest, UInt12(static_cast<int32_t>(immediate)));
return;
}
if (isUInt12(-immediate)) {
m_assembler.add<64>(dest, dest, UInt12(static_cast<int32_t>(-immediate)));
return;
}
move(imm, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.sub<64>(dest, dest, dataTempRegister);
}
void urshift32(RegisterID src, RegisterID shiftAmount, RegisterID dest)
{
m_assembler.lsr<32>(dest, src, shiftAmount);
}
void urshift32(RegisterID src, TrustedImm32 imm, RegisterID dest)
{
m_assembler.lsr<32>(dest, src, imm.m_value & 0x1f);
}
void urshift32(RegisterID shiftAmount, RegisterID dest)
{
urshift32(dest, shiftAmount, dest);
}
void urshift32(TrustedImm32 imm, RegisterID dest)
{
urshift32(dest, imm, dest);
}
void urshift64(RegisterID src, RegisterID shiftAmount, RegisterID dest)
{
m_assembler.lsr<64>(dest, src, shiftAmount);
}
void urshift64(RegisterID src, TrustedImm32 imm, RegisterID dest)
{
m_assembler.lsr<64>(dest, src, imm.m_value & 0x3f);
}
void urshift64(RegisterID shiftAmount, RegisterID dest)
{
urshift64(dest, shiftAmount, dest);
}
void urshift64(TrustedImm32 imm, RegisterID dest)
{
urshift64(dest, imm, dest);
}
void xor32(RegisterID src, RegisterID dest)
{
xor32(dest, src, dest);
}
void xor32(Address src, RegisterID dest)
{
load32(src, getCachedDataTempRegisterIDAndInvalidate());
xor32(dataTempRegister, dest);
}
void xor32(RegisterID op1, RegisterID op2, RegisterID dest)
{
m_assembler.eor<32>(dest, op1, op2);
}
void xor32(TrustedImm32 imm, RegisterID dest)
{
xor32(imm, dest, dest);
}
void xor32(TrustedImm32 imm, RegisterID src, RegisterID dest)
{
if (imm.m_value == -1)
m_assembler.mvn<32>(dest, src);
else {
LogicalImmediate logicalImm = LogicalImmediate::create32(imm.m_value);
if (logicalImm.isValid()) {
m_assembler.eor<32>(dest, src, logicalImm);
return;
}
move(imm, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.eor<32>(dest, src, dataTempRegister);
}
}
void xor64(RegisterID src, Address address)
{
load64(address, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.eor<64>(dataTempRegister, dataTempRegister, src);
store64(dataTempRegister, address);
}
void xor64(RegisterID src, RegisterID dest)
{
xor64(dest, src, dest);
}
void xor64(RegisterID op1, RegisterID op2, RegisterID dest)
{
m_assembler.eor<64>(dest, op1, op2);
}
void xor64(TrustedImm32 imm, RegisterID dest)
{
xor64(imm, dest, dest);
}
void xor64(TrustedImm64 imm, RegisterID src, RegisterID dest)
{
if (imm.m_value == -1)
m_assembler.mvn<64>(dest, src);
else {
LogicalImmediate logicalImm = LogicalImmediate::create64(imm.m_value);
if (logicalImm.isValid()) {
m_assembler.eor<64>(dest, src, logicalImm);
return;
}
move(imm, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.eor<64>(dest, src, dataTempRegister);
}
}
void xor64(TrustedImm64 imm, RegisterID srcDest)
{
xor64(imm, srcDest, srcDest);
}
void xor64(TrustedImm32 imm, RegisterID src, RegisterID dest)
{
if (imm.m_value == -1)
m_assembler.mvn<64>(dest, src);
else {
LogicalImmediate logicalImm = LogicalImmediate::create64(static_cast<intptr_t>(static_cast<int64_t>(imm.m_value)));
if (logicalImm.isValid()) {
m_assembler.eor<64>(dest, src, logicalImm);
return;
}
signExtend32ToPtr(imm, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.eor<64>(dest, src, dataTempRegister);
}
}
void xor64(Address src, RegisterID dest)
{
load64(src, getCachedDataTempRegisterIDAndInvalidate());
xor64(dataTempRegister, dest);
}
void not32(RegisterID srcDest)
{
m_assembler.mvn<32>(srcDest, srcDest);
}
void not32(RegisterID src, RegisterID dest)
{
m_assembler.mvn<32>(dest, src);
}
void not64(RegisterID src, RegisterID dest)
{
m_assembler.mvn<64>(dest, src);
}
void not64(RegisterID srcDst)
{
m_assembler.mvn<64>(srcDst, srcDst);
}
// Memory access operations:
void load64(ImplicitAddress address, RegisterID dest)
{
if (tryLoadWithOffset<64>(dest, address.base, address.offset))
return;
signExtend32ToPtr(TrustedImm32(address.offset), getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.ldr<64>(dest, address.base, memoryTempRegister);
}
void load64(BaseIndex address, RegisterID dest)
{
if (!address.offset && (!address.scale || address.scale == 3)) {
m_assembler.ldr<64>(dest, address.base, address.index, Assembler::UXTX, address.scale);
return;
}
signExtend32ToPtr(TrustedImm32(address.offset), getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.add<64>(memoryTempRegister, memoryTempRegister, address.index, Assembler::UXTX, address.scale);
m_assembler.ldr<64>(dest, address.base, memoryTempRegister);
}
void load64(const void* address, RegisterID dest)
{
load<64>(address, dest);
}
void load64(RegisterID src, PostIndex simm, RegisterID dest)
{
m_assembler.ldr<64>(dest, src, simm);
}
DataLabel32 load64WithAddressOffsetPatch(Address address, RegisterID dest)
{
DataLabel32 label(this);
signExtend32ToPtrWithFixedWidth(address.offset, getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.ldr<64>(dest, address.base, memoryTempRegister, Assembler::SXTW, 0);
return label;
}
DataLabelCompact load64WithCompactAddressOffsetPatch(Address address, RegisterID dest)
{
ASSERT(isCompactPtrAlignedAddressOffset(address.offset));
DataLabelCompact label(this);
m_assembler.ldr<64>(dest, address.base, address.offset);
return label;
}
void loadPair64(RegisterID src, RegisterID dest1, RegisterID dest2)
{
loadPair64(src, TrustedImm32(0), dest1, dest2);
}
void loadPair64(RegisterID src, TrustedImm32 offset, RegisterID dest1, RegisterID dest2)
{
m_assembler.ldp<64>(dest1, dest2, src, offset.m_value);
}
void loadPair64WithNonTemporalAccess(RegisterID src, RegisterID dest1, RegisterID dest2)
{
loadPair64WithNonTemporalAccess(src, TrustedImm32(0), dest1, dest2);
}
void loadPair64WithNonTemporalAccess(RegisterID src, TrustedImm32 offset, RegisterID dest1, RegisterID dest2)
{
m_assembler.ldnp<64>(dest1, dest2, src, offset.m_value);
}
void abortWithReason(AbortReason reason)
{
// It is safe to use dataTempRegister directly since this is a crashing JIT Assert.
move(TrustedImm32(reason), dataTempRegister);
breakpoint();
}
void abortWithReason(AbortReason reason, intptr_t misc)
{
// It is safe to use memoryTempRegister directly since this is a crashing JIT Assert.
move(TrustedImm64(misc), memoryTempRegister);
abortWithReason(reason);
}
ConvertibleLoadLabel convertibleLoadPtr(Address address, RegisterID dest)
{
ConvertibleLoadLabel result(this);
ASSERT(!(address.offset & ~0xff8));
m_assembler.ldr<64>(dest, address.base, address.offset);
return result;
}
void load32(ImplicitAddress address, RegisterID dest)
{
if (tryLoadWithOffset<32>(dest, address.base, address.offset))
return;
signExtend32ToPtr(TrustedImm32(address.offset), getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.ldr<32>(dest, address.base, memoryTempRegister);
}
void load32(BaseIndex address, RegisterID dest)
{
if (!address.offset && (!address.scale || address.scale == 2)) {
m_assembler.ldr<32>(dest, address.base, address.index, Assembler::UXTX, address.scale);
return;
}
signExtend32ToPtr(TrustedImm32(address.offset), getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.add<64>(memoryTempRegister, memoryTempRegister, address.index, Assembler::UXTX, address.scale);
m_assembler.ldr<32>(dest, address.base, memoryTempRegister);
}
void load32(const void* address, RegisterID dest)
{
load<32>(address, dest);
}
DataLabel32 load32WithAddressOffsetPatch(Address address, RegisterID dest)
{
DataLabel32 label(this);
signExtend32ToPtrWithFixedWidth(address.offset, getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.ldr<32>(dest, address.base, memoryTempRegister, Assembler::SXTW, 0);
return label;
}
DataLabelCompact load32WithCompactAddressOffsetPatch(Address address, RegisterID dest)
{
ASSERT(isCompactPtrAlignedAddressOffset(address.offset));
DataLabelCompact label(this);
m_assembler.ldr<32>(dest, address.base, address.offset);
return label;
}
void load32WithUnalignedHalfWords(BaseIndex address, RegisterID dest)
{
load32(address, dest);
}
void load16(ImplicitAddress address, RegisterID dest)
{
if (tryLoadWithOffset<16>(dest, address.base, address.offset))
return;
signExtend32ToPtr(TrustedImm32(address.offset), getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.ldrh(dest, address.base, memoryTempRegister);
}
void load16(BaseIndex address, RegisterID dest)
{
if (!address.offset && (!address.scale || address.scale == 1)) {
m_assembler.ldrh(dest, address.base, address.index, Assembler::UXTX, address.scale);
return;
}
signExtend32ToPtr(TrustedImm32(address.offset), getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.add<64>(memoryTempRegister, memoryTempRegister, address.index, Assembler::UXTX, address.scale);
m_assembler.ldrh(dest, address.base, memoryTempRegister);
}
void load16(ExtendedAddress address, RegisterID dest)
{
moveToCachedReg(TrustedImmPtr(reinterpret_cast<void*>(address.offset)), cachedMemoryTempRegister());
m_assembler.ldrh(dest, memoryTempRegister, address.base, Assembler::UXTX, 1);
if (dest == memoryTempRegister)
cachedMemoryTempRegister().invalidate();
}
void load16(const void* address, RegisterID dest)
{
moveToCachedReg(TrustedImmPtr(address), cachedMemoryTempRegister());
m_assembler.ldrh(dest, memoryTempRegister, 0);
}
void load16Unaligned(ImplicitAddress address, RegisterID dest)
{
load16(address, dest);
}
void load16Unaligned(BaseIndex address, RegisterID dest)
{
load16(address, dest);
}
void load16SignedExtendTo32(ImplicitAddress address, RegisterID dest)
{
if (tryLoadSignedWithOffset<16>(dest, address.base, address.offset))
return;
signExtend32ToPtr(TrustedImm32(address.offset), getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.ldrsh<32>(dest, address.base, memoryTempRegister);
}
void load16SignedExtendTo32(BaseIndex address, RegisterID dest)
{
if (!address.offset && (!address.scale || address.scale == 1)) {
m_assembler.ldrsh<32>(dest, address.base, address.index, Assembler::UXTX, address.scale);
return;
}
signExtend32ToPtr(TrustedImm32(address.offset), getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.add<64>(memoryTempRegister, memoryTempRegister, address.index, Assembler::UXTX, address.scale);
m_assembler.ldrsh<32>(dest, address.base, memoryTempRegister);
}
void zeroExtend16To32(RegisterID src, RegisterID dest)
{
m_assembler.uxth<32>(dest, src);
}
void signExtend16To32(RegisterID src, RegisterID dest)
{
m_assembler.sxth<32>(dest, src);
}
void load8(ImplicitAddress address, RegisterID dest)
{
if (tryLoadWithOffset<8>(dest, address.base, address.offset))
return;
signExtend32ToPtr(TrustedImm32(address.offset), getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.ldrb(dest, address.base, memoryTempRegister);
}
void load8(BaseIndex address, RegisterID dest)
{
if (!address.offset && !address.scale) {
m_assembler.ldrb(dest, address.base, address.index, Assembler::UXTX, address.scale);
return;
}
signExtend32ToPtr(TrustedImm32(address.offset), getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.add<64>(memoryTempRegister, memoryTempRegister, address.index, Assembler::UXTX, address.scale);
m_assembler.ldrb(dest, address.base, memoryTempRegister);
}
void load8(const void* address, RegisterID dest)
{
moveToCachedReg(TrustedImmPtr(address), cachedMemoryTempRegister());
m_assembler.ldrb(dest, memoryTempRegister, ARM64Registers::zr);
if (dest == memoryTempRegister)
cachedMemoryTempRegister().invalidate();
}
void load8(RegisterID src, PostIndex simm, RegisterID dest)
{
m_assembler.ldrb(dest, src, simm);
}
void load8SignedExtendTo32(ImplicitAddress address, RegisterID dest)
{
if (tryLoadSignedWithOffset<8>(dest, address.base, address.offset))
return;
signExtend32ToPtr(TrustedImm32(address.offset), getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.ldrsb<32>(dest, address.base, memoryTempRegister);
}
void load8SignedExtendTo32(BaseIndex address, RegisterID dest)
{
if (!address.offset && !address.scale) {
m_assembler.ldrsb<32>(dest, address.base, address.index, Assembler::UXTX, address.scale);
return;
}
signExtend32ToPtr(TrustedImm32(address.offset), getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.add<64>(memoryTempRegister, memoryTempRegister, address.index, Assembler::UXTX, address.scale);
m_assembler.ldrsb<32>(dest, address.base, memoryTempRegister);
}
void load8SignedExtendTo32(const void* address, RegisterID dest)
{
moveToCachedReg(TrustedImmPtr(address), cachedMemoryTempRegister());
m_assembler.ldrsb<32>(dest, memoryTempRegister, ARM64Registers::zr);
if (dest == memoryTempRegister)
cachedMemoryTempRegister().invalidate();
}
void zeroExtend8To32(RegisterID src, RegisterID dest)
{
m_assembler.uxtb<32>(dest, src);
}
void signExtend8To32(RegisterID src, RegisterID dest)
{
m_assembler.sxtb<32>(dest, src);
}
void store64(RegisterID src, ImplicitAddress address)
{
if (tryStoreWithOffset<64>(src, address.base, address.offset))
return;
signExtend32ToPtr(TrustedImm32(address.offset), getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.str<64>(src, address.base, memoryTempRegister);
}
void store64(RegisterID src, BaseIndex address)
{
if (!address.offset && (!address.scale || address.scale == 3)) {
m_assembler.str<64>(src, address.base, address.index, Assembler::UXTX, address.scale);
return;
}
signExtend32ToPtr(TrustedImm32(address.offset), getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.add<64>(memoryTempRegister, memoryTempRegister, address.index, Assembler::UXTX, address.scale);
m_assembler.str<64>(src, address.base, memoryTempRegister);
}
void store64(RegisterID src, const void* address)
{
store<64>(src, address);
}
void store64(TrustedImm32 imm, ImplicitAddress address)
{
store64(TrustedImm64(imm.m_value), address);
}
void store64(TrustedImm64 imm, ImplicitAddress address)
{
if (!imm.m_value) {
store64(ARM64Registers::zr, address);
return;
}
moveToCachedReg(imm, dataMemoryTempRegister());
store64(dataTempRegister, address);
}
void store64(TrustedImm64 imm, BaseIndex address)
{
if (!imm.m_value) {
store64(ARM64Registers::zr, address);
return;
}
moveToCachedReg(imm, dataMemoryTempRegister());
store64(dataTempRegister, address);
}
void store64(RegisterID src, RegisterID dest, PostIndex simm)
{
m_assembler.str<64>(src, dest, simm);
}
void storeZero64(ImplicitAddress address)
{
store64(ARM64Registers::zr, address);
}
void storeZero64(BaseIndex address)
{
store64(ARM64Registers::zr, address);
}
DataLabel32 store64WithAddressOffsetPatch(RegisterID src, Address address)
{
DataLabel32 label(this);
signExtend32ToPtrWithFixedWidth(address.offset, getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.str<64>(src, address.base, memoryTempRegister, Assembler::SXTW, 0);
return label;
}
void storePair64(RegisterID src1, RegisterID src2, RegisterID dest)
{
storePair64(src1, src2, dest, TrustedImm32(0));
}
void storePair64(RegisterID src1, RegisterID src2, RegisterID dest, TrustedImm32 offset)
{
m_assembler.stp<64>(src1, src2, dest, offset.m_value);
}
void storePair64WithNonTemporalAccess(RegisterID src1, RegisterID src2, RegisterID dest)
{
storePair64WithNonTemporalAccess(src1, src2, dest, TrustedImm32(0));
}
void storePair64WithNonTemporalAccess(RegisterID src1, RegisterID src2, RegisterID dest, TrustedImm32 offset)
{
m_assembler.stnp<64>(src1, src2, dest, offset.m_value);
}
void store32(RegisterID src, ImplicitAddress address)
{
if (tryStoreWithOffset<32>(src, address.base, address.offset))
return;
signExtend32ToPtr(TrustedImm32(address.offset), getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.str<32>(src, address.base, memoryTempRegister);
}
void store32(RegisterID src, BaseIndex address)
{
if (!address.offset && (!address.scale || address.scale == 2)) {
m_assembler.str<32>(src, address.base, address.index, Assembler::UXTX, address.scale);
return;
}
signExtend32ToPtr(TrustedImm32(address.offset), getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.add<64>(memoryTempRegister, memoryTempRegister, address.index, Assembler::UXTX, address.scale);
m_assembler.str<32>(src, address.base, memoryTempRegister);
}
void store32(RegisterID src, const void* address)
{
store<32>(src, address);
}
void store32(TrustedImm32 imm, ImplicitAddress address)
{
if (!imm.m_value) {
store32(ARM64Registers::zr, address);
return;
}
moveToCachedReg(imm, dataMemoryTempRegister());
store32(dataTempRegister, address);
}
void store32(TrustedImm32 imm, BaseIndex address)
{
if (!imm.m_value) {
store32(ARM64Registers::zr, address);
return;
}
moveToCachedReg(imm, dataMemoryTempRegister());
store32(dataTempRegister, address);
}
void store32(TrustedImm32 imm, const void* address)
{
if (!imm.m_value) {
store32(ARM64Registers::zr, address);
return;
}
moveToCachedReg(imm, dataMemoryTempRegister());
store32(dataTempRegister, address);
}
void storeZero32(ImplicitAddress address)
{
store32(ARM64Registers::zr, address);
}
void storeZero32(BaseIndex address)
{
store32(ARM64Registers::zr, address);
}
DataLabel32 store32WithAddressOffsetPatch(RegisterID src, Address address)
{
DataLabel32 label(this);
signExtend32ToPtrWithFixedWidth(address.offset, getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.str<32>(src, address.base, memoryTempRegister, Assembler::SXTW, 0);
return label;
}
void store16(RegisterID src, ImplicitAddress address)
{
if (tryStoreWithOffset<16>(src, address.base, address.offset))
return;
signExtend32ToPtr(TrustedImm32(address.offset), getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.strh(src, address.base, memoryTempRegister);
}
void store16(RegisterID src, BaseIndex address)
{
if (!address.offset && (!address.scale || address.scale == 1)) {
m_assembler.strh(src, address.base, address.index, Assembler::UXTX, address.scale);
return;
}
signExtend32ToPtr(TrustedImm32(address.offset), getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.add<64>(memoryTempRegister, memoryTempRegister, address.index, Assembler::UXTX, address.scale);
m_assembler.strh(src, address.base, memoryTempRegister);
}
void store16(RegisterID src, const void* address)
{
moveToCachedReg(TrustedImmPtr(address), cachedMemoryTempRegister());
m_assembler.strh(src, memoryTempRegister, 0);
}
void store16(TrustedImm32 imm, const void* address)
{
if (!imm.m_value) {
store16(ARM64Registers::zr, address);
return;
}
moveToCachedReg(imm, dataMemoryTempRegister());
store16(dataTempRegister, address);
}
void storeZero16(ImplicitAddress address)
{
store16(ARM64Registers::zr, address);
}
void storeZero16(BaseIndex address)
{
store16(ARM64Registers::zr, address);
}
void store8(RegisterID src, BaseIndex address)
{
if (!address.offset && !address.scale) {
m_assembler.strb(src, address.base, address.index, Assembler::UXTX, address.scale);
return;
}
signExtend32ToPtr(TrustedImm32(address.offset), getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.add<64>(memoryTempRegister, memoryTempRegister, address.index, Assembler::UXTX, address.scale);
m_assembler.strb(src, address.base, memoryTempRegister);
}
void store8(RegisterID src, void* address)
{
move(TrustedImmPtr(address), getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.strb(src, memoryTempRegister, 0);
}
void store8(RegisterID src, ImplicitAddress address)
{
if (tryStoreWithOffset<8>(src, address.base, address.offset))
return;
signExtend32ToPtr(TrustedImm32(address.offset), getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.strb(src, address.base, memoryTempRegister);
}
void store8(TrustedImm32 imm, void* address)
{
TrustedImm32 imm8(static_cast<int8_t>(imm.m_value));
if (!imm8.m_value) {
store8(ARM64Registers::zr, address);
return;
}
move(imm8, getCachedDataTempRegisterIDAndInvalidate());
store8(dataTempRegister, address);
}
void store8(TrustedImm32 imm, ImplicitAddress address)
{
TrustedImm32 imm8(static_cast<int8_t>(imm.m_value));
if (!imm8.m_value) {
store8(ARM64Registers::zr, address);
return;
}
move(imm8, getCachedDataTempRegisterIDAndInvalidate());
store8(dataTempRegister, address);
}
void store8(RegisterID src, RegisterID dest, PostIndex simm)
{
m_assembler.strb(src, dest, simm);
}
void getEffectiveAddress(BaseIndex address, RegisterID dest)
{
m_assembler.add<64>(dest, address.base, address.index, Assembler::LSL, address.scale);
if (address.offset)
add64(TrustedImm32(address.offset), dest);
}
// Floating-point operations:
static bool supportsFloatingPoint() { return true; }
static bool supportsFloatingPointTruncate() { return true; }
static bool supportsFloatingPointSqrt() { return true; }
static bool supportsFloatingPointAbs() { return true; }
static bool supportsFloatingPointRounding() { return true; }
static bool supportsCountPopulation() { return false; }
enum BranchTruncateType { BranchIfTruncateFailed, BranchIfTruncateSuccessful };
void absDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.fabs<64>(dest, src);
}
void absFloat(FPRegisterID src, FPRegisterID dest)
{
m_assembler.fabs<32>(dest, src);
}
void addDouble(FPRegisterID src, FPRegisterID dest)
{
addDouble(dest, src, dest);
}
void addDouble(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest)
{
m_assembler.fadd<64>(dest, op1, op2);
}
void addDouble(Address src, FPRegisterID dest)
{
loadDouble(src, fpTempRegister);
addDouble(fpTempRegister, dest);
}
void addDouble(AbsoluteAddress address, FPRegisterID dest)
{
loadDouble(TrustedImmPtr(address.m_ptr), fpTempRegister);
addDouble(fpTempRegister, dest);
}
void addFloat(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest)
{
m_assembler.fadd<32>(dest, op1, op2);
}
void ceilDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.frintp<64>(dest, src);
}
void ceilFloat(FPRegisterID src, FPRegisterID dest)
{
m_assembler.frintp<32>(dest, src);
}
void floorDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.frintm<64>(dest, src);
}
void floorFloat(FPRegisterID src, FPRegisterID dest)
{
m_assembler.frintm<32>(dest, src);
}
void roundTowardNearestIntDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.frintn<64>(dest, src);
}
void roundTowardNearestIntFloat(FPRegisterID src, FPRegisterID dest)
{
m_assembler.frintn<32>(dest, src);
}
void roundTowardZeroDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.frintz<64>(dest, src);
}
void roundTowardZeroFloat(FPRegisterID src, FPRegisterID dest)
{
m_assembler.frintz<32>(dest, src);
}
// Convert 'src' to an integer, and places the resulting 'dest'.
// If the result is not representable as a 32 bit value, branch.
// May also branch for some values that are representable in 32 bits
// (specifically, in this case, 0).
void branchConvertDoubleToInt32(FPRegisterID src, RegisterID dest, JumpList& failureCases, FPRegisterID, bool negZeroCheck = true)
{
m_assembler.fcvtns<32, 64>(dest, src);
// Convert the integer result back to float & compare to the original value - if not equal or unordered (NaN) then jump.
m_assembler.scvtf<64, 32>(fpTempRegister, dest);
failureCases.append(branchDouble(DoubleNotEqualOrUnordered, src, fpTempRegister));
// Test for negative zero.
if (negZeroCheck) {
Jump valueIsNonZero = branchTest32(NonZero, dest);
RegisterID scratch = getCachedMemoryTempRegisterIDAndInvalidate();
m_assembler.fmov<64>(scratch, src);
failureCases.append(makeTestBitAndBranch(scratch, 63, IsNonZero));
valueIsNonZero.link(this);
}
}
Jump branchDouble(DoubleCondition cond, FPRegisterID left, FPRegisterID right)
{
m_assembler.fcmp<64>(left, right);
return jumpAfterFloatingPointCompare(cond);
}
Jump branchFloat(DoubleCondition cond, FPRegisterID left, FPRegisterID right)
{
m_assembler.fcmp<32>(left, right);
return jumpAfterFloatingPointCompare(cond);
}
void compareDouble(DoubleCondition cond, FPRegisterID left, FPRegisterID right, RegisterID dest)
{
floatingPointCompare(cond, left, right, dest, [this] (FPRegisterID arg1, FPRegisterID arg2) {
m_assembler.fcmp<64>(arg1, arg2);
});
}
void compareFloat(DoubleCondition cond, FPRegisterID left, FPRegisterID right, RegisterID dest)
{
floatingPointCompare(cond, left, right, dest, [this] (FPRegisterID arg1, FPRegisterID arg2) {
m_assembler.fcmp<32>(arg1, arg2);
});
}
Jump branchDoubleNonZero(FPRegisterID reg, FPRegisterID)
{
m_assembler.fcmp_0<64>(reg);
Jump unordered = makeBranch(Assembler::ConditionVS);
Jump result = makeBranch(Assembler::ConditionNE);
unordered.link(this);
return result;
}
Jump branchDoubleZeroOrNaN(FPRegisterID reg, FPRegisterID)
{
m_assembler.fcmp_0<64>(reg);
Jump unordered = makeBranch(Assembler::ConditionVS);
Jump notEqual = makeBranch(Assembler::ConditionNE);
unordered.link(this);
// We get here if either unordered or equal.
Jump result = jump();
notEqual.link(this);
return result;
}
Jump branchTruncateDoubleToInt32(FPRegisterID src, RegisterID dest, BranchTruncateType branchType = BranchIfTruncateFailed)
{
// Truncate to a 64-bit integer in dataTempRegister, copy the low 32-bit to dest.
m_assembler.fcvtzs<64, 64>(getCachedDataTempRegisterIDAndInvalidate(), src);
zeroExtend32ToPtr(dataTempRegister, dest);
// Check the low 32-bits sign extend to be equal to the full value.
m_assembler.cmp<64>(dataTempRegister, dataTempRegister, Assembler::SXTW, 0);
return Jump(makeBranch(branchType == BranchIfTruncateSuccessful ? Equal : NotEqual));
}
void convertDoubleToFloat(FPRegisterID src, FPRegisterID dest)
{
m_assembler.fcvt<32, 64>(dest, src);
}
void convertFloatToDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.fcvt<64, 32>(dest, src);
}
void convertInt32ToDouble(TrustedImm32 imm, FPRegisterID dest)
{
move(imm, getCachedDataTempRegisterIDAndInvalidate());
convertInt32ToDouble(dataTempRegister, dest);
}
void convertInt32ToDouble(RegisterID src, FPRegisterID dest)
{
m_assembler.scvtf<64, 32>(dest, src);
}
void convertInt32ToDouble(Address address, FPRegisterID dest)
{
load32(address, getCachedDataTempRegisterIDAndInvalidate());
convertInt32ToDouble(dataTempRegister, dest);
}
void convertInt32ToDouble(AbsoluteAddress address, FPRegisterID dest)
{
load32(address.m_ptr, getCachedDataTempRegisterIDAndInvalidate());
convertInt32ToDouble(dataTempRegister, dest);
}
void convertInt32ToFloat(RegisterID src, FPRegisterID dest)
{
m_assembler.scvtf<32, 32>(dest, src);
}
void convertInt64ToDouble(RegisterID src, FPRegisterID dest)
{
m_assembler.scvtf<64, 64>(dest, src);
}
void convertInt64ToFloat(RegisterID src, FPRegisterID dest)
{
m_assembler.scvtf<32, 64>(dest, src);
}
void convertUInt64ToDouble(RegisterID src, FPRegisterID dest)
{
m_assembler.ucvtf<64, 64>(dest, src);
}
void convertUInt64ToFloat(RegisterID src, FPRegisterID dest)
{
m_assembler.ucvtf<32, 64>(dest, src);
}
void divDouble(FPRegisterID src, FPRegisterID dest)
{
divDouble(dest, src, dest);
}
void divDouble(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest)
{
m_assembler.fdiv<64>(dest, op1, op2);
}
void divFloat(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest)
{
m_assembler.fdiv<32>(dest, op1, op2);
}
void loadDouble(ImplicitAddress address, FPRegisterID dest)
{
if (tryLoadWithOffset<64>(dest, address.base, address.offset))
return;
signExtend32ToPtr(TrustedImm32(address.offset), getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.ldr<64>(dest, address.base, memoryTempRegister);
}
void loadDouble(BaseIndex address, FPRegisterID dest)
{
if (!address.offset && (!address.scale || address.scale == 3)) {
m_assembler.ldr<64>(dest, address.base, address.index, Assembler::UXTX, address.scale);
return;
}
signExtend32ToPtr(TrustedImm32(address.offset), getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.add<64>(memoryTempRegister, memoryTempRegister, address.index, Assembler::UXTX, address.scale);
m_assembler.ldr<64>(dest, address.base, memoryTempRegister);
}
void loadDouble(TrustedImmPtr address, FPRegisterID dest)
{
moveToCachedReg(address, cachedMemoryTempRegister());
m_assembler.ldr<64>(dest, memoryTempRegister, ARM64Registers::zr);
}
void loadFloat(ImplicitAddress address, FPRegisterID dest)
{
if (tryLoadWithOffset<32>(dest, address.base, address.offset))
return;
signExtend32ToPtr(TrustedImm32(address.offset), getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.ldr<32>(dest, address.base, memoryTempRegister);
}
void loadFloat(BaseIndex address, FPRegisterID dest)
{
if (!address.offset && (!address.scale || address.scale == 2)) {
m_assembler.ldr<32>(dest, address.base, address.index, Assembler::UXTX, address.scale);
return;
}
signExtend32ToPtr(TrustedImm32(address.offset), getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.add<64>(memoryTempRegister, memoryTempRegister, address.index, Assembler::UXTX, address.scale);
m_assembler.ldr<32>(dest, address.base, memoryTempRegister);
}
void loadFloat(TrustedImmPtr address, FPRegisterID dest)
{
moveToCachedReg(address, cachedMemoryTempRegister());
m_assembler.ldr<32>(dest, memoryTempRegister, ARM64Registers::zr);
}
void moveDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.fmov<64>(dest, src);
}
void moveZeroToDouble(FPRegisterID reg)
{
m_assembler.fmov<64>(reg, ARM64Registers::zr);
}
void moveDoubleTo64(FPRegisterID src, RegisterID dest)
{
m_assembler.fmov<64>(dest, src);
}
void moveFloatTo32(FPRegisterID src, RegisterID dest)
{
m_assembler.fmov<32>(dest, src);
}
void move64ToDouble(RegisterID src, FPRegisterID dest)
{
m_assembler.fmov<64>(dest, src);
}
void move32ToFloat(RegisterID src, FPRegisterID dest)
{
m_assembler.fmov<32>(dest, src);
}
void moveConditionallyDouble(DoubleCondition cond, FPRegisterID left, FPRegisterID right, RegisterID src, RegisterID dest)
{
m_assembler.fcmp<64>(left, right);
moveConditionallyAfterFloatingPointCompare<64>(cond, src, dest);
}
void moveConditionallyDouble(DoubleCondition cond, FPRegisterID left, FPRegisterID right, RegisterID thenCase, RegisterID elseCase, RegisterID dest)
{
m_assembler.fcmp<64>(left, right);
moveConditionallyAfterFloatingPointCompare<64>(cond, thenCase, elseCase, dest);
}
void moveConditionallyFloat(DoubleCondition cond, FPRegisterID left, FPRegisterID right, RegisterID src, RegisterID dest)
{
m_assembler.fcmp<32>(left, right);
moveConditionallyAfterFloatingPointCompare<64>(cond, src, dest);
}
void moveConditionallyFloat(DoubleCondition cond, FPRegisterID left, FPRegisterID right, RegisterID thenCase, RegisterID elseCase, RegisterID dest)
{
m_assembler.fcmp<32>(left, right);
moveConditionallyAfterFloatingPointCompare<64>(cond, thenCase, elseCase, dest);
}
template<int datasize>
void moveConditionallyAfterFloatingPointCompare(DoubleCondition cond, RegisterID src, RegisterID dest)
{
if (cond == DoubleNotEqual) {
Jump unordered = makeBranch(Assembler::ConditionVS);
m_assembler.csel<datasize>(dest, src, dest, Assembler::ConditionNE);
unordered.link(this);
return;
}
if (cond == DoubleEqualOrUnordered) {
// If the compare is unordered, src is copied to dest and the
// next csel has all arguments equal to src.
// If the compare is ordered, dest is unchanged and EQ decides
// what value to set.
m_assembler.csel<datasize>(dest, src, dest, Assembler::ConditionVS);
m_assembler.csel<datasize>(dest, src, dest, Assembler::ConditionEQ);
return;
}
m_assembler.csel<datasize>(dest, src, dest, ARM64Condition(cond));
}
template<int datasize>
void moveConditionallyAfterFloatingPointCompare(DoubleCondition cond, RegisterID thenCase, RegisterID elseCase, RegisterID dest)
{
if (cond == DoubleNotEqual) {
Jump unordered = makeBranch(Assembler::ConditionVS);
m_assembler.csel<datasize>(dest, thenCase, elseCase, Assembler::ConditionNE);
unordered.link(this);
return;
}
if (cond == DoubleEqualOrUnordered) {
// If the compare is unordered, thenCase is copied to elseCase and the
// next csel has all arguments equal to thenCase.
// If the compare is ordered, dest is unchanged and EQ decides
// what value to set.
m_assembler.csel<datasize>(elseCase, thenCase, elseCase, Assembler::ConditionVS);
m_assembler.csel<datasize>(dest, thenCase, elseCase, Assembler::ConditionEQ);
return;
}
m_assembler.csel<datasize>(dest, thenCase, elseCase, ARM64Condition(cond));
}
template<int datasize>
void moveDoubleConditionallyAfterFloatingPointCompare(DoubleCondition cond, FPRegisterID thenCase, FPRegisterID elseCase, FPRegisterID dest)
{
if (cond == DoubleNotEqual) {
Jump unordered = makeBranch(Assembler::ConditionVS);
m_assembler.fcsel<datasize>(dest, thenCase, elseCase, Assembler::ConditionNE);
unordered.link(this);
return;
}
if (cond == DoubleEqualOrUnordered) {
// If the compare is unordered, thenCase is copied to elseCase and the
// next csel has all arguments equal to thenCase.
// If the compare is ordered, dest is unchanged and EQ decides
// what value to set.
m_assembler.fcsel<datasize>(elseCase, thenCase, elseCase, Assembler::ConditionVS);
m_assembler.fcsel<datasize>(dest, thenCase, elseCase, Assembler::ConditionEQ);
return;
}
m_assembler.fcsel<datasize>(dest, thenCase, elseCase, ARM64Condition(cond));
}
void moveDoubleConditionallyDouble(DoubleCondition cond, FPRegisterID left, FPRegisterID right, FPRegisterID thenCase, FPRegisterID elseCase, FPRegisterID dest)
{
m_assembler.fcmp<64>(left, right);
moveDoubleConditionallyAfterFloatingPointCompare<64>(cond, thenCase, elseCase, dest);
}
void moveDoubleConditionallyFloat(DoubleCondition cond, FPRegisterID left, FPRegisterID right, FPRegisterID thenCase, FPRegisterID elseCase, FPRegisterID dest)
{
m_assembler.fcmp<32>(left, right);
moveDoubleConditionallyAfterFloatingPointCompare<64>(cond, thenCase, elseCase, dest);
}
void mulDouble(FPRegisterID src, FPRegisterID dest)
{
mulDouble(dest, src, dest);
}
void mulDouble(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest)
{
m_assembler.fmul<64>(dest, op1, op2);
}
void mulDouble(Address src, FPRegisterID dest)
{
loadDouble(src, fpTempRegister);
mulDouble(fpTempRegister, dest);
}
void mulFloat(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest)
{
m_assembler.fmul<32>(dest, op1, op2);
}
void andDouble(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest)
{
m_assembler.vand<64>(dest, op1, op2);
}
void andFloat(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest)
{
andDouble(op1, op2, dest);
}
void orDouble(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest)
{
m_assembler.vorr<64>(dest, op1, op2);
}
void orFloat(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest)
{
orDouble(op1, op2, dest);
}
void negateDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.fneg<64>(dest, src);
}
void negateFloat(FPRegisterID src, FPRegisterID dest)
{
m_assembler.fneg<32>(dest, src);
}
void sqrtDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.fsqrt<64>(dest, src);
}
void sqrtFloat(FPRegisterID src, FPRegisterID dest)
{
m_assembler.fsqrt<32>(dest, src);
}
void storeDouble(FPRegisterID src, ImplicitAddress address)
{
if (tryStoreWithOffset<64>(src, address.base, address.offset))
return;
signExtend32ToPtr(TrustedImm32(address.offset), getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.str<64>(src, address.base, memoryTempRegister);
}
void storeDouble(FPRegisterID src, TrustedImmPtr address)
{
moveToCachedReg(address, cachedMemoryTempRegister());
m_assembler.str<64>(src, memoryTempRegister, ARM64Registers::zr);
}
void storeDouble(FPRegisterID src, BaseIndex address)
{
if (!address.offset && (!address.scale || address.scale == 3)) {
m_assembler.str<64>(src, address.base, address.index, Assembler::UXTX, address.scale);
return;
}
signExtend32ToPtr(TrustedImm32(address.offset), getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.add<64>(memoryTempRegister, memoryTempRegister, address.index, Assembler::UXTX, address.scale);
m_assembler.str<64>(src, address.base, memoryTempRegister);
}
void storeFloat(FPRegisterID src, ImplicitAddress address)
{
if (tryStoreWithOffset<32>(src, address.base, address.offset))
return;
signExtend32ToPtr(TrustedImm32(address.offset), getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.str<32>(src, address.base, memoryTempRegister);
}
void storeFloat(FPRegisterID src, BaseIndex address)
{
if (!address.offset && (!address.scale || address.scale == 2)) {
m_assembler.str<32>(src, address.base, address.index, Assembler::UXTX, address.scale);
return;
}
signExtend32ToPtr(TrustedImm32(address.offset), getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.add<64>(memoryTempRegister, memoryTempRegister, address.index, Assembler::UXTX, address.scale);
m_assembler.str<32>(src, address.base, memoryTempRegister);
}
void subDouble(FPRegisterID src, FPRegisterID dest)
{
subDouble(dest, src, dest);
}
void subDouble(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest)
{
m_assembler.fsub<64>(dest, op1, op2);
}
void subDouble(Address src, FPRegisterID dest)
{
loadDouble(src, fpTempRegister);
subDouble(fpTempRegister, dest);
}
void subFloat(FPRegisterID op1, FPRegisterID op2, FPRegisterID dest)
{
m_assembler.fsub<32>(dest, op1, op2);
}
// Result is undefined if the value is outside of the integer range.
void truncateDoubleToInt32(FPRegisterID src, RegisterID dest)
{
m_assembler.fcvtzs<32, 64>(dest, src);
}
void truncateDoubleToUint32(FPRegisterID src, RegisterID dest)
{
m_assembler.fcvtzu<32, 64>(dest, src);
}
void truncateDoubleToInt64(FPRegisterID src, RegisterID dest)
{
m_assembler.fcvtzs<64, 64>(dest, src);
}
void truncateDoubleToUint64(FPRegisterID src, RegisterID dest, FPRegisterID, FPRegisterID)
{
truncateDoubleToUint64(src, dest);
}
void truncateDoubleToUint64(FPRegisterID src, RegisterID dest)
{
m_assembler.fcvtzu<64, 64>(dest, src);
}
void truncateFloatToInt32(FPRegisterID src, RegisterID dest)
{
m_assembler.fcvtzs<32, 32>(dest, src);
}
void truncateFloatToUint32(FPRegisterID src, RegisterID dest)
{
m_assembler.fcvtzu<32, 32>(dest, src);
}
void truncateFloatToInt64(FPRegisterID src, RegisterID dest)
{
m_assembler.fcvtzs<64, 32>(dest, src);
}
void truncateFloatToUint64(FPRegisterID src, RegisterID dest, FPRegisterID, FPRegisterID)
{
truncateFloatToUint64(src, dest);
}
void truncateFloatToUint64(FPRegisterID src, RegisterID dest)
{
m_assembler.fcvtzu<64, 32>(dest, src);
}
// Stack manipulation operations:
//
// The ABI is assumed to provide a stack abstraction to memory,
// containing machine word sized units of data. Push and pop
// operations add and remove a single register sized unit of data
// to or from the stack. These operations are not supported on
// ARM64. Peek and poke operations read or write values on the
// stack, without moving the current stack position. Additionally,
// there are popToRestore and pushToSave operations, which are
// designed just for quick-and-dirty saving and restoring of
// temporary values. These operations don't claim to have any
// ABI compatibility.
void pop(RegisterID) NO_RETURN_DUE_TO_CRASH
{
CRASH();
}
void push(RegisterID) NO_RETURN_DUE_TO_CRASH
{
CRASH();
}
void push(Address) NO_RETURN_DUE_TO_CRASH
{
CRASH();
}
void push(TrustedImm32) NO_RETURN_DUE_TO_CRASH
{
CRASH();
}
void popPair(RegisterID dest1, RegisterID dest2)
{
m_assembler.ldp<64>(dest1, dest2, ARM64Registers::sp, PairPostIndex(16));
}
void pushPair(RegisterID src1, RegisterID src2)
{
m_assembler.stp<64>(src1, src2, ARM64Registers::sp, PairPreIndex(-16));
}
void popToRestore(RegisterID dest)
{
m_assembler.ldr<64>(dest, ARM64Registers::sp, PostIndex(16));
}
void pushToSave(RegisterID src)
{
m_assembler.str<64>(src, ARM64Registers::sp, PreIndex(-16));
}
void pushToSaveImmediateWithoutTouchingRegisters(TrustedImm32 imm)
{
// We can use any non-hardware reserved register here since we restore its value.
// We pick dataTempRegister arbitrarily. We don't need to invalidate it here since
// we restore its original value.
RegisterID reg = dataTempRegister;
pushPair(reg, reg);
move(imm, reg);
store64(reg, stackPointerRegister);
load64(Address(stackPointerRegister, 8), reg);
}
void pushToSave(Address address)
{
load32(address, getCachedDataTempRegisterIDAndInvalidate());
pushToSave(dataTempRegister);
}
void pushToSave(TrustedImm32 imm)
{
move(imm, getCachedDataTempRegisterIDAndInvalidate());
pushToSave(dataTempRegister);
}
void popToRestore(FPRegisterID dest)
{
loadDouble(stackPointerRegister, dest);
add64(TrustedImm32(16), stackPointerRegister);
}
void pushToSave(FPRegisterID src)
{
sub64(TrustedImm32(16), stackPointerRegister);
storeDouble(src, stackPointerRegister);
}
static ptrdiff_t pushToSaveByteOffset() { return 16; }
// Register move operations:
void move(RegisterID src, RegisterID dest)
{
if (src != dest)
m_assembler.mov<64>(dest, src);
}
void move(TrustedImm32 imm, RegisterID dest)
{
moveInternal<TrustedImm32, int32_t>(imm, dest);
}
void move(TrustedImmPtr imm, RegisterID dest)
{
moveInternal<TrustedImmPtr, intptr_t>(imm, dest);
}
void move(TrustedImm64 imm, RegisterID dest)
{
moveInternal<TrustedImm64, int64_t>(imm, dest);
}
void swap(RegisterID reg1, RegisterID reg2)
{
move(reg1, getCachedDataTempRegisterIDAndInvalidate());
move(reg2, reg1);
move(dataTempRegister, reg2);
}
void swap(FPRegisterID reg1, FPRegisterID reg2)
{
moveDouble(reg1, fpTempRegister);
moveDouble(reg2, reg1);
moveDouble(fpTempRegister, reg2);
}
void signExtend32ToPtr(TrustedImm32 imm, RegisterID dest)
{
move(TrustedImmPtr(reinterpret_cast<void*>(static_cast<intptr_t>(imm.m_value))), dest);
}
void signExtend32ToPtr(RegisterID src, RegisterID dest)
{
m_assembler.sxtw(dest, src);
}
void zeroExtend32ToPtr(RegisterID src, RegisterID dest)
{
m_assembler.uxtw(dest, src);
}
void moveConditionally32(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID src, RegisterID dest)
{
m_assembler.cmp<32>(left, right);
m_assembler.csel<64>(dest, src, dest, ARM64Condition(cond));
}
void moveConditionally32(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID thenCase, RegisterID elseCase, RegisterID dest)
{
m_assembler.cmp<32>(left, right);
m_assembler.csel<64>(dest, thenCase, elseCase, ARM64Condition(cond));
}
void moveConditionally32(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID thenCase, RegisterID elseCase, RegisterID dest)
{
if (!right.m_value) {
if (auto resultCondition = commuteCompareToZeroIntoTest(cond)) {
moveConditionallyTest32(*resultCondition, left, left, thenCase, elseCase, dest);
return;
}
}
if (isUInt12(right.m_value))
m_assembler.cmp<32>(left, UInt12(right.m_value));
else if (isUInt12(-right.m_value))
m_assembler.cmn<32>(left, UInt12(-right.m_value));
else {
moveToCachedReg(right, dataMemoryTempRegister());
m_assembler.cmp<32>(left, dataTempRegister);
}
m_assembler.csel<64>(dest, thenCase, elseCase, ARM64Condition(cond));
}
void moveConditionally64(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID src, RegisterID dest)
{
m_assembler.cmp<64>(left, right);
m_assembler.csel<64>(dest, src, dest, ARM64Condition(cond));
}
void moveConditionally64(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID thenCase, RegisterID elseCase, RegisterID dest)
{
m_assembler.cmp<64>(left, right);
m_assembler.csel<64>(dest, thenCase, elseCase, ARM64Condition(cond));
}
void moveConditionally64(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID thenCase, RegisterID elseCase, RegisterID dest)
{
if (!right.m_value) {
if (auto resultCondition = commuteCompareToZeroIntoTest(cond)) {
moveConditionallyTest64(*resultCondition, left, left, thenCase, elseCase, dest);
return;
}
}
if (isUInt12(right.m_value))
m_assembler.cmp<64>(left, UInt12(right.m_value));
else if (isUInt12(-right.m_value))
m_assembler.cmn<64>(left, UInt12(-right.m_value));
else {
moveToCachedReg(right, dataMemoryTempRegister());
m_assembler.cmp<64>(left, dataTempRegister);
}
m_assembler.csel<64>(dest, thenCase, elseCase, ARM64Condition(cond));
}
void moveConditionallyTest32(ResultCondition cond, RegisterID testReg, RegisterID mask, RegisterID src, RegisterID dest)
{
m_assembler.tst<32>(testReg, mask);
m_assembler.csel<64>(dest, src, dest, ARM64Condition(cond));
}
void moveConditionallyTest32(ResultCondition cond, RegisterID left, RegisterID right, RegisterID thenCase, RegisterID elseCase, RegisterID dest)
{
m_assembler.tst<32>(left, right);
m_assembler.csel<64>(dest, thenCase, elseCase, ARM64Condition(cond));
}
void moveConditionallyTest32(ResultCondition cond, RegisterID left, TrustedImm32 right, RegisterID thenCase, RegisterID elseCase, RegisterID dest)
{
test32(left, right);
m_assembler.csel<64>(dest, thenCase, elseCase, ARM64Condition(cond));
}
void moveConditionallyTest64(ResultCondition cond, RegisterID testReg, RegisterID mask, RegisterID src, RegisterID dest)
{
m_assembler.tst<64>(testReg, mask);
m_assembler.csel<64>(dest, src, dest, ARM64Condition(cond));
}
void moveConditionallyTest64(ResultCondition cond, RegisterID left, RegisterID right, RegisterID thenCase, RegisterID elseCase, RegisterID dest)
{
m_assembler.tst<64>(left, right);
m_assembler.csel<64>(dest, thenCase, elseCase, ARM64Condition(cond));
}
void moveDoubleConditionally32(RelationalCondition cond, RegisterID left, RegisterID right, FPRegisterID thenCase, FPRegisterID elseCase, FPRegisterID dest)
{
m_assembler.cmp<32>(left, right);
m_assembler.fcsel<64>(dest, thenCase, elseCase, ARM64Condition(cond));
}
void moveDoubleConditionally32(RelationalCondition cond, RegisterID left, TrustedImm32 right, FPRegisterID thenCase, FPRegisterID elseCase, FPRegisterID dest)
{
if (!right.m_value) {
if (auto resultCondition = commuteCompareToZeroIntoTest(cond)) {
moveDoubleConditionallyTest32(*resultCondition, left, left, thenCase, elseCase, dest);
return;
}
}
if (isUInt12(right.m_value))
m_assembler.cmp<32>(left, UInt12(right.m_value));
else if (isUInt12(-right.m_value))
m_assembler.cmn<32>(left, UInt12(-right.m_value));
else {
moveToCachedReg(right, dataMemoryTempRegister());
m_assembler.cmp<32>(left, dataTempRegister);
}
m_assembler.fcsel<64>(dest, thenCase, elseCase, ARM64Condition(cond));
}
void moveDoubleConditionally64(RelationalCondition cond, RegisterID left, RegisterID right, FPRegisterID thenCase, FPRegisterID elseCase, FPRegisterID dest)
{
m_assembler.cmp<64>(left, right);
m_assembler.fcsel<64>(dest, thenCase, elseCase, ARM64Condition(cond));
}
void moveDoubleConditionally64(RelationalCondition cond, RegisterID left, TrustedImm32 right, FPRegisterID thenCase, FPRegisterID elseCase, FPRegisterID dest)
{
if (!right.m_value) {
if (auto resultCondition = commuteCompareToZeroIntoTest(cond)) {
moveDoubleConditionallyTest64(*resultCondition, left, left, thenCase, elseCase, dest);
return;
}
}
if (isUInt12(right.m_value))
m_assembler.cmp<64>(left, UInt12(right.m_value));
else if (isUInt12(-right.m_value))
m_assembler.cmn<64>(left, UInt12(-right.m_value));
else {
moveToCachedReg(right, dataMemoryTempRegister());
m_assembler.cmp<64>(left, dataTempRegister);
}
m_assembler.fcsel<64>(dest, thenCase, elseCase, ARM64Condition(cond));
}
void moveDoubleConditionallyTest32(ResultCondition cond, RegisterID left, RegisterID right, FPRegisterID thenCase, FPRegisterID elseCase, FPRegisterID dest)
{
m_assembler.tst<32>(left, right);
m_assembler.fcsel<64>(dest, thenCase, elseCase, ARM64Condition(cond));
}
void moveDoubleConditionallyTest32(ResultCondition cond, RegisterID left, TrustedImm32 right, FPRegisterID thenCase, FPRegisterID elseCase, FPRegisterID dest)
{
test32(left, right);
m_assembler.fcsel<64>(dest, thenCase, elseCase, ARM64Condition(cond));
}
void moveDoubleConditionallyTest64(ResultCondition cond, RegisterID left, RegisterID right, FPRegisterID thenCase, FPRegisterID elseCase, FPRegisterID dest)
{
m_assembler.tst<64>(left, right);
m_assembler.fcsel<64>(dest, thenCase, elseCase, ARM64Condition(cond));
}
// Bit field operations:
// destBitOffset is the top bit of the destination where the bits should be copied to. Zero is the lowest order bit.
void bitFieldInsert64(RegisterID source, unsigned destBitOffset, unsigned width, RegisterID dest)
{
ASSERT(width <= 64 - destBitOffset && destBitOffset < 64);
m_assembler.bfi<64>(dest, source, destBitOffset, width);
}
// Forwards / external control flow operations:
//
// This set of jump and conditional branch operations return a Jump
// object which may linked at a later point, allow forwards jump,
// or jumps that will require external linkage (after the code has been
// relocated).
//
// For branches, signed <, >, <= and >= are denoted as l, g, le, and ge
// respecitvely, for unsigned comparisons the names b, a, be, and ae are
// used (representing the names 'below' and 'above').
//
// Operands to the comparision are provided in the expected order, e.g.
// jle32(reg1, TrustedImm32(5)) will branch if the value held in reg1, when
// treated as a signed 32bit value, is less than or equal to 5.
//
// jz and jnz test whether the first operand is equal to zero, and take
// an optional second operand of a mask under which to perform the test.
Jump branch32(RelationalCondition cond, RegisterID left, RegisterID right)
{
m_assembler.cmp<32>(left, right);
return Jump(makeBranch(cond));
}
Jump branch32(RelationalCondition cond, RegisterID left, TrustedImm32 right)
{
if (!right.m_value) {
if (auto resultCondition = commuteCompareToZeroIntoTest(cond))
return branchTest32(*resultCondition, left, left);
}
if (isUInt12(right.m_value))
m_assembler.cmp<32>(left, UInt12(right.m_value));
else if (isUInt12(-right.m_value))
m_assembler.cmn<32>(left, UInt12(-right.m_value));
else {
moveToCachedReg(right, dataMemoryTempRegister());
m_assembler.cmp<32>(left, dataTempRegister);
}
return Jump(makeBranch(cond));
}
Jump branch32(RelationalCondition cond, RegisterID left, Address right)
{
load32(right, getCachedMemoryTempRegisterIDAndInvalidate());
return branch32(cond, left, memoryTempRegister);
}
Jump branch32(RelationalCondition cond, Address left, RegisterID right)
{
load32(left, getCachedMemoryTempRegisterIDAndInvalidate());
return branch32(cond, memoryTempRegister, right);
}
Jump branch32(RelationalCondition cond, Address left, TrustedImm32 right)
{
load32(left, getCachedMemoryTempRegisterIDAndInvalidate());
return branch32(cond, memoryTempRegister, right);
}
Jump branch32(RelationalCondition cond, BaseIndex left, TrustedImm32 right)
{
load32(left, getCachedMemoryTempRegisterIDAndInvalidate());
return branch32(cond, memoryTempRegister, right);
}
Jump branch32(RelationalCondition cond, AbsoluteAddress left, RegisterID right)
{
load32(left.m_ptr, getCachedDataTempRegisterIDAndInvalidate());
return branch32(cond, dataTempRegister, right);
}
Jump branch32(RelationalCondition cond, AbsoluteAddress left, TrustedImm32 right)
{
load32(left.m_ptr, getCachedMemoryTempRegisterIDAndInvalidate());
return branch32(cond, memoryTempRegister, right);
}
Jump branch64(RelationalCondition cond, RegisterID left, RegisterID right)
{
if (right == ARM64Registers::sp) {
if (cond == Equal && left != ARM64Registers::sp) {
// CMP can only use SP for the left argument, since we are testing for equality, the order
// does not matter here.
std::swap(left, right);
} else {
move(right, getCachedDataTempRegisterIDAndInvalidate());
right = dataTempRegister;
}
}
m_assembler.cmp<64>(left, right);
return Jump(makeBranch(cond));
}
Jump branch64(RelationalCondition cond, RegisterID left, TrustedImm32 right)
{
if (!right.m_value) {
if (auto resultCondition = commuteCompareToZeroIntoTest(cond))
return branchTest64(*resultCondition, left, left);
}
if (isUInt12(right.m_value))
m_assembler.cmp<64>(left, UInt12(right.m_value));
else if (isUInt12(-right.m_value))
m_assembler.cmn<64>(left, UInt12(-right.m_value));
else {
moveToCachedReg(right, dataMemoryTempRegister());
m_assembler.cmp<64>(left, dataTempRegister);
}
return Jump(makeBranch(cond));
}
Jump branch64(RelationalCondition cond, RegisterID left, TrustedImm64 right)
{
intptr_t immediate = right.m_value;
if (!immediate) {
if (auto resultCondition = commuteCompareToZeroIntoTest(cond))
return branchTest64(*resultCondition, left, left);
}
if (isUInt12(immediate))
m_assembler.cmp<64>(left, UInt12(static_cast<int32_t>(immediate)));
else if (isUInt12(-immediate))
m_assembler.cmn<64>(left, UInt12(static_cast<int32_t>(-immediate)));
else {
moveToCachedReg(right, dataMemoryTempRegister());
m_assembler.cmp<64>(left, dataTempRegister);
}
return Jump(makeBranch(cond));
}
Jump branch64(RelationalCondition cond, RegisterID left, Address right)
{
load64(right, getCachedMemoryTempRegisterIDAndInvalidate());
return branch64(cond, left, memoryTempRegister);
}
Jump branch64(RelationalCondition cond, AbsoluteAddress left, RegisterID right)
{
load64(left.m_ptr, getCachedDataTempRegisterIDAndInvalidate());
return branch64(cond, dataTempRegister, right);
}
Jump branch64(RelationalCondition cond, Address left, RegisterID right)
{
load64(left, getCachedMemoryTempRegisterIDAndInvalidate());
return branch64(cond, memoryTempRegister, right);
}
Jump branch64(RelationalCondition cond, Address left, TrustedImm64 right)
{
load64(left, getCachedMemoryTempRegisterIDAndInvalidate());
return branch64(cond, memoryTempRegister, right);
}
Jump branch64(RelationalCondition cond, BaseIndex left, RegisterID right)
{
load64(left, getCachedMemoryTempRegisterIDAndInvalidate());
return branch64(cond, memoryTempRegister, right);
}
Jump branchPtr(RelationalCondition cond, BaseIndex left, RegisterID right)
{
return branch64(cond, left, right);
}
Jump branch8(RelationalCondition cond, Address left, TrustedImm32 right)
{
TrustedImm32 right8 = MacroAssemblerHelpers::mask8OnCondition(*this, cond, right);
MacroAssemblerHelpers::load8OnCondition(*this, cond, left, getCachedMemoryTempRegisterIDAndInvalidate());
return branch32(cond, memoryTempRegister, right8);
}
Jump branch8(RelationalCondition cond, BaseIndex left, TrustedImm32 right)
{
TrustedImm32 right8 = MacroAssemblerHelpers::mask8OnCondition(*this, cond, right);
MacroAssemblerHelpers::load8OnCondition(*this, cond, left, getCachedMemoryTempRegisterIDAndInvalidate());
return branch32(cond, memoryTempRegister, right8);
}
Jump branch8(RelationalCondition cond, AbsoluteAddress left, TrustedImm32 right)
{
TrustedImm32 right8 = MacroAssemblerHelpers::mask8OnCondition(*this, cond, right);
MacroAssemblerHelpers::load8OnCondition(*this, cond, left.m_ptr, getCachedMemoryTempRegisterIDAndInvalidate());
return branch32(cond, memoryTempRegister, right8);
}
Jump branchTest32(ResultCondition cond, RegisterID reg, RegisterID mask)
{
if (reg == mask && (cond == Zero || cond == NonZero))
return Jump(makeCompareAndBranch<32>(static_cast<ZeroCondition>(cond), reg));
m_assembler.tst<32>(reg, mask);
return Jump(makeBranch(cond));
}
void test32(RegisterID reg, TrustedImm32 mask = TrustedImm32(-1))
{
if (mask.m_value == -1)
m_assembler.tst<32>(reg, reg);
else {
LogicalImmediate logicalImm = LogicalImmediate::create32(mask.m_value);
if (logicalImm.isValid())
m_assembler.tst<32>(reg, logicalImm);
else {
move(mask, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.tst<32>(reg, dataTempRegister);
}
}
}
Jump branch(ResultCondition cond)
{
return Jump(makeBranch(cond));
}
Jump branchTest32(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1))
{
if (mask.m_value == -1) {
if ((cond == Zero) || (cond == NonZero))
return Jump(makeCompareAndBranch<32>(static_cast<ZeroCondition>(cond), reg));
m_assembler.tst<32>(reg, reg);
} else if (hasOneBitSet(mask.m_value) && ((cond == Zero) || (cond == NonZero)))
return Jump(makeTestBitAndBranch(reg, getLSBSet(mask.m_value), static_cast<ZeroCondition>(cond)));
else {
LogicalImmediate logicalImm = LogicalImmediate::create32(mask.m_value);
if (logicalImm.isValid()) {
m_assembler.tst<32>(reg, logicalImm);
return Jump(makeBranch(cond));
}
move(mask, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.tst<32>(reg, dataTempRegister);
}
return Jump(makeBranch(cond));
}
Jump branchTest32(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1))
{
load32(address, getCachedMemoryTempRegisterIDAndInvalidate());
return branchTest32(cond, memoryTempRegister, mask);
}
Jump branchTest32(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1))
{
load32(address, getCachedMemoryTempRegisterIDAndInvalidate());
return branchTest32(cond, memoryTempRegister, mask);
}
Jump branchTest64(ResultCondition cond, RegisterID reg, RegisterID mask)
{
if (reg == mask && (cond == Zero || cond == NonZero))
return Jump(makeCompareAndBranch<64>(static_cast<ZeroCondition>(cond), reg));
m_assembler.tst<64>(reg, mask);
return Jump(makeBranch(cond));
}
Jump branchTest64(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1))
{
if (mask.m_value == -1) {
if ((cond == Zero) || (cond == NonZero))
return Jump(makeCompareAndBranch<64>(static_cast<ZeroCondition>(cond), reg));
m_assembler.tst<64>(reg, reg);
} else if (hasOneBitSet(mask.m_value) && ((cond == Zero) || (cond == NonZero)))
return Jump(makeTestBitAndBranch(reg, getLSBSet(mask.m_value), static_cast<ZeroCondition>(cond)));
else {
LogicalImmediate logicalImm = LogicalImmediate::create64(mask.m_value);
if (logicalImm.isValid()) {
m_assembler.tst<64>(reg, logicalImm);
return Jump(makeBranch(cond));
}
signExtend32ToPtr(mask, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.tst<64>(reg, dataTempRegister);
}
return Jump(makeBranch(cond));
}
Jump branchTest64(ResultCondition cond, RegisterID reg, TrustedImm64 mask)
{
if (mask.m_value == -1) {
if ((cond == Zero) || (cond == NonZero))
return Jump(makeCompareAndBranch<64>(static_cast<ZeroCondition>(cond), reg));
m_assembler.tst<64>(reg, reg);
} else if (hasOneBitSet(mask.m_value) && ((cond == Zero) || (cond == NonZero)))
return Jump(makeTestBitAndBranch(reg, getLSBSet(mask.m_value), static_cast<ZeroCondition>(cond)));
else {
LogicalImmediate logicalImm = LogicalImmediate::create64(mask.m_value);
if (logicalImm.isValid()) {
m_assembler.tst<64>(reg, logicalImm);
return Jump(makeBranch(cond));
}
move(mask, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.tst<64>(reg, dataTempRegister);
}
return Jump(makeBranch(cond));
}
Jump branchTest64(ResultCondition cond, Address address, RegisterID mask)
{
load64(address, getCachedDataTempRegisterIDAndInvalidate());
return branchTest64(cond, dataTempRegister, mask);
}
Jump branchTest64(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1))
{
load64(address, getCachedDataTempRegisterIDAndInvalidate());
return branchTest64(cond, dataTempRegister, mask);
}
Jump branchTest64(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1))
{
load64(address, getCachedDataTempRegisterIDAndInvalidate());
return branchTest64(cond, dataTempRegister, mask);
}
Jump branchTest64(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1))
{
load64(address.m_ptr, getCachedDataTempRegisterIDAndInvalidate());
return branchTest64(cond, dataTempRegister, mask);
}
Jump branchTest8(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1))
{
TrustedImm32 mask8 = MacroAssemblerHelpers::mask8OnCondition(*this, cond, mask);
MacroAssemblerHelpers::load8OnCondition(*this, cond, address, getCachedDataTempRegisterIDAndInvalidate());
return branchTest32(cond, dataTempRegister, mask8);
}
Jump branchTest8(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1))
{
TrustedImm32 mask8 = MacroAssemblerHelpers::mask8OnCondition(*this, cond, mask);
MacroAssemblerHelpers::load8OnCondition(*this, cond, address.m_ptr, getCachedDataTempRegisterIDAndInvalidate());
return branchTest32(cond, dataTempRegister, mask8);
}
Jump branchTest8(ResultCondition cond, ExtendedAddress address, TrustedImm32 mask = TrustedImm32(-1))
{
TrustedImm32 mask8 = MacroAssemblerHelpers::mask8OnCondition(*this, cond, mask);
move(TrustedImmPtr(reinterpret_cast<void*>(address.offset)), getCachedDataTempRegisterIDAndInvalidate());
if (MacroAssemblerHelpers::isUnsigned<MacroAssemblerARM64>(cond))
m_assembler.ldrb(dataTempRegister, address.base, dataTempRegister);
else
m_assembler.ldrsb<32>(dataTempRegister, address.base, dataTempRegister);
return branchTest32(cond, dataTempRegister, mask8);
}
Jump branchTest8(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1))
{
TrustedImm32 mask8 = MacroAssemblerHelpers::mask8OnCondition(*this, cond, mask);
MacroAssemblerHelpers::load8OnCondition(*this, cond, address, getCachedDataTempRegisterIDAndInvalidate());
return branchTest32(cond, dataTempRegister, mask8);
}
Jump branch32WithUnalignedHalfWords(RelationalCondition cond, BaseIndex left, TrustedImm32 right)
{
return branch32(cond, left, right);
}
// Arithmetic control flow operations:
//
// This set of conditional branch operations branch based
// on the result of an arithmetic operation. The operation
// is performed as normal, storing the result.
//
// * jz operations branch if the result is zero.
// * jo operations branch if the (signed) arithmetic
// operation caused an overflow to occur.
Jump branchAdd32(ResultCondition cond, RegisterID op1, RegisterID op2, RegisterID dest)
{
m_assembler.add<32, S>(dest, op1, op2);
return Jump(makeBranch(cond));
}
Jump branchAdd32(ResultCondition cond, RegisterID op1, TrustedImm32 imm, RegisterID dest)
{
if (isUInt12(imm.m_value)) {
m_assembler.add<32, S>(dest, op1, UInt12(imm.m_value));
return Jump(makeBranch(cond));
}
if (isUInt12(-imm.m_value)) {
m_assembler.sub<32, S>(dest, op1, UInt12(-imm.m_value));
return Jump(makeBranch(cond));
}
signExtend32ToPtr(imm, getCachedDataTempRegisterIDAndInvalidate());
return branchAdd32(cond, op1, dataTempRegister, dest);
}
Jump branchAdd32(ResultCondition cond, Address src, RegisterID dest)
{
load32(src, getCachedDataTempRegisterIDAndInvalidate());
return branchAdd32(cond, dest, dataTempRegister, dest);
}
Jump branchAdd32(ResultCondition cond, RegisterID src, RegisterID dest)
{
return branchAdd32(cond, dest, src, dest);
}
Jump branchAdd32(ResultCondition cond, TrustedImm32 imm, RegisterID dest)
{
return branchAdd32(cond, dest, imm, dest);
}
Jump branchAdd32(ResultCondition cond, TrustedImm32 imm, AbsoluteAddress address)
{
load32(address.m_ptr, getCachedDataTempRegisterIDAndInvalidate());
if (isUInt12(imm.m_value)) {
m_assembler.add<32, S>(dataTempRegister, dataTempRegister, UInt12(imm.m_value));
store32(dataTempRegister, address.m_ptr);
} else if (isUInt12(-imm.m_value)) {
m_assembler.sub<32, S>(dataTempRegister, dataTempRegister, UInt12(-imm.m_value));
store32(dataTempRegister, address.m_ptr);
} else {
move(imm, getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.add<32, S>(dataTempRegister, dataTempRegister, memoryTempRegister);
store32(dataTempRegister, address.m_ptr);
}
return Jump(makeBranch(cond));
}
Jump branchAdd32(ResultCondition cond, TrustedImm32 imm, Address address)
{
load32(address, getCachedDataTempRegisterIDAndInvalidate());
if (isUInt12(imm.m_value))
m_assembler.add<32, S>(dataTempRegister, dataTempRegister, UInt12(imm.m_value));
else if (isUInt12(-imm.m_value))
m_assembler.sub<32, S>(dataTempRegister, dataTempRegister, UInt12(-imm.m_value));
else {
move(imm, getCachedMemoryTempRegisterIDAndInvalidate());
m_assembler.add<32, S>(dataTempRegister, dataTempRegister, memoryTempRegister);
}
store32(dataTempRegister, address);
return Jump(makeBranch(cond));
}
Jump branchAdd64(ResultCondition cond, RegisterID op1, RegisterID op2, RegisterID dest)
{
m_assembler.add<64, S>(dest, op1, op2);
return Jump(makeBranch(cond));
}
Jump branchAdd64(ResultCondition cond, RegisterID op1, TrustedImm32 imm, RegisterID dest)
{
if (isUInt12(imm.m_value)) {
m_assembler.add<64, S>(dest, op1, UInt12(imm.m_value));
return Jump(makeBranch(cond));
}
if (isUInt12(-imm.m_value)) {
m_assembler.sub<64, S>(dest, op1, UInt12(-imm.m_value));
return Jump(makeBranch(cond));
}
move(imm, getCachedDataTempRegisterIDAndInvalidate());
return branchAdd64(cond, op1, dataTempRegister, dest);
}
Jump branchAdd64(ResultCondition cond, RegisterID src, RegisterID dest)
{
return branchAdd64(cond, dest, src, dest);
}
Jump branchAdd64(ResultCondition cond, TrustedImm32 imm, RegisterID dest)
{
return branchAdd64(cond, dest, imm, dest);
}
Jump branchAdd64(RelationalCondition cond, TrustedImm32 imm, RegisterID dest)
{
ASSERT(isUInt12(imm.m_value));
m_assembler.add<64, S>(dest, dest, UInt12(imm.m_value));
return Jump(makeBranch(cond));
}
Jump branchMul32(ResultCondition cond, RegisterID src1, RegisterID src2, RegisterID scratch1, RegisterID scratch2, RegisterID dest)
{
ASSERT(cond != Signed);
if (cond != Overflow) {
m_assembler.mul<32>(dest, src1, src2);
return branchTest32(cond, dest);
}
// This is a signed multiple of two 32-bit values, producing a 64-bit result.
m_assembler.smull(dest, src1, src2);
// Copy bits 63..32 of the result to bits 31..0 of scratch1.
m_assembler.asr<64>(scratch1, dest, 32);
// Splat bit 31 of the result to bits 31..0 of scratch2.
m_assembler.asr<32>(scratch2, dest, 31);
// After a mul32 the top 32 bits of the register should be clear.
zeroExtend32ToPtr(dest, dest);
// Check that bits 31..63 of the original result were all equal.
return branch32(NotEqual, scratch2, scratch1);
}
Jump branchMul32(ResultCondition cond, RegisterID src1, RegisterID src2, RegisterID dest)
{
return branchMul32(cond, src1, src2, getCachedDataTempRegisterIDAndInvalidate(), getCachedMemoryTempRegisterIDAndInvalidate(), dest);
}
Jump branchMul32(ResultCondition cond, RegisterID src, RegisterID dest)
{
return branchMul32(cond, dest, src, dest);
}
Jump branchMul32(ResultCondition cond, RegisterID src, TrustedImm32 imm, RegisterID dest)
{
move(imm, getCachedDataTempRegisterIDAndInvalidate());
return branchMul32(cond, dataTempRegister, src, dest);
}
Jump branchMul64(ResultCondition cond, RegisterID src1, RegisterID src2, RegisterID scratch1, RegisterID scratch2, RegisterID dest)
{
ASSERT(cond != Signed);
// This is a signed multiple of two 64-bit values, producing a 64-bit result.
m_assembler.mul<64>(dest, src1, src2);
if (cond != Overflow)
return branchTest64(cond, dest);
// Compute bits 127..64 of the result into scratch1.
m_assembler.smulh(scratch1, src1, src2);
// Splat bit 63 of the result to bits 63..0 of scratch2.
m_assembler.asr<64>(scratch2, dest, 63);
// Check that bits 31..63 of the original result were all equal.
return branch64(NotEqual, scratch2, scratch1);
}
Jump branchMul64(ResultCondition cond, RegisterID src1, RegisterID src2, RegisterID dest)
{
return branchMul64(cond, src1, src2, getCachedDataTempRegisterIDAndInvalidate(), getCachedMemoryTempRegisterIDAndInvalidate(), dest);
}
Jump branchMul64(ResultCondition cond, RegisterID src, RegisterID dest)
{
return branchMul64(cond, dest, src, dest);
}
Jump branchNeg32(ResultCondition cond, RegisterID dest)
{
m_assembler.neg<32, S>(dest, dest);
return Jump(makeBranch(cond));
}
Jump branchNeg64(ResultCondition cond, RegisterID srcDest)
{
m_assembler.neg<64, S>(srcDest, srcDest);
return Jump(makeBranch(cond));
}
Jump branchSub32(ResultCondition cond, RegisterID dest)
{
m_assembler.neg<32, S>(dest, dest);
return Jump(makeBranch(cond));
}
Jump branchSub32(ResultCondition cond, RegisterID op1, RegisterID op2, RegisterID dest)
{
m_assembler.sub<32, S>(dest, op1, op2);
return Jump(makeBranch(cond));
}
Jump branchSub32(ResultCondition cond, RegisterID op1, TrustedImm32 imm, RegisterID dest)
{
if (isUInt12(imm.m_value)) {
m_assembler.sub<32, S>(dest, op1, UInt12(imm.m_value));
return Jump(makeBranch(cond));
}
if (isUInt12(-imm.m_value)) {
m_assembler.add<32, S>(dest, op1, UInt12(-imm.m_value));
return Jump(makeBranch(cond));
}
signExtend32ToPtr(imm, getCachedDataTempRegisterIDAndInvalidate());
return branchSub32(cond, op1, dataTempRegister, dest);
}
Jump branchSub32(ResultCondition cond, RegisterID src, RegisterID dest)
{
return branchSub32(cond, dest, src, dest);
}
Jump branchSub32(ResultCondition cond, TrustedImm32 imm, RegisterID dest)
{
return branchSub32(cond, dest, imm, dest);
}
Jump branchSub64(ResultCondition cond, RegisterID op1, RegisterID op2, RegisterID dest)
{
m_assembler.sub<64, S>(dest, op1, op2);
return Jump(makeBranch(cond));
}
Jump branchSub64(ResultCondition cond, RegisterID op1, TrustedImm32 imm, RegisterID dest)
{
if (isUInt12(imm.m_value)) {
m_assembler.sub<64, S>(dest, op1, UInt12(imm.m_value));
return Jump(makeBranch(cond));
}
if (isUInt12(-imm.m_value)) {
m_assembler.add<64, S>(dest, op1, UInt12(-imm.m_value));
return Jump(makeBranch(cond));
}
move(imm, getCachedDataTempRegisterIDAndInvalidate());
return branchSub64(cond, op1, dataTempRegister, dest);
}
Jump branchSub64(ResultCondition cond, RegisterID src, RegisterID dest)
{
return branchSub64(cond, dest, src, dest);
}
Jump branchSub64(ResultCondition cond, TrustedImm32 imm, RegisterID dest)
{
return branchSub64(cond, dest, imm, dest);
}
Jump branchSub64(RelationalCondition cond, TrustedImm32 imm, RegisterID dest)
{
ASSERT(isUInt12(imm.m_value));
m_assembler.sub<64, S>(dest, dest, UInt12(imm.m_value));
return Jump(makeBranch(cond));
}
// Jumps, calls, returns
ALWAYS_INLINE Call call(PtrTag)
{
AssemblerLabel pointerLabel = m_assembler.label();
moveWithFixedWidth(TrustedImmPtr(nullptr), getCachedDataTempRegisterIDAndInvalidate());
invalidateAllTempRegisters();
m_assembler.blr(dataTempRegister);
AssemblerLabel callLabel = m_assembler.label();
ASSERT_UNUSED(pointerLabel, Assembler::getDifferenceBetweenLabels(callLabel, pointerLabel) == REPATCH_OFFSET_CALL_TO_POINTER);
return Call(callLabel, Call::Linkable);
}
ALWAYS_INLINE Call call(RegisterID target, PtrTag)
{
invalidateAllTempRegisters();
m_assembler.blr(target);
return Call(m_assembler.label(), Call::None);
}
ALWAYS_INLINE Call call(Address address, PtrTag tag)
{
load64(address, getCachedDataTempRegisterIDAndInvalidate());
return call(dataTempRegister, tag);
}
ALWAYS_INLINE Call call(RegisterID callTag) { return UNUSED_PARAM(callTag), call(NoPtrTag); }
ALWAYS_INLINE Call call(RegisterID target, RegisterID callTag) { return UNUSED_PARAM(callTag), call(target, NoPtrTag); }
ALWAYS_INLINE Call call(Address address, RegisterID callTag) { return UNUSED_PARAM(callTag), call(address, NoPtrTag); }
ALWAYS_INLINE void callOperation(const FunctionPtr<OperationPtrTag> operation)
{
auto tmp = getCachedDataTempRegisterIDAndInvalidate();
move(TrustedImmPtr(operation.executableAddress()), tmp);
call(tmp, OperationPtrTag);
}
ALWAYS_INLINE Jump jump()
{
AssemblerLabel label = m_assembler.label();
m_assembler.b();
return Jump(label, m_makeJumpPatchable ? Assembler::JumpNoConditionFixedSize : Assembler::JumpNoCondition);
}
void farJump(RegisterID target, PtrTag)
{
m_assembler.br(target);
}
void farJump(Address address, PtrTag)
{
load64(address, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.br(dataTempRegister);
}
void farJump(BaseIndex address, PtrTag)
{
load64(address, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.br(dataTempRegister);
}
void farJump(AbsoluteAddress address, PtrTag)
{
move(TrustedImmPtr(address.m_ptr), getCachedDataTempRegisterIDAndInvalidate());
load64(Address(dataTempRegister), dataTempRegister);
m_assembler.br(dataTempRegister);
}
ALWAYS_INLINE void farJump(RegisterID target, RegisterID jumpTag) { UNUSED_PARAM(jumpTag), farJump(target, NoPtrTag); }
ALWAYS_INLINE void farJump(Address address, RegisterID jumpTag) { UNUSED_PARAM(jumpTag), farJump(address, NoPtrTag); }
ALWAYS_INLINE void farJump(BaseIndex address, RegisterID jumpTag) { UNUSED_PARAM(jumpTag), farJump(address, NoPtrTag); }
ALWAYS_INLINE void farJump(AbsoluteAddress address, RegisterID jumpTag) { UNUSED_PARAM(jumpTag), farJump(address, NoPtrTag); }
ALWAYS_INLINE Call nearCall()
{
invalidateAllTempRegisters();
m_assembler.bl();
return Call(m_assembler.label(), Call::LinkableNear);
}
ALWAYS_INLINE Call nearTailCall()
{
AssemblerLabel label = m_assembler.label();
m_assembler.b();
return Call(label, Call::LinkableNearTail);
}
ALWAYS_INLINE Call threadSafePatchableNearCall()
{
invalidateAllTempRegisters();
m_assembler.bl();
return Call(m_assembler.label(), Call::LinkableNear);
}
ALWAYS_INLINE void ret()
{
m_assembler.ret();
}
// Comparisons operations
void compare32(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID dest)
{
m_assembler.cmp<32>(left, right);
m_assembler.cset<32>(dest, ARM64Condition(cond));
}
void compare32(RelationalCondition cond, Address left, RegisterID right, RegisterID dest)
{
load32(left, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.cmp<32>(dataTempRegister, right);
m_assembler.cset<32>(dest, ARM64Condition(cond));
}
void compare32(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID dest)
{
if (!right.m_value) {
if (auto resultCondition = commuteCompareToZeroIntoTest(cond)) {
test32(*resultCondition, left, left, dest);
return;
}
}
if (isUInt12(right.m_value))
m_assembler.cmp<32>(left, UInt12(right.m_value));
else if (isUInt12(-right.m_value))
m_assembler.cmn<32>(left, UInt12(-right.m_value));
else {
move(right, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.cmp<32>(left, dataTempRegister);
}
m_assembler.cset<32>(dest, ARM64Condition(cond));
}
void compare64(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID dest)
{
m_assembler.cmp<64>(left, right);
m_assembler.cset<32>(dest, ARM64Condition(cond));
}
void compare64(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID dest)
{
if (!right.m_value) {
if (auto resultCondition = commuteCompareToZeroIntoTest(cond)) {
test64(*resultCondition, left, left, dest);
return;
}
}
signExtend32ToPtr(right, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.cmp<64>(left, dataTempRegister);
m_assembler.cset<32>(dest, ARM64Condition(cond));
}
void compare8(RelationalCondition cond, Address left, TrustedImm32 right, RegisterID dest)
{
TrustedImm32 right8 = MacroAssemblerHelpers::mask8OnCondition(*this, cond, right);
MacroAssemblerHelpers::load8OnCondition(*this, cond, left, getCachedMemoryTempRegisterIDAndInvalidate());
move(right8, getCachedDataTempRegisterIDAndInvalidate());
compare32(cond, memoryTempRegister, dataTempRegister, dest);
}
void test32(ResultCondition cond, RegisterID src, RegisterID mask, RegisterID dest)
{
m_assembler.tst<32>(src, mask);
m_assembler.cset<32>(dest, ARM64Condition(cond));
}
void test32(ResultCondition cond, RegisterID src, TrustedImm32 mask, RegisterID dest)
{
test32(src, mask);
m_assembler.cset<32>(dest, ARM64Condition(cond));
}
void test32(ResultCondition cond, Address address, TrustedImm32 mask, RegisterID dest)
{
load32(address, getCachedMemoryTempRegisterIDAndInvalidate());
test32(cond, memoryTempRegister, mask, dest);
}
void test8(ResultCondition cond, Address address, TrustedImm32 mask, RegisterID dest)
{
TrustedImm32 mask8 = MacroAssemblerHelpers::mask8OnCondition(*this, cond, mask);
MacroAssemblerHelpers::load8OnCondition(*this, cond, address, getCachedMemoryTempRegisterIDAndInvalidate());
test32(cond, memoryTempRegister, mask8, dest);
}
void test64(ResultCondition cond, RegisterID op1, RegisterID op2, RegisterID dest)
{
m_assembler.tst<64>(op1, op2);
m_assembler.cset<32>(dest, ARM64Condition(cond));
}
void test64(ResultCondition cond, RegisterID src, TrustedImm32 mask, RegisterID dest)
{
if (mask.m_value == -1)
m_assembler.tst<64>(src, src);
else {
signExtend32ToPtr(mask, getCachedDataTempRegisterIDAndInvalidate());
m_assembler.tst<64>(src, dataTempRegister);
}
m_assembler.cset<32>(dest, ARM64Condition(cond));
}
void setCarry(RegisterID dest)
{
m_assembler.cset<32>(dest, Assembler::ConditionCS);
}
// Patchable operations
ALWAYS_INLINE DataLabel32 moveWithPatch(TrustedImm32 imm, RegisterID dest)
{
DataLabel32 label(this);
moveWithFixedWidth(imm, dest);
return label;
}
ALWAYS_INLINE DataLabelPtr moveWithPatch(TrustedImmPtr imm, RegisterID dest)
{
DataLabelPtr label(this);
moveWithFixedWidth(imm, dest);
return label;
}
ALWAYS_INLINE Jump branchPtrWithPatch(RelationalCondition cond, RegisterID left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(nullptr))
{
dataLabel = DataLabelPtr(this);
moveWithPatch(initialRightValue, getCachedDataTempRegisterIDAndInvalidate());
return branch64(cond, left, dataTempRegister);
}
ALWAYS_INLINE Jump branchPtrWithPatch(RelationalCondition cond, Address left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(nullptr))
{
dataLabel = DataLabelPtr(this);
moveWithPatch(initialRightValue, getCachedDataTempRegisterIDAndInvalidate());
return branch64(cond, left, dataTempRegister);
}
ALWAYS_INLINE Jump branch32WithPatch(RelationalCondition cond, Address left, DataLabel32& dataLabel, TrustedImm32 initialRightValue = TrustedImm32(0))
{
dataLabel = DataLabel32(this);
moveWithPatch(initialRightValue, getCachedDataTempRegisterIDAndInvalidate());
return branch32(cond, left, dataTempRegister);
}
PatchableJump patchableBranchPtr(RelationalCondition cond, Address left, TrustedImmPtr right)
{
m_makeJumpPatchable = true;
Jump result = branch64(cond, left, TrustedImm64(right));
m_makeJumpPatchable = false;
return PatchableJump(result);
}
PatchableJump patchableBranch8(RelationalCondition cond, Address left, TrustedImm32 imm)
{
m_makeJumpPatchable = true;
Jump result = branch8(cond, left, imm);
m_makeJumpPatchable = false;
return PatchableJump(result);
}
PatchableJump patchableBranchTest32(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1))
{
m_makeJumpPatchable = true;
Jump result = branchTest32(cond, reg, mask);
m_makeJumpPatchable = false;
return PatchableJump(result);
}
PatchableJump patchableBranch32(RelationalCondition cond, RegisterID reg, TrustedImm32 imm)
{
m_makeJumpPatchable = true;
Jump result = branch32(cond, reg, imm);
m_makeJumpPatchable = false;
return PatchableJump(result);
}
PatchableJump patchableBranch32(RelationalCondition cond, Address left, TrustedImm32 imm)
{
m_makeJumpPatchable = true;
Jump result = branch32(cond, left, imm);
m_makeJumpPatchable = false;
return PatchableJump(result);
}
PatchableJump patchableBranch64(RelationalCondition cond, RegisterID reg, TrustedImm64 imm)
{
m_makeJumpPatchable = true;
Jump result = branch64(cond, reg, imm);
m_makeJumpPatchable = false;
return PatchableJump(result);
}
PatchableJump patchableBranch64(RelationalCondition cond, RegisterID left, RegisterID right)
{
m_makeJumpPatchable = true;
Jump result = branch64(cond, left, right);
m_makeJumpPatchable = false;
return PatchableJump(result);
}
PatchableJump patchableBranchPtrWithPatch(RelationalCondition cond, Address left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(nullptr))
{
m_makeJumpPatchable = true;
Jump result = branchPtrWithPatch(cond, left, dataLabel, initialRightValue);
m_makeJumpPatchable = false;
return PatchableJump(result);
}
PatchableJump patchableBranch32WithPatch(RelationalCondition cond, Address left, DataLabel32& dataLabel, TrustedImm32 initialRightValue = TrustedImm32(0))
{
m_makeJumpPatchable = true;
Jump result = branch32WithPatch(cond, left, dataLabel, initialRightValue);
m_makeJumpPatchable = false;
return PatchableJump(result);
}
PatchableJump patchableJump()
{
m_makeJumpPatchable = true;
Jump result = jump();
m_makeJumpPatchable = false;
return PatchableJump(result);
}
ALWAYS_INLINE DataLabelPtr storePtrWithPatch(TrustedImmPtr initialValue, ImplicitAddress address)
{
DataLabelPtr label(this);
moveWithFixedWidth(initialValue, getCachedDataTempRegisterIDAndInvalidate());
store64(dataTempRegister, address);
return label;
}
ALWAYS_INLINE DataLabelPtr storePtrWithPatch(ImplicitAddress address)
{
return storePtrWithPatch(TrustedImmPtr(nullptr), address);
}
static void reemitInitialMoveWithPatch(void* address, void* value)
{
Assembler::setPointer(static_cast<int*>(address), value, dataTempRegister, true);
}
// Miscellaneous operations:
void breakpoint(uint16_t imm = 0)
{
m_assembler.brk(imm);
}
static bool isBreakpoint(void* address) { return Assembler::isBrk(address); }
void nop()
{
m_assembler.nop();
}
// We take memoryFence to mean acqrel. This has acqrel semantics on ARM64.
void memoryFence()
{
m_assembler.dmbISH();
}
// We take this to mean that it prevents motion of normal stores. That's a store fence on ARM64 (hence the "ST").
void storeFence()
{
m_assembler.dmbISHST();
}
// We take this to mean that it prevents motion of normal loads. Ideally we'd have expressed this
// using dependencies or half fences, but there are cases where this is as good as it gets. The only
// way to get a standalone load fence instruction on ARM is to use the ISH fence, which is just like
// the memoryFence().
void loadFence()
{
m_assembler.dmbISH();
}
void loadAcq8SignedExtendTo32(ImplicitAddress address, RegisterID dest)
{
m_assembler.ldar<8>(dest, extractSimpleAddress(address));
}
void loadAcq8(ImplicitAddress address, RegisterID dest)
{
loadAcq8SignedExtendTo32(address, dest);
and32(TrustedImm32(0xff), dest);
}
void storeRel8(RegisterID src, ImplicitAddress address)
{
m_assembler.stlr<8>(src, extractSimpleAddress(address));
}
void loadAcq16SignedExtendTo32(ImplicitAddress address, RegisterID dest)
{
m_assembler.ldar<16>(dest, extractSimpleAddress(address));
}
void loadAcq16(ImplicitAddress address, RegisterID dest)
{
loadAcq16SignedExtendTo32(address, dest);
and32(TrustedImm32(0xffff), dest);
}
void storeRel16(RegisterID src, ImplicitAddress address)
{
m_assembler.stlr<16>(src, extractSimpleAddress(address));
}
void loadAcq32(ImplicitAddress address, RegisterID dest)
{
m_assembler.ldar<32>(dest, extractSimpleAddress(address));
}
void loadAcq64(ImplicitAddress address, RegisterID dest)
{
m_assembler.ldar<64>(dest, extractSimpleAddress(address));
}
void storeRel32(RegisterID dest, ImplicitAddress address)
{
m_assembler.stlr<32>(dest, extractSimpleAddress(address));
}
void storeRel64(RegisterID dest, ImplicitAddress address)
{
m_assembler.stlr<64>(dest, extractSimpleAddress(address));
}
void loadLink8(ImplicitAddress address, RegisterID dest)
{
m_assembler.ldxr<8>(dest, extractSimpleAddress(address));
}
void loadLinkAcq8(ImplicitAddress address, RegisterID dest)
{
m_assembler.ldaxr<8>(dest, extractSimpleAddress(address));
}
void storeCond8(RegisterID src, ImplicitAddress address, RegisterID result)
{
m_assembler.stxr<8>(result, src, extractSimpleAddress(address));
}
void storeCondRel8(RegisterID src, ImplicitAddress address, RegisterID result)
{
m_assembler.stlxr<8>(result, src, extractSimpleAddress(address));
}
void loadLink16(ImplicitAddress address, RegisterID dest)
{
m_assembler.ldxr<16>(dest, extractSimpleAddress(address));
}
void loadLinkAcq16(ImplicitAddress address, RegisterID dest)
{
m_assembler.ldaxr<16>(dest, extractSimpleAddress(address));
}
void storeCond16(RegisterID src, ImplicitAddress address, RegisterID result)
{
m_assembler.stxr<16>(result, src, extractSimpleAddress(address));
}
void storeCondRel16(RegisterID src, ImplicitAddress address, RegisterID result)
{
m_assembler.stlxr<16>(result, src, extractSimpleAddress(address));
}
void loadLink32(ImplicitAddress address, RegisterID dest)
{
m_assembler.ldxr<32>(dest, extractSimpleAddress(address));
}
void loadLinkAcq32(ImplicitAddress address, RegisterID dest)
{
m_assembler.ldaxr<32>(dest, extractSimpleAddress(address));
}
void storeCond32(RegisterID src, ImplicitAddress address, RegisterID result)
{
m_assembler.stxr<32>(result, src, extractSimpleAddress(address));
}
void storeCondRel32(RegisterID src, ImplicitAddress address, RegisterID result)
{
m_assembler.stlxr<32>(result, src, extractSimpleAddress(address));
}
void loadLink64(ImplicitAddress address, RegisterID dest)
{
m_assembler.ldxr<64>(dest, extractSimpleAddress(address));
}
void loadLinkAcq64(ImplicitAddress address, RegisterID dest)
{
m_assembler.ldaxr<64>(dest, extractSimpleAddress(address));
}
void storeCond64(RegisterID src, ImplicitAddress address, RegisterID result)
{
m_assembler.stxr<64>(result, src, extractSimpleAddress(address));
}
void storeCondRel64(RegisterID src, ImplicitAddress address, RegisterID result)
{
m_assembler.stlxr<64>(result, src, extractSimpleAddress(address));
}
template<typename AddressType>
void atomicStrongCAS8(StatusCondition cond, RegisterID expectedAndResult, RegisterID newValue, AddressType address, RegisterID result)
{
atomicStrongCAS<8>(cond, expectedAndResult, newValue, address, result);
}
template<typename AddressType>
void atomicStrongCAS16(StatusCondition cond, RegisterID expectedAndResult, RegisterID newValue, AddressType address, RegisterID result)
{
atomicStrongCAS<16>(cond, expectedAndResult, newValue, address, result);
}
template<typename AddressType>
void atomicStrongCAS32(StatusCondition cond, RegisterID expectedAndResult, RegisterID newValue, AddressType address, RegisterID result)
{
atomicStrongCAS<32>(cond, expectedAndResult, newValue, address, result);
}
template<typename AddressType>
void atomicStrongCAS64(StatusCondition cond, RegisterID expectedAndResult, RegisterID newValue, AddressType address, RegisterID result)
{
atomicStrongCAS<64>(cond, expectedAndResult, newValue, address, result);
}
template<typename AddressType>
void atomicRelaxedStrongCAS8(StatusCondition cond, RegisterID expectedAndResult, RegisterID newValue, AddressType address, RegisterID result)
{
atomicRelaxedStrongCAS<8>(cond, expectedAndResult, newValue, address, result);
}
template<typename AddressType>
void atomicRelaxedStrongCAS16(StatusCondition cond, RegisterID expectedAndResult, RegisterID newValue, AddressType address, RegisterID result)
{
atomicRelaxedStrongCAS<16>(cond, expectedAndResult, newValue, address, result);
}
template<typename AddressType>
void atomicRelaxedStrongCAS32(StatusCondition cond, RegisterID expectedAndResult, RegisterID newValue, AddressType address, RegisterID result)
{
atomicRelaxedStrongCAS<32>(cond, expectedAndResult, newValue, address, result);
}
template<typename AddressType>
void atomicRelaxedStrongCAS64(StatusCondition cond, RegisterID expectedAndResult, RegisterID newValue, AddressType address, RegisterID result)
{
atomicRelaxedStrongCAS<64>(cond, expectedAndResult, newValue, address, result);
}
template<typename AddressType>
JumpList branchAtomicWeakCAS8(StatusCondition cond, RegisterID expectedAndClobbered, RegisterID newValue, AddressType address)
{
return branchAtomicWeakCAS<8>(cond, expectedAndClobbered, newValue, address);
}
template<typename AddressType>
JumpList branchAtomicWeakCAS16(StatusCondition cond, RegisterID expectedAndClobbered, RegisterID newValue, AddressType address)
{
return branchAtomicWeakCAS<16>(cond, expectedAndClobbered, newValue, address);
}
template<typename AddressType>
JumpList branchAtomicWeakCAS32(StatusCondition cond, RegisterID expectedAndClobbered, RegisterID newValue, AddressType address)
{
return branchAtomicWeakCAS<32>(cond, expectedAndClobbered, newValue, address);
}
template<typename AddressType>
JumpList branchAtomicWeakCAS64(StatusCondition cond, RegisterID expectedAndClobbered, RegisterID newValue, AddressType address)
{
return branchAtomicWeakCAS<64>(cond, expectedAndClobbered, newValue, address);
}
template<typename AddressType>
JumpList branchAtomicRelaxedWeakCAS8(StatusCondition cond, RegisterID expectedAndClobbered, RegisterID newValue, AddressType address)
{
return branchAtomicRelaxedWeakCAS<8>(cond, expectedAndClobbered, newValue, address);
}
template<typename AddressType>
JumpList branchAtomicRelaxedWeakCAS16(StatusCondition cond, RegisterID expectedAndClobbered, RegisterID newValue, AddressType address)
{
return branchAtomicRelaxedWeakCAS<16>(cond, expectedAndClobbered, newValue, address);
}
template<typename AddressType>
JumpList branchAtomicRelaxedWeakCAS32(StatusCondition cond, RegisterID expectedAndClobbered, RegisterID newValue, AddressType address)
{
return branchAtomicRelaxedWeakCAS<32>(cond, expectedAndClobbered, newValue, address);
}
template<typename AddressType>
JumpList branchAtomicRelaxedWeakCAS64(StatusCondition cond, RegisterID expectedAndClobbered, RegisterID newValue, AddressType address)
{
return branchAtomicRelaxedWeakCAS<64>(cond, expectedAndClobbered, newValue, address);
}
void depend32(RegisterID src, RegisterID dest)
{
m_assembler.eor<32>(dest, src, src);
}
void depend64(RegisterID src, RegisterID dest)
{
m_assembler.eor<64>(dest, src, src);
}
ALWAYS_INLINE static bool supportsDoubleToInt32ConversionUsingJavaScriptSemantics()
{
#if HAVE(FJCVTZS_INSTRUCTION)
return true;
#else
if (s_jscvtCheckState == CPUIDCheckState::NotChecked)
collectCPUFeatures();
return s_jscvtCheckState == CPUIDCheckState::Set;
#endif
}
void convertDoubleToInt32UsingJavaScriptSemantics(FPRegisterID src, RegisterID dest)
{
m_assembler.fjcvtzs(dest, src); // This zero extends.
}
#if ENABLE(FAST_TLS_JIT)
// This will use scratch registers if the offset is not legal.
void loadFromTLS32(uint32_t offset, RegisterID dst)
{
m_assembler.mrs_TPIDRRO_EL0(dst);
and64(TrustedImm32(~7), dst);
load32(Address(dst, offset), dst);
}
void loadFromTLS64(uint32_t offset, RegisterID dst)
{
m_assembler.mrs_TPIDRRO_EL0(dst);
and64(TrustedImm32(~7), dst);
load64(Address(dst, offset), dst);
}
static bool loadFromTLSPtrNeedsMacroScratchRegister()
{
return true;
}
void storeToTLS32(RegisterID src, uint32_t offset)
{
RegisterID tmp = getCachedDataTempRegisterIDAndInvalidate();
ASSERT(src != tmp);
m_assembler.mrs_TPIDRRO_EL0(tmp);
and64(TrustedImm32(~7), tmp);
store32(src, Address(tmp, offset));
}
void storeToTLS64(RegisterID src, uint32_t offset)
{
RegisterID tmp = getCachedDataTempRegisterIDAndInvalidate();
ASSERT(src != tmp);
m_assembler.mrs_TPIDRRO_EL0(tmp);
and64(TrustedImm32(~7), tmp);
store64(src, Address(tmp, offset));
}
static bool storeToTLSPtrNeedsMacroScratchRegister()
{
return true;
}
#endif // ENABLE(FAST_TLS_JIT)
// Misc helper functions.
// Invert a relational condition, e.g. == becomes !=, < becomes >=, etc.
static RelationalCondition invert(RelationalCondition cond)
{
return static_cast<RelationalCondition>(Assembler::invert(static_cast<Assembler::Condition>(cond)));
}
static Optional<ResultCondition> commuteCompareToZeroIntoTest(RelationalCondition cond)
{
switch (cond) {
case Equal:
return Zero;
case NotEqual:
return NonZero;
case LessThan:
return Signed;
case GreaterThanOrEqual:
return PositiveOrZero;
break;
default:
return WTF::nullopt;
}
}
template<PtrTag resultTag, PtrTag locationTag>
static FunctionPtr<resultTag> readCallTarget(CodeLocationCall<locationTag> call)
{
return FunctionPtr<resultTag>(MacroAssemblerCodePtr<resultTag>(Assembler::readCallTarget(call.dataLocation())));
}
template<PtrTag tag>
static void replaceWithVMHalt(CodeLocationLabel<tag> instructionStart)
{
Assembler::replaceWithVMHalt(instructionStart.dataLocation());
}
template<PtrTag startTag, PtrTag destTag>
static void replaceWithJump(CodeLocationLabel<startTag> instructionStart, CodeLocationLabel<destTag> destination)
{
Assembler::replaceWithJump(instructionStart.dataLocation(), destination.dataLocation());
}
static ptrdiff_t maxJumpReplacementSize()
{
return Assembler::maxJumpReplacementSize();
}
static ptrdiff_t patchableJumpSize()
{
return Assembler::patchableJumpSize();
}
RegisterID scratchRegisterForBlinding()
{
// We *do not* have a scratch register for blinding.
RELEASE_ASSERT_NOT_REACHED();
return getCachedDataTempRegisterIDAndInvalidate();
}
static bool canJumpReplacePatchableBranchPtrWithPatch() { return false; }
static bool canJumpReplacePatchableBranch32WithPatch() { return false; }
template<PtrTag tag>
static CodeLocationLabel<tag> startOfBranchPtrWithPatchOnRegister(CodeLocationDataLabelPtr<tag> label)
{
return label.labelAtOffset(0);
}
template<PtrTag tag>
static CodeLocationLabel<tag> startOfPatchableBranchPtrWithPatchOnAddress(CodeLocationDataLabelPtr<tag>)
{
UNREACHABLE_FOR_PLATFORM();
return CodeLocationLabel<tag>();
}
template<PtrTag tag>
static CodeLocationLabel<tag> startOfPatchableBranch32WithPatchOnAddress(CodeLocationDataLabel32<tag>)
{
UNREACHABLE_FOR_PLATFORM();
return CodeLocationLabel<tag>();
}
template<PtrTag tag>
static void revertJumpReplacementToBranchPtrWithPatch(CodeLocationLabel<tag> instructionStart, RegisterID, void* initialValue)
{
reemitInitialMoveWithPatch(instructionStart.dataLocation(), initialValue);
}
template<PtrTag tag>
static void revertJumpReplacementToPatchableBranchPtrWithPatch(CodeLocationLabel<tag>, Address, void*)
{
UNREACHABLE_FOR_PLATFORM();
}
template<PtrTag tag>
static void revertJumpReplacementToPatchableBranch32WithPatch(CodeLocationLabel<tag>, Address, int32_t)
{
UNREACHABLE_FOR_PLATFORM();
}
template<PtrTag callTag, PtrTag destTag>
static void repatchCall(CodeLocationCall<callTag> call, CodeLocationLabel<destTag> destination)
{
Assembler::repatchPointer(call.dataLabelPtrAtOffset(REPATCH_OFFSET_CALL_TO_POINTER).dataLocation(), destination.executableAddress());
}
template<PtrTag callTag, PtrTag destTag>
static void repatchCall(CodeLocationCall<callTag> call, FunctionPtr<destTag> destination)
{
Assembler::repatchPointer(call.dataLabelPtrAtOffset(REPATCH_OFFSET_CALL_TO_POINTER).dataLocation(), destination.executableAddress());
}
protected:
ALWAYS_INLINE Jump makeBranch(Assembler::Condition cond)
{
m_assembler.b_cond(cond);
AssemblerLabel label = m_assembler.label();
m_assembler.nop();
return Jump(label, m_makeJumpPatchable ? Assembler::JumpConditionFixedSize : Assembler::JumpCondition, cond);
}
ALWAYS_INLINE Jump makeBranch(RelationalCondition cond) { return makeBranch(ARM64Condition(cond)); }
ALWAYS_INLINE Jump makeBranch(ResultCondition cond) { return makeBranch(ARM64Condition(cond)); }
ALWAYS_INLINE Jump makeBranch(DoubleCondition cond) { return makeBranch(ARM64Condition(cond)); }
template <int dataSize>
ALWAYS_INLINE Jump makeCompareAndBranch(ZeroCondition cond, RegisterID reg)
{
if (cond == IsZero)
m_assembler.cbz<dataSize>(reg);
else
m_assembler.cbnz<dataSize>(reg);
AssemblerLabel label = m_assembler.label();
m_assembler.nop();
return Jump(label, m_makeJumpPatchable ? Assembler::JumpCompareAndBranchFixedSize : Assembler::JumpCompareAndBranch, static_cast<Assembler::Condition>(cond), dataSize == 64, reg);
}
ALWAYS_INLINE Jump makeTestBitAndBranch(RegisterID reg, unsigned bit, ZeroCondition cond)
{
ASSERT(bit < 64);
bit &= 0x3f;
if (cond == IsZero)
m_assembler.tbz(reg, bit);
else
m_assembler.tbnz(reg, bit);
AssemblerLabel label = m_assembler.label();
m_assembler.nop();
return Jump(label, m_makeJumpPatchable ? Assembler::JumpTestBitFixedSize : Assembler::JumpTestBit, static_cast<Assembler::Condition>(cond), bit, reg);
}
Assembler::Condition ARM64Condition(RelationalCondition cond)
{
return static_cast<Assembler::Condition>(cond);
}
Assembler::Condition ARM64Condition(ResultCondition cond)
{
return static_cast<Assembler::Condition>(cond);
}
Assembler::Condition ARM64Condition(DoubleCondition cond)
{
return static_cast<Assembler::Condition>(cond);
}
protected:
ALWAYS_INLINE RegisterID getCachedDataTempRegisterIDAndInvalidate()
{
RELEASE_ASSERT(m_allowScratchRegister);
return dataMemoryTempRegister().registerIDInvalidate();
}
ALWAYS_INLINE RegisterID getCachedMemoryTempRegisterIDAndInvalidate()
{
RELEASE_ASSERT(m_allowScratchRegister);
return cachedMemoryTempRegister().registerIDInvalidate();
}
ALWAYS_INLINE CachedTempRegister& dataMemoryTempRegister()
{
RELEASE_ASSERT(m_allowScratchRegister);
return m_dataMemoryTempRegister;
}
ALWAYS_INLINE CachedTempRegister& cachedMemoryTempRegister()
{
RELEASE_ASSERT(m_allowScratchRegister);
return m_cachedMemoryTempRegister;
}
template<typename ImmediateType, typename rawType>
void moveInternal(ImmediateType imm, RegisterID dest)
{
const int dataSize = sizeof(rawType) * 8;
const int numberHalfWords = dataSize / 16;
rawType value = bitwise_cast<rawType>(imm.m_value);
uint16_t halfword[numberHalfWords];
// Handle 0 and ~0 here to simplify code below
if (!value) {
m_assembler.movz<dataSize>(dest, 0);
return;
}
if (!~value) {
m_assembler.movn<dataSize>(dest, 0);
return;
}
LogicalImmediate logicalImm = dataSize == 64 ? LogicalImmediate::create64(static_cast<uint64_t>(value)) : LogicalImmediate::create32(static_cast<uint32_t>(value));
if (logicalImm.isValid()) {
m_assembler.movi<dataSize>(dest, logicalImm);
return;
}
// Figure out how many halfwords are 0 or FFFF, then choose movz or movn accordingly.
int zeroOrNegateVote = 0;
for (int i = 0; i < numberHalfWords; ++i) {
halfword[i] = getHalfword(value, i);
if (!halfword[i])
zeroOrNegateVote++;
else if (halfword[i] == 0xffff)
zeroOrNegateVote--;
}
bool needToClearRegister = true;
if (zeroOrNegateVote >= 0) {
for (int i = 0; i < numberHalfWords; i++) {
if (halfword[i]) {
if (needToClearRegister) {
m_assembler.movz<dataSize>(dest, halfword[i], 16*i);
needToClearRegister = false;
} else
m_assembler.movk<dataSize>(dest, halfword[i], 16*i);
}
}
} else {
for (int i = 0; i < numberHalfWords; i++) {
if (halfword[i] != 0xffff) {
if (needToClearRegister) {
m_assembler.movn<dataSize>(dest, ~halfword[i], 16*i);
needToClearRegister = false;
} else
m_assembler.movk<dataSize>(dest, halfword[i], 16*i);
}
}
}
}
template<int datasize>
ALWAYS_INLINE void loadUnsignedImmediate(RegisterID rt, RegisterID rn, unsigned pimm)
{
m_assembler.ldr<datasize>(rt, rn, pimm);
}
template<int datasize>
ALWAYS_INLINE void loadUnscaledImmediate(RegisterID rt, RegisterID rn, int simm)
{
m_assembler.ldur<datasize>(rt, rn, simm);
}
template<int datasize>
ALWAYS_INLINE void loadSignedAddressedByUnsignedImmediate(RegisterID rt, RegisterID rn, unsigned pimm)
{
loadUnsignedImmediate<datasize>(rt, rn, pimm);
}
template<int datasize>
ALWAYS_INLINE void loadSignedAddressedByUnscaledImmediate(RegisterID rt, RegisterID rn, int simm)
{
loadUnscaledImmediate<datasize>(rt, rn, simm);
}
template<int datasize>
ALWAYS_INLINE void storeUnsignedImmediate(RegisterID rt, RegisterID rn, unsigned pimm)
{
m_assembler.str<datasize>(rt, rn, pimm);
}
template<int datasize>
ALWAYS_INLINE void storeUnscaledImmediate(RegisterID rt, RegisterID rn, int simm)
{
m_assembler.stur<datasize>(rt, rn, simm);
}
void moveWithFixedWidth(TrustedImm32 imm, RegisterID dest)
{
int32_t value = imm.m_value;
m_assembler.movz<32>(dest, getHalfword(value, 0));
m_assembler.movk<32>(dest, getHalfword(value, 1), 16);
}
void moveWithFixedWidth(TrustedImmPtr imm, RegisterID dest)
{
intptr_t value = reinterpret_cast<intptr_t>(imm.m_value);
m_assembler.movz<64>(dest, getHalfword(value, 0));
m_assembler.movk<64>(dest, getHalfword(value, 1), 16);
m_assembler.movk<64>(dest, getHalfword(value, 2), 32);
if (Assembler::MAX_POINTER_BITS > 48)
m_assembler.movk<64>(dest, getHalfword(value, 3), 48);
}
void signExtend32ToPtrWithFixedWidth(int32_t value, RegisterID dest)
{
if (value >= 0) {
m_assembler.movz<32>(dest, getHalfword(value, 0));
m_assembler.movk<32>(dest, getHalfword(value, 1), 16);
} else {
m_assembler.movn<32>(dest, ~getHalfword(value, 0));
m_assembler.movk<32>(dest, getHalfword(value, 1), 16);
}
}
template<int datasize>
ALWAYS_INLINE void load(const void* address, RegisterID dest)
{
intptr_t currentRegisterContents;
if (cachedMemoryTempRegister().value(currentRegisterContents)) {
intptr_t addressAsInt = reinterpret_cast<intptr_t>(address);
intptr_t addressDelta = addressAsInt - currentRegisterContents;
if (dest == memoryTempRegister)
cachedMemoryTempRegister().invalidate();
if (isInt<32>(addressDelta)) {
if (Assembler::canEncodeSImmOffset(addressDelta)) {
m_assembler.ldur<datasize>(dest, memoryTempRegister, addressDelta);
return;
}
if (Assembler::canEncodePImmOffset<datasize>(addressDelta)) {
m_assembler.ldr<datasize>(dest, memoryTempRegister, addressDelta);
return;
}
}
if ((addressAsInt & (~maskHalfWord0)) == (currentRegisterContents & (~maskHalfWord0))) {
m_assembler.movk<64>(memoryTempRegister, addressAsInt & maskHalfWord0, 0);
cachedMemoryTempRegister().setValue(reinterpret_cast<intptr_t>(address));
m_assembler.ldr<datasize>(dest, memoryTempRegister, ARM64Registers::zr);
return;
}
}
move(TrustedImmPtr(address), memoryTempRegister);
if (dest == memoryTempRegister)
cachedMemoryTempRegister().invalidate();
else
cachedMemoryTempRegister().setValue(reinterpret_cast<intptr_t>(address));
m_assembler.ldr<datasize>(dest, memoryTempRegister, ARM64Registers::zr);
}
template<int datasize>
ALWAYS_INLINE void store(RegisterID src, const void* address)
{
ASSERT(src != memoryTempRegister);
intptr_t currentRegisterContents;
if (cachedMemoryTempRegister().value(currentRegisterContents)) {
intptr_t addressAsInt = reinterpret_cast<intptr_t>(address);
intptr_t addressDelta = addressAsInt - currentRegisterContents;
if (isInt<32>(addressDelta)) {
if (Assembler::canEncodeSImmOffset(addressDelta)) {
m_assembler.stur<datasize>(src, memoryTempRegister, addressDelta);
return;
}
if (Assembler::canEncodePImmOffset<datasize>(addressDelta)) {
m_assembler.str<datasize>(src, memoryTempRegister, addressDelta);
return;
}
}
if ((addressAsInt & (~maskHalfWord0)) == (currentRegisterContents & (~maskHalfWord0))) {
m_assembler.movk<64>(memoryTempRegister, addressAsInt & maskHalfWord0, 0);
cachedMemoryTempRegister().setValue(reinterpret_cast<intptr_t>(address));
m_assembler.str<datasize>(src, memoryTempRegister, ARM64Registers::zr);
return;
}
}
move(TrustedImmPtr(address), memoryTempRegister);
cachedMemoryTempRegister().setValue(reinterpret_cast<intptr_t>(address));
m_assembler.str<datasize>(src, memoryTempRegister, ARM64Registers::zr);
}
template <int dataSize>
ALWAYS_INLINE bool tryMoveUsingCacheRegisterContents(intptr_t immediate, CachedTempRegister& dest)
{
intptr_t currentRegisterContents;
if (dest.value(currentRegisterContents)) {
if (currentRegisterContents == immediate)
return true;
LogicalImmediate logicalImm = dataSize == 64 ? LogicalImmediate::create64(static_cast<uint64_t>(immediate)) : LogicalImmediate::create32(static_cast<uint32_t>(immediate));
if (logicalImm.isValid()) {
m_assembler.movi<dataSize>(dest.registerIDNoInvalidate(), logicalImm);
dest.setValue(immediate);
return true;
}
if ((immediate & maskUpperWord) == (currentRegisterContents & maskUpperWord)) {
if ((immediate & maskHalfWord1) != (currentRegisterContents & maskHalfWord1))
m_assembler.movk<dataSize>(dest.registerIDNoInvalidate(), (immediate & maskHalfWord1) >> 16, 16);
if ((immediate & maskHalfWord0) != (currentRegisterContents & maskHalfWord0))
m_assembler.movk<dataSize>(dest.registerIDNoInvalidate(), immediate & maskHalfWord0, 0);
dest.setValue(immediate);
return true;
}
}
return false;
}
void moveToCachedReg(TrustedImm32 imm, CachedTempRegister& dest)
{
if (tryMoveUsingCacheRegisterContents<32>(static_cast<intptr_t>(imm.m_value), dest))
return;
moveInternal<TrustedImm32, int32_t>(imm, dest.registerIDNoInvalidate());
dest.setValue(imm.m_value);
}
void moveToCachedReg(TrustedImmPtr imm, CachedTempRegister& dest)
{
if (tryMoveUsingCacheRegisterContents<64>(imm.asIntptr(), dest))
return;
moveInternal<TrustedImmPtr, intptr_t>(imm, dest.registerIDNoInvalidate());
dest.setValue(imm.asIntptr());
}
void moveToCachedReg(TrustedImm64 imm, CachedTempRegister& dest)
{
if (tryMoveUsingCacheRegisterContents<64>(static_cast<intptr_t>(imm.m_value), dest))
return;
moveInternal<TrustedImm64, int64_t>(imm, dest.registerIDNoInvalidate());
dest.setValue(imm.m_value);
}
template<int datasize>
ALWAYS_INLINE bool tryLoadWithOffset(RegisterID rt, RegisterID rn, int32_t offset)
{
if (Assembler::canEncodeSImmOffset(offset)) {
loadUnscaledImmediate<datasize>(rt, rn, offset);
return true;
}
if (Assembler::canEncodePImmOffset<datasize>(offset)) {
loadUnsignedImmediate<datasize>(rt, rn, static_cast<unsigned>(offset));
return true;
}
return false;
}
template<int datasize>
ALWAYS_INLINE bool tryLoadSignedWithOffset(RegisterID rt, RegisterID rn, int32_t offset)
{
if (Assembler::canEncodeSImmOffset(offset)) {
loadSignedAddressedByUnscaledImmediate<datasize>(rt, rn, offset);
return true;
}
if (Assembler::canEncodePImmOffset<datasize>(offset)) {
loadSignedAddressedByUnsignedImmediate<datasize>(rt, rn, static_cast<unsigned>(offset));
return true;
}
return false;
}
template<int datasize>
ALWAYS_INLINE bool tryLoadWithOffset(FPRegisterID rt, RegisterID rn, int32_t offset)
{
if (Assembler::canEncodeSImmOffset(offset)) {
m_assembler.ldur<datasize>(rt, rn, offset);
return true;
}
if (Assembler::canEncodePImmOffset<datasize>(offset)) {
m_assembler.ldr<datasize>(rt, rn, static_cast<unsigned>(offset));
return true;
}
return false;
}
template<int datasize>
ALWAYS_INLINE bool tryStoreWithOffset(RegisterID rt, RegisterID rn, int32_t offset)
{
if (Assembler::canEncodeSImmOffset(offset)) {
storeUnscaledImmediate<datasize>(rt, rn, offset);
return true;
}
if (Assembler::canEncodePImmOffset<datasize>(offset)) {
storeUnsignedImmediate<datasize>(rt, rn, static_cast<unsigned>(offset));
return true;
}
return false;
}
template<int datasize>
ALWAYS_INLINE bool tryStoreWithOffset(FPRegisterID rt, RegisterID rn, int32_t offset)
{
if (Assembler::canEncodeSImmOffset(offset)) {
m_assembler.stur<datasize>(rt, rn, offset);
return true;
}
if (Assembler::canEncodePImmOffset<datasize>(offset)) {
m_assembler.str<datasize>(rt, rn, static_cast<unsigned>(offset));
return true;
}
return false;
}
template<int datasize>
void loadLink(RegisterID src, RegisterID dest)
{
m_assembler.ldxr<datasize>(dest, src);
}
template<int datasize>
void loadLinkAcq(RegisterID src, RegisterID dest)
{
m_assembler.ldaxr<datasize>(dest, src);
}
template<int datasize>
void storeCond(RegisterID src, RegisterID dest, RegisterID result)
{
m_assembler.stxr<datasize>(src, dest, result);
}
template<int datasize>
void storeCondRel(RegisterID src, RegisterID dest, RegisterID result)
{
m_assembler.stlxr<datasize>(result, src, dest);
}
template<int datasize>
void signExtend(RegisterID src, RegisterID dest)
{
move(src, dest);
}
template<int datasize>
Jump branch(RelationalCondition cond, RegisterID left, RegisterID right)
{
return branch32(cond, left, right);
}
template<int datasize>
void atomicStrongCAS(StatusCondition cond, RegisterID expectedAndResult, RegisterID newValue, Address address, RegisterID result)
{
signExtend<datasize>(expectedAndResult, expectedAndResult);
RegisterID simpleAddress = extractSimpleAddress(address);
RegisterID tmp = getCachedDataTempRegisterIDAndInvalidate();
Label reloop = label();
loadLinkAcq<datasize>(simpleAddress, tmp);
Jump failure = branch<datasize>(NotEqual, expectedAndResult, tmp);
storeCondRel<datasize>(newValue, simpleAddress, result);
branchTest32(NonZero, result).linkTo(reloop, this);
move(TrustedImm32(cond == Success), result);
Jump done = jump();
failure.link(this);
move(tmp, expectedAndResult);
storeCondRel<datasize>(tmp, simpleAddress, result);
branchTest32(NonZero, result).linkTo(reloop, this);
move(TrustedImm32(cond == Failure), result);
done.link(this);
}
template<int datasize, typename AddressType>
void atomicRelaxedStrongCAS(StatusCondition cond, RegisterID expectedAndResult, RegisterID newValue, AddressType address, RegisterID result)
{
signExtend<datasize>(expectedAndResult, expectedAndResult);
RegisterID simpleAddress = extractSimpleAddress(address);
RegisterID tmp = getCachedDataTempRegisterIDAndInvalidate();
Label reloop = label();
loadLink<datasize>(simpleAddress, tmp);
Jump failure = branch<datasize>(NotEqual, expectedAndResult, tmp);
storeCond<datasize>(newValue, simpleAddress, result);
branchTest32(NonZero, result).linkTo(reloop, this);
move(TrustedImm32(cond == Success), result);
Jump done = jump();
failure.link(this);
move(tmp, expectedAndResult);
move(TrustedImm32(cond == Failure), result);
done.link(this);
}
template<int datasize, typename AddressType>
JumpList branchAtomicWeakCAS(StatusCondition cond, RegisterID expectedAndClobbered, RegisterID newValue, AddressType address)
{
signExtend<datasize>(expectedAndClobbered, expectedAndClobbered);
RegisterID simpleAddress = extractSimpleAddress(address);
RegisterID tmp = getCachedDataTempRegisterIDAndInvalidate();
JumpList success;
JumpList failure;
loadLinkAcq<datasize>(simpleAddress, tmp);
failure.append(branch<datasize>(NotEqual, expectedAndClobbered, tmp));
storeCondRel<datasize>(newValue, simpleAddress, expectedAndClobbered);
switch (cond) {
case Success:
success.append(branchTest32(Zero, expectedAndClobbered));
failure.link(this);
return success;
case Failure:
failure.append(branchTest32(NonZero, expectedAndClobbered));
return failure;
}
RELEASE_ASSERT_NOT_REACHED();
}
template<int datasize, typename AddressType>
JumpList branchAtomicRelaxedWeakCAS(StatusCondition cond, RegisterID expectedAndClobbered, RegisterID newValue, AddressType address)
{
signExtend<datasize>(expectedAndClobbered, expectedAndClobbered);
RegisterID simpleAddress = extractSimpleAddress(address);
RegisterID tmp = getCachedDataTempRegisterIDAndInvalidate();
JumpList success;
JumpList failure;
loadLink<datasize>(simpleAddress, tmp);
failure.append(branch<datasize>(NotEqual, expectedAndClobbered, tmp));
storeCond<datasize>(newValue, simpleAddress, expectedAndClobbered);
switch (cond) {
case Success:
success.append(branchTest32(Zero, expectedAndClobbered));
failure.link(this);
return success;
case Failure:
failure.append(branchTest32(NonZero, expectedAndClobbered));
return failure;
}
RELEASE_ASSERT_NOT_REACHED();
}
RegisterID extractSimpleAddress(ImplicitAddress address)
{
if (!address.offset)
return address.base;
signExtend32ToPtr(TrustedImm32(address.offset), getCachedMemoryTempRegisterIDAndInvalidate());
add64(address.base, memoryTempRegister);
return memoryTempRegister;
}
// This uses both the memory and data temp, but only returns the memorty temp. So you can use the
// data temp after this finishes.
RegisterID extractSimpleAddress(BaseIndex address)
{
RegisterID result = getCachedMemoryTempRegisterIDAndInvalidate();
lshift64(address.index, TrustedImm32(address.scale), result);
add64(address.base, result);
add64(TrustedImm32(address.offset), result);
return result;
}
Jump jumpAfterFloatingPointCompare(DoubleCondition cond)
{
if (cond == DoubleNotEqual) {
// ConditionNE jumps if NotEqual *or* unordered - force the unordered cases not to jump.
Jump unordered = makeBranch(Assembler::ConditionVS);
Jump result = makeBranch(Assembler::ConditionNE);
unordered.link(this);
return result;
}
if (cond == DoubleEqualOrUnordered) {
Jump unordered = makeBranch(Assembler::ConditionVS);
Jump notEqual = makeBranch(Assembler::ConditionNE);
unordered.link(this);
// We get here if either unordered or equal.
Jump result = jump();
notEqual.link(this);
return result;
}
return makeBranch(cond);
}
template<typename Function>
void floatingPointCompare(DoubleCondition cond, FPRegisterID left, FPRegisterID right, RegisterID dest, Function compare)
{
if (cond == DoubleNotEqual) {
// ConditionNE sets 1 if NotEqual *or* unordered - force the unordered cases not to set 1.
move(TrustedImm32(0), dest);
compare(left, right);
Jump unordered = makeBranch(Assembler::ConditionVS);
m_assembler.cset<32>(dest, Assembler::ConditionNE);
unordered.link(this);
return;
}
if (cond == DoubleEqualOrUnordered) {
// ConditionEQ sets 1 only if Equal - force the unordered cases to set 1 too.
move(TrustedImm32(1), dest);
compare(left, right);
Jump unordered = makeBranch(Assembler::ConditionVS);
m_assembler.cset<32>(dest, Assembler::ConditionEQ);
unordered.link(this);
return;
}
compare(left, right);
m_assembler.cset<32>(dest, ARM64Condition(cond));
}
friend class LinkBuffer;
template<PtrTag tag>
static void linkCall(void* code, Call call, FunctionPtr<tag> function)
{
if (!call.isFlagSet(Call::Near))
Assembler::linkPointer(code, call.m_label.labelAtOffset(REPATCH_OFFSET_CALL_TO_POINTER), function.executableAddress());
else if (call.isFlagSet(Call::Tail))
Assembler::linkJump(code, call.m_label, function.template retaggedExecutableAddress<NoPtrTag>());
else
Assembler::linkCall(code, call.m_label, function.template retaggedExecutableAddress<NoPtrTag>());
}
JS_EXPORT_PRIVATE static void collectCPUFeatures();
JS_EXPORT_PRIVATE static CPUIDCheckState s_jscvtCheckState;
CachedTempRegister m_dataMemoryTempRegister;
CachedTempRegister m_cachedMemoryTempRegister;
bool m_makeJumpPatchable;
};
// Extend the {load,store}{Unsigned,Unscaled}Immediate templated general register methods to cover all load/store sizes
template<>
ALWAYS_INLINE void MacroAssemblerARM64::loadUnsignedImmediate<8>(RegisterID rt, RegisterID rn, unsigned pimm)
{
m_assembler.ldrb(rt, rn, pimm);
}
template<>
ALWAYS_INLINE void MacroAssemblerARM64::loadUnsignedImmediate<16>(RegisterID rt, RegisterID rn, unsigned pimm)
{
m_assembler.ldrh(rt, rn, pimm);
}
template<>
ALWAYS_INLINE void MacroAssemblerARM64::loadSignedAddressedByUnsignedImmediate<8>(RegisterID rt, RegisterID rn, unsigned pimm)
{
m_assembler.ldrsb<64>(rt, rn, pimm);
}
template<>
ALWAYS_INLINE void MacroAssemblerARM64::loadSignedAddressedByUnsignedImmediate<16>(RegisterID rt, RegisterID rn, unsigned pimm)
{
m_assembler.ldrsh<64>(rt, rn, pimm);
}
template<>
ALWAYS_INLINE void MacroAssemblerARM64::loadUnscaledImmediate<8>(RegisterID rt, RegisterID rn, int simm)
{
m_assembler.ldurb(rt, rn, simm);
}
template<>
ALWAYS_INLINE void MacroAssemblerARM64::loadUnscaledImmediate<16>(RegisterID rt, RegisterID rn, int simm)
{
m_assembler.ldurh(rt, rn, simm);
}
template<>
ALWAYS_INLINE void MacroAssemblerARM64::loadSignedAddressedByUnscaledImmediate<8>(RegisterID rt, RegisterID rn, int simm)
{
m_assembler.ldursb<64>(rt, rn, simm);
}
template<>
ALWAYS_INLINE void MacroAssemblerARM64::loadSignedAddressedByUnscaledImmediate<16>(RegisterID rt, RegisterID rn, int simm)
{
m_assembler.ldursh<64>(rt, rn, simm);
}
template<>
ALWAYS_INLINE void MacroAssemblerARM64::storeUnsignedImmediate<8>(RegisterID rt, RegisterID rn, unsigned pimm)
{
m_assembler.strb(rt, rn, pimm);
}
template<>
ALWAYS_INLINE void MacroAssemblerARM64::storeUnsignedImmediate<16>(RegisterID rt, RegisterID rn, unsigned pimm)
{
m_assembler.strh(rt, rn, pimm);
}
template<>
ALWAYS_INLINE void MacroAssemblerARM64::storeUnscaledImmediate<8>(RegisterID rt, RegisterID rn, int simm)
{
m_assembler.sturb(rt, rn, simm);
}
template<>
ALWAYS_INLINE void MacroAssemblerARM64::storeUnscaledImmediate<16>(RegisterID rt, RegisterID rn, int simm)
{
m_assembler.sturh(rt, rn, simm);
}
template<>
inline void MacroAssemblerARM64::signExtend<8>(RegisterID src, RegisterID dest)
{
signExtend8To32(src, dest);
}
template<>
inline void MacroAssemblerARM64::signExtend<16>(RegisterID src, RegisterID dest)
{
signExtend16To32(src, dest);
}
template<>
inline MacroAssemblerARM64::Jump MacroAssemblerARM64::branch<64>(RelationalCondition cond, RegisterID left, RegisterID right)
{
return branch64(cond, left, right);
}
} // namespace JSC
#endif // ENABLE(ASSEMBLER)