blob: ae5b6ad54ca8136ecac1b6411c9573430e5c1f7a [file] [log] [blame]
/*
* Copyright (C) 2009-2019 Apple Inc. All rights reserved.
* Copyright (C) 2010 Patrick Gansterer <paroga@paroga.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#if ENABLE(JIT)
#if USE(JSVALUE32_64)
#include "JIT.h"
#include "BytecodeStructs.h"
#include "CCallHelpers.h"
#include "Exception.h"
#include "JITInlines.h"
#include "JSArray.h"
#include "JSCast.h"
#include "JSFunction.h"
#include "JSPropertyNameEnumerator.h"
#include "LinkBuffer.h"
#include "MaxFrameExtentForSlowPathCall.h"
#include "OpcodeInlines.h"
#include "SlowPathCall.h"
#include "TypeProfilerLog.h"
#include "VirtualRegister.h"
namespace JSC {
void JIT::emit_op_mov(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpMov>();
int dst = bytecode.m_dst.offset();
int src = bytecode.m_src.offset();
if (m_codeBlock->isConstantRegisterIndex(src))
emitStore(dst, getConstantOperand(src));
else {
emitLoad(src, regT1, regT0);
emitStore(dst, regT1, regT0);
}
}
void JIT::emit_op_end(const Instruction* currentInstruction)
{
ASSERT(returnValueGPR != callFrameRegister);
auto bytecode = currentInstruction->as<OpEnd>();
emitLoad(bytecode.m_value.offset(), regT1, returnValueGPR);
emitRestoreCalleeSaves();
emitFunctionEpilogue();
ret();
}
void JIT::emit_op_jmp(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpJmp>();
unsigned target = jumpTarget(currentInstruction, bytecode.m_targetLabel);
addJump(jump(), target);
}
void JIT::emit_op_new_object(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpNewObject>();
auto& metadata = bytecode.metadata(m_codeBlock);
Structure* structure = metadata.m_objectAllocationProfile.structure();
size_t allocationSize = JSFinalObject::allocationSize(structure->inlineCapacity());
Allocator allocator = allocatorForNonVirtualConcurrently<JSFinalObject>(*m_vm, allocationSize, AllocatorForMode::AllocatorIfExists);
RegisterID resultReg = returnValueGPR;
RegisterID allocatorReg = regT1;
RegisterID scratchReg = regT3;
if (!allocator)
addSlowCase(jump());
else {
JumpList slowCases;
auto butterfly = TrustedImmPtr(nullptr);
emitAllocateJSObject(resultReg, JITAllocator::constant(allocator), allocatorReg, TrustedImmPtr(structure), butterfly, scratchReg, slowCases);
emitInitializeInlineStorage(resultReg, structure->inlineCapacity());
addSlowCase(slowCases);
emitStoreCell(bytecode.m_dst.offset(), resultReg);
}
}
void JIT::emitSlow_op_new_object(const Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkAllSlowCases(iter);
auto bytecode = currentInstruction->as<OpNewObject>();
auto& metadata = bytecode.metadata(m_codeBlock);
int dst = bytecode.m_dst.offset();
Structure* structure = metadata.m_objectAllocationProfile.structure();
callOperation(operationNewObject, TrustedImmPtr(&vm()), structure);
emitStoreCell(dst, returnValueGPR);
}
void JIT::emit_op_overrides_has_instance(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpOverridesHasInstance>();
int dst = bytecode.m_dst.offset();
int constructor = bytecode.m_constructor.offset();
int hasInstanceValue = bytecode.m_hasInstanceValue.offset();
emitLoadPayload(hasInstanceValue, regT0);
// We don't jump if we know what Symbol.hasInstance would do.
Jump hasInstanceValueNotCell = emitJumpIfNotJSCell(hasInstanceValue);
Jump customhasInstanceValue = branchPtr(NotEqual, regT0, TrustedImmPtr(m_codeBlock->globalObject()->functionProtoHasInstanceSymbolFunction()));
// We know that constructor is an object from the way bytecode is emitted for instanceof expressions.
emitLoadPayload(constructor, regT0);
// Check that constructor 'ImplementsDefaultHasInstance' i.e. the object is not a C-API user nor a bound function.
test8(Zero, Address(regT0, JSCell::typeInfoFlagsOffset()), TrustedImm32(ImplementsDefaultHasInstance), regT0);
Jump done = jump();
hasInstanceValueNotCell.link(this);
customhasInstanceValue.link(this);
move(TrustedImm32(1), regT0);
done.link(this);
emitStoreBool(dst, regT0);
}
void JIT::emit_op_instanceof(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpInstanceof>();
int dst = bytecode.m_dst.offset();
int value = bytecode.m_value.offset();
int proto = bytecode.m_prototype.offset();
// Load the operands into registers.
// We use regT0 for baseVal since we will be done with this first, and we can then use it for the result.
emitLoadPayload(value, regT2);
emitLoadPayload(proto, regT1);
// Check that proto are cells. baseVal must be a cell - this is checked by the get_by_id for Symbol.hasInstance.
emitJumpSlowCaseIfNotJSCell(value);
emitJumpSlowCaseIfNotJSCell(proto);
JITInstanceOfGenerator gen(
m_codeBlock, CodeOrigin(m_bytecodeIndex), CallSiteIndex(m_bytecodeIndex),
RegisterSet::stubUnavailableRegisters(),
regT0, // result
regT2, // value
regT1, // proto
regT3, regT4); // scratch
gen.generateFastPath(*this);
m_instanceOfs.append(gen);
emitStoreBool(dst, regT0);
}
void JIT::emit_op_instanceof_custom(const Instruction*)
{
// This always goes to slow path since we expect it to be rare.
addSlowCase(jump());
}
void JIT::emitSlow_op_instanceof(const Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkAllSlowCases(iter);
auto bytecode = currentInstruction->as<OpInstanceof>();
int dst = bytecode.m_dst.offset();
int value = bytecode.m_value.offset();
int proto = bytecode.m_prototype.offset();
JITInstanceOfGenerator& gen = m_instanceOfs[m_instanceOfIndex++];
Label coldPathBegin = label();
emitLoadTag(value, regT0);
emitLoadTag(proto, regT3);
Call call = callOperation(operationInstanceOfOptimize, dst, m_codeBlock->globalObject(), gen.stubInfo(), JSValueRegs(regT0, regT2), JSValueRegs(regT3, regT1));
gen.reportSlowPathCall(coldPathBegin, call);
}
void JIT::emitSlow_op_instanceof_custom(const Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkAllSlowCases(iter);
auto bytecode = currentInstruction->as<OpInstanceofCustom>();
int dst = bytecode.m_dst.offset();
int value = bytecode.m_value.offset();
int constructor = bytecode.m_constructor.offset();
int hasInstanceValue = bytecode.m_hasInstanceValue.offset();
emitLoad(value, regT1, regT0);
emitLoadPayload(constructor, regT2);
emitLoad(hasInstanceValue, regT4, regT3);
callOperation(operationInstanceOfCustom, m_codeBlock->globalObject(), JSValueRegs(regT1, regT0), regT2, JSValueRegs(regT4, regT3));
emitStoreBool(dst, returnValueGPR);
}
void JIT::emit_op_is_empty(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpIsEmpty>();
int dst = bytecode.m_dst.offset();
int value = bytecode.m_operand.offset();
emitLoad(value, regT1, regT0);
compare32(Equal, regT1, TrustedImm32(JSValue::EmptyValueTag), regT0);
emitStoreBool(dst, regT0);
}
void JIT::emit_op_is_undefined(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpIsUndefined>();
int dst = bytecode.m_dst.offset();
int value = bytecode.m_operand.offset();
emitLoad(value, regT1, regT0);
Jump isCell = branchIfCell(regT1);
compare32(Equal, regT1, TrustedImm32(JSValue::UndefinedTag), regT0);
Jump done = jump();
isCell.link(this);
Jump isMasqueradesAsUndefined = branchTest8(NonZero, Address(regT0, JSCell::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined));
move(TrustedImm32(0), regT0);
Jump notMasqueradesAsUndefined = jump();
isMasqueradesAsUndefined.link(this);
loadPtr(Address(regT0, JSCell::structureIDOffset()), regT1);
move(TrustedImmPtr(m_codeBlock->globalObject()), regT0);
loadPtr(Address(regT1, Structure::globalObjectOffset()), regT1);
compare32(Equal, regT0, regT1, regT0);
notMasqueradesAsUndefined.link(this);
done.link(this);
emitStoreBool(dst, regT0);
}
void JIT::emit_op_is_undefined_or_null(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpIsUndefinedOrNull>();
int dst = bytecode.m_dst.offset();
int value = bytecode.m_operand.offset();
emitLoadTag(value, regT0);
static_assert((JSValue::UndefinedTag + 1 == JSValue::NullTag) && (JSValue::NullTag & 0x1), "");
or32(TrustedImm32(1), regT0);
compare32(Equal, regT0, TrustedImm32(JSValue::NullTag), regT0);
emitStoreBool(dst, regT0);
}
void JIT::emit_op_is_boolean(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpIsBoolean>();
int dst = bytecode.m_dst.offset();
int value = bytecode.m_operand.offset();
emitLoadTag(value, regT0);
compare32(Equal, regT0, TrustedImm32(JSValue::BooleanTag), regT0);
emitStoreBool(dst, regT0);
}
void JIT::emit_op_is_number(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpIsNumber>();
int dst = bytecode.m_dst.offset();
int value = bytecode.m_operand.offset();
emitLoadTag(value, regT0);
add32(TrustedImm32(1), regT0);
compare32(Below, regT0, TrustedImm32(JSValue::LowestTag + 1), regT0);
emitStoreBool(dst, regT0);
}
void JIT::emit_op_is_cell_with_type(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpIsCellWithType>();
int dst = bytecode.m_dst.offset();
int value = bytecode.m_operand.offset();
int type = bytecode.m_type;
emitLoad(value, regT1, regT0);
Jump isNotCell = branchIfNotCell(regT1);
compare8(Equal, Address(regT0, JSCell::typeInfoTypeOffset()), TrustedImm32(type), regT0);
Jump done = jump();
isNotCell.link(this);
move(TrustedImm32(0), regT0);
done.link(this);
emitStoreBool(dst, regT0);
}
void JIT::emit_op_is_object(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpIsObject>();
int dst = bytecode.m_dst.offset();
int value = bytecode.m_operand.offset();
emitLoad(value, regT1, regT0);
Jump isNotCell = branchIfNotCell(regT1);
compare8(AboveOrEqual, Address(regT0, JSCell::typeInfoTypeOffset()), TrustedImm32(ObjectType), regT0);
Jump done = jump();
isNotCell.link(this);
move(TrustedImm32(0), regT0);
done.link(this);
emitStoreBool(dst, regT0);
}
void JIT::emit_op_to_primitive(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpToPrimitive>();
int dst = bytecode.m_dst.offset();
int src = bytecode.m_src.offset();
emitLoad(src, regT1, regT0);
Jump isImm = branchIfNotCell(regT1);
addSlowCase(branchIfObject(regT0));
isImm.link(this);
if (dst != src)
emitStore(dst, regT1, regT0);
}
void JIT::emit_op_set_function_name(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpSetFunctionName>();
int func = bytecode.m_function.offset();
int name = bytecode.m_name.offset();
emitLoadPayload(func, regT1);
emitLoad(name, regT3, regT2);
callOperation(operationSetFunctionName, m_codeBlock->globalObject(), regT1, JSValueRegs(regT3, regT2));
}
void JIT::emit_op_not(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpNot>();
int dst = bytecode.m_dst.offset();
int src = bytecode.m_operand.offset();
emitLoadTag(src, regT0);
emitLoad(src, regT1, regT0);
addSlowCase(branchIfNotBoolean(regT1, InvalidGPRReg));
xor32(TrustedImm32(1), regT0);
emitStoreBool(dst, regT0, (dst == src));
}
void JIT::emit_op_jfalse(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpJfalse>();
int cond = bytecode.m_condition.offset();
unsigned target = jumpTarget(currentInstruction, bytecode.m_targetLabel);
emitLoad(cond, regT1, regT0);
JSValueRegs value(regT1, regT0);
GPRReg scratch1 = regT2;
GPRReg scratch2 = regT3;
bool shouldCheckMasqueradesAsUndefined = true;
addJump(branchIfFalsey(vm(), value, scratch1, scratch2, fpRegT0, fpRegT1, shouldCheckMasqueradesAsUndefined, m_codeBlock->globalObject()), target);
}
void JIT::emit_op_jtrue(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpJtrue>();
int cond = bytecode.m_condition.offset();
unsigned target = jumpTarget(currentInstruction, bytecode.m_targetLabel);
emitLoad(cond, regT1, regT0);
bool shouldCheckMasqueradesAsUndefined = true;
JSValueRegs value(regT1, regT0);
GPRReg scratch1 = regT2;
GPRReg scratch2 = regT3;
addJump(branchIfTruthy(vm(), value, scratch1, scratch2, fpRegT0, fpRegT1, shouldCheckMasqueradesAsUndefined, m_codeBlock->globalObject()), target);
}
void JIT::emit_op_jeq_null(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpJeqNull>();
int src = bytecode.m_value.offset();
unsigned target = jumpTarget(currentInstruction, bytecode.m_targetLabel);
emitLoad(src, regT1, regT0);
Jump isImmediate = branchIfNotCell(regT1);
Jump isNotMasqueradesAsUndefined = branchTest8(Zero, Address(regT0, JSCell::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined));
loadPtr(Address(regT0, JSCell::structureIDOffset()), regT2);
move(TrustedImmPtr(m_codeBlock->globalObject()), regT0);
addJump(branchPtr(Equal, Address(regT2, Structure::globalObjectOffset()), regT0), target);
Jump masqueradesGlobalObjectIsForeign = jump();
// Now handle the immediate cases - undefined & null
isImmediate.link(this);
static_assert((JSValue::UndefinedTag + 1 == JSValue::NullTag) && (JSValue::NullTag & 0x1), "");
or32(TrustedImm32(1), regT1);
addJump(branchIfNull(regT1), target);
isNotMasqueradesAsUndefined.link(this);
masqueradesGlobalObjectIsForeign.link(this);
}
void JIT::emit_op_jneq_null(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpJneqNull>();
int src = bytecode.m_value.offset();
unsigned target = jumpTarget(currentInstruction, bytecode.m_targetLabel);
emitLoad(src, regT1, regT0);
Jump isImmediate = branchIfNotCell(regT1);
addJump(branchTest8(Zero, Address(regT0, JSCell::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined)), target);
loadPtr(Address(regT0, JSCell::structureIDOffset()), regT2);
move(TrustedImmPtr(m_codeBlock->globalObject()), regT0);
addJump(branchPtr(NotEqual, Address(regT2, Structure::globalObjectOffset()), regT0), target);
Jump wasNotImmediate = jump();
// Now handle the immediate cases - undefined & null
isImmediate.link(this);
static_assert((JSValue::UndefinedTag + 1 == JSValue::NullTag) && (JSValue::NullTag & 0x1), "");
or32(TrustedImm32(1), regT1);
addJump(branchIfNotNull(regT1), target);
wasNotImmediate.link(this);
}
void JIT::emit_op_jundefined_or_null(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpJundefinedOrNull>();
int value = bytecode.m_value.offset();
unsigned target = jumpTarget(currentInstruction, bytecode.m_targetLabel);
emitLoadTag(value, regT0);
static_assert((JSValue::UndefinedTag + 1 == JSValue::NullTag) && (JSValue::NullTag & 0x1), "");
or32(TrustedImm32(1), regT0);
addJump(branchIfNull(regT0), target);
}
void JIT::emit_op_jnundefined_or_null(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpJnundefinedOrNull>();
int value = bytecode.m_value.offset();
unsigned target = jumpTarget(currentInstruction, bytecode.m_targetLabel);
emitLoadTag(value, regT0);
static_assert((JSValue::UndefinedTag + 1 == JSValue::NullTag) && (JSValue::NullTag & 0x1), "");
or32(TrustedImm32(1), regT0);
addJump(branchIfNotNull(regT0), target);
}
void JIT::emit_op_jneq_ptr(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpJneqPtr>();
auto& metadata = bytecode.metadata(m_codeBlock);
int src = bytecode.m_value.offset();
JSValue specialPointer = getConstantOperand(bytecode.m_specialPointer.offset());
ASSERT(specialPointer.isCell());
unsigned target = jumpTarget(currentInstruction, bytecode.m_targetLabel);
emitLoad(src, regT1, regT0);
Jump notCell = branchIfNotCell(regT1);
Jump equal = branchPtr(Equal, regT0, TrustedImmPtr(specialPointer.asCell()));
notCell.link(this);
store8(TrustedImm32(1), &metadata.m_hasJumped);
addJump(jump(), target);
equal.link(this);
}
void JIT::emit_op_eq(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpEq>();
int dst = bytecode.m_dst.offset();
int src1 = bytecode.m_lhs.offset();
int src2 = bytecode.m_rhs.offset();
emitLoad2(src1, regT1, regT0, src2, regT3, regT2);
addSlowCase(branch32(NotEqual, regT1, regT3));
addSlowCase(branchIfCell(regT1));
addSlowCase(branch32(Below, regT1, TrustedImm32(JSValue::LowestTag)));
compare32(Equal, regT0, regT2, regT0);
emitStoreBool(dst, regT0);
}
void JIT::emitSlow_op_eq(const Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
auto bytecode = currentInstruction->as<OpEq>();
int dst = bytecode.m_dst.offset();
JumpList storeResult;
JumpList genericCase;
genericCase.append(getSlowCase(iter)); // tags not equal
linkSlowCase(iter); // tags equal and JSCell
genericCase.append(branchIfNotString(regT0));
genericCase.append(branchIfNotString(regT2));
// String case.
callOperation(operationCompareStringEq, m_codeBlock->globalObject(), regT0, regT2);
storeResult.append(jump());
// Generic case.
genericCase.append(getSlowCase(iter)); // doubles
genericCase.link(this);
callOperation(operationCompareEq, m_codeBlock->globalObject(), JSValueRegs(regT1, regT0), JSValueRegs(regT3, regT2));
storeResult.link(this);
emitStoreBool(dst, returnValueGPR);
}
void JIT::emit_op_jeq(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpJeq>();
unsigned target = jumpTarget(currentInstruction, bytecode.m_targetLabel);
int src1 = bytecode.m_lhs.offset();
int src2 = bytecode.m_rhs.offset();
emitLoad2(src1, regT1, regT0, src2, regT3, regT2);
addSlowCase(branch32(NotEqual, regT1, regT3));
addSlowCase(branchIfCell(regT1));
addSlowCase(branch32(Below, regT1, TrustedImm32(JSValue::LowestTag)));
addJump(branch32(Equal, regT0, regT2), target);
}
void JIT::compileOpEqJumpSlow(Vector<SlowCaseEntry>::iterator& iter, CompileOpEqType type, int jumpTarget)
{
JumpList done;
JumpList genericCase;
genericCase.append(getSlowCase(iter)); // tags not equal
linkSlowCase(iter); // tags equal and JSCell
genericCase.append(branchIfNotString(regT0));
genericCase.append(branchIfNotString(regT2));
// String case.
callOperation(operationCompareStringEq, m_codeBlock->globalObject(), regT0, regT2);
emitJumpSlowToHot(branchTest32(type == CompileOpEqType::Eq ? NonZero : Zero, returnValueGPR), jumpTarget);
done.append(jump());
// Generic case.
genericCase.append(getSlowCase(iter)); // doubles
genericCase.link(this);
callOperation(operationCompareEq, m_codeBlock->globalObject(), JSValueRegs(regT1, regT0), JSValueRegs(regT3, regT2));
emitJumpSlowToHot(branchTest32(type == CompileOpEqType::Eq ? NonZero : Zero, returnValueGPR), jumpTarget);
done.link(this);
}
void JIT::emitSlow_op_jeq(const Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
auto bytecode = currentInstruction->as<OpJeq>();
unsigned target = jumpTarget(currentInstruction, bytecode.m_targetLabel);
compileOpEqJumpSlow(iter, CompileOpEqType::Eq, target);
}
void JIT::emit_op_neq(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpNeq>();
int dst = bytecode.m_dst.offset();
int src1 = bytecode.m_lhs.offset();
int src2 = bytecode.m_rhs.offset();
emitLoad2(src1, regT1, regT0, src2, regT3, regT2);
addSlowCase(branch32(NotEqual, regT1, regT3));
addSlowCase(branchIfCell(regT1));
addSlowCase(branch32(Below, regT1, TrustedImm32(JSValue::LowestTag)));
compare32(NotEqual, regT0, regT2, regT0);
emitStoreBool(dst, regT0);
}
void JIT::emitSlow_op_neq(const Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
auto bytecode = currentInstruction->as<OpNeq>();
int dst = bytecode.m_dst.offset();
JumpList storeResult;
JumpList genericCase;
genericCase.append(getSlowCase(iter)); // tags not equal
linkSlowCase(iter); // tags equal and JSCell
genericCase.append(branchIfNotString(regT0));
genericCase.append(branchIfNotString(regT2));
// String case.
callOperation(operationCompareStringEq, m_codeBlock->globalObject(), regT0, regT2);
storeResult.append(jump());
// Generic case.
genericCase.append(getSlowCase(iter)); // doubles
genericCase.link(this);
callOperation(operationCompareEq, m_codeBlock->globalObject(), JSValueRegs(regT1, regT0), JSValueRegs(regT3, regT2));
storeResult.link(this);
xor32(TrustedImm32(0x1), returnValueGPR);
emitStoreBool(dst, returnValueGPR);
}
void JIT::emit_op_jneq(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpJneq>();
unsigned target = jumpTarget(currentInstruction, bytecode.m_targetLabel);
int src1 = bytecode.m_lhs.offset();
int src2 = bytecode.m_rhs.offset();
emitLoad2(src1, regT1, regT0, src2, regT3, regT2);
addSlowCase(branch32(NotEqual, regT1, regT3));
addSlowCase(branchIfCell(regT1));
addSlowCase(branch32(Below, regT1, TrustedImm32(JSValue::LowestTag)));
addJump(branch32(NotEqual, regT0, regT2), target);
}
void JIT::emitSlow_op_jneq(const Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
auto bytecode = currentInstruction->as<OpJneq>();
unsigned target = jumpTarget(currentInstruction, bytecode.m_targetLabel);
compileOpEqJumpSlow(iter, CompileOpEqType::NEq, target);
}
template <typename Op>
void JIT::compileOpStrictEq(const Instruction* currentInstruction, CompileOpStrictEqType type)
{
auto bytecode = currentInstruction->as<Op>();
int dst = bytecode.m_dst.offset();
int src1 = bytecode.m_lhs.offset();
int src2 = bytecode.m_rhs.offset();
emitLoad2(src1, regT1, regT0, src2, regT3, regT2);
// Bail if the tags differ, or are double.
addSlowCase(branch32(NotEqual, regT1, regT3));
addSlowCase(branch32(Below, regT1, TrustedImm32(JSValue::LowestTag)));
// Jump to a slow case if both are strings or symbols (non object).
Jump notCell = branchIfNotCell(regT1);
Jump firstIsObject = branchIfObject(regT0);
addSlowCase(branchIfNotObject(regT2));
notCell.link(this);
firstIsObject.link(this);
// Simply compare the payloads.
if (type == CompileOpStrictEqType::StrictEq)
compare32(Equal, regT0, regT2, regT0);
else
compare32(NotEqual, regT0, regT2, regT0);
emitStoreBool(dst, regT0);
}
void JIT::emit_op_stricteq(const Instruction* currentInstruction)
{
compileOpStrictEq<OpStricteq>(currentInstruction, CompileOpStrictEqType::StrictEq);
}
void JIT::emit_op_nstricteq(const Instruction* currentInstruction)
{
compileOpStrictEq<OpNstricteq>(currentInstruction, CompileOpStrictEqType::NStrictEq);
}
template<typename Op>
void JIT::compileOpStrictEqJump(const Instruction* currentInstruction, CompileOpStrictEqType type)
{
auto bytecode = currentInstruction->as<Op>();
int target = jumpTarget(currentInstruction, bytecode.m_targetLabel);
int src1 = bytecode.m_lhs.offset();
int src2 = bytecode.m_rhs.offset();
emitLoad2(src1, regT1, regT0, src2, regT3, regT2);
// Bail if the tags differ, or are double.
addSlowCase(branch32(NotEqual, regT1, regT3));
addSlowCase(branch32(Below, regT1, TrustedImm32(JSValue::LowestTag)));
// Jump to a slow case if both are strings or symbols (non object).
Jump notCell = branchIfNotCell(regT1);
Jump firstIsObject = branchIfObject(regT0);
addSlowCase(branchIfNotObject(regT2));
notCell.link(this);
firstIsObject.link(this);
// Simply compare the payloads.
if (type == CompileOpStrictEqType::StrictEq)
addJump(branch32(Equal, regT0, regT2), target);
else
addJump(branch32(NotEqual, regT0, regT2), target);
}
void JIT::emit_op_jstricteq(const Instruction* currentInstruction)
{
compileOpStrictEqJump<OpJstricteq>(currentInstruction, CompileOpStrictEqType::StrictEq);
}
void JIT::emit_op_jnstricteq(const Instruction* currentInstruction)
{
compileOpStrictEqJump<OpJnstricteq>(currentInstruction, CompileOpStrictEqType::NStrictEq);
}
void JIT::emitSlow_op_jstricteq(const Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkAllSlowCases(iter);
auto bytecode = currentInstruction->as<OpJstricteq>();
unsigned target = jumpTarget(currentInstruction, bytecode.m_targetLabel);
callOperation(operationCompareStrictEq, m_codeBlock->globalObject(), JSValueRegs(regT1, regT0), JSValueRegs(regT3, regT2));
emitJumpSlowToHot(branchTest32(NonZero, returnValueGPR), target);
}
void JIT::emitSlow_op_jnstricteq(const Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkAllSlowCases(iter);
auto bytecode = currentInstruction->as<OpJnstricteq>();
unsigned target = jumpTarget(currentInstruction, bytecode.m_targetLabel);
callOperation(operationCompareStrictEq, m_codeBlock->globalObject(), JSValueRegs(regT1, regT0), JSValueRegs(regT3, regT2));
emitJumpSlowToHot(branchTest32(Zero, returnValueGPR), target);
}
void JIT::emit_op_eq_null(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpEqNull>();
int dst = bytecode.m_dst.offset();
int src = bytecode.m_operand.offset();
emitLoad(src, regT1, regT0);
Jump isImmediate = branchIfNotCell(regT1);
Jump isMasqueradesAsUndefined = branchTest8(NonZero, Address(regT0, JSCell::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined));
move(TrustedImm32(0), regT1);
Jump wasNotMasqueradesAsUndefined = jump();
isMasqueradesAsUndefined.link(this);
loadPtr(Address(regT0, JSCell::structureIDOffset()), regT2);
move(TrustedImmPtr(m_codeBlock->globalObject()), regT0);
loadPtr(Address(regT2, Structure::globalObjectOffset()), regT2);
compare32(Equal, regT0, regT2, regT1);
Jump wasNotImmediate = jump();
isImmediate.link(this);
compare32(Equal, regT1, TrustedImm32(JSValue::NullTag), regT2);
compare32(Equal, regT1, TrustedImm32(JSValue::UndefinedTag), regT1);
or32(regT2, regT1);
wasNotImmediate.link(this);
wasNotMasqueradesAsUndefined.link(this);
emitStoreBool(dst, regT1);
}
void JIT::emit_op_neq_null(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpNeqNull>();
int dst = bytecode.m_dst.offset();
int src = bytecode.m_operand.offset();
emitLoad(src, regT1, regT0);
Jump isImmediate = branchIfNotCell(regT1);
Jump isMasqueradesAsUndefined = branchTest8(NonZero, Address(regT0, JSCell::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined));
move(TrustedImm32(1), regT1);
Jump wasNotMasqueradesAsUndefined = jump();
isMasqueradesAsUndefined.link(this);
loadPtr(Address(regT0, JSCell::structureIDOffset()), regT2);
move(TrustedImmPtr(m_codeBlock->globalObject()), regT0);
loadPtr(Address(regT2, Structure::globalObjectOffset()), regT2);
compare32(NotEqual, regT0, regT2, regT1);
Jump wasNotImmediate = jump();
isImmediate.link(this);
compare32(NotEqual, regT1, TrustedImm32(JSValue::NullTag), regT2);
compare32(NotEqual, regT1, TrustedImm32(JSValue::UndefinedTag), regT1);
and32(regT2, regT1);
wasNotImmediate.link(this);
wasNotMasqueradesAsUndefined.link(this);
emitStoreBool(dst, regT1);
}
void JIT::emit_op_throw(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpThrow>();
ASSERT(regT0 == returnValueGPR);
copyCalleeSavesToEntryFrameCalleeSavesBuffer(vm().topEntryFrame);
emitLoad(bytecode.m_value.offset(), regT1, regT0);
callOperationNoExceptionCheck(operationThrow, m_codeBlock->globalObject(), JSValueRegs(regT1, regT0));
jumpToExceptionHandler(vm());
}
void JIT::emit_op_to_number(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpToNumber>();
int dst = bytecode.m_dst.offset();
int src = bytecode.m_operand.offset();
emitLoad(src, regT1, regT0);
Jump isInt32 = branchIfInt32(regT1);
addSlowCase(branch32(AboveOrEqual, regT1, TrustedImm32(JSValue::LowestTag)));
isInt32.link(this);
emitValueProfilingSite(bytecode.metadata(m_codeBlock));
if (src != dst)
emitStore(dst, regT1, regT0);
}
void JIT::emit_op_to_numeric(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpToNumeric>();
int dst = bytecode.m_dst.offset();
int src = bytecode.m_operand.offset();
JSValueRegs argumentValueRegs(regT1, regT0);
emitLoad(src, regT1, regT0);
Jump isNotCell = branchIfNotCell(regT1);
addSlowCase(branchIfNotBigInt(regT0));
Jump isBigInt = jump();
isNotCell.link(this);
addSlowCase(branchIfNotNumber(argumentValueRegs, regT2));
isBigInt.link(this);
emitValueProfilingSite(bytecode.metadata(m_codeBlock));
if (src != dst)
emitStore(dst, regT1, regT0);
}
void JIT::emit_op_to_string(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpToString>();
int dst = bytecode.m_dst.offset();
int src = bytecode.m_operand.offset();
emitLoad(src, regT1, regT0);
addSlowCase(branchIfNotCell(regT1));
addSlowCase(branchIfNotString(regT0));
if (src != dst)
emitStore(dst, regT1, regT0);
}
void JIT::emit_op_to_object(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpToObject>();
int dst = bytecode.m_dst.offset();
int src = bytecode.m_operand.offset();
emitLoad(src, regT1, regT0);
addSlowCase(branchIfNotCell(regT1));
addSlowCase(branchIfNotObject(regT0));
emitValueProfilingSite(bytecode.metadata(m_codeBlock));
if (src != dst)
emitStore(dst, regT1, regT0);
}
void JIT::emit_op_catch(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpCatch>();
restoreCalleeSavesFromEntryFrameCalleeSavesBuffer(vm().topEntryFrame);
move(TrustedImmPtr(m_vm), regT3);
// operationThrow returns the callFrame for the handler.
load32(Address(regT3, VM::callFrameForCatchOffset()), callFrameRegister);
storePtr(TrustedImmPtr(nullptr), Address(regT3, VM::callFrameForCatchOffset()));
addPtr(TrustedImm32(stackPointerOffsetFor(codeBlock()) * sizeof(Register)), callFrameRegister, stackPointerRegister);
callOperationNoExceptionCheck(operationCheckIfExceptionIsUncatchableAndNotifyProfiler, TrustedImmPtr(&vm()));
Jump isCatchableException = branchTest32(Zero, returnValueGPR);
jumpToExceptionHandler(vm());
isCatchableException.link(this);
move(TrustedImmPtr(m_vm), regT3);
// Now store the exception returned by operationThrow.
load32(Address(regT3, VM::exceptionOffset()), regT2);
move(TrustedImm32(JSValue::CellTag), regT1);
store32(TrustedImm32(0), Address(regT3, VM::exceptionOffset()));
unsigned exception = bytecode.m_exception.offset();
emitStore(exception, regT1, regT2);
load32(Address(regT2, Exception::valueOffset() + OBJECT_OFFSETOF(JSValue, u.asBits.payload)), regT0);
load32(Address(regT2, Exception::valueOffset() + OBJECT_OFFSETOF(JSValue, u.asBits.tag)), regT1);
unsigned thrownValue = bytecode.m_thrownValue.offset();
emitStore(thrownValue, regT1, regT0);
#if ENABLE(DFG_JIT)
// FIXME: consider inline caching the process of doing OSR entry, including
// argument type proofs, storing locals to the buffer, etc
// https://bugs.webkit.org/show_bug.cgi?id=175598
auto& metadata = bytecode.metadata(m_codeBlock);
ValueProfileAndOperandBuffer* buffer = metadata.m_buffer;
if (buffer || !shouldEmitProfiling())
callOperation(operationTryOSREnterAtCatch, &vm(), m_bytecodeIndex.asBits());
else
callOperation(operationTryOSREnterAtCatchAndValueProfile, &vm(), m_bytecodeIndex.asBits());
auto skipOSREntry = branchTestPtr(Zero, returnValueGPR);
emitRestoreCalleeSaves();
farJump(returnValueGPR, NoPtrTag);
skipOSREntry.link(this);
if (buffer && shouldEmitProfiling()) {
buffer->forEach([&] (ValueProfileAndOperand& profile) {
JSValueRegs regs(regT1, regT0);
emitGetVirtualRegister(profile.m_operand, regs);
emitValueProfilingSite(static_cast<ValueProfile&>(profile));
});
}
#endif // ENABLE(DFG_JIT)
}
void JIT::emit_op_identity_with_profile(const Instruction*)
{
// We don't need to do anything here...
}
void JIT::emit_op_get_parent_scope(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpGetParentScope>();
int currentScope = bytecode.m_scope.offset();
emitLoadPayload(currentScope, regT0);
loadPtr(Address(regT0, JSScope::offsetOfNext()), regT0);
emitStoreCell(bytecode.m_dst.offset(), regT0);
}
void JIT::emit_op_switch_imm(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpSwitchImm>();
size_t tableIndex = bytecode.m_tableIndex;
unsigned defaultOffset = jumpTarget(currentInstruction, bytecode.m_defaultOffset);
unsigned scrutinee = bytecode.m_scrutinee.offset();
// create jump table for switch destinations, track this switch statement.
SimpleJumpTable* jumpTable = &m_codeBlock->switchJumpTable(tableIndex);
m_switches.append(SwitchRecord(jumpTable, m_bytecodeIndex, defaultOffset, SwitchRecord::Immediate));
jumpTable->ensureCTITable();
emitLoad(scrutinee, regT1, regT0);
callOperation(operationSwitchImmWithUnknownKeyType, TrustedImmPtr(&vm()), JSValueRegs(regT1, regT0), tableIndex);
farJump(returnValueGPR, NoPtrTag);
}
void JIT::emit_op_switch_char(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpSwitchChar>();
size_t tableIndex = bytecode.m_tableIndex;
unsigned defaultOffset = jumpTarget(currentInstruction, bytecode.m_defaultOffset);
unsigned scrutinee = bytecode.m_scrutinee.offset();
// create jump table for switch destinations, track this switch statement.
SimpleJumpTable* jumpTable = &m_codeBlock->switchJumpTable(tableIndex);
m_switches.append(SwitchRecord(jumpTable, m_bytecodeIndex, defaultOffset, SwitchRecord::Character));
jumpTable->ensureCTITable();
emitLoad(scrutinee, regT1, regT0);
callOperation(operationSwitchCharWithUnknownKeyType, m_codeBlock->globalObject(), JSValueRegs(regT1, regT0), tableIndex);
farJump(returnValueGPR, NoPtrTag);
}
void JIT::emit_op_switch_string(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpSwitchString>();
size_t tableIndex = bytecode.m_tableIndex;
unsigned defaultOffset = jumpTarget(currentInstruction, bytecode.m_defaultOffset);
unsigned scrutinee = bytecode.m_scrutinee.offset();
// create jump table for switch destinations, track this switch statement.
StringJumpTable* jumpTable = &m_codeBlock->stringSwitchJumpTable(tableIndex);
m_switches.append(SwitchRecord(jumpTable, m_bytecodeIndex, defaultOffset));
emitLoad(scrutinee, regT1, regT0);
callOperation(operationSwitchStringWithUnknownKeyType, m_codeBlock->globalObject(), JSValueRegs(regT1, regT0), tableIndex);
farJump(returnValueGPR, NoPtrTag);
}
void JIT::emit_op_debug(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpDebug>();
load32(codeBlock()->debuggerRequestsAddress(), regT0);
Jump noDebuggerRequests = branchTest32(Zero, regT0);
callOperation(operationDebug, &vm(), static_cast<int>(bytecode.m_debugHookType));
noDebuggerRequests.link(this);
}
void JIT::emit_op_enter(const Instruction* currentInstruction)
{
emitEnterOptimizationCheck();
// Even though JIT code doesn't use them, we initialize our constant
// registers to zap stale pointers, to avoid unnecessarily prolonging
// object lifetime and increasing GC pressure.
for (int i = CodeBlock::llintBaselineCalleeSaveSpaceAsVirtualRegisters(); i < m_codeBlock->numVars(); ++i)
emitStore(virtualRegisterForLocal(i).offset(), jsUndefined());
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_enter);
slowPathCall.call();
}
void JIT::emit_op_get_scope(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpGetScope>();
int dst = bytecode.m_dst.offset();
emitGetFromCallFrameHeaderPtr(CallFrameSlot::callee, regT0);
loadPtr(Address(regT0, JSFunction::offsetOfScopeChain()), regT0);
emitStoreCell(dst, regT0);
}
void JIT::emit_op_create_this(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpCreateThis>();
auto& metadata = bytecode.metadata(m_codeBlock);
int callee = bytecode.m_callee.offset();
WriteBarrierBase<JSCell>* cachedFunction = &metadata.m_cachedCallee;
RegisterID calleeReg = regT0;
RegisterID rareDataReg = regT4;
RegisterID resultReg = regT0;
RegisterID allocatorReg = regT1;
RegisterID structureReg = regT2;
RegisterID cachedFunctionReg = regT4;
RegisterID scratchReg = regT3;
emitLoadPayload(callee, calleeReg);
addSlowCase(branchIfNotFunction(calleeReg));
loadPtr(Address(calleeReg, JSFunction::offsetOfRareData()), rareDataReg);
addSlowCase(branchTestPtr(Zero, rareDataReg));
load32(Address(rareDataReg, FunctionRareData::offsetOfObjectAllocationProfile() + ObjectAllocationProfileWithPrototype::offsetOfAllocator()), allocatorReg);
loadPtr(Address(rareDataReg, FunctionRareData::offsetOfObjectAllocationProfile() + ObjectAllocationProfileWithPrototype::offsetOfStructure()), structureReg);
loadPtr(cachedFunction, cachedFunctionReg);
Jump hasSeenMultipleCallees = branchPtr(Equal, cachedFunctionReg, TrustedImmPtr(JSCell::seenMultipleCalleeObjects()));
addSlowCase(branchPtr(NotEqual, calleeReg, cachedFunctionReg));
hasSeenMultipleCallees.link(this);
JumpList slowCases;
auto butterfly = TrustedImmPtr(nullptr);
emitAllocateJSObject(resultReg, JITAllocator::variable(), allocatorReg, structureReg, butterfly, scratchReg, slowCases);
load8(Address(structureReg, Structure::inlineCapacityOffset()), scratchReg);
emitInitializeInlineStorage(resultReg, scratchReg);
addSlowCase(slowCases);
emitStoreCell(bytecode.m_dst.offset(), resultReg);
}
void JIT::emit_op_to_this(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpToThis>();
auto& metadata = bytecode.metadata(m_codeBlock);
StructureID* cachedStructureID = &metadata.m_cachedStructureID;
int thisRegister = bytecode.m_srcDst.offset();
emitLoad(thisRegister, regT3, regT2);
addSlowCase(branchIfNotCell(regT3));
addSlowCase(branchIfNotType(regT2, FinalObjectType));
loadPtr(Address(regT2, JSCell::structureIDOffset()), regT0);
load32(cachedStructureID, regT2);
addSlowCase(branchPtr(NotEqual, regT0, regT2));
}
void JIT::emit_op_check_tdz(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpCheckTdz>();
emitLoadTag(bytecode.m_targetVirtualRegister.offset(), regT0);
addSlowCase(branchIfEmpty(regT0));
}
void JIT::emit_op_has_structure_property(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpHasStructureProperty>();
int dst = bytecode.m_dst.offset();
int base = bytecode.m_base.offset();
int enumerator = bytecode.m_enumerator.offset();
emitLoadPayload(base, regT0);
emitJumpSlowCaseIfNotJSCell(base);
emitLoadPayload(enumerator, regT1);
load32(Address(regT0, JSCell::structureIDOffset()), regT0);
addSlowCase(branch32(NotEqual, regT0, Address(regT1, JSPropertyNameEnumerator::cachedStructureIDOffset())));
move(TrustedImm32(1), regT0);
emitStoreBool(dst, regT0);
}
void JIT::privateCompileHasIndexedProperty(ByValInfo* byValInfo, ReturnAddressPtr returnAddress, JITArrayMode arrayMode)
{
const Instruction* currentInstruction = m_codeBlock->instructions().at(byValInfo->bytecodeIndex).ptr();
PatchableJump badType;
// FIXME: Add support for other types like TypedArrays and Arguments.
// See https://bugs.webkit.org/show_bug.cgi?id=135033 and https://bugs.webkit.org/show_bug.cgi?id=135034.
JumpList slowCases = emitLoadForArrayMode(currentInstruction, arrayMode, badType);
move(TrustedImm32(1), regT0);
Jump done = jump();
LinkBuffer patchBuffer(*this, m_codeBlock);
patchBuffer.link(badType, byValInfo->slowPathTarget);
patchBuffer.link(slowCases, byValInfo->slowPathTarget);
patchBuffer.link(done, byValInfo->badTypeDoneTarget);
byValInfo->stubRoutine = FINALIZE_CODE_FOR_STUB(
m_codeBlock, patchBuffer, JITStubRoutinePtrTag,
"Baseline has_indexed_property stub for %s, return point %p", toCString(*m_codeBlock).data(), returnAddress.value());
MacroAssembler::repatchJump(byValInfo->badTypeJump, CodeLocationLabel<JITStubRoutinePtrTag>(byValInfo->stubRoutine->code().code()));
MacroAssembler::repatchCall(CodeLocationCall<NoPtrTag>(MacroAssemblerCodePtr<NoPtrTag>(returnAddress)), FunctionPtr<OperationPtrTag>(operationHasIndexedPropertyGeneric));
}
void JIT::emit_op_has_indexed_property(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpHasIndexedProperty>();
auto& metadata = bytecode.metadata(m_codeBlock);
int dst = bytecode.m_dst.offset();
int base = bytecode.m_base.offset();
int property = bytecode.m_property.offset();
ArrayProfile* profile = &metadata.m_arrayProfile;
ByValInfo* byValInfo = m_codeBlock->addByValInfo();
emitLoadPayload(base, regT0);
emitJumpSlowCaseIfNotJSCell(base);
emitLoad(property, regT3, regT1);
addSlowCase(branchIfNotInt32(regT3));
// This is technically incorrect - we're zero-extending an int32. On the hot path this doesn't matter.
// We check the value as if it was a uint32 against the m_vectorLength - which will always fail if
// number was signed since m_vectorLength is always less than intmax (since the total allocation
// size is always less than 4Gb). As such zero extending will have been correct (and extending the value
// to 64-bits is necessary since it's used in the address calculation. We zero extend rather than sign
// extending since it makes it easier to re-tag the value in the slow case.
zeroExtend32ToPtr(regT1, regT1);
emitArrayProfilingSiteWithCell(regT0, regT2, profile);
and32(TrustedImm32(IndexingShapeMask), regT2);
JITArrayMode mode = chooseArrayMode(profile);
PatchableJump badType;
// FIXME: Add support for other types like TypedArrays and Arguments.
// See https://bugs.webkit.org/show_bug.cgi?id=135033 and https://bugs.webkit.org/show_bug.cgi?id=135034.
JumpList slowCases = emitLoadForArrayMode(currentInstruction, mode, badType);
move(TrustedImm32(1), regT0);
addSlowCase(badType);
addSlowCase(slowCases);
Label done = label();
emitStoreBool(dst, regT0);
Label nextHotPath = label();
m_byValCompilationInfo.append(ByValCompilationInfo(byValInfo, m_bytecodeIndex, PatchableJump(), badType, mode, profile, done, nextHotPath));
}
void JIT::emitSlow_op_has_indexed_property(const Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkAllSlowCases(iter);
auto bytecode = currentInstruction->as<OpHasIndexedProperty>();
int dst = bytecode.m_dst.offset();
int base = bytecode.m_base.offset();
int property = bytecode.m_property.offset();
ByValInfo* byValInfo = m_byValCompilationInfo[m_byValInstructionIndex].byValInfo;
Label slowPath = label();
emitLoad(base, regT1, regT0);
emitLoad(property, regT3, regT2);
Call call = callOperation(operationHasIndexedPropertyDefault, dst, m_codeBlock->globalObject(), JSValueRegs(regT1, regT0), JSValueRegs(regT3, regT2), byValInfo);
m_byValCompilationInfo[m_byValInstructionIndex].slowPathTarget = slowPath;
m_byValCompilationInfo[m_byValInstructionIndex].returnAddress = call;
m_byValInstructionIndex++;
}
void JIT::emit_op_get_direct_pname(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpGetDirectPname>();
int dst = bytecode.m_dst.offset();
int base = bytecode.m_base.offset();
int index = bytecode.m_index.offset();
int enumerator = bytecode.m_enumerator.offset();
// Check that base is a cell
emitLoadPayload(base, regT0);
emitJumpSlowCaseIfNotJSCell(base);
// Check the structure
emitLoadPayload(enumerator, regT1);
load32(Address(regT0, JSCell::structureIDOffset()), regT2);
addSlowCase(branch32(NotEqual, regT2, Address(regT1, JSPropertyNameEnumerator::cachedStructureIDOffset())));
// Compute the offset
emitLoadPayload(index, regT2);
// If index is less than the enumerator's cached inline storage, then it's an inline access
Jump outOfLineAccess = branch32(AboveOrEqual, regT2, Address(regT1, JSPropertyNameEnumerator::cachedInlineCapacityOffset()));
addPtr(TrustedImm32(JSObject::offsetOfInlineStorage()), regT0);
load32(BaseIndex(regT0, regT2, TimesEight, OBJECT_OFFSETOF(JSValue, u.asBits.tag)), regT1);
load32(BaseIndex(regT0, regT2, TimesEight, OBJECT_OFFSETOF(JSValue, u.asBits.payload)), regT0);
Jump done = jump();
// Otherwise it's out of line
outOfLineAccess.link(this);
loadPtr(Address(regT0, JSObject::butterflyOffset()), regT0);
sub32(Address(regT1, JSPropertyNameEnumerator::cachedInlineCapacityOffset()), regT2);
neg32(regT2);
int32_t offsetOfFirstProperty = static_cast<int32_t>(offsetInButterfly(firstOutOfLineOffset)) * sizeof(EncodedJSValue);
load32(BaseIndex(regT0, regT2, TimesEight, offsetOfFirstProperty + OBJECT_OFFSETOF(JSValue, u.asBits.tag)), regT1);
load32(BaseIndex(regT0, regT2, TimesEight, offsetOfFirstProperty + OBJECT_OFFSETOF(JSValue, u.asBits.payload)), regT0);
done.link(this);
emitValueProfilingSite(bytecode.metadata(m_codeBlock));
emitStore(dst, regT1, regT0);
}
void JIT::emit_op_enumerator_structure_pname(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpEnumeratorStructurePname>();
int dst = bytecode.m_dst.offset();
int enumerator = bytecode.m_enumerator.offset();
int index = bytecode.m_index.offset();
emitLoadPayload(index, regT0);
emitLoadPayload(enumerator, regT1);
Jump inBounds = branch32(Below, regT0, Address(regT1, JSPropertyNameEnumerator::endStructurePropertyIndexOffset()));
move(TrustedImm32(JSValue::NullTag), regT2);
move(TrustedImm32(0), regT0);
Jump done = jump();
inBounds.link(this);
loadPtr(Address(regT1, JSPropertyNameEnumerator::cachedPropertyNamesVectorOffset()), regT1);
loadPtr(BaseIndex(regT1, regT0, timesPtr()), regT0);
move(TrustedImm32(JSValue::CellTag), regT2);
done.link(this);
emitStore(dst, regT2, regT0);
}
void JIT::emit_op_enumerator_generic_pname(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpEnumeratorGenericPname>();
int dst = bytecode.m_dst.offset();
int enumerator = bytecode.m_enumerator.offset();
int index = bytecode.m_index.offset();
emitLoadPayload(index, regT0);
emitLoadPayload(enumerator, regT1);
Jump inBounds = branch32(Below, regT0, Address(regT1, JSPropertyNameEnumerator::endGenericPropertyIndexOffset()));
move(TrustedImm32(JSValue::NullTag), regT2);
move(TrustedImm32(0), regT0);
Jump done = jump();
inBounds.link(this);
loadPtr(Address(regT1, JSPropertyNameEnumerator::cachedPropertyNamesVectorOffset()), regT1);
loadPtr(BaseIndex(regT1, regT0, timesPtr()), regT0);
move(TrustedImm32(JSValue::CellTag), regT2);
done.link(this);
emitStore(dst, regT2, regT0);
}
void JIT::emit_op_profile_type(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpProfileType>();
auto& metadata = bytecode.metadata(m_codeBlock);
TypeLocation* cachedTypeLocation = metadata.m_typeLocation;
int valueToProfile = bytecode.m_targetVirtualRegister.offset();
// Load payload in T0. Load tag in T3.
emitLoadPayload(valueToProfile, regT0);
emitLoadTag(valueToProfile, regT3);
JumpList jumpToEnd;
jumpToEnd.append(branchIfEmpty(regT3));
// Compile in a predictive type check, if possible, to see if we can skip writing to the log.
// These typechecks are inlined to match those of the 32-bit JSValue type checks.
if (cachedTypeLocation->m_lastSeenType == TypeUndefined)
jumpToEnd.append(branchIfUndefined(regT3));
else if (cachedTypeLocation->m_lastSeenType == TypeNull)
jumpToEnd.append(branchIfNull(regT3));
else if (cachedTypeLocation->m_lastSeenType == TypeBoolean)
jumpToEnd.append(branchIfBoolean(regT3, InvalidGPRReg));
else if (cachedTypeLocation->m_lastSeenType == TypeAnyInt)
jumpToEnd.append(branchIfInt32(regT3));
else if (cachedTypeLocation->m_lastSeenType == TypeNumber) {
jumpToEnd.append(branchIfNumber(JSValueRegs(regT3, regT0), regT1));
} else if (cachedTypeLocation->m_lastSeenType == TypeString) {
Jump isNotCell = branchIfNotCell(regT3);
jumpToEnd.append(branchIfString(regT0));
isNotCell.link(this);
}
// Load the type profiling log into T2.
TypeProfilerLog* cachedTypeProfilerLog = m_vm->typeProfilerLog();
move(TrustedImmPtr(cachedTypeProfilerLog), regT2);
// Load the next log entry into T1.
loadPtr(Address(regT2, TypeProfilerLog::currentLogEntryOffset()), regT1);
// Store the JSValue onto the log entry.
store32(regT0, Address(regT1, TypeProfilerLog::LogEntry::valueOffset() + OBJECT_OFFSETOF(JSValue, u.asBits.payload)));
store32(regT3, Address(regT1, TypeProfilerLog::LogEntry::valueOffset() + OBJECT_OFFSETOF(JSValue, u.asBits.tag)));
// Store the structureID of the cell if argument is a cell, otherwise, store 0 on the log entry.
Jump notCell = branchIfNotCell(regT3);
load32(Address(regT0, JSCell::structureIDOffset()), regT0);
store32(regT0, Address(regT1, TypeProfilerLog::LogEntry::structureIDOffset()));
Jump skipNotCell = jump();
notCell.link(this);
store32(TrustedImm32(0), Address(regT1, TypeProfilerLog::LogEntry::structureIDOffset()));
skipNotCell.link(this);
// Store the typeLocation on the log entry.
move(TrustedImmPtr(cachedTypeLocation), regT0);
store32(regT0, Address(regT1, TypeProfilerLog::LogEntry::locationOffset()));
// Increment the current log entry.
addPtr(TrustedImm32(sizeof(TypeProfilerLog::LogEntry)), regT1);
store32(regT1, Address(regT2, TypeProfilerLog::currentLogEntryOffset()));
jumpToEnd.append(branchPtr(NotEqual, regT1, TrustedImmPtr(cachedTypeProfilerLog->logEndPtr())));
// Clear the log if we're at the end of the log.
callOperation(operationProcessTypeProfilerLog, &vm());
jumpToEnd.link(this);
}
void JIT::emit_op_log_shadow_chicken_prologue(const Instruction* currentInstruction)
{
RELEASE_ASSERT(vm().shadowChicken());
updateTopCallFrame();
static_assert(nonArgGPR0 != regT0 && nonArgGPR0 != regT2, "we will have problems if this is true.");
auto bytecode = currentInstruction->as<OpLogShadowChickenPrologue>();
GPRReg shadowPacketReg = regT0;
GPRReg scratch1Reg = nonArgGPR0; // This must be a non-argument register.
GPRReg scratch2Reg = regT2;
ensureShadowChickenPacket(vm(), shadowPacketReg, scratch1Reg, scratch2Reg);
scratch1Reg = regT4;
emitLoadPayload(bytecode.m_scope.offset(), regT3);
logShadowChickenProloguePacket(shadowPacketReg, scratch1Reg, regT3);
}
void JIT::emit_op_log_shadow_chicken_tail(const Instruction* currentInstruction)
{
RELEASE_ASSERT(vm().shadowChicken());
updateTopCallFrame();
static_assert(nonArgGPR0 != regT0 && nonArgGPR0 != regT2, "we will have problems if this is true.");
auto bytecode = currentInstruction->as<OpLogShadowChickenTail>();
GPRReg shadowPacketReg = regT0;
GPRReg scratch1Reg = nonArgGPR0; // This must be a non-argument register.
GPRReg scratch2Reg = regT2;
ensureShadowChickenPacket(vm(), shadowPacketReg, scratch1Reg, scratch2Reg);
emitLoadPayload(bytecode.m_thisValue.offset(), regT2);
emitLoadTag(bytecode.m_thisValue.offset(), regT1);
JSValueRegs thisRegs(regT1, regT2);
emitLoadPayload(bytecode.m_scope.offset(), regT3);
logShadowChickenTailPacket(shadowPacketReg, thisRegs, regT3, m_codeBlock, CallSiteIndex(BytecodeIndex(bitwise_cast<uint32_t>(currentInstruction))));
}
} // namespace JSC
#endif // USE(JSVALUE32_64)
#endif // ENABLE(JIT)