blob: 528f02204a6186f9851a324c50e9b61cb2520374 [file] [log] [blame]
/*
* Copyright (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 1999 Antti Koivisto (koivisto@kde.org)
* (C) 2005 Allan Sandfeld Jensen (kde@carewolf.com)
* (C) 2005, 2006 Samuel Weinig (sam.weinig@gmail.com)
* Copyright (C) 2005, 2006, 2007, 2008, 2009, 2013 Apple Inc. All rights reserved.
* Copyright (C) 2010 Google Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include "config.h"
#include "RenderBoxModelObject.h"
#include "BitmapImage.h"
#include "BorderEdge.h"
#include "CachedImage.h"
#include "ColorBlending.h"
#include "Document.h"
#include "DocumentTimeline.h"
#include "FloatRoundedRect.h"
#include "Frame.h"
#include "FrameView.h"
#include "GeometryUtilities.h"
#include "GraphicsContext.h"
#include "HTMLImageElement.h"
#include "HTMLNames.h"
#include "ImageBuffer.h"
#include "ImageQualityController.h"
#include "InlineIteratorInlineBox.h"
#include "Path.h"
#include "RenderBlock.h"
#include "RenderFlexibleBox.h"
#include "RenderFragmentContainer.h"
#include "RenderInline.h"
#include "RenderLayer.h"
#include "RenderLayerBacking.h"
#include "RenderLayerCompositor.h"
#include "RenderLayerScrollableArea.h"
#include "RenderMultiColumnFlow.h"
#include "RenderTable.h"
#include "RenderTableRow.h"
#include "RenderText.h"
#include "RenderTextFragment.h"
#include "RenderTreeBuilder.h"
#include "RenderView.h"
#include "ScrollingConstraints.h"
#include "Settings.h"
#include "TextBoxPainter.h"
#include "TransformState.h"
#include <wtf/IsoMallocInlines.h>
#include <wtf/NeverDestroyed.h>
#if ASSERT_ENABLED
#include <wtf/SetForScope.h>
#endif
#if PLATFORM(IOS_FAMILY)
#include "RuntimeApplicationChecks.h"
#endif
namespace WebCore {
using namespace HTMLNames;
WTF_MAKE_ISO_ALLOCATED_IMPL(RenderBoxModelObject);
// The HashMap for storing continuation pointers.
// An inline can be split with blocks occuring in between the inline content.
// When this occurs we need a pointer to the next object. We can basically be
// split into a sequence of inlines and blocks. The continuation will either be
// an anonymous block (that houses other blocks) or it will be an inline flow.
// <b><i><p>Hello</p></i></b>. In this example the <i> will have a block as
// its continuation but the <b> will just have an inline as its continuation.
RenderBoxModelObject::ContinuationChainNode::ContinuationChainNode(RenderBoxModelObject& renderer)
: renderer(renderer)
{
}
RenderBoxModelObject::ContinuationChainNode::~ContinuationChainNode()
{
if (next) {
ASSERT(previous);
ASSERT(next->previous == this);
next->previous = previous;
}
if (previous) {
ASSERT(previous->next == this);
previous->next = next;
}
}
void RenderBoxModelObject::ContinuationChainNode::insertAfter(ContinuationChainNode& after)
{
ASSERT(!previous);
ASSERT(!next);
if ((next = after.next)) {
ASSERT(next->previous == &after);
next->previous = this;
}
previous = &after;
after.next = this;
}
using ContinuationChainNodeMap = HashMap<const RenderBoxModelObject*, std::unique_ptr<RenderBoxModelObject::ContinuationChainNode>>;
static ContinuationChainNodeMap& continuationChainNodeMap()
{
static NeverDestroyed<ContinuationChainNodeMap> map;
return map;
}
using FirstLetterRemainingTextMap = HashMap<const RenderBoxModelObject*, WeakPtr<RenderTextFragment>>;
static FirstLetterRemainingTextMap& firstLetterRemainingTextMap()
{
static NeverDestroyed<FirstLetterRemainingTextMap> map;
return map;
}
void RenderBoxModelObject::setSelectionState(HighlightState state)
{
if (state == HighlightState::Inside && selectionState() != HighlightState::None)
return;
if ((state == HighlightState::Start && selectionState() == HighlightState::End)
|| (state == HighlightState::End && selectionState() == HighlightState::Start))
RenderLayerModelObject::setSelectionState(HighlightState::Both);
else
RenderLayerModelObject::setSelectionState(state);
// FIXME: We should consider whether it is OK propagating to ancestor RenderInlines.
// This is a workaround for http://webkit.org/b/32123
// The containing block can be null in case of an orphaned tree.
RenderBlock* containingBlock = this->containingBlock();
if (containingBlock && !containingBlock->isRenderView())
containingBlock->setSelectionState(state);
}
void RenderBoxModelObject::contentChanged(ContentChangeType changeType)
{
if (!hasLayer())
return;
layer()->contentChanged(changeType);
}
bool RenderBoxModelObject::hasAcceleratedCompositing() const
{
return view().compositor().hasAcceleratedCompositing();
}
RenderBoxModelObject::RenderBoxModelObject(Element& element, RenderStyle&& style, BaseTypeFlags baseTypeFlags)
: RenderLayerModelObject(element, WTFMove(style), baseTypeFlags | RenderBoxModelObjectFlag)
{
}
RenderBoxModelObject::RenderBoxModelObject(Document& document, RenderStyle&& style, BaseTypeFlags baseTypeFlags)
: RenderLayerModelObject(document, WTFMove(style), baseTypeFlags | RenderBoxModelObjectFlag)
{
}
RenderBoxModelObject::~RenderBoxModelObject()
{
// Do not add any code here. Add it to willBeDestroyed() instead.
ASSERT(!continuation());
}
void RenderBoxModelObject::willBeDestroyed()
{
if (hasContinuationChainNode())
removeFromContinuationChain();
if (isFirstLetter())
clearFirstLetterRemainingText();
if (!renderTreeBeingDestroyed())
view().imageQualityController().rendererWillBeDestroyed(*this);
RenderLayerModelObject::willBeDestroyed();
}
bool RenderBoxModelObject::hasVisibleBoxDecorationStyle() const
{
return hasBackground() || style().hasVisibleBorderDecoration() || style().hasEffectiveAppearance() || style().boxShadow();
}
void RenderBoxModelObject::updateFromStyle()
{
RenderLayerModelObject::updateFromStyle();
// Set the appropriate bits for a box model object. Since all bits are cleared in styleWillChange,
// we only check for bits that could possibly be set to true.
const RenderStyle& styleToUse = style();
setHasVisibleBoxDecorations(hasVisibleBoxDecorationStyle());
setInline(styleToUse.isDisplayInlineType());
setPositionState(styleToUse.position());
setHorizontalWritingMode(styleToUse.isHorizontalWritingMode());
if (styleToUse.isFlippedBlocksWritingMode())
view().frameView().setHasFlippedBlockRenderers(true);
setPaintContainmentApplies(shouldApplyPaintContainment(*this));
}
static LayoutSize accumulateInFlowPositionOffsets(const RenderObject* child)
{
if (!child->isAnonymousBlock() || !child->isInFlowPositioned())
return LayoutSize();
LayoutSize offset;
for (RenderElement* parent = downcast<RenderBlock>(*child).inlineContinuation(); is<RenderInline>(parent); parent = parent->parent()) {
if (parent->isInFlowPositioned())
offset += downcast<RenderInline>(*parent).offsetForInFlowPosition();
}
return offset;
}
static inline bool isOutOfFlowPositionedWithImplicitHeight(const RenderBoxModelObject& child)
{
return child.isOutOfFlowPositioned() && !child.style().logicalTop().isAuto() && !child.style().logicalBottom().isAuto();
}
RenderBlock* RenderBoxModelObject::containingBlockForAutoHeightDetection(Length logicalHeight) const
{
// For percentage heights: The percentage is calculated with respect to the
// height of the generated box's containing block. If the height of the
// containing block is not specified explicitly (i.e., it depends on content
// height), and this element is not absolutely positioned, the used height is
// calculated as if 'auto' was specified.
if (!logicalHeight.isPercentOrCalculated() || isOutOfFlowPositioned())
return nullptr;
// Anonymous block boxes are ignored when resolving percentage values that
// would refer to it: the closest non-anonymous ancestor box is used instead.
auto* cb = containingBlock();
while (cb && cb->isAnonymous() && !is<RenderView>(cb))
cb = cb->containingBlock();
if (!cb)
return nullptr;
// Matching RenderBox::percentageLogicalHeightIsResolvable() by
// ignoring table cell's attribute value, where it says that table cells
// violate what the CSS spec says to do with heights. Basically we don't care
// if the cell specified a height or not.
if (cb->isTableCell())
return nullptr;
// Match RenderBox::availableLogicalHeightUsing by special casing the layout
// view. The available height is taken from the frame.
if (cb->isRenderView())
return nullptr;
if (isOutOfFlowPositionedWithImplicitHeight(*cb))
return nullptr;
return cb;
}
bool RenderBoxModelObject::hasAutoHeightOrContainingBlockWithAutoHeight() const
{
const auto* thisBox = isBox() ? downcast<RenderBox>(this) : nullptr;
Length logicalHeightLength = style().logicalHeight();
auto* cb = containingBlockForAutoHeightDetection(logicalHeightLength);
if (logicalHeightLength.isPercentOrCalculated() && cb && isBox())
cb->addPercentHeightDescendant(*const_cast<RenderBox*>(downcast<RenderBox>(this)));
if (thisBox && thisBox->isFlexItem() && downcast<RenderFlexibleBox>(*parent()).useChildOverridingLogicalHeightForPercentageResolution(*thisBox))
return false;
if (thisBox && thisBox->isGridItem() && thisBox->hasOverridingContainingBlockContentLogicalHeight())
return thisBox->overridingContainingBlockContentLogicalHeight() == std::nullopt;
if (logicalHeightLength.isAuto() && !isOutOfFlowPositionedWithImplicitHeight(*this))
return true;
// We need the containing block to have a definite block-size in order to resolve the block-size of the descendant,
// except when in quirks mode. Flexboxes follow strict behavior even in quirks mode, though.
if (!cb || (document().inQuirksMode() && !cb->isFlexibleBoxIncludingDeprecated()))
return false;
if (thisBox && thisBox->hasOverridingContainingBlockContentLogicalHeight())
return thisBox->overridingContainingBlockContentLogicalHeight() == std::nullopt;
return !cb->hasDefiniteLogicalHeight();
}
DecodingMode RenderBoxModelObject::decodingModeForImageDraw(const Image& image, const PaintInfo& paintInfo) const
{
if (!is<BitmapImage>(image))
return DecodingMode::Synchronous;
const BitmapImage& bitmapImage = downcast<BitmapImage>(image);
if (bitmapImage.canAnimate()) {
// The DecodingMode for the current frame has to be Synchronous. The DecodingMode
// for the next frame will be calculated in BitmapImage::internalStartAnimation().
return DecodingMode::Synchronous;
}
// Large image case.
#if PLATFORM(IOS_FAMILY)
if (IOSApplication::isIBooksStorytime())
return DecodingMode::Synchronous;
#endif
if (is<HTMLImageElement>(element())) {
auto decodingMode = downcast<HTMLImageElement>(*element()).decodingMode();
if (decodingMode != DecodingMode::Auto)
return decodingMode;
}
if (bitmapImage.isLargeImageAsyncDecodingEnabledForTesting())
return DecodingMode::Asynchronous;
if (document().isImageDocument())
return DecodingMode::Synchronous;
if (paintInfo.paintBehavior.contains(PaintBehavior::Snapshotting))
return DecodingMode::Synchronous;
if (!settings().largeImageAsyncDecodingEnabled())
return DecodingMode::Synchronous;
if (!bitmapImage.canUseAsyncDecodingForLargeImages())
return DecodingMode::Synchronous;
if (paintInfo.paintBehavior.contains(PaintBehavior::TileFirstPaint))
return DecodingMode::Asynchronous;
// FIXME: isVisibleInViewport() is not cheap. Find a way to make this condition faster.
if (!isVisibleInViewport())
return DecodingMode::Asynchronous;
return DecodingMode::Synchronous;
}
LayoutSize RenderBoxModelObject::relativePositionOffset() const
{
// This function has been optimized to avoid calls to containingBlock() in the common case
// where all values are either auto or fixed.
LayoutSize offset = accumulateInFlowPositionOffsets(this);
// Objects that shrink to avoid floats normally use available line width when computing containing block width. However
// in the case of relative positioning using percentages, we can't do this. The offset should always be resolved using the
// available width of the containing block. Therefore we don't use containingBlockLogicalWidthForContent() here, but instead explicitly
// call availableWidth on our containing block.
// However for grid items the containing block is the grid area, so offsets should be resolved against that:
// https://drafts.csswg.org/css-grid/#grid-item-sizing
if (!style().left().isAuto() || !style().right().isAuto()) {
LayoutUnit availableWidth = hasOverridingContainingBlockContentWidth()
? valueOrDefault(overridingContainingBlockContentWidth()) : containingBlock()->availableWidth();
if (!style().left().isAuto()) {
if (!style().right().isAuto() && !containingBlock()->style().isLeftToRightDirection())
offset.setWidth(-valueForLength(style().right(), !style().right().isFixed() ? availableWidth : 0_lu));
else
offset.expand(valueForLength(style().left(), !style().left().isFixed() ? availableWidth : 0_lu), 0_lu);
} else if (!style().right().isAuto())
offset.expand(-valueForLength(style().right(), !style().right().isFixed() ? availableWidth : 0_lu), 0_lu);
}
// If the containing block of a relatively positioned element does not
// specify a height, a percentage top or bottom offset should be resolved as
// auto. An exception to this is if the containing block has the WinIE quirk
// where <html> and <body> assume the size of the viewport. In this case,
// calculate the percent offset based on this height.
// See <https://bugs.webkit.org/show_bug.cgi?id=26396>.
// Another exception is a grid item, as the containing block is the grid area:
// https://drafts.csswg.org/css-grid/#grid-item-sizing
if (!style().top().isAuto()
&& (!style().top().isPercentOrCalculated()
|| !containingBlock()->hasAutoHeightOrContainingBlockWithAutoHeight()
|| containingBlock()->stretchesToViewport()
|| hasOverridingContainingBlockContentHeight())) {
// FIXME: The computation of the available height is repeated later for "bottom".
// We could refactor this and move it to some common code for both ifs, however moving it outside of the ifs
// is not possible as it'd cause performance regressions.
offset.expand(0_lu, valueForLength(style().top(), !style().top().isFixed()
? (hasOverridingContainingBlockContentHeight() ? overridingContainingBlockContentHeight().value_or(0_lu) : containingBlock()->availableHeight())
: LayoutUnit()));
} else if (!style().bottom().isAuto()
&& (!style().bottom().isPercentOrCalculated()
|| !containingBlock()->hasAutoHeightOrContainingBlockWithAutoHeight()
|| containingBlock()->stretchesToViewport()
|| hasOverridingContainingBlockContentHeight())) {
// FIXME: Check comment above for "top", it applies here too.
offset.expand(0_lu, -valueForLength(style().bottom(), !style().bottom().isFixed()
? (hasOverridingContainingBlockContentHeight() ? overridingContainingBlockContentHeight().value_or(0_lu) : containingBlock()->availableHeight())
: LayoutUnit()));
}
return offset;
}
LayoutPoint RenderBoxModelObject::adjustedPositionRelativeToOffsetParent(const LayoutPoint& startPoint) const
{
// If the element is the HTML body element or doesn't have a parent
// return 0 and stop this algorithm.
if (isBody() || !parent())
return LayoutPoint();
LayoutPoint referencePoint = startPoint;
// If the offsetParent of the element is null, or is the HTML body element,
// return the distance between the canvas origin and the left border edge
// of the element and stop this algorithm.
if (const RenderBoxModelObject* offsetParent = this->offsetParent()) {
if (is<RenderBox>(*offsetParent) && !offsetParent->isBody() && !is<RenderTable>(*offsetParent))
referencePoint.move(-downcast<RenderBox>(*offsetParent).borderLeft(), -downcast<RenderBox>(*offsetParent).borderTop());
if (!isOutOfFlowPositioned() || enclosingFragmentedFlow()) {
if (isRelativelyPositioned())
referencePoint.move(relativePositionOffset());
else if (isStickilyPositioned())
referencePoint.move(stickyPositionOffset());
// CSS regions specification says that region flows should return the body element as their offsetParent.
// Since we will bypass the body’s renderer anyway, just end the loop if we encounter a region flow (named flow thread).
// See http://dev.w3.org/csswg/css-regions/#cssomview-offset-attributes
auto* ancestor = parent();
while (ancestor != offsetParent) {
// FIXME: What are we supposed to do inside SVG content?
if (is<RenderMultiColumnFlow>(*ancestor)) {
// We need to apply a translation based off what region we are inside.
RenderFragmentContainer* fragment = downcast<RenderMultiColumnFlow>(*ancestor).physicalTranslationFromFlowToFragment(referencePoint);
if (fragment)
referencePoint.moveBy(fragment->topLeftLocation());
} else if (!isOutOfFlowPositioned()) {
if (is<RenderBox>(*ancestor) && !is<RenderTableRow>(*ancestor))
referencePoint.moveBy(downcast<RenderBox>(*ancestor).topLeftLocation());
}
ancestor = ancestor->parent();
}
if (is<RenderBox>(*offsetParent) && offsetParent->isBody() && !offsetParent->isPositioned())
referencePoint.moveBy(downcast<RenderBox>(*offsetParent).topLeftLocation());
}
}
return referencePoint;
}
std::pair<const RenderBox&, const RenderLayer*> RenderBoxModelObject::enclosingClippingBoxForStickyPosition() const
{
ASSERT(isStickilyPositioned());
RenderLayer* clipLayer = hasLayer() ? layer()->enclosingOverflowClipLayer(ExcludeSelf) : nullptr;
const RenderBox& box = clipLayer ? downcast<RenderBox>(clipLayer->renderer()) : view();
return { box, clipLayer };
}
void RenderBoxModelObject::computeStickyPositionConstraints(StickyPositionViewportConstraints& constraints, const FloatRect& constrainingRect) const
{
constraints.setConstrainingRectAtLastLayout(constrainingRect);
// Do not use anonymous containing blocks to determine sticky constraints. We want the size
// of the first true containing block, because that is what imposes the limitation on the
// movement of stickily positioned items.
RenderBlock* containingBlock = this->containingBlock();
while (containingBlock && (!is<RenderBlock>(*containingBlock) || containingBlock->isAnonymousBlock()))
containingBlock = containingBlock->containingBlock();
ASSERT(containingBlock);
auto [enclosingClippingBox, enclosingClippingLayer] = enclosingClippingBoxForStickyPosition();
LayoutRect containerContentRect;
if (!enclosingClippingLayer || (containingBlock != &enclosingClippingBox)) {
// In this case either the scrolling element is the view or there is another containing block in
// the hierarchy between this stickily positioned item and its scrolling ancestor. In both cases,
// we use the content box rectangle of the containing block, which is what should constrain the
// movement.
containerContentRect = containingBlock->computedCSSContentBoxRect();
} else {
containerContentRect = containingBlock->layoutOverflowRect();
containerContentRect.contract(LayoutBoxExtent {
containingBlock->computedCSSPaddingTop(), containingBlock->computedCSSPaddingRight(),
containingBlock->computedCSSPaddingBottom(), containingBlock->computedCSSPaddingLeft() });
}
LayoutUnit maxWidth = containingBlock->availableLogicalWidth();
// Sticky positioned element ignore any override logical width on the containing block (as they don't call
// containingBlockLogicalWidthForContent). It's unclear whether this is totally fine.
LayoutBoxExtent minMargin(minimumValueForLength(style().marginTop(), maxWidth),
minimumValueForLength(style().marginRight(), maxWidth),
minimumValueForLength(style().marginBottom(), maxWidth),
minimumValueForLength(style().marginLeft(), maxWidth));
// Compute the container-relative area within which the sticky element is allowed to move.
containerContentRect.contract(minMargin);
// Finally compute container rect relative to the scrolling ancestor. We pass an empty
// mode here, because sticky positioning should ignore transforms.
FloatRect containerRectRelativeToScrollingAncestor = containingBlock->localToContainerQuad(FloatRect(containerContentRect), &enclosingClippingBox, { } /* ignore transforms */).boundingBox();
if (enclosingClippingLayer) {
FloatPoint containerLocationRelativeToScrollingAncestor = containerRectRelativeToScrollingAncestor.location() -
FloatSize(enclosingClippingBox.borderLeft() + enclosingClippingBox.paddingLeft(),
enclosingClippingBox.borderTop() + enclosingClippingBox.paddingTop());
if (&enclosingClippingBox != containingBlock) {
if (auto* scrollableArea = enclosingClippingLayer->scrollableArea())
containerLocationRelativeToScrollingAncestor += scrollableArea->scrollOffset();
}
containerRectRelativeToScrollingAncestor.setLocation(containerLocationRelativeToScrollingAncestor);
}
constraints.setContainingBlockRect(containerRectRelativeToScrollingAncestor);
// Now compute the sticky box rect, also relative to the scrolling ancestor.
LayoutRect stickyBoxRect = frameRectForStickyPositioning();
// Ideally, it would be possible to call this->localToContainerQuad to determine the frame
// rectangle in the coordinate system of the scrolling ancestor, but localToContainerQuad
// itself depends on sticky positioning! Instead, start from the parent but first adjusting
// the rectangle for the writing mode of this stickily-positioned element. We also pass an
// empty mode here because sticky positioning should ignore transforms.
//
// FIXME: It would also be nice to not have to call localToContainerQuad again since we
// have already done a similar call to move from the containing block to the scrolling
// ancestor above, but localToContainerQuad takes care of a lot of complex situations
// involving inlines, tables, and transformations.
if (parent()->isBox())
downcast<RenderBox>(parent())->flipForWritingMode(stickyBoxRect);
auto stickyBoxRelativeToScrollingAncestor = parent()->localToContainerQuad(FloatRect(stickyBoxRect), &enclosingClippingBox, { } /* ignore transforms */).boundingBox();
if (enclosingClippingLayer) {
stickyBoxRelativeToScrollingAncestor.move(-FloatSize(enclosingClippingBox.borderLeft() + enclosingClippingBox.paddingLeft(),
enclosingClippingBox.borderTop() + enclosingClippingBox.paddingTop()));
if (&enclosingClippingBox != parent()) {
if (auto* scrollableArea = enclosingClippingLayer->scrollableArea())
stickyBoxRelativeToScrollingAncestor.moveBy(scrollableArea->scrollOffset());
}
}
constraints.setStickyBoxRect(stickyBoxRelativeToScrollingAncestor);
if (!style().left().isAuto()) {
constraints.setLeftOffset(valueForLength(style().left(), constrainingRect.width()));
constraints.addAnchorEdge(ViewportConstraints::AnchorEdgeLeft);
}
if (!style().right().isAuto()) {
constraints.setRightOffset(valueForLength(style().right(), constrainingRect.width()));
constraints.addAnchorEdge(ViewportConstraints::AnchorEdgeRight);
}
if (!style().top().isAuto()) {
constraints.setTopOffset(valueForLength(style().top(), constrainingRect.height()));
constraints.addAnchorEdge(ViewportConstraints::AnchorEdgeTop);
}
if (!style().bottom().isAuto()) {
constraints.setBottomOffset(valueForLength(style().bottom(), constrainingRect.height()));
constraints.addAnchorEdge(ViewportConstraints::AnchorEdgeBottom);
}
}
FloatRect RenderBoxModelObject::constrainingRectForStickyPosition() const
{
RenderLayer* enclosingClippingLayer = hasLayer() ? layer()->enclosingOverflowClipLayer(ExcludeSelf) : nullptr;
if (enclosingClippingLayer) {
RenderBox& enclosingClippingBox = downcast<RenderBox>(enclosingClippingLayer->renderer());
LayoutRect clipRect = enclosingClippingBox.overflowClipRect(LayoutPoint(), nullptr); // FIXME: make this work in regions.
clipRect.contract(LayoutSize(enclosingClippingBox.paddingLeft() + enclosingClippingBox.paddingRight(),
enclosingClippingBox.paddingTop() + enclosingClippingBox.paddingBottom()));
FloatRect constrainingRect = enclosingClippingBox.localToContainerQuad(FloatRect(clipRect), &view()).boundingBox();
auto* scrollableArea = enclosingClippingLayer->scrollableArea();
FloatPoint scrollOffset;
if (scrollableArea)
scrollOffset = FloatPoint() + scrollableArea->scrollOffset();
float scrollbarOffset = 0;
if (enclosingClippingBox.hasLayer() && enclosingClippingBox.shouldPlaceVerticalScrollbarOnLeft() && scrollableArea)
scrollbarOffset = scrollableArea->verticalScrollbarWidth(IgnoreOverlayScrollbarSize);
constrainingRect.setLocation(FloatPoint(scrollOffset.x() + scrollbarOffset, scrollOffset.y()));
return constrainingRect;
}
return view().frameView().rectForFixedPositionLayout();
}
LayoutSize RenderBoxModelObject::stickyPositionOffset() const
{
FloatRect constrainingRect = constrainingRectForStickyPosition();
StickyPositionViewportConstraints constraints;
computeStickyPositionConstraints(constraints, constrainingRect);
// The sticky offset is physical, so we can just return the delta computed in absolute coords (though it may be wrong with transforms).
return LayoutSize(constraints.computeStickyOffset(constrainingRect));
}
LayoutSize RenderBoxModelObject::offsetForInFlowPosition() const
{
if (isRelativelyPositioned())
return relativePositionOffset();
if (isStickilyPositioned())
return stickyPositionOffset();
return LayoutSize();
}
LayoutUnit RenderBoxModelObject::offsetLeft() const
{
// Note that RenderInline and RenderBox override this to pass a different
// startPoint to adjustedPositionRelativeToOffsetParent.
return adjustedPositionRelativeToOffsetParent(LayoutPoint()).x();
}
LayoutUnit RenderBoxModelObject::offsetTop() const
{
// Note that RenderInline and RenderBox override this to pass a different
// startPoint to adjustedPositionRelativeToOffsetParent.
return adjustedPositionRelativeToOffsetParent(LayoutPoint()).y();
}
LayoutUnit RenderBoxModelObject::computedCSSPadding(const Length& padding) const
{
LayoutUnit w;
if (padding.isPercentOrCalculated())
w = containingBlockLogicalWidthForContent();
return minimumValueForLength(padding, w);
}
RoundedRect RenderBoxModelObject::getBackgroundRoundedRect(const LayoutRect& borderRect, const InlineIterator::InlineBoxIterator& box,
bool includeLogicalLeftEdge, bool includeLogicalRightEdge) const
{
RoundedRect border = style().getRoundedBorderFor(borderRect, includeLogicalLeftEdge, includeLogicalRightEdge);
if (box && (box->nextInlineBox() || box->previousInlineBox())) {
RoundedRect segmentBorder = style().getRoundedBorderFor(LayoutRect(0_lu, 0_lu, borderRect.width(), borderRect.height()), includeLogicalLeftEdge, includeLogicalRightEdge);
border.setRadii(segmentBorder.radii());
}
return border;
}
void RenderBoxModelObject::clipRoundedInnerRect(GraphicsContext& context, const FloatRect& rect, const FloatRoundedRect& clipRect)
{
if (clipRect.isRenderable())
context.clipRoundedRect(clipRect);
else {
// We create a rounded rect for each of the corners and clip it, while making sure we clip opposing corners together.
if (!clipRect.radii().topLeft().isEmpty() || !clipRect.radii().bottomRight().isEmpty()) {
FloatRect topCorner(clipRect.rect().x(), clipRect.rect().y(), rect.maxX() - clipRect.rect().x(), rect.maxY() - clipRect.rect().y());
FloatRoundedRect::Radii topCornerRadii;
topCornerRadii.setTopLeft(clipRect.radii().topLeft());
context.clipRoundedRect(FloatRoundedRect(topCorner, topCornerRadii));
FloatRect bottomCorner(rect.x(), rect.y(), clipRect.rect().maxX() - rect.x(), clipRect.rect().maxY() - rect.y());
FloatRoundedRect::Radii bottomCornerRadii;
bottomCornerRadii.setBottomRight(clipRect.radii().bottomRight());
context.clipRoundedRect(FloatRoundedRect(bottomCorner, bottomCornerRadii));
}
if (!clipRect.radii().topRight().isEmpty() || !clipRect.radii().bottomLeft().isEmpty()) {
FloatRect topCorner(rect.x(), clipRect.rect().y(), clipRect.rect().maxX() - rect.x(), rect.maxY() - clipRect.rect().y());
FloatRoundedRect::Radii topCornerRadii;
topCornerRadii.setTopRight(clipRect.radii().topRight());
context.clipRoundedRect(FloatRoundedRect(topCorner, topCornerRadii));
FloatRect bottomCorner(clipRect.rect().x(), rect.y(), rect.maxX() - clipRect.rect().x(), clipRect.rect().maxY() - rect.y());
FloatRoundedRect::Radii bottomCornerRadii;
bottomCornerRadii.setBottomLeft(clipRect.radii().bottomLeft());
context.clipRoundedRect(FloatRoundedRect(bottomCorner, bottomCornerRadii));
}
}
}
static LayoutRect shrinkRectByOneDevicePixel(const GraphicsContext& context, const LayoutRect& rect, float devicePixelRatio)
{
LayoutRect shrunkRect = rect;
AffineTransform transform = context.getCTM();
shrunkRect.inflateX(-ceilToDevicePixel(1_lu / transform.xScale(), devicePixelRatio));
shrunkRect.inflateY(-ceilToDevicePixel(1_lu / transform.yScale(), devicePixelRatio));
return shrunkRect;
}
LayoutRect RenderBoxModelObject::borderInnerRectAdjustedForBleedAvoidance(const GraphicsContext& context, const LayoutRect& rect, BackgroundBleedAvoidance bleedAvoidance) const
{
if (bleedAvoidance != BackgroundBleedBackgroundOverBorder)
return rect;
// We shrink the rectangle by one device pixel on each side to make it fully overlap the anti-aliased background border
return shrinkRectByOneDevicePixel(context, rect, document().deviceScaleFactor());
}
RoundedRect RenderBoxModelObject::backgroundRoundedRectAdjustedForBleedAvoidance(const GraphicsContext& context, const LayoutRect& borderRect, BackgroundBleedAvoidance bleedAvoidance, const InlineIterator::InlineBoxIterator& box, bool includeLogicalLeftEdge, bool includeLogicalRightEdge) const
{
if (bleedAvoidance == BackgroundBleedShrinkBackground) {
// We shrink the rectangle by one device pixel on each side because the bleed is one pixel maximum.
return getBackgroundRoundedRect(shrinkRectByOneDevicePixel(context, borderRect, document().deviceScaleFactor()), box,
includeLogicalLeftEdge, includeLogicalRightEdge);
}
if (bleedAvoidance == BackgroundBleedBackgroundOverBorder)
return style().getRoundedInnerBorderFor(borderRect, includeLogicalLeftEdge, includeLogicalRightEdge);
return getBackgroundRoundedRect(borderRect, box, includeLogicalLeftEdge, includeLogicalRightEdge);
}
static void applyBoxShadowForBackground(GraphicsContext& context, const RenderStyle& style)
{
const ShadowData* boxShadow = style.boxShadow();
while (boxShadow->style() != ShadowStyle::Normal)
boxShadow = boxShadow->next();
FloatSize shadowOffset(boxShadow->x().value(), boxShadow->y().value());
context.setShadow(shadowOffset, boxShadow->radius().value(), style.colorByApplyingColorFilter(boxShadow->color()), boxShadow->isWebkitBoxShadow() ? ShadowRadiusMode::Legacy : ShadowRadiusMode::Default);
}
InterpolationQuality RenderBoxModelObject::chooseInterpolationQuality(GraphicsContext& context, Image& image, const void* layer, const LayoutSize& size)
{
return view().imageQualityController().chooseInterpolationQuality(context, this, image, layer, size);
}
void RenderBoxModelObject::paintMaskForTextFillBox(ImageBuffer* maskImage, const FloatRect& maskRect, const InlineIterator::InlineBoxIterator& inlineBox, const LayoutRect& scrolledPaintRect)
{
GraphicsContext& maskImageContext = maskImage->context();
maskImageContext.translate(-maskRect.location());
// Now add the text to the clip. We do this by painting using a special paint phase that signals to
// the painter it should just modify the clip.
PaintInfo maskInfo(maskImageContext, LayoutRect { maskRect }, PaintPhase::TextClip, PaintBehavior::ForceBlackText);
if (inlineBox) {
auto paintOffset = scrolledPaintRect.location() - toLayoutSize(LayoutPoint(inlineBox->rect().location()));
for (auto box = inlineBox->firstLeafBox(), end = inlineBox->endLeafBox(); box != end; box.traverseNextOnLine()) {
if (!box->isText())
continue;
TextBoxPainter textBoxPainter(downcast<InlineIterator::TextBoxIterator>(box), maskInfo, paintOffset);
textBoxPainter.paint();
}
return;
}
LayoutSize localOffset = is<RenderBox>(*this) ? downcast<RenderBox>(*this).locationOffset() : LayoutSize();
paint(maskInfo, scrolledPaintRect.location() - localOffset);
}
void RenderBoxModelObject::paintFillLayerExtended(const PaintInfo& paintInfo, const Color& color, const FillLayer& bgLayer, const LayoutRect& rect,
BackgroundBleedAvoidance bleedAvoidance, const InlineIterator::InlineBoxIterator& box, const LayoutRect& backgroundImageStrip, CompositeOperator op, RenderElement* backgroundObject, BaseBackgroundColorUsage baseBgColorUsage)
{
GraphicsContext& context = paintInfo.context();
if ((context.paintingDisabled() && !context.detectingContentfulPaint()) || rect.isEmpty())
return;
auto [includeLeftEdge, includeRightEdge] = box ? box->hasClosedLeftAndRightEdge() : std::pair(true, true);
bool hasRoundedBorder = style().hasBorderRadius() && (includeLeftEdge || includeRightEdge);
bool clippedWithLocalScrolling = hasNonVisibleOverflow() && bgLayer.attachment() == FillAttachment::LocalBackground;
bool isBorderFill = bgLayer.clip() == FillBox::Border;
bool isRoot = this->isDocumentElementRenderer();
Color bgColor = color;
StyleImage* bgImage = bgLayer.image();
bool shouldPaintBackgroundImage = bgImage && bgImage->canRender(this, style().effectiveZoom());
if (context.detectingContentfulPaint()) {
if (!context.contenfulPaintDetected() && shouldPaintBackgroundImage && bgImage->cachedImage()) {
if (style().backgroundSizeType() != FillSizeType::Size || !style().backgroundSizeLength().isEmpty())
context.setContentfulPaintDetected();
return;
}
}
if (context.invalidatingImagesWithAsyncDecodes()) {
if (shouldPaintBackgroundImage && bgImage->cachedImage()->isClientWaitingForAsyncDecoding(*this))
bgImage->cachedImage()->removeAllClientsWaitingForAsyncDecoding();
return;
}
bool forceBackgroundToWhite = false;
if (document().printing()) {
if (style().printColorAdjust() == PrintColorAdjust::Economy)
forceBackgroundToWhite = true;
if (settings().shouldPrintBackgrounds())
forceBackgroundToWhite = false;
}
// When printing backgrounds is disabled or using economy mode,
// change existing background colors and images to a solid white background.
// If there's no bg color or image, leave it untouched to avoid affecting transparency.
// We don't try to avoid loading the background images, because this style flag is only set
// when printing, and at that point we've already loaded the background images anyway. (To avoid
// loading the background images we'd have to do this check when applying styles rather than
// while rendering.)
if (forceBackgroundToWhite) {
// Note that we can't reuse this variable below because the bgColor might be changed
bool shouldPaintBackgroundColor = !bgLayer.next() && bgColor.isVisible();
if (shouldPaintBackgroundImage || shouldPaintBackgroundColor) {
bgColor = Color::white;
shouldPaintBackgroundImage = false;
}
}
bool baseBgColorOnly = (baseBgColorUsage == BaseBackgroundColorOnly);
if (baseBgColorOnly && (!isRoot || bgLayer.next() || bgColor.isOpaque()))
return;
bool colorVisible = bgColor.isVisible();
float deviceScaleFactor = document().deviceScaleFactor();
FloatRect pixelSnappedRect = snapRectToDevicePixels(rect, deviceScaleFactor);
// Fast path for drawing simple color backgrounds.
if (!isRoot && !clippedWithLocalScrolling && !shouldPaintBackgroundImage && isBorderFill && !bgLayer.next()) {
if (!colorVisible)
return;
bool boxShadowShouldBeAppliedToBackground = this->boxShadowShouldBeAppliedToBackground(rect.location(), bleedAvoidance, box);
GraphicsContextStateSaver shadowStateSaver(context, boxShadowShouldBeAppliedToBackground);
if (boxShadowShouldBeAppliedToBackground)
applyBoxShadowForBackground(context, style());
if (hasRoundedBorder && bleedAvoidance != BackgroundBleedUseTransparencyLayer) {
FloatRoundedRect pixelSnappedBorder = backgroundRoundedRectAdjustedForBleedAvoidance(context, rect, bleedAvoidance, box,
includeLeftEdge, includeRightEdge).pixelSnappedRoundedRectForPainting(deviceScaleFactor);
if (pixelSnappedBorder.isRenderable()) {
CompositeOperator previousOperator = context.compositeOperation();
bool saveRestoreCompositeOp = op != previousOperator;
if (saveRestoreCompositeOp)
context.setCompositeOperation(op);
context.fillRoundedRect(pixelSnappedBorder, bgColor);
if (saveRestoreCompositeOp)
context.setCompositeOperation(previousOperator);
} else {
context.save();
clipRoundedInnerRect(context, pixelSnappedRect, pixelSnappedBorder);
context.fillRect(pixelSnappedBorder.rect(), bgColor, op);
context.restore();
}
} else
context.fillRect(pixelSnappedRect, bgColor, op);
return;
}
// FillBox::Border radius clipping is taken care of by BackgroundBleedUseTransparencyLayer
bool clipToBorderRadius = hasRoundedBorder && !(isBorderFill && bleedAvoidance == BackgroundBleedUseTransparencyLayer);
GraphicsContextStateSaver clipToBorderStateSaver(context, clipToBorderRadius);
if (clipToBorderRadius) {
RoundedRect border = isBorderFill ? backgroundRoundedRectAdjustedForBleedAvoidance(context, rect, bleedAvoidance, box, includeLeftEdge, includeRightEdge) : getBackgroundRoundedRect(rect, box, includeLeftEdge, includeRightEdge);
// Clip to the padding or content boxes as necessary.
if (bgLayer.clip() == FillBox::Content) {
border = style().getRoundedInnerBorderFor(border.rect(),
paddingTop() + borderTop(), paddingBottom() + borderBottom(), paddingLeft() + borderLeft(), paddingRight() + borderRight(), includeLeftEdge, includeRightEdge);
} else if (bgLayer.clip() == FillBox::Padding)
border = style().getRoundedInnerBorderFor(border.rect(), includeLeftEdge, includeRightEdge);
clipRoundedInnerRect(context, pixelSnappedRect, border.pixelSnappedRoundedRectForPainting(deviceScaleFactor));
}
LayoutUnit bLeft = includeLeftEdge ? borderLeft() : 0_lu;
LayoutUnit bRight = includeRightEdge ? borderRight() : 0_lu;
LayoutUnit pLeft = includeLeftEdge ? paddingLeft() : 0_lu;
LayoutUnit pRight = includeRightEdge ? paddingRight() : 0_lu;
GraphicsContextStateSaver clipWithScrollingStateSaver(context, clippedWithLocalScrolling);
LayoutRect scrolledPaintRect = rect;
if (clippedWithLocalScrolling) {
// Clip to the overflow area.
auto& thisBox = downcast<RenderBox>(*this);
context.clip(thisBox.overflowClipRect(rect.location()));
// Adjust the paint rect to reflect a scrolled content box with borders at the ends.
scrolledPaintRect.moveBy(-thisBox.scrollPosition());
scrolledPaintRect.setWidth(bLeft + layer()->scrollWidth() + bRight);
scrolledPaintRect.setHeight(borderTop() + layer()->scrollHeight() + borderBottom());
}
GraphicsContextStateSaver backgroundClipStateSaver(context, false);
RefPtr<ImageBuffer> maskImage;
FloatRect maskRect;
if (bgLayer.clip() == FillBox::Padding || bgLayer.clip() == FillBox::Content) {
// Clip to the padding or content boxes as necessary.
if (!clipToBorderRadius) {
bool includePadding = bgLayer.clip() == FillBox::Content;
LayoutRect clipRect = LayoutRect(scrolledPaintRect.x() + bLeft + (includePadding ? pLeft : 0_lu),
scrolledPaintRect.y() + borderTop() + (includePadding ? paddingTop() : 0_lu),
scrolledPaintRect.width() - bLeft - bRight - (includePadding ? pLeft + pRight : 0_lu),
scrolledPaintRect.height() - borderTop() - borderBottom() - (includePadding ? paddingTop() + paddingBottom() : 0_lu));
backgroundClipStateSaver.save();
context.clip(clipRect);
}
} else if (bgLayer.clip() == FillBox::Text) {
// We have to draw our text into a mask that can then be used to clip background drawing.
// First figure out how big the mask has to be. It should be no bigger than what we need
// to actually render, so we should intersect the dirty rect with the border box of the background.
maskRect = snapRectToDevicePixels(rect, deviceScaleFactor);
maskRect.intersect(snapRectToDevicePixels(paintInfo.rect, deviceScaleFactor));
// Now create the mask.
maskImage = ImageBuffer::createCompatibleBuffer(maskRect.size(), DestinationColorSpace::SRGB(), context);
if (!maskImage)
return;
paintMaskForTextFillBox(maskImage.get(), maskRect, box, scrolledPaintRect);
// The mask has been created. Now we just need to clip to it.
backgroundClipStateSaver.save();
context.clip(maskRect);
context.beginTransparencyLayer(1);
}
auto isOpaqueRoot = false;
if (isRoot) {
isOpaqueRoot = bgLayer.next() || bgColor.isOpaque() || view().shouldPaintBaseBackground();
view().frameView().setContentIsOpaque(isOpaqueRoot);
}
// Paint the color first underneath all images, culled if background image occludes it.
// FIXME: In the bgLayer.hasFiniteBounds() case, we could improve the culling test
// by verifying whether the background image covers the entire layout rect.
if (!bgLayer.next()) {
LayoutRect backgroundRect(scrolledPaintRect);
bool boxShadowShouldBeAppliedToBackground = this->boxShadowShouldBeAppliedToBackground(rect.location(), bleedAvoidance, box);
if (boxShadowShouldBeAppliedToBackground || !shouldPaintBackgroundImage || !bgLayer.hasOpaqueImage(*this) || !bgLayer.hasRepeatXY() || bgLayer.isEmpty()) {
if (!boxShadowShouldBeAppliedToBackground)
backgroundRect.intersect(paintInfo.rect);
// If we have an alpha and we are painting the root element, blend with the base background color.
Color baseColor;
bool shouldClearBackground = false;
if ((baseBgColorUsage != BaseBackgroundColorSkip) && isOpaqueRoot) {
baseColor = view().frameView().baseBackgroundColor();
if (!baseColor.isVisible())
shouldClearBackground = true;
}
GraphicsContextStateSaver shadowStateSaver(context, boxShadowShouldBeAppliedToBackground);
if (boxShadowShouldBeAppliedToBackground)
applyBoxShadowForBackground(context, style());
FloatRect backgroundRectForPainting = snapRectToDevicePixels(backgroundRect, deviceScaleFactor);
if (baseColor.isVisible()) {
if (!baseBgColorOnly && bgColor.isVisible())
baseColor = blendSourceOver(baseColor, bgColor);
context.fillRect(backgroundRectForPainting, baseColor, CompositeOperator::Copy);
} else if (!baseBgColorOnly && bgColor.isVisible()) {
auto operation = context.compositeOperation();
if (shouldClearBackground) {
if (op == CompositeOperator::DestinationOut) // We're punching out the background.
operation = op;
else
operation = CompositeOperator::Copy;
}
context.fillRect(backgroundRectForPainting, bgColor, operation);
} else if (shouldClearBackground)
context.clearRect(backgroundRectForPainting);
}
}
// no progressive loading of the background image
if (!baseBgColorOnly && shouldPaintBackgroundImage) {
// Multiline inline boxes paint like the image was one long strip spanning lines. The backgroundImageStrip is this fictional rectangle.
auto imageRect = backgroundImageStrip.isEmpty() ? scrolledPaintRect : backgroundImageStrip;
auto paintOffset = backgroundImageStrip.isEmpty() ? rect.location() : backgroundImageStrip.location();
auto geometry = calculateBackgroundImageGeometry(paintInfo.paintContainer, bgLayer, paintOffset, imageRect, backgroundObject);
geometry.clip(LayoutRect(pixelSnappedRect));
RefPtr<Image> image;
if (!geometry.destRect().isEmpty() && (image = bgImage->image(backgroundObject ? backgroundObject : this, geometry.tileSize()))) {
context.setDrawLuminanceMask(bgLayer.maskMode() == MaskMode::Luminance);
if (is<BitmapImage>(image))
downcast<BitmapImage>(*image).updateFromSettings(settings());
ImagePaintingOptions options = {
op == CompositeOperator::SourceOver ? bgLayer.composite() : op,
bgLayer.blendMode(),
decodingModeForImageDraw(*image, paintInfo),
ImageOrientation::FromImage,
chooseInterpolationQuality(context, *image, &bgLayer, geometry.tileSize())
};
auto drawResult = context.drawTiledImage(*image, geometry.destRect(), toLayoutPoint(geometry.relativePhase()), geometry.tileSize(), geometry.spaceSize(), options);
if (drawResult == ImageDrawResult::DidRequestDecoding) {
ASSERT(bgImage->hasCachedImage());
bgImage->cachedImage()->addClientWaitingForAsyncDecoding(*this);
}
}
}
if (maskImage && bgLayer.clip() == FillBox::Text) {
context.drawConsumingImageBuffer(WTFMove(maskImage), maskRect, CompositeOperator::DestinationIn);
context.endTransparencyLayer();
}
}
static inline LayoutUnit resolveWidthForRatio(LayoutUnit height, const LayoutSize& intrinsicRatio)
{
return height * intrinsicRatio.width() / intrinsicRatio.height();
}
static inline LayoutUnit resolveHeightForRatio(LayoutUnit width, const LayoutSize& intrinsicRatio)
{
return width * intrinsicRatio.height() / intrinsicRatio.width();
}
static inline LayoutSize resolveAgainstIntrinsicWidthOrHeightAndRatio(const LayoutSize& size, const LayoutSize& intrinsicRatio, LayoutUnit useWidth, LayoutUnit useHeight)
{
if (intrinsicRatio.isEmpty()) {
if (useWidth)
return LayoutSize(useWidth, size.height());
return LayoutSize(size.width(), useHeight);
}
if (useWidth)
return LayoutSize(useWidth, resolveHeightForRatio(useWidth, intrinsicRatio));
return LayoutSize(resolveWidthForRatio(useHeight, intrinsicRatio), useHeight);
}
static inline LayoutSize resolveAgainstIntrinsicRatio(const LayoutSize& size, const LayoutSize& intrinsicRatio)
{
// Two possible solutions: (size.width(), solutionHeight) or (solutionWidth, size.height())
// "... must be assumed to be the largest dimensions..." = easiest answer: the rect with the largest surface area.
LayoutUnit solutionWidth = resolveWidthForRatio(size.height(), intrinsicRatio);
LayoutUnit solutionHeight = resolveHeightForRatio(size.width(), intrinsicRatio);
if (solutionWidth <= size.width()) {
if (solutionHeight <= size.height()) {
// If both solutions fit, choose the one covering the larger area.
LayoutUnit areaOne = solutionWidth * size.height();
LayoutUnit areaTwo = size.width() * solutionHeight;
if (areaOne < areaTwo)
return LayoutSize(size.width(), solutionHeight);
return LayoutSize(solutionWidth, size.height());
}
// Only the first solution fits.
return LayoutSize(solutionWidth, size.height());
}
// Only the second solution fits, assert that.
ASSERT(solutionHeight <= size.height());
return LayoutSize(size.width(), solutionHeight);
}
LayoutSize RenderBoxModelObject::calculateImageIntrinsicDimensions(StyleImage* image, const LayoutSize& positioningAreaSize, ScaleByEffectiveZoomOrNot shouldScaleOrNot) const
{
// A generated image without a fixed size, will always return the container size as intrinsic size.
if (image->isGeneratedImage() && image->usesImageContainerSize())
return LayoutSize(positioningAreaSize.width(), positioningAreaSize.height());
Length intrinsicWidth;
Length intrinsicHeight;
FloatSize intrinsicRatio;
image->computeIntrinsicDimensions(this, intrinsicWidth, intrinsicHeight, intrinsicRatio);
ASSERT(!intrinsicWidth.isPercentOrCalculated());
ASSERT(!intrinsicHeight.isPercentOrCalculated());
LayoutSize resolvedSize(intrinsicWidth.value(), intrinsicHeight.value());
LayoutSize minimumSize(resolvedSize.width() > 0 ? 1 : 0, resolvedSize.height() > 0 ? 1 : 0);
if (shouldScaleOrNot == ScaleByEffectiveZoom)
resolvedSize.scale(style().effectiveZoom());
resolvedSize.clampToMinimumSize(minimumSize);
if (!resolvedSize.isEmpty())
return resolvedSize;
// If the image has one of either an intrinsic width or an intrinsic height:
// * and an intrinsic aspect ratio, then the missing dimension is calculated from the given dimension and the ratio.
// * and no intrinsic aspect ratio, then the missing dimension is assumed to be the size of the rectangle that
// establishes the coordinate system for the 'background-position' property.
if (resolvedSize.width() > 0 || resolvedSize.height() > 0)
return resolveAgainstIntrinsicWidthOrHeightAndRatio(positioningAreaSize, LayoutSize(intrinsicRatio), resolvedSize.width(), resolvedSize.height());
// If the image has no intrinsic dimensions and has an intrinsic ratio the dimensions must be assumed to be the
// largest dimensions at that ratio such that neither dimension exceeds the dimensions of the rectangle that
// establishes the coordinate system for the 'background-position' property.
if (!intrinsicRatio.isEmpty())
return resolveAgainstIntrinsicRatio(positioningAreaSize, LayoutSize(intrinsicRatio));
// If the image has no intrinsic ratio either, then the dimensions must be assumed to be the rectangle that
// establishes the coordinate system for the 'background-position' property.
return positioningAreaSize;
}
LayoutSize RenderBoxModelObject::calculateFillTileSize(const FillLayer& fillLayer, const LayoutSize& positioningAreaSize) const
{
StyleImage* image = fillLayer.image();
FillSizeType type = fillLayer.size().type;
auto devicePixelSize = LayoutUnit { 1.0 / document().deviceScaleFactor() };
LayoutSize imageIntrinsicSize;
if (image) {
imageIntrinsicSize = calculateImageIntrinsicDimensions(image, positioningAreaSize, ScaleByEffectiveZoom);
imageIntrinsicSize.scale(1 / image->imageScaleFactor(), 1 / image->imageScaleFactor());
} else
imageIntrinsicSize = positioningAreaSize;
switch (type) {
case FillSizeType::Size: {
LayoutSize tileSize = positioningAreaSize;
Length layerWidth = fillLayer.size().size.width;
Length layerHeight = fillLayer.size().size.height;
if (layerWidth.isFixed())
tileSize.setWidth(layerWidth.value());
else if (layerWidth.isPercentOrCalculated()) {
auto resolvedWidth = valueForLength(layerWidth, positioningAreaSize.width());
// Non-zero resolved value should always produce some content.
tileSize.setWidth(!resolvedWidth ? resolvedWidth : std::max(devicePixelSize, resolvedWidth));
}
if (layerHeight.isFixed())
tileSize.setHeight(layerHeight.value());
else if (layerHeight.isPercentOrCalculated()) {
auto resolvedHeight = valueForLength(layerHeight, positioningAreaSize.height());
// Non-zero resolved value should always produce some content.
tileSize.setHeight(!resolvedHeight ? resolvedHeight : std::max(devicePixelSize, resolvedHeight));
}
// If one of the values is auto we have to use the appropriate
// scale to maintain our aspect ratio.
if (layerWidth.isAuto() && !layerHeight.isAuto()) {
if (imageIntrinsicSize.height())
tileSize.setWidth(imageIntrinsicSize.width() * tileSize.height() / imageIntrinsicSize.height());
} else if (!layerWidth.isAuto() && layerHeight.isAuto()) {
if (imageIntrinsicSize.width())
tileSize.setHeight(imageIntrinsicSize.height() * tileSize.width() / imageIntrinsicSize.width());
} else if (layerWidth.isAuto() && layerHeight.isAuto()) {
// If both width and height are auto, use the image's intrinsic size.
tileSize = imageIntrinsicSize;
}
tileSize.clampNegativeToZero();
return tileSize;
}
case FillSizeType::None: {
// If both values are ‘auto’ then the intrinsic width and/or height of the image should be used, if any.
if (!imageIntrinsicSize.isEmpty())
return imageIntrinsicSize;
// If the image has neither an intrinsic width nor an intrinsic height, its size is determined as for ‘contain’.
type = FillSizeType::Contain;
}
FALLTHROUGH;
case FillSizeType::Contain:
case FillSizeType::Cover: {
// Scale computation needs higher precision than what LayoutUnit can offer.
FloatSize localImageIntrinsicSize = imageIntrinsicSize;
FloatSize localPositioningAreaSize = positioningAreaSize;
float horizontalScaleFactor = localImageIntrinsicSize.width() ? (localPositioningAreaSize.width() / localImageIntrinsicSize.width()) : 1;
float verticalScaleFactor = localImageIntrinsicSize.height() ? (localPositioningAreaSize.height() / localImageIntrinsicSize.height()) : 1;
float scaleFactor = type == FillSizeType::Contain ? std::min(horizontalScaleFactor, verticalScaleFactor) : std::max(horizontalScaleFactor, verticalScaleFactor);
if (localImageIntrinsicSize.isEmpty())
return { };
return LayoutSize(localImageIntrinsicSize.scaled(scaleFactor).expandedTo({ devicePixelSize, devicePixelSize }));
}
}
ASSERT_NOT_REACHED();
return { };
}
static void pixelSnapBackgroundImageGeometryForPainting(LayoutRect& destinationRect, LayoutSize& tileSize, LayoutSize& phase, LayoutSize& space, float scaleFactor)
{
tileSize = LayoutSize(snapRectToDevicePixels(LayoutRect(destinationRect.location(), tileSize), scaleFactor).size());
phase = LayoutSize(snapRectToDevicePixels(LayoutRect(destinationRect.location(), phase), scaleFactor).size());
space = LayoutSize(snapRectToDevicePixels(LayoutRect(LayoutPoint(), space), scaleFactor).size());
destinationRect = LayoutRect(snapRectToDevicePixels(destinationRect, scaleFactor));
}
bool RenderBoxModelObject::fixedBackgroundPaintsInLocalCoordinates() const
{
if (!isDocumentElementRenderer())
return false;
if (view().frameView().paintBehavior().contains(PaintBehavior::FlattenCompositingLayers))
return false;
RenderLayer* rootLayer = view().layer();
if (!rootLayer || !rootLayer->isComposited())
return false;
return rootLayer->backing()->backgroundLayerPaintsFixedRootBackground();
}
static inline LayoutUnit getSpace(LayoutUnit areaSize, LayoutUnit tileSize)
{
int numberOfTiles = areaSize / tileSize;
LayoutUnit space = -1;
if (numberOfTiles > 1)
space = (areaSize - numberOfTiles * tileSize) / (numberOfTiles - 1);
return space;
}
static LayoutUnit resolveEdgeRelativeLength(const Length& length, Edge edge, LayoutUnit availableSpace, const LayoutSize& areaSize, const LayoutSize& tileSize)
{
LayoutUnit result = minimumValueForLength(length, availableSpace);
if (edge == Edge::Right)
return areaSize.width() - tileSize.width() - result;
if (edge == Edge::Bottom)
return areaSize.height() - tileSize.height() - result;
return result;
}
BackgroundImageGeometry RenderBoxModelObject::calculateBackgroundImageGeometry(const RenderLayerModelObject* paintContainer, const FillLayer& fillLayer, const LayoutPoint& paintOffset,
const LayoutRect& borderBoxRect, RenderElement* backgroundObject) const
{
LayoutUnit left;
LayoutUnit top;
LayoutSize positioningAreaSize;
// Determine the background positioning area and set destination rect to the background painting area.
// Destination rect will be adjusted later if the background is non-repeating.
// FIXME: transforms spec says that fixed backgrounds behave like scroll inside transforms. https://bugs.webkit.org/show_bug.cgi?id=15679
LayoutRect destinationRect(borderBoxRect);
bool fixedAttachment = fillLayer.attachment() == FillAttachment::FixedBackground;
float deviceScaleFactor = document().deviceScaleFactor();
if (!fixedAttachment) {
LayoutUnit right;
LayoutUnit bottom;
// Scroll and Local.
if (fillLayer.origin() != FillBox::Border) {
left = borderLeft();
right = borderRight();
top = borderTop();
bottom = borderBottom();
if (fillLayer.origin() == FillBox::Content) {
left += paddingLeft();
right += paddingRight();
top += paddingTop();
bottom += paddingBottom();
}
}
// The background of the box generated by the root element covers the entire canvas including
// its margins. Since those were added in already, we have to factor them out when computing
// the background positioning area.
if (isDocumentElementRenderer()) {
positioningAreaSize = downcast<RenderBox>(*this).size() - LayoutSize(left + right, top + bottom);
positioningAreaSize = LayoutSize(snapSizeToDevicePixel(positioningAreaSize, LayoutPoint(), deviceScaleFactor));
if (view().frameView().hasExtendedBackgroundRectForPainting()) {
LayoutRect extendedBackgroundRect = view().frameView().extendedBackgroundRectForPainting();
left += (marginLeft() - extendedBackgroundRect.x());
top += (marginTop() - extendedBackgroundRect.y());
}
} else {
positioningAreaSize = borderBoxRect.size() - LayoutSize(left + right, top + bottom);
positioningAreaSize = LayoutSize(snapRectToDevicePixels(LayoutRect(paintOffset, positioningAreaSize), deviceScaleFactor).size());
}
} else {
LayoutRect viewportRect;
float topContentInset = 0;
if (settings().fixedBackgroundsPaintRelativeToDocument())
viewportRect = view().unscaledDocumentRect();
else {
FrameView& frameView = view().frameView();
bool useFixedLayout = frameView.useFixedLayout() && !frameView.fixedLayoutSize().isEmpty();
if (useFixedLayout) {
// Use the fixedLayoutSize() when useFixedLayout() because the rendering will scale
// down the frameView to to fit in the current viewport.
viewportRect.setSize(frameView.fixedLayoutSize());
} else
viewportRect.setSize(frameView.sizeForVisibleContent());
if (fixedBackgroundPaintsInLocalCoordinates()) {
if (!useFixedLayout) {
// Shifting location up by topContentInset is needed for layout tests which expect
// layout to be shifted down when calling window.internals.setTopContentInset().
topContentInset = frameView.topContentInset(ScrollView::TopContentInsetType::WebCoreOrPlatformContentInset);
viewportRect.setLocation(LayoutPoint(0, -topContentInset));
}
} else if (useFixedLayout || frameView.frameScaleFactor() != 1) {
// scrollPositionForFixedPosition() is adjusted for page scale and it does not include
// topContentInset so do not add it to the calculation below.
viewportRect.setLocation(frameView.scrollPositionForFixedPosition());
} else {
// documentScrollPositionRelativeToViewOrigin() includes -topContentInset in its height
// so we need to account for that in calculating the phase size
topContentInset = frameView.topContentInset(ScrollView::TopContentInsetType::WebCoreOrPlatformContentInset);
viewportRect.setLocation(frameView.documentScrollPositionRelativeToViewOrigin());
}
top += topContentInset;
}
if (paintContainer)
viewportRect.moveBy(LayoutPoint(-paintContainer->localToAbsolute(FloatPoint())));
destinationRect = viewportRect;
positioningAreaSize = destinationRect.size();
positioningAreaSize.setHeight(positioningAreaSize.height() - topContentInset);
positioningAreaSize = LayoutSize(snapRectToDevicePixels(LayoutRect(destinationRect.location(), positioningAreaSize), deviceScaleFactor).size());
}
auto clientForBackgroundImage = backgroundObject ? backgroundObject : this;
LayoutSize tileSize = calculateFillTileSize(fillLayer, positioningAreaSize);
if (StyleImage* layerImage = fillLayer.image())
layerImage->setContainerContextForRenderer(*clientForBackgroundImage, tileSize, style().effectiveZoom());
FillRepeat backgroundRepeatX = fillLayer.repeatX();
FillRepeat backgroundRepeatY = fillLayer.repeatY();
LayoutUnit availableWidth = positioningAreaSize.width() - tileSize.width();
LayoutUnit availableHeight = positioningAreaSize.height() - tileSize.height();
LayoutSize spaceSize;
LayoutSize phase;
LayoutSize noRepeat;
LayoutUnit computedXPosition = resolveEdgeRelativeLength(fillLayer.xPosition(), fillLayer.backgroundXOrigin(), availableWidth, positioningAreaSize, tileSize);
if (backgroundRepeatX == FillRepeat::Round && positioningAreaSize.width() > 0 && tileSize.width() > 0) {
int numTiles = std::max(1, roundToInt(positioningAreaSize.width() / tileSize.width()));
if (fillLayer.size().size.height.isAuto() && backgroundRepeatY != FillRepeat::Round)
tileSize.setHeight(tileSize.height() * positioningAreaSize.width() / (numTiles * tileSize.width()));
tileSize.setWidth(positioningAreaSize.width() / numTiles);
phase.setWidth(tileSize.width() ? tileSize.width() - fmodf((computedXPosition + left), tileSize.width()) : 0);
}
LayoutUnit computedYPosition = resolveEdgeRelativeLength(fillLayer.yPosition(), fillLayer.backgroundYOrigin(), availableHeight, positioningAreaSize, tileSize);
if (backgroundRepeatY == FillRepeat::Round && positioningAreaSize.height() > 0 && tileSize.height() > 0) {
int numTiles = std::max(1, roundToInt(positioningAreaSize.height() / tileSize.height()));
if (fillLayer.size().size.width.isAuto() && backgroundRepeatX != FillRepeat::Round)
tileSize.setWidth(tileSize.width() * positioningAreaSize.height() / (numTiles * tileSize.height()));
tileSize.setHeight(positioningAreaSize.height() / numTiles);
phase.setHeight(tileSize.height() ? tileSize.height() - fmodf((computedYPosition + top), tileSize.height()) : 0);
}
if (backgroundRepeatX == FillRepeat::Repeat) {
phase.setWidth(tileSize.width() ? tileSize.width() - fmodf(computedXPosition + left, tileSize.width()) : 0);
spaceSize.setWidth(0);
} else if (backgroundRepeatX == FillRepeat::Space && tileSize.width() > 0) {
LayoutUnit space = getSpace(positioningAreaSize.width(), tileSize.width());
if (space >= 0) {
LayoutUnit actualWidth = tileSize.width() + space;
computedXPosition = minimumValueForLength(Length(), availableWidth);
spaceSize.setWidth(space);
spaceSize.setHeight(0);
phase.setWidth(actualWidth ? actualWidth - fmodf((computedXPosition + left), actualWidth) : 0);
} else
backgroundRepeatX = FillRepeat::NoRepeat;
}
if (backgroundRepeatX == FillRepeat::NoRepeat) {
LayoutUnit xOffset = left + computedXPosition;
if (xOffset > 0)
destinationRect.move(xOffset, 0_lu);
xOffset = std::min<LayoutUnit>(xOffset, 0);
phase.setWidth(-xOffset);
destinationRect.setWidth(tileSize.width() + xOffset);
spaceSize.setWidth(0);
}
if (backgroundRepeatY == FillRepeat::Repeat) {
phase.setHeight(tileSize.height() ? tileSize.height() - fmodf(computedYPosition + top, tileSize.height()) : 0);
spaceSize.setHeight(0);
} else if (backgroundRepeatY == FillRepeat::Space && tileSize.height() > 0) {
LayoutUnit space = getSpace(positioningAreaSize.height(), tileSize.height());
if (space >= 0) {
LayoutUnit actualHeight = tileSize.height() + space;
computedYPosition = minimumValueForLength(Length(), availableHeight);
spaceSize.setHeight(space);
phase.setHeight(actualHeight ? actualHeight - fmodf((computedYPosition + top), actualHeight) : 0);
} else
backgroundRepeatY = FillRepeat::NoRepeat;
}
if (backgroundRepeatY == FillRepeat::NoRepeat) {
LayoutUnit yOffset = top + computedYPosition;
if (yOffset > 0)
destinationRect.move(0_lu, yOffset);
yOffset = std::min<LayoutUnit>(yOffset, 0);
phase.setHeight(-yOffset);
destinationRect.setHeight(tileSize.height() + yOffset);
spaceSize.setHeight(0);
}
if (fixedAttachment) {
LayoutPoint attachmentPoint = borderBoxRect.location();
phase.expand(std::max<LayoutUnit>(attachmentPoint.x() - destinationRect.x(), 0), std::max<LayoutUnit>(attachmentPoint.y() - destinationRect.y(), 0));
}
destinationRect.intersect(borderBoxRect);
pixelSnapBackgroundImageGeometryForPainting(destinationRect, tileSize, phase, spaceSize, deviceScaleFactor);
return BackgroundImageGeometry(destinationRect, tileSize, phase, spaceSize, fixedAttachment);
}
void RenderBoxModelObject::getGeometryForBackgroundImage(const RenderLayerModelObject* paintContainer, const LayoutPoint& paintOffset, FloatRect& destRect, FloatSize& phase, FloatSize& tileSize) const
{
LayoutRect paintRect(destRect);
auto geometry = calculateBackgroundImageGeometry(paintContainer, style().backgroundLayers(), paintOffset, paintRect);
phase = geometry.phase();
tileSize = geometry.tileSize();
destRect = geometry.destRect();
}
bool RenderBoxModelObject::paintNinePieceImage(GraphicsContext& graphicsContext, const LayoutRect& rect, const RenderStyle& style,
const NinePieceImage& ninePieceImage, CompositeOperator op)
{
StyleImage* styleImage = ninePieceImage.image();
if (!styleImage)
return false;
if (!styleImage->isLoaded())
return true; // Never paint a nine-piece image incrementally, but don't paint the fallback borders either.
if (!styleImage->canRender(this, style.effectiveZoom()))
return false;
// FIXME: border-image is broken with full page zooming when tiling has to happen, since the tiling function
// doesn't have any understanding of the zoom that is in effect on the tile.
float deviceScaleFactor = document().deviceScaleFactor();
LayoutRect rectWithOutsets = rect;
rectWithOutsets.expand(style.imageOutsets(ninePieceImage));
LayoutRect destination = LayoutRect(snapRectToDevicePixels(rectWithOutsets, deviceScaleFactor));
LayoutSize source = calculateImageIntrinsicDimensions(styleImage, destination.size(), DoNotScaleByEffectiveZoom);
// If both values are ‘auto’ then the intrinsic width and/or height of the image should be used, if any.
styleImage->setContainerContextForRenderer(*this, source, style.effectiveZoom());
ninePieceImage.paint(graphicsContext, this, style, destination, source, deviceScaleFactor, op);
return true;
}
static bool allCornersClippedOut(const RoundedRect& border, const LayoutRect& clipRect)
{
LayoutRect boundingRect = border.rect();
if (clipRect.contains(boundingRect))
return false;
RoundedRect::Radii radii = border.radii();
LayoutRect topLeftRect(boundingRect.location(), radii.topLeft());
if (clipRect.intersects(topLeftRect))
return false;
LayoutRect topRightRect(boundingRect.location(), radii.topRight());
topRightRect.setX(boundingRect.maxX() - topRightRect.width());
if (clipRect.intersects(topRightRect))
return false;
LayoutRect bottomLeftRect(boundingRect.location(), radii.bottomLeft());
bottomLeftRect.setY(boundingRect.maxY() - bottomLeftRect.height());
if (clipRect.intersects(bottomLeftRect))
return false;
LayoutRect bottomRightRect(boundingRect.location(), radii.bottomRight());
bottomRightRect.setX(boundingRect.maxX() - bottomRightRect.width());
bottomRightRect.setY(boundingRect.maxY() - bottomRightRect.height());
if (clipRect.intersects(bottomRightRect))
return false;
return true;
}
static bool borderWillArcInnerEdge(const LayoutSize& firstRadius, const LayoutSize& secondRadius)
{
return !firstRadius.isZero() || !secondRadius.isZero();
}
inline bool styleRequiresClipPolygon(BorderStyle style)
{
return style == BorderStyle::Dotted || style == BorderStyle::Dashed; // These are drawn with a stroke, so we have to clip to get corner miters.
}
static bool borderStyleFillsBorderArea(BorderStyle style)
{
return !(style == BorderStyle::Dotted || style == BorderStyle::Dashed || style == BorderStyle::Double);
}
static bool borderStyleHasInnerDetail(BorderStyle style)
{
return style == BorderStyle::Groove || style == BorderStyle::Ridge || style == BorderStyle::Double;
}
static bool borderStyleIsDottedOrDashed(BorderStyle style)
{
return style == BorderStyle::Dotted || style == BorderStyle::Dashed;
}
// BorderStyle::Outset darkens the bottom and right (and maybe lightens the top and left)
// BorderStyle::Inset darkens the top and left (and maybe lightens the bottom and right)
static inline bool borderStyleHasUnmatchedColorsAtCorner(BorderStyle style, BoxSide side, BoxSide adjacentSide)
{
// These styles match at the top/left and bottom/right.
if (style == BorderStyle::Inset || style == BorderStyle::Groove || style == BorderStyle::Ridge || style == BorderStyle::Outset) {
BoxSideSet topRightSides = { BoxSideFlag::Top, BoxSideFlag::Right };
BoxSideSet bottomLeftSides = { BoxSideFlag::Bottom, BoxSideFlag::Left };
BoxSideSet usedSides { edgeFlagForSide(side), edgeFlagForSide(adjacentSide) };
return usedSides == topRightSides || usedSides == bottomLeftSides;
}
return false;
}
static inline bool colorsMatchAtCorner(BoxSide side, BoxSide adjacentSide, const BorderEdges& edges)
{
auto& edge = edges.at(side);
auto& adjacentEdge = edges.at(adjacentSide);
if (edge.shouldRender() != adjacentEdge.shouldRender())
return false;
if (!edgesShareColor(edge, adjacentEdge))
return false;
return !borderStyleHasUnmatchedColorsAtCorner(edge.style(), side, adjacentSide);
}
static inline bool colorNeedsAntiAliasAtCorner(BoxSide side, BoxSide adjacentSide, const BorderEdges& edges)
{
auto& edge = edges.at(side);
auto& adjacentEdge = edges.at(adjacentSide);
if (edge.color().isOpaque())
return false;
if (edge.shouldRender() != adjacentEdge.shouldRender())
return false;
if (!edgesShareColor(edge, adjacentEdge))
return true;
return borderStyleHasUnmatchedColorsAtCorner(edge.style(), side, adjacentSide);
}
// This assumes that we draw in order: top, bottom, left, right.
static inline bool willBeOverdrawn(BoxSide side, BoxSide adjacentSide, const BorderEdges& edges)
{
switch (side) {
case BoxSide::Top:
case BoxSide::Bottom: {
auto& edge = edges.at(side);
auto& adjacentEdge = edges.at(adjacentSide);
if (adjacentEdge.presentButInvisible())
return false;
if (!edgesShareColor(edge, adjacentEdge) && !adjacentEdge.color().isOpaque())
return false;
if (!borderStyleFillsBorderArea(adjacentEdge.style()))
return false;
return true;
}
case BoxSide::Left:
case BoxSide::Right:
// These draw last, so are never overdrawn.
return false;
}
return false;
}
static inline bool borderStylesRequireMitre(BoxSide side, BoxSide adjacentSide, BorderStyle style, BorderStyle adjacentStyle)
{
if (style == BorderStyle::Double || adjacentStyle == BorderStyle::Double || adjacentStyle == BorderStyle::Groove || adjacentStyle == BorderStyle::Ridge)
return true;
if (borderStyleIsDottedOrDashed(style) != borderStyleIsDottedOrDashed(adjacentStyle))
return true;
if (style != adjacentStyle)
return true;
return borderStyleHasUnmatchedColorsAtCorner(style, side, adjacentSide);
}
static bool joinRequiresMitre(BoxSide side, BoxSide adjacentSide, const BorderEdges& edges, bool allowOverdraw)
{
auto& edge = edges.at(side);
auto& adjacentEdge = edges.at(adjacentSide);
if ((edge.isTransparent() && adjacentEdge.isTransparent()) || !adjacentEdge.isPresent())
return false;
if (allowOverdraw && willBeOverdrawn(side, adjacentSide, edges))
return false;
if (!edgesShareColor(edge, adjacentEdge))
return true;
if (borderStylesRequireMitre(side, adjacentSide, edge.style(), adjacentEdge.style()))
return true;
return false;
}
static RoundedRect calculateAdjustedInnerBorder(const RoundedRect&innerBorder, BoxSide side)
{
// Expand the inner border as necessary to make it a rounded rect (i.e. radii contained within each edge).
// This function relies on the fact we only get radii not contained within each edge if one of the radii
// for an edge is zero, so we can shift the arc towards the zero radius corner.
RoundedRect::Radii newRadii = innerBorder.radii();
LayoutRect newRect = innerBorder.rect();
float overshoot;
float maxRadii;
switch (side) {
case BoxSide::Top:
overshoot = newRadii.topLeft().width() + newRadii.topRight().width() - newRect.width();
if (overshoot > 0) {
ASSERT(!(newRadii.topLeft().width() && newRadii.topRight().width()));
newRect.setWidth(newRect.width() + overshoot);
if (!newRadii.topLeft().width())
newRect.move(-overshoot, 0);
}
newRadii.setBottomLeft({ });
newRadii.setBottomRight({ });
maxRadii = std::max(newRadii.topLeft().height(), newRadii.topRight().height());
if (maxRadii > newRect.height())
newRect.setHeight(maxRadii);
break;
case BoxSide::Bottom:
overshoot = newRadii.bottomLeft().width() + newRadii.bottomRight().width() - newRect.width();
if (overshoot > 0) {
ASSERT(!(newRadii.bottomLeft().width() && newRadii.bottomRight().width()));
newRect.setWidth(newRect.width() + overshoot);
if (!newRadii.bottomLeft().width())
newRect.move(-overshoot, 0);
}
newRadii.setTopLeft({ });
newRadii.setTopRight({ });
maxRadii = std::max(newRadii.bottomLeft().height(), newRadii.bottomRight().height());
if (maxRadii > newRect.height()) {
newRect.move(0, newRect.height() - maxRadii);
newRect.setHeight(maxRadii);
}
break;
case BoxSide::Left:
overshoot = newRadii.topLeft().height() + newRadii.bottomLeft().height() - newRect.height();
if (overshoot > 0) {
ASSERT(!(newRadii.topLeft().height() && newRadii.bottomLeft().height()));
newRect.setHeight(newRect.height() + overshoot);
if (!newRadii.topLeft().height())
newRect.move(0, -overshoot);
}
newRadii.setTopRight({ });
newRadii.setBottomRight({ });
maxRadii = std::max(newRadii.topLeft().width(), newRadii.bottomLeft().width());
if (maxRadii > newRect.width())
newRect.setWidth(maxRadii);
break;
case BoxSide::Right:
overshoot = newRadii.topRight().height() + newRadii.bottomRight().height() - newRect.height();
if (overshoot > 0) {
ASSERT(!(newRadii.topRight().height() && newRadii.bottomRight().height()));
newRect.setHeight(newRect.height() + overshoot);
if (!newRadii.topRight().height())
newRect.move(0, -overshoot);
}
newRadii.setTopLeft({ });
newRadii.setBottomLeft({ });
maxRadii = std::max(newRadii.topRight().width(), newRadii.bottomRight().width());
if (maxRadii > newRect.width()) {
newRect.move(newRect.width() - maxRadii, 0);
newRect.setWidth(maxRadii);
}
break;
}
return RoundedRect(newRect, newRadii);
}
void RenderBoxModelObject::paintOneBorderSide(GraphicsContext& graphicsContext, const RenderStyle& style, const RoundedRect& outerBorder, const RoundedRect& innerBorder,
const LayoutRect& sideRect, BoxSide side, BoxSide adjacentSide1, BoxSide adjacentSide2, const BorderEdges& edges, const Path* path,
BackgroundBleedAvoidance bleedAvoidance, bool includeLogicalLeftEdge, bool includeLogicalRightEdge, bool antialias, const Color* overrideColor)
{
auto& edgeToRender = edges.at(side);
ASSERT(edgeToRender.widthForPainting());
auto& adjacentEdge1 = edges.at(adjacentSide1);
auto& adjacentEdge2 = edges.at(adjacentSide2);
bool mitreAdjacentSide1 = joinRequiresMitre(side, adjacentSide1, edges, !antialias);
bool mitreAdjacentSide2 = joinRequiresMitre(side, adjacentSide2, edges, !antialias);
bool adjacentSide1StylesMatch = colorsMatchAtCorner(side, adjacentSide1, edges);
bool adjacentSide2StylesMatch = colorsMatchAtCorner(side, adjacentSide2, edges);
const Color& colorToPaint = overrideColor ? *overrideColor : edgeToRender.color();
if (path) {
GraphicsContextStateSaver stateSaver(graphicsContext);
clipBorderSidePolygon(graphicsContext, outerBorder, innerBorder, side, adjacentSide1StylesMatch, adjacentSide2StylesMatch);
if (!innerBorder.isRenderable())
graphicsContext.clipOutRoundedRect(FloatRoundedRect(calculateAdjustedInnerBorder(innerBorder, side)));
float thickness = std::max(std::max(edgeToRender.widthForPainting(), adjacentEdge1.widthForPainting()), adjacentEdge2.widthForPainting());
drawBoxSideFromPath(graphicsContext, outerBorder.rect(), *path, edges, edgeToRender.widthForPainting(), thickness, side, style,
colorToPaint, edgeToRender.style(), bleedAvoidance, includeLogicalLeftEdge, includeLogicalRightEdge);
} else {
bool clipForStyle = styleRequiresClipPolygon(edgeToRender.style()) && (mitreAdjacentSide1 || mitreAdjacentSide2);
bool clipAdjacentSide1 = colorNeedsAntiAliasAtCorner(side, adjacentSide1, edges) && mitreAdjacentSide1;
bool clipAdjacentSide2 = colorNeedsAntiAliasAtCorner(side, adjacentSide2, edges) && mitreAdjacentSide2;
bool shouldClip = clipForStyle || clipAdjacentSide1 || clipAdjacentSide2;
GraphicsContextStateSaver clipStateSaver(graphicsContext, shouldClip);
if (shouldClip) {
bool aliasAdjacentSide1 = clipAdjacentSide1 || (clipForStyle && mitreAdjacentSide1);
bool aliasAdjacentSide2 = clipAdjacentSide2 || (clipForStyle && mitreAdjacentSide2);
clipBorderSidePolygon(graphicsContext, outerBorder, innerBorder, side, !aliasAdjacentSide1, !aliasAdjacentSide2);
// Since we clipped, no need to draw with a mitre.
mitreAdjacentSide1 = false;
mitreAdjacentSide2 = false;
}
drawLineForBoxSide(graphicsContext, sideRect, side, colorToPaint, edgeToRender.style(), mitreAdjacentSide1 ? adjacentEdge1.widthForPainting() : 0, mitreAdjacentSide2 ? adjacentEdge2.widthForPainting() : 0, antialias);
}
}
static LayoutRect calculateSideRect(const RoundedRect& outerBorder, const BorderEdges& edges, BoxSide side)
{
LayoutRect sideRect = outerBorder.rect();
float width = edges.at(side).widthForPainting();
switch (side) {
case BoxSide::Top:
sideRect.setHeight(width);
break;
case BoxSide::Right:
sideRect.shiftXEdgeTo(sideRect.maxX() - width);
break;
case BoxSide::Bottom:
sideRect.shiftYEdgeTo(sideRect.maxY() - width);
break;
case BoxSide::Left:
sideRect.setWidth(width);
break;
}
return sideRect;
}
void RenderBoxModelObject::paintBorderSides(GraphicsContext& graphicsContext, const RenderStyle& style, const RoundedRect& outerBorder, const RoundedRect& innerBorder,
const IntPoint& innerBorderAdjustment, const BorderEdges& edges, BoxSideSet edgeSet, BackgroundBleedAvoidance bleedAvoidance,
bool includeLogicalLeftEdge, bool includeLogicalRightEdge, bool antialias, const Color* overrideColor)
{
bool renderRadii = outerBorder.isRounded();
Path roundedPath;
if (renderRadii)
roundedPath.addRoundedRect(outerBorder);
// The inner border adjustment for bleed avoidance mode BackgroundBleedBackgroundOverBorder
// is only applied to sideRect, which is okay since BackgroundBleedBackgroundOverBorder
// is only to be used for solid borders and the shape of the border painted by drawBoxSideFromPath
// only depends on sideRect when painting solid borders.
auto paintOneSide = [&](BoxSide side, BoxSide adjacentSide1, BoxSide adjacentSide2) {
auto& edge = edges.at(side);
if (!edge.shouldRender() || !edgeSet.contains(edgeFlagForSide(side)))
return;
LayoutRect sideRect = outerBorder.rect();
LayoutSize firstRadius;
LayoutSize secondRadius;
switch (side) {
case BoxSide::Top:
sideRect.setHeight(edge.widthForPainting() + innerBorderAdjustment.y());
firstRadius = innerBorder.radii().topLeft();
secondRadius = innerBorder.radii().topRight();
break;
case BoxSide::Right:
sideRect.shiftXEdgeTo(sideRect.maxX() - edge.widthForPainting() - innerBorderAdjustment.x());
firstRadius = innerBorder.radii().bottomRight();
secondRadius = innerBorder.radii().topRight();
break;
case BoxSide::Bottom:
sideRect.shiftYEdgeTo(sideRect.maxY() - edge.widthForPainting() - innerBorderAdjustment.y());
firstRadius = innerBorder.radii().bottomLeft();
secondRadius = innerBorder.radii().bottomRight();
break;
case BoxSide::Left:
sideRect.setWidth(edge.widthForPainting() + innerBorderAdjustment.x());
firstRadius = innerBorder.radii().bottomLeft();
secondRadius = innerBorder.radii().topLeft();
break;
}
bool usePath = renderRadii && (borderStyleHasInnerDetail(edge.style()) || borderWillArcInnerEdge(firstRadius, secondRadius));
paintOneBorderSide(graphicsContext, style, outerBorder, innerBorder, sideRect, side, adjacentSide1, adjacentSide2, edges, usePath ? &roundedPath : nullptr, bleedAvoidance, includeLogicalLeftEdge, includeLogicalRightEdge, antialias, overrideColor);
};
paintOneSide(BoxSide::Top, BoxSide::Left, BoxSide::Right);
paintOneSide(BoxSide::Bottom, BoxSide::Left, BoxSide::Right);
paintOneSide(BoxSide::Left, BoxSide::Top, BoxSide::Bottom);
paintOneSide(BoxSide::Right, BoxSide::Top, BoxSide::Bottom);
}
void RenderBoxModelObject::paintTranslucentBorderSides(GraphicsContext& graphicsContext, const RenderStyle& style, const RoundedRect& outerBorder, const RoundedRect& innerBorder, const IntPoint& innerBorderAdjustment,
const BorderEdges& edges, BoxSideSet edgesToDraw, BackgroundBleedAvoidance bleedAvoidance, bool includeLogicalLeftEdge, bool includeLogicalRightEdge, bool antialias)
{
// willBeOverdrawn assumes that we draw in order: top, bottom, left, right.
// This is different from BoxSide enum order.
static constexpr std::array<BoxSide, 4> paintOrderSides = { BoxSide::Top, BoxSide::Bottom, BoxSide::Left, BoxSide::Right };
while (edgesToDraw) {
// Find undrawn edges sharing a color.
Color commonColor;
BoxSideSet commonColorEdgeSet;
for (auto side : paintOrderSides) {
if (!edgesToDraw.contains(edgeFlagForSide(side)))
continue;
auto& edge = edges.at(side);
bool includeEdge;
if (commonColorEdgeSet.isEmpty()) {
commonColor = edge.color();
includeEdge = true;
} else
includeEdge = edge.color() == commonColor;
if (includeEdge)
commonColorEdgeSet.add(edgeFlagForSide(side));
}
bool useTransparencyLayer = includesAdjacentEdges(commonColorEdgeSet) && !commonColor.isOpaque();
if (useTransparencyLayer) {
graphicsContext.beginTransparencyLayer(commonColor.alphaAsFloat());
commonColor = commonColor.opaqueColor();
}
paintBorderSides(graphicsContext, style, outerBorder, innerBorder, innerBorderAdjustment, edges, commonColorEdgeSet, bleedAvoidance, includeLogicalLeftEdge, includeLogicalRightEdge, antialias, &commonColor);
if (useTransparencyLayer)
graphicsContext.endTransparencyLayer();
edgesToDraw.remove(commonColorEdgeSet);
}
}
void RenderBoxModelObject::paintBorder(const PaintInfo& info, const LayoutRect& rect, const RenderStyle& style,
BackgroundBleedAvoidance bleedAvoidance, bool includeLogicalLeftEdge, bool includeLogicalRightEdge)
{
GraphicsContext& graphicsContext = info.context();
if (graphicsContext.paintingDisabled())
return;
auto paintsBorderImage = [&](LayoutRect rect, const NinePieceImage& ninePieceImage) {
auto* styleImage = ninePieceImage.image();
if (!styleImage)
return false;
if (!styleImage->isLoaded())
return false;
if (!styleImage->canRender(this, style.effectiveZoom()))
return false;
auto rectWithOutsets = rect;
rectWithOutsets.expand(style.imageOutsets(ninePieceImage));
return !rectWithOutsets.isEmpty();
};
if (rect.isEmpty() && !paintsBorderImage(rect, style.borderImage()))
return;
auto rectToClipOut = paintRectToClipOutFromBorder(rect);
bool appliedClipAlready = !rectToClipOut.isEmpty();
GraphicsContextStateSaver stateSave(graphicsContext, appliedClipAlready);
if (!rectToClipOut.isEmpty())
graphicsContext.clipOut(snapRectToDevicePixels(rectToClipOut, document().deviceScaleFactor()));
// border-image is not affected by border-radius.
if (paintNinePieceImage(graphicsContext, rect, style, style.borderImage()))
return;
auto edges = borderEdges(style, document().deviceScaleFactor(), includeLogicalLeftEdge, includeLogicalRightEdge);
RoundedRect outerBorder = style.getRoundedBorderFor(rect, includeLogicalLeftEdge, includeLogicalRightEdge);
RoundedRect innerBorder = style.getRoundedInnerBorderFor(borderInnerRectAdjustedForBleedAvoidance(graphicsContext, rect, bleedAvoidance), includeLogicalLeftEdge, includeLogicalRightEdge);
// If no borders intersects with the dirty area, we can skip the border painting.
if (innerBorder.contains(info.rect))
return;
bool haveAlphaColor = false;
bool haveAllSolidEdges = true;
bool haveAllDoubleEdges = true;
int numEdgesVisible = 4;
bool allEdgesShareColor = true;
std::optional<BoxSide> firstVisibleSide;
BoxSideSet edgesToDraw;
for (auto side : allBoxSides) {
auto& currEdge = edges.at(side);
if (currEdge.shouldRender())
edgesToDraw.add(edgeFlagForSide(side));
if (currEdge.presentButInvisible()) {
--numEdgesVisible;
allEdgesShareColor = false;
continue;
}
if (!currEdge.widthForPainting()) {
--numEdgesVisible;
continue;
}
if (!firstVisibleSide)
firstVisibleSide = side;
else if (currEdge.color() != edges.at(*firstVisibleSide).color())
allEdgesShareColor = false;
if (!currEdge.color().isOpaque())
haveAlphaColor = true;
if (currEdge.style() != BorderStyle::Solid)
haveAllSolidEdges = false;
if (currEdge.style() != BorderStyle::Double)
haveAllDoubleEdges = false;
}
// If no corner intersects the clip region, we can pretend outerBorder is
// rectangular to improve performance.
if (haveAllSolidEdges && outerBorder.isRounded() && allCornersClippedOut(outerBorder, info.rect))
outerBorder.setRadii(RoundedRect::Radii());
float deviceScaleFactor = document().deviceScaleFactor();
// isRenderable() check avoids issue described in https://bugs.webkit.org/show_bug.cgi?id=38787
if ((haveAllSolidEdges || haveAllDoubleEdges) && allEdgesShareColor && innerBorder.isRenderable()) {
// Fast path for drawing all solid edges and all unrounded double edges
if (numEdgesVisible == 4 && (outerBorder.isRounded() || haveAlphaColor)
&& (haveAllSolidEdges || (!outerBorder.isRounded() && !innerBorder.isRounded()))) {
Path path;
FloatRoundedRect pixelSnappedOuterBorder = outerBorder.pixelSnappedRoundedRectForPainting(deviceScaleFactor);
if (pixelSnappedOuterBorder.isRounded() && bleedAvoidance != BackgroundBleedUseTransparencyLayer)
path.addRoundedRect(pixelSnappedOuterBorder);
else
path.addRect(pixelSnappedOuterBorder.rect());
if (haveAllDoubleEdges) {
LayoutRect innerThirdRect = outerBorder.rect();
LayoutRect outerThirdRect = outerBorder.rect();
for (auto side : allBoxSides) {
LayoutUnit outerWidth;
LayoutUnit innerWidth;
edges.at(side).getDoubleBorderStripeWidths(outerWidth, innerWidth);
switch (side) {
case BoxSide::Top:
innerThirdRect.shiftYEdgeTo(innerThirdRect.y() + innerWidth);
outerThirdRect.shiftYEdgeTo(outerThirdRect.y() + outerWidth);
break;
case BoxSide::Right:
innerThirdRect.setWidth(innerThirdRect.width() - innerWidth);
outerThirdRect.setWidth(outerThirdRect.width() - outerWidth);
break;
case BoxSide::Bottom:
innerThirdRect.setHeight(innerThirdRect.height() - innerWidth);
outerThirdRect.setHeight(outerThirdRect.height() - outerWidth);
break;
case BoxSide::Left:
innerThirdRect.shiftXEdgeTo(innerThirdRect.x() + innerWidth);
outerThirdRect.shiftXEdgeTo(outerThirdRect.x() + outerWidth);
break;
}
}
FloatRoundedRect pixelSnappedOuterThird = outerBorder.pixelSnappedRoundedRectForPainting(deviceScaleFactor);
pixelSnappedOuterThird.setRect(snapRectToDevicePixels(outerThirdRect, deviceScaleFactor));
if (pixelSnappedOuterThird.isRounded() && bleedAvoidance != BackgroundBleedUseTransparencyLayer)
path.addRoundedRect(pixelSnappedOuterThird);
else
path.addRect(pixelSnappedOuterThird.rect());
FloatRoundedRect pixelSnappedInnerThird = innerBorder.pixelSnappedRoundedRectForPainting(deviceScaleFactor);
pixelSnappedInnerThird.setRect(snapRectToDevicePixels(innerThirdRect, deviceScaleFactor));
if (pixelSnappedInnerThird.isRounded() && bleedAvoidance != BackgroundBleedUseTransparencyLayer)
path.addRoundedRect(pixelSnappedInnerThird);
else
path.addRect(pixelSnappedInnerThird.rect());
}
FloatRoundedRect pixelSnappedInnerBorder = innerBorder.pixelSnappedRoundedRectForPainting(deviceScaleFactor);
if (pixelSnappedInnerBorder.isRounded())
path.addRoundedRect(pixelSnappedInnerBorder);
else
path.addRect(pixelSnappedInnerBorder.rect());
graphicsContext.setFillRule(WindRule::EvenOdd);
graphicsContext.setFillColor(edges.at(*firstVisibleSide).color());
graphicsContext.fillPath(path);
return;
}
// Avoid creating transparent layers
if (haveAllSolidEdges && numEdgesVisible != 4 && !outerBorder.isRounded() && haveAlphaColor) {
Path path;
for (auto side : allBoxSides) {
if (edges.at(side).shouldRender()) {
auto sideRect = calculateSideRect(outerBorder, edges, side);
path.addRect(sideRect); // FIXME: Need pixel snapping here.
}
}
graphicsContext.setFillRule(WindRule::NonZero);
graphicsContext.setFillColor(edges.at(*firstVisibleSide).color());
graphicsContext.fillPath(path);
return;
}
}
bool clipToOuterBorder = outerBorder.isRounded();
GraphicsContextStateSaver stateSaver(graphicsContext, clipToOuterBorder && !appliedClipAlready);
if (clipToOuterBorder) {
// Clip to the inner and outer radii rects.
if (bleedAvoidance != BackgroundBleedUseTransparencyLayer)
graphicsContext.clipRoundedRect(outerBorder.pixelSnappedRoundedRectForPainting(deviceScaleFactor));
// isRenderable() check avoids issue described in https://bugs.webkit.org/show_bug.cgi?id=38787
// The inside will be clipped out later (in clipBorderSideForComplexInnerPath)
if (innerBorder.isRenderable())
graphicsContext.clipOutRoundedRect(innerBorder.pixelSnappedRoundedRectForPainting(deviceScaleFactor));
}
// If only one edge visible antialiasing doesn't create seams
bool antialias = shouldAntialiasLines(graphicsContext) || numEdgesVisible == 1;
RoundedRect unadjustedInnerBorder = (bleedAvoidance == BackgroundBleedBackgroundOverBorder) ? style.getRoundedInnerBorderFor(rect, includeLogicalLeftEdge, includeLogicalRightEdge) : innerBorder;
IntPoint innerBorderAdjustment(innerBorder.rect().x() - unadjustedInnerBorder.rect().x(), innerBorder.rect().y() - unadjustedInnerBorder.rect().y());
if (haveAlphaColor)
paintTranslucentBorderSides(graphicsContext, style, outerBorder, unadjustedInnerBorder, innerBorderAdjustment, edges, edgesToDraw, bleedAvoidance, includeLogicalLeftEdge, includeLogicalRightEdge, antialias);
else
paintBorderSides(graphicsContext, style, outerBorder, unadjustedInnerBorder, innerBorderAdjustment, edges, edgesToDraw, bleedAvoidance, includeLogicalLeftEdge, includeLogicalRightEdge, antialias);
}
void RenderBoxModelObject::drawBoxSideFromPath(GraphicsContext& graphicsContext, const LayoutRect& borderRect, const Path& borderPath, const BorderEdges& edges,
float thickness, float drawThickness, BoxSide side, const RenderStyle& style, Color color, BorderStyle borderStyle, BackgroundBleedAvoidance bleedAvoidance,
bool includeLogicalLeftEdge, bool includeLogicalRightEdge)
{
if (thickness <= 0)
return;
if (borderStyle == BorderStyle::Double && thickness < 3)
borderStyle = BorderStyle::Solid;
switch (borderStyle) {
case BorderStyle::None:
case BorderStyle::Hidden:
return;
case BorderStyle::Dotted:
case BorderStyle::Dashed: {
graphicsContext.setStrokeColor(color);
// The stroke is doubled here because the provided path is the
// outside edge of the border so half the stroke is clipped off.
// The extra multiplier is so that the clipping mask can antialias
// the edges to prevent jaggies.
graphicsContext.setStrokeThickness(drawThickness * 2 * 1.1f);
graphicsContext.setStrokeStyle(borderStyle == BorderStyle::Dashed ? DashedStroke : DottedStroke);
// If the number of dashes that fit in the path is odd and non-integral then we
// will have an awkwardly-sized dash at the end of the path. To try to avoid that
// here, we simply make the whitespace dashes ever so slightly bigger.
// FIXME: This could be even better if we tried to manipulate the dash offset
// and possibly the gapLength to get the corners dash-symmetrical.
float dashLength = thickness * ((borderStyle == BorderStyle::Dashed) ? 3.0f : 1.0f);
float gapLength = dashLength;
float numberOfDashes = borderPath.length() / dashLength;
// Don't try to show dashes if we have less than 2 dashes + 2 gaps.
// FIXME: should do this test per side.
if (numberOfDashes >= 4) {
bool evenNumberOfFullDashes = !((int)numberOfDashes % 2);
bool integralNumberOfDashes = !(numberOfDashes - (int)numberOfDashes);
if (!evenNumberOfFullDashes && !integralNumberOfDashes) {
float numberOfGaps = numberOfDashes / 2;
gapLength += (dashLength / numberOfGaps);
}
DashArray lineDash;
lineDash.append(dashLength);
lineDash.append(gapLength);
graphicsContext.setLineDash(lineDash, dashLength);
}
// FIXME: stroking the border path causes issues with tight corners:
// https://bugs.webkit.org/show_bug.cgi?id=58711
// Also, to get the best appearance we should stroke a path between the two borders.
graphicsContext.strokePath(borderPath);
return;
}
case BorderStyle::Double: {
// Get the inner border rects for both the outer border line and the inner border line
LayoutUnit outerBorderTopWidth;
LayoutUnit innerBorderTopWidth;
edges.top().getDoubleBorderStripeWidths(outerBorderTopWidth, innerBorderTopWidth);
LayoutUnit outerBorderRightWidth;
LayoutUnit innerBorderRightWidth;
edges.right().getDoubleBorderStripeWidths(outerBorderRightWidth, innerBorderRightWidth);
LayoutUnit outerBorderBottomWidth;
LayoutUnit innerBorderBottomWidth;
edges.bottom().getDoubleBorderStripeWidths(outerBorderBottomWidth, innerBorderBottomWidth);
LayoutUnit outerBorderLeftWidth;
LayoutUnit innerBorderLeftWidth;
edges.left().getDoubleBorderStripeWidths(outerBorderLeftWidth, innerBorderLeftWidth);
// Draw inner border line
{
GraphicsContextStateSaver stateSaver(graphicsContext);
RoundedRect innerClip = style.getRoundedInnerBorderFor(borderRect,
innerBorderTopWidth, innerBorderBottomWidth, innerBorderLeftWidth, innerBorderRightWidth,
includeLogicalLeftEdge, includeLogicalRightEdge);
graphicsContext.clipRoundedRect(FloatRoundedRect(innerClip));
drawBoxSideFromPath(graphicsContext, borderRect, borderPath, edges, thickness, drawThickness, side, style, color, BorderStyle::Solid, bleedAvoidance, includeLogicalLeftEdge, includeLogicalRightEdge);
}
// Draw outer border line
{
GraphicsContextStateSaver stateSaver(graphicsContext);
LayoutRect outerRect = borderRect;
if (bleedAvoidance == BackgroundBleedUseTransparencyLayer) {
outerRect.inflate(1);
++outerBorderTopWidth;
++outerBorderBottomWidth;
++outerBorderLeftWidth;
++outerBorderRightWidth;
}
RoundedRect outerClip = style.getRoundedInnerBorderFor(outerRect,
outerBorderTopWidth, outerBorderBottomWidth, outerBorderLeftWidth, outerBorderRightWidth,
includeLogicalLeftEdge, includeLogicalRightEdge);
graphicsContext.clipOutRoundedRect(FloatRoundedRect(outerClip));
drawBoxSideFromPath(graphicsContext, borderRect, borderPath, edges, thickness, drawThickness, side, style, color, BorderStyle::Solid, bleedAvoidance, includeLogicalLeftEdge, includeLogicalRightEdge);
}
return;
}
case BorderStyle::Ridge:
case BorderStyle::Groove:
{
BorderStyle s1;
BorderStyle s2;
if (borderStyle == BorderStyle::Groove) {
s1 = BorderStyle::Inset;
s2 = BorderStyle::Outset;
} else {
s1 = BorderStyle::Outset;
s2 = BorderStyle::Inset;
}
// Paint full border
drawBoxSideFromPath(graphicsContext, borderRect, borderPath, edges, thickness, drawThickness, side, style, color, s1, bleedAvoidance, includeLogicalLeftEdge, includeLogicalRightEdge);
// Paint inner only
GraphicsContextStateSaver stateSaver(graphicsContext);
LayoutUnit topWidth { edges.top().widthForPainting() / 2 };
LayoutUnit bottomWidth { edges.bottom().widthForPainting() / 2 };
LayoutUnit leftWidth { edges.left().widthForPainting() / 2 };
LayoutUnit rightWidth { edges.right().widthForPainting() / 2 };
RoundedRect clipRect = style.getRoundedInnerBorderFor(borderRect,
topWidth, bottomWidth, leftWidth, rightWidth,
includeLogicalLeftEdge, includeLogicalRightEdge);
graphicsContext.clipRoundedRect(FloatRoundedRect(clipRect));
drawBoxSideFromPath(graphicsContext, borderRect, borderPath, edges, thickness, drawThickness, side, style, color, s2, bleedAvoidance, includeLogicalLeftEdge, includeLogicalRightEdge);
return;
}
case BorderStyle::Inset:
case BorderStyle::Outset:
calculateBorderStyleColor(borderStyle, side, color);
break;
default:
break;
}
graphicsContext.setStrokeStyle(NoStroke);
graphicsContext.setFillColor(color);
graphicsContext.drawRect(snapRectToDevicePixels(borderRect, document().deviceScaleFactor()));
}
void RenderBoxModelObject::clipBorderSidePolygon(GraphicsContext& graphicsContext, const RoundedRect& outerBorder, const RoundedRect& innerBorder,
BoxSide side, bool firstEdgeMatches, bool secondEdgeMatches)
{
float deviceScaleFactor = document().deviceScaleFactor();
const FloatRect& outerRect = snapRectToDevicePixels(outerBorder.rect(), deviceScaleFactor);
const FloatRect& innerRect = snapRectToDevicePixels(innerBorder.rect(), deviceScaleFactor);
// For each side, create a quad that encompasses all parts of that side that may draw,
// including areas inside the innerBorder.
//
// 0----------------3
// 0 \ / 0
// |\ 1----------- 2 /|
// | 1 1 |
// | | | |
// | | | |
// | 2 2 |
// |/ 1------------2 \|
// 3 / \ 3
// 0----------------3
//
Vector<FloatPoint> quad;
quad.reserveInitialCapacity(4);
switch (side) {
case BoxSide::Top:
quad.uncheckedAppend(outerRect.minXMinYCorner());
quad.uncheckedAppend(innerRect.minXMinYCorner());
quad.uncheckedAppend(innerRect.maxXMinYCorner());
quad.uncheckedAppend(outerRect.maxXMinYCorner());
if (!innerBorder.radii().topLeft().isZero())
findIntersection(outerRect.minXMinYCorner(), innerRect.minXMinYCorner(), innerRect.minXMaxYCorner(), innerRect.maxXMinYCorner(), quad[1]);
if (!innerBorder.radii().topRight().isZero())
findIntersection(outerRect.maxXMinYCorner(), innerRect.maxXMinYCorner(), innerRect.minXMinYCorner(), innerRect.maxXMaxYCorner(), quad[2]);
break;
case BoxSide::Left:
quad.uncheckedAppend(outerRect.minXMinYCorner());
quad.uncheckedAppend(innerRect.minXMinYCorner());
quad.uncheckedAppend(innerRect.minXMaxYCorner());
quad.uncheckedAppend(outerRect.minXMaxYCorner());
if (!innerBorder.radii().topLeft().isZero())
findIntersection(outerRect.minXMinYCorner(), innerRect.minXMinYCorner(), innerRect.minXMaxYCorner(), innerRect.maxXMinYCorner(), quad[1]);
if (!innerBorder.radii().bottomLeft().isZero())
findIntersection(outerRect.minXMaxYCorner(), innerRect.minXMaxYCorner(), innerRect.minXMinYCorner(), innerRect.maxXMaxYCorner(), quad[2]);
break;
case BoxSide::Bottom:
quad.uncheckedAppend(outerRect.minXMaxYCorner());
quad.uncheckedAppend(innerRect.minXMaxYCorner());
quad.uncheckedAppend(innerRect.maxXMaxYCorner());
quad.uncheckedAppend(outerRect.maxXMaxYCorner());
if (!innerBorder.radii().bottomLeft().isZero())
findIntersection(outerRect.minXMaxYCorner(), innerRect.minXMaxYCorner(), innerRect.minXMinYCorner(), innerRect.maxXMaxYCorner(), quad[1]);
if (!innerBorder.radii().bottomRight().isZero())
findIntersection(outerRect.maxXMaxYCorner(), innerRect.maxXMaxYCorner(), innerRect.maxXMinYCorner(), innerRect.minXMaxYCorner(), quad[2]);
break;
case BoxSide::Right:
quad.uncheckedAppend(outerRect.maxXMinYCorner());
quad.uncheckedAppend(innerRect.maxXMinYCorner());
quad.uncheckedAppend(innerRect.maxXMaxYCorner());
quad.uncheckedAppend(outerRect.maxXMaxYCorner());
if (!innerBorder.radii().topRight().isZero())
findIntersection(outerRect.maxXMinYCorner(), innerRect.maxXMinYCorner(), innerRect.minXMinYCorner(), innerRect.maxXMaxYCorner(), quad[1]);
if (!innerBorder.radii().bottomRight().isZero())
findIntersection(outerRect.maxXMaxYCorner(), innerRect.maxXMaxYCorner(), innerRect.maxXMinYCorner(), innerRect.minXMaxYCorner(), quad[2]);
break;
}
// If the border matches both of its adjacent sides, don't anti-alias the clip, and
// if neither side matches, anti-alias the clip.
if (firstEdgeMatches == secondEdgeMatches) {
bool wasAntialiased = graphicsContext.shouldAntialias();
graphicsContext.setShouldAntialias(!firstEdgeMatches);
graphicsContext.clipPath(Path::polygonPathFromPoints(quad), WindRule::NonZero);
graphicsContext.setShouldAntialias(wasAntialiased);
return;
}
// Square off the end which shouldn't be affected by antialiasing, and clip.
Vector<FloatPoint> firstQuad = {
quad[0],
quad[1],
quad[2],
side == BoxSide::Top || side == BoxSide::Bottom ? FloatPoint(quad[3].x(), quad[2].y()) : FloatPoint(quad[2].x(), quad[3].y()),
quad[3]
};
bool wasAntialiased = graphicsContext.shouldAntialias();
graphicsContext.setShouldAntialias(!firstEdgeMatches);
graphicsContext.clipPath(Path::polygonPathFromPoints(firstQuad), WindRule::NonZero);
Vector<FloatPoint> secondQuad = {
quad[0],
side == BoxSide::Top || side == BoxSide::Bottom ? FloatPoint(quad[0].x(), quad[1].y()) : FloatPoint(quad[1].x(), quad[0].y()),
quad[1],
quad[2],
quad[3]
};
// Antialiasing affects the second side.
graphicsContext.setShouldAntialias(!secondEdgeMatches);
graphicsContext.clipPath(Path::polygonPathFromPoints(secondQuad), WindRule::NonZero);
graphicsContext.setShouldAntialias(wasAntialiased);
}
bool RenderBoxModelObject::borderObscuresBackgroundEdge(const FloatSize& contextScale) const
{
auto edges = borderEdges(style(), document().deviceScaleFactor());
for (auto side : allBoxSides) {
auto& currEdge = edges.at(side);
// FIXME: for vertical text
float axisScale = (side == BoxSide::Top || side == BoxSide::Bottom) ? contextScale.height() : contextScale.width();
if (!currEdge.obscuresBackgroundEdge(axisScale))
return false;
}
return true;
}
bool RenderBoxModelObject::borderObscuresBackground() const
{
if (!style().hasBorder())
return false;
// Bail if we have any border-image for now. We could look at the image alpha to improve this.
if (style().borderImage().image())
return false;
auto edges = borderEdges(style(), document().deviceScaleFactor());
for (auto side : allBoxSides) {
if (!edges.at(side).obscuresBackground())
return false;
}
return true;
}
bool RenderBoxModelObject::boxShadowShouldBeAppliedToBackground(const LayoutPoint&, BackgroundBleedAvoidance bleedAvoidance, const InlineIterator::InlineBoxIterator& inlineBox) const
{
if (bleedAvoidance != BackgroundBleedNone)
return false;
if (style().hasEffectiveAppearance())
return false;
bool hasOneNormalBoxShadow = false;
for (const ShadowData* currentShadow = style().boxShadow(); currentShadow; currentShadow = currentShadow->next()) {
if (currentShadow->style() != ShadowStyle::Normal)
continue;
if (hasOneNormalBoxShadow)
return false;
hasOneNormalBoxShadow = true;
if (!currentShadow->spread().isZero())
return false;
}
if (!hasOneNormalBoxShadow)
return false;
Color backgroundColor = style().visitedDependentColorWithColorFilter(CSSPropertyBackgroundColor);
if (!backgroundColor.isOpaque())
return false;
auto* lastBackgroundLayer = &style().backgroundLayers();
while (auto* next = lastBackgroundLayer->next())
lastBackgroundLayer = next;
if (lastBackgroundLayer->clip() != FillBox::Border)
return false;
if (lastBackgroundLayer->image() && style().hasBorderRadius())
return false;
auto applyToInlineBox = [&] {
// The checks here match how paintFillLayer() decides whether to clip (if it does, the shadow
// would be clipped out, so it has to be drawn separately).
if (inlineBox->isRootInlineBox())
return true;
if (!inlineBox->previousInlineBox() && !inlineBox->nextInlineBox())
return true;
auto* image = lastBackgroundLayer->image();
auto& renderer = inlineBox->renderer();
bool hasFillImage = image && image->canRender(&renderer, renderer.style().effectiveZoom());
return !hasFillImage && !renderer.style().hasBorderRadius();
};
if (inlineBox && !applyToInlineBox())
return false;
if (hasNonVisibleOverflow() && lastBackgroundLayer->attachment() == FillAttachment::LocalBackground)
return false;
return true;
}
static inline LayoutRect areaCastingShadowInHole(const LayoutRect& holeRect, LayoutUnit shadowExtent, LayoutUnit shadowSpread, const LayoutSize& shadowOffset)
{
LayoutRect bounds(holeRect);
bounds.inflate(shadowExtent);
if (shadowSpread < 0)
bounds.inflate(-shadowSpread);
LayoutRect offsetBounds = bounds;
offsetBounds.move(-shadowOffset);
return unionRect(bounds, offsetBounds);
}
void RenderBoxModelObject::paintBoxShadow(const PaintInfo& info, const LayoutRect& paintRect, const RenderStyle& style, ShadowStyle shadowStyle, bool includeLogicalLeftEdge, bool includeLogicalRightEdge)
{
// FIXME: Deal with border-image. Would be great to use border-image as a mask.
GraphicsContext& context = info.context();
if (context.paintingDisabled() || !style.boxShadow())
return;
RoundedRect borderRect = (shadowStyle == ShadowStyle::Inset) ? style.getRoundedInnerBorderFor(paintRect, includeLogicalLeftEdge, includeLogicalRightEdge)
: style.getRoundedBorderFor(paintRect, includeLogicalLeftEdge, includeLogicalRightEdge);
if (!borderRect.isRenderable())
borderRect.adjustRadii();
bool hasBorderRadius = style.hasBorderRadius();
float deviceScaleFactor = document().deviceScaleFactor();
bool hasOpaqueBackground = style.visitedDependentColorWithColorFilter(CSSPropertyBackgroundColor).isOpaque();
for (const ShadowData* shadow = style.boxShadow(); shadow; shadow = shadow->next()) {
if (shadow->style() != shadowStyle)
continue;
LayoutSize shadowOffset(shadow->x().value(), shadow->y().value());
LayoutUnit shadowPaintingExtent = shadow->paintingExtent();
LayoutUnit shadowSpread = LayoutUnit(shadow->spread().value());
auto shadowRadius = shadow->radius().value();
if (shadowOffset.isZero() && !shadowRadius && !shadowSpread)
continue;
Color shadowColor = style.colorByApplyingColorFilter(shadow->color());
if (shadow->style() == ShadowStyle::Normal) {
auto fillRect = borderRect;
fillRect.inflate(shadowSpread);
if (fillRect.isEmpty())
continue;
auto shadowRect = borderRect.rect();
shadowRect.inflate(shadowPaintingExtent + shadowSpread);
shadowRect.move(shadowOffset);
auto pixelSnappedShadowRect = snapRectToDevicePixels(shadowRect, deviceScaleFactor);
GraphicsContextStateSaver stateSaver(context);
context.clip(pixelSnappedShadowRect);
// Move the fill just outside the clip, adding at least 1 pixel of separation so that the fill does not
// bleed in (due to antialiasing) if the context is transformed.
LayoutUnit xOffset = paintRect.width() + std::max<LayoutUnit>(0, shadowOffset.width()) + shadowPaintingExtent + 2 * shadowSpread + LayoutUnit(1);
LayoutSize extraOffset(xOffset.ceil(), 0);
shadowOffset -= extraOffset;
fillRect.move(extraOffset);
auto pixelSnappedRectToClipOut = borderRect.pixelSnappedRoundedRectForPainting(deviceScaleFactor);
auto pixelSnappedFillRect = fillRect.pixelSnappedRoundedRectForPainting(deviceScaleFactor);
LayoutPoint shadowRectOrigin = fillRect.rect().location() + shadowOffset;
FloatPoint snappedShadowOrigin = FloatPoint(roundToDevicePixel(shadowRectOrigin.x(), deviceScaleFactor), roundToDevicePixel(shadowRectOrigin.y(), deviceScaleFactor));
FloatSize snappedShadowOffset = snappedShadowOrigin - pixelSnappedFillRect.rect().location();
context.setShadow(snappedShadowOffset, shadowRadius, shadowColor, shadow->isWebkitBoxShadow() ? ShadowRadiusMode::Legacy : ShadowRadiusMode::Default);
if (hasBorderRadius) {
// If the box is opaque, it is unnecessary to clip it out. However, doing so saves time
// when painting the shadow. On the other hand, it introduces subpixel gaps along the
// corners. Those are avoided by insetting the clipping path by one pixel.
if (hasOpaqueBackground)
pixelSnappedRectToClipOut.inflateWithRadii(-1.0f);
if (!pixelSnappedRectToClipOut.isEmpty())
context.clipOutRoundedRect(pixelSnappedRectToClipOut);
RoundedRect influenceRect(LayoutRect(pixelSnappedShadowRect), borderRect.radii());
influenceRect.expandRadii(2 * shadowPaintingExtent + shadowSpread);
if (allCornersClippedOut(influenceRect, info.rect))
context.fillRect(pixelSnappedFillRect.rect(), Color::black);
else {
pixelSnappedFillRect.expandRadii(shadowSpread);
if (!pixelSnappedFillRect.isRenderable())
pixelSnappedFillRect.adjustRadii();
context.fillRoundedRect(pixelSnappedFillRect, Color::black);
}
} else {
// If the box is opaque, it is unnecessary to clip it out. However, doing so saves time
// when painting the shadow. On the other hand, it introduces subpixel gaps along the
// edges if they are not pixel-aligned. Those are avoided by insetting the clipping path
// by one pixel.
if (hasOpaqueBackground) {
// FIXME: The function to decide on the policy based on the transform should be a named function.
// FIXME: It's not clear if this check is right. What about integral scale factors?
AffineTransform transform = context.getCTM();
if (transform.a() != 1 || (transform.d() != 1 && transform.d() != -1) || transform.b() || transform.c())
pixelSnappedRectToClipOut.inflate(-1.0f);
}
if (!pixelSnappedRectToClipOut.isEmpty())
context.clipOut(pixelSnappedRectToClipOut.rect());
context.fillRect(pixelSnappedFillRect.rect(), Color::black);
}
} else {
// Inset shadow.
auto holeRect = borderRect.rect();
holeRect.inflate(-shadowSpread);
bool isHorizontal = style.isHorizontalWritingMode();
if (!includeLogicalLeftEdge) {
if (isHorizontal)
holeRect.shiftXEdgeBy(-(std::max<LayoutUnit>(shadowOffset.width(), 0) + shadowPaintingExtent + shadowSpread));
else
holeRect.shiftYEdgeBy(-(std::max<LayoutUnit>(shadowOffset.height(), 0) + shadowPaintingExtent + shadowSpread));
}
if (!includeLogicalRightEdge) {
if (isHorizontal)
holeRect.setWidth(holeRect.width() - std::min<LayoutUnit>(shadowOffset.width(), 0) + shadowPaintingExtent + shadowSpread);
else
holeRect.setHeight(holeRect.height() - std::min<LayoutUnit>(shadowOffset.height(), 0) + shadowPaintingExtent + shadowSpread);
}
auto roundedHoleRect = RoundedRect { holeRect, borderRect.radii() };
if (shadowSpread && roundedHoleRect.isRounded()) {
auto rounedRectCorrectingForSpread = [&]() {
bool horizontal = style.isHorizontalWritingMode();
LayoutUnit leftWidth { (!horizontal || includeLogicalLeftEdge) ? style.borderLeftWidth() + shadowSpread : 0 };
LayoutUnit rightWidth { (!horizontal || includeLogicalRightEdge) ? style.borderRightWidth() + shadowSpread : 0 };
LayoutUnit topWidth { (horizontal || includeLogicalLeftEdge) ? style.borderTopWidth() + shadowSpread : 0 };
LayoutUnit bottomWidth { (horizontal || includeLogicalRightEdge) ? style.borderBottomWidth() + shadowSpread : 0 };
return style.getRoundedInnerBorderFor(paintRect, topWidth, bottomWidth, leftWidth, rightWidth, includeLogicalLeftEdge, includeLogicalRightEdge);
}();
roundedHoleRect.setRadii(rounedRectCorrectingForSpread.radii());
}
auto pixelSnappedHoleRect = roundedHoleRect.pixelSnappedRoundedRectForPainting(deviceScaleFactor);
auto pixelSnappedBorderRect = borderRect.pixelSnappedRoundedRectForPainting(deviceScaleFactor);
if (pixelSnappedHoleRect.isEmpty()) {
if (hasBorderRadius)
context.fillRoundedRect(pixelSnappedBorderRect, shadowColor);
else
context.fillRect(pixelSnappedBorderRect.rect(), shadowColor);
continue;
}
Color fillColor = shadowColor.opaqueColor();
auto shadowCastingRect = areaCastingShadowInHole(borderRect.rect(), shadowPaintingExtent, shadowSpread, shadowOffset);
auto pixelSnappedOuterRect = snapRectToDevicePixels(shadowCastingRect, deviceScaleFactor);
GraphicsContextStateSaver stateSaver(context);
if (hasBorderRadius)
context.clipRoundedRect(pixelSnappedBorderRect);
else
context.clip(pixelSnappedBorderRect.rect());
LayoutUnit xOffset = 2 * paintRect.width() + std::max<LayoutUnit>(0, shadowOffset.width()) + shadowPaintingExtent - 2 * shadowSpread + LayoutUnit(1);
LayoutSize extraOffset(xOffset.ceil(), 0);
context.translate(extraOffset);
shadowOffset -= extraOffset;
auto snappedShadowOffset = roundSizeToDevicePixels(shadowOffset, deviceScaleFactor);
context.setShadow(snappedShadowOffset, shadowRadius, shadowColor, shadow->isWebkitBoxShadow() ? ShadowRadiusMode::Legacy : ShadowRadiusMode::Default);
context.fillRectWithRoundedHole(pixelSnappedOuterRect, pixelSnappedHoleRect, fillColor);
}
}
}
LayoutUnit RenderBoxModelObject::containingBlockLogicalWidthForContent() const
{
if (auto* containingBlock = this->containingBlock())
return containingBlock->availableLogicalWidth();
return { };
}
RenderBoxModelObject* RenderBoxModelObject::continuation() const
{
if (!hasContinuationChainNode())
return nullptr;
auto& continuationChainNode = *continuationChainNodeMap().get(this);
if (!continuationChainNode.next)
return nullptr;
return continuationChainNode.next->renderer.get();
}
RenderInline* RenderBoxModelObject::inlineContinuation() const
{
if (!hasContinuationChainNode())
return nullptr;
for (auto* next = continuationChainNodeMap().get(this)->next; next; next = next->next) {
if (is<RenderInline>(*next->renderer))
return downcast<RenderInline>(next->renderer.get());
}
return nullptr;
}
void RenderBoxModelObject::forRendererAndContinuations(RenderBoxModelObject& renderer, const std::function<void(RenderBoxModelObject&)>& function)
{
function(renderer);
if (!renderer.hasContinuationChainNode())
return;
for (auto* next = continuationChainNodeMap().get(&renderer)->next; next; next = next->next) {
if (!next->renderer)
continue;
function(*next->renderer);
}
}
RenderBoxModelObject::ContinuationChainNode* RenderBoxModelObject::continuationChainNode() const
{
return continuationChainNodeMap().get(this);
}
void RenderBoxModelObject::insertIntoContinuationChainAfter(RenderBoxModelObject& afterRenderer)
{
ASSERT(isContinuation());
ASSERT(!continuationChainNodeMap().contains(this));
auto& after = afterRenderer.ensureContinuationChainNode();
ensureContinuationChainNode().insertAfter(after);
}
void RenderBoxModelObject::removeFromContinuationChain()
{
ASSERT(hasContinuationChainNode());
ASSERT(continuationChainNodeMap().contains(this));
setHasContinuationChainNode(false);
continuationChainNodeMap().remove(this);
}
auto RenderBoxModelObject::ensureContinuationChainNode() -> ContinuationChainNode&
{
setHasContinuationChainNode(true);
return *continuationChainNodeMap().ensure(this, [&] {
return makeUnique<ContinuationChainNode>(*this);
}).iterator->value;
}
RenderTextFragment* RenderBoxModelObject::firstLetterRemainingText() const
{
if (!isFirstLetter())
return nullptr;
return firstLetterRemainingTextMap().get(this).get();
}
void RenderBoxModelObject::setFirstLetterRemainingText(RenderTextFragment& remainingText)
{
ASSERT(isFirstLetter());
firstLetterRemainingTextMap().set(this, remainingText);
}
void RenderBoxModelObject::clearFirstLetterRemainingText()
{
ASSERT(isFirstLetter());
firstLetterRemainingTextMap().remove(this);
}
bool RenderBoxModelObject::shouldAntialiasLines(GraphicsContext& context)
{
// FIXME: We may want to not antialias when scaled by an integral value,
// and we may want to antialias when translated by a non-integral value.
return !context.getCTM().isIdentityOrTranslationOrFlipped();
}
void RenderBoxModelObject::mapAbsoluteToLocalPoint(OptionSet<MapCoordinatesMode> mode, TransformState& transformState) const
{
RenderElement* container = this->container();
if (!container)
return;
container->mapAbsoluteToLocalPoint(mode, transformState);
LayoutSize containerOffset = offsetFromContainer(*container, LayoutPoint());
bool preserve3D = mode.contains(UseTransforms) && (container->style().preserves3D() || style().preserves3D());
if (mode.contains(UseTransforms) && shouldUseTransformFromContainer(container)) {
TransformationMatrix t;
getTransformFromContainer(container, containerOffset, t);
transformState.applyTransform(t, preserve3D ? TransformState::AccumulateTransform : TransformState::FlattenTransform);
} else
transformState.move(containerOffset.width(), containerOffset.height(), preserve3D ? TransformState::AccumulateTransform : TransformState::FlattenTransform);
}
bool RenderBoxModelObject::hasRunningAcceleratedAnimations() const
{
if (auto* node = element()) {
if (auto* timeline = node->document().existingTimeline())
return timeline->runningAnimationsForRendererAreAllAccelerated(*this);
}
return false;
}
void RenderBoxModelObject::collectAbsoluteQuadsForContinuation(Vector<FloatQuad>& quads, bool* wasFixed) const
{
ASSERT(continuation());
for (auto* nextInContinuation = this->continuation(); nextInContinuation; nextInContinuation = nextInContinuation->continuation()) {
if (is<RenderBlock>(*nextInContinuation)) {
auto& blockBox = downcast<RenderBlock>(*nextInContinuation);
// For blocks inside inlines, we include margins so that we run right up to the inline boxes
// above and below us (thus getting merged with them to form a single irregular shape).
auto logicalRect = FloatRect { 0, -blockBox.collapsedMarginBefore(), blockBox.width(),
blockBox.height() + blockBox.collapsedMarginBefore() + blockBox.collapsedMarginAfter() };
nextInContinuation->absoluteQuadsIgnoringContinuation(logicalRect, quads, wasFixed);
continue;
}
nextInContinuation->absoluteQuadsIgnoringContinuation({ }, quads, wasFixed);
}
}
} // namespace WebCore