blob: d8effe7143d40f674486de80bf3a6eb199995063 [file] [log] [blame]
//
// Copyright 2016 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// RendererVk.cpp:
// Implements the class methods for RendererVk.
//
#include "libANGLE/renderer/vulkan/RendererVk.h"
// Placing this first seems to solve an intellisense bug.
#include "libANGLE/renderer/vulkan/vk_utils.h"
#include <EGL/eglext.h>
#include "common/debug.h"
#include "common/platform.h"
#include "common/system_utils.h"
#include "common/vulkan/libvulkan_loader.h"
#include "common/vulkan/vk_google_filtering_precision.h"
#include "common/vulkan/vulkan_icd.h"
#include "gpu_info_util/SystemInfo.h"
#include "libANGLE/Context.h"
#include "libANGLE/Display.h"
#include "libANGLE/renderer/driver_utils.h"
#include "libANGLE/renderer/glslang_wrapper_utils.h"
#include "libANGLE/renderer/vulkan/CompilerVk.h"
#include "libANGLE/renderer/vulkan/ContextVk.h"
#include "libANGLE/renderer/vulkan/DisplayVk.h"
#include "libANGLE/renderer/vulkan/FramebufferVk.h"
#include "libANGLE/renderer/vulkan/ProgramVk.h"
#include "libANGLE/renderer/vulkan/ResourceVk.h"
#include "libANGLE/renderer/vulkan/VertexArrayVk.h"
#include "libANGLE/renderer/vulkan/vk_caps_utils.h"
#include "libANGLE/renderer/vulkan/vk_format_utils.h"
#include "libANGLE/trace.h"
#include "platform/PlatformMethods.h"
// Consts
namespace
{
constexpr VkFormatFeatureFlags kInvalidFormatFeatureFlags = static_cast<VkFormatFeatureFlags>(-1);
#if defined(ANGLE_EXPOSE_NON_CONFORMANT_EXTENSIONS_AND_VERSIONS)
constexpr bool kExposeNonConformantExtensionsAndVersions = true;
#else
constexpr bool kExposeNonConformantExtensionsAndVersions = false;
#endif
} // anonymous namespace
namespace rx
{
namespace
{
constexpr uint32_t kMinDefaultUniformBufferSize = 16 * 1024u;
// This size is picked based on experience. Majority of devices support 64K
// maxUniformBufferSize. Since this is per context buffer, a bigger buffer size reduces the
// number of descriptor set allocations, so we picked the maxUniformBufferSize that most
// devices supports. It may needs further tuning based on specific device needs and balance
// between performance and memory usage.
constexpr uint32_t kPreferredDefaultUniformBufferSize = 64 * 1024u;
// Update the pipeline cache every this many swaps.
constexpr uint32_t kPipelineCacheVkUpdatePeriod = 60;
// Per the Vulkan specification, as long as Vulkan 1.1+ is returned by vkEnumerateInstanceVersion,
// ANGLE must indicate the highest version of Vulkan functionality that it uses. The Vulkan
// validation layers will issue messages for any core functionality that requires a higher version.
// This value must be increased whenever ANGLE starts using functionality from a newer core
// version of Vulkan.
constexpr uint32_t kPreferredVulkanAPIVersion = VK_API_VERSION_1_1;
angle::vk::ICD ChooseICDFromAttribs(const egl::AttributeMap &attribs)
{
#if !defined(ANGLE_PLATFORM_ANDROID)
// Mock ICD does not currently run on Android
EGLAttrib deviceType = attribs.get(EGL_PLATFORM_ANGLE_DEVICE_TYPE_ANGLE,
EGL_PLATFORM_ANGLE_DEVICE_TYPE_HARDWARE_ANGLE);
switch (deviceType)
{
case EGL_PLATFORM_ANGLE_DEVICE_TYPE_HARDWARE_ANGLE:
break;
case EGL_PLATFORM_ANGLE_DEVICE_TYPE_NULL_ANGLE:
return angle::vk::ICD::Mock;
case EGL_PLATFORM_ANGLE_DEVICE_TYPE_SWIFTSHADER_ANGLE:
return angle::vk::ICD::SwiftShader;
default:
UNREACHABLE();
break;
}
#endif // !defined(ANGLE_PLATFORM_ANDROID)
return angle::vk::ICD::Default;
}
bool StrLess(const char *a, const char *b)
{
return strcmp(a, b) < 0;
}
bool ExtensionFound(const char *needle, const vk::ExtensionNameList &haystack)
{
// NOTE: The list must be sorted.
return std::binary_search(haystack.begin(), haystack.end(), needle, StrLess);
}
VkResult VerifyExtensionsPresent(const vk::ExtensionNameList &haystack,
const vk::ExtensionNameList &needles)
{
// NOTE: The lists must be sorted.
if (std::includes(haystack.begin(), haystack.end(), needles.begin(), needles.end(), StrLess))
{
return VK_SUCCESS;
}
for (const char *needle : needles)
{
if (!ExtensionFound(needle, haystack))
{
ERR() << "Extension not supported: " << needle;
}
}
return VK_ERROR_EXTENSION_NOT_PRESENT;
}
// Array of Validation error/warning messages that will be ignored, should include bugID
constexpr const char *kSkippedMessages[] = {
// http://anglebug.com/2866
"UNASSIGNED-CoreValidation-Shader-OutputNotConsumed",
// http://anglebug.com/4883
"UNASSIGNED-CoreValidation-Shader-InputNotProduced",
// http://anglebug.com/2796
"UNASSIGNED-CoreValidation-Shader-PointSizeMissing",
// http://anglebug.com/3832
"VUID-VkPipelineInputAssemblyStateCreateInfo-topology-00428",
// Best Practices Skips https://issuetracker.google.com/issues/166641492
// https://issuetracker.google.com/issues/166793850
"UNASSIGNED-BestPractices-vkCreateCommandPool-command-buffer-reset",
"UNASSIGNED-BestPractices-pipeline-stage-flags",
"UNASSIGNED-BestPractices-Error-Result",
"UNASSIGNED-BestPractices-vkAllocateMemory-small-allocation",
"UNASSIGNED-BestPractices-vkBindMemory-small-dedicated-allocation",
"UNASSIGNED-BestPractices-vkAllocateMemory-too-many-objects",
"UNASSIGNED-BestPractices-vkCreateDevice-deprecated-extension",
"UNASSIGNED-BestPractices-vkCreateRenderPass-image-requires-memory",
"UNASSIGNED-BestPractices-vkCreateGraphicsPipelines-too-many-instanced-vertex-buffers",
"UNASSIGNED-BestPractices-DrawState-ClearCmdBeforeDraw",
"UNASSIGNED-BestPractices-vkCmdClearAttachments-clear-after-load",
// http://anglebug.com/4928
"VUID-vkMapMemory-memory-00683",
// http://anglebug.com/5027
"UNASSIGNED-CoreValidation-Shader-PushConstantOutOfRange",
// http://anglebug.com/5304
"VUID-vkCmdDraw-magFilter-04553",
"VUID-vkCmdDrawIndexed-magFilter-04553",
// http://anglebug.com/5309
"VUID-VkImageViewCreateInfo-usage-02652",
// http://anglebug.com/5336
"UNASSIGNED-BestPractices-vkCreateDevice-specialuse-extension",
// http://anglebug.com/5331
"VUID-VkSubpassDescriptionDepthStencilResolve-depthResolveMode-parameter",
"VUID-VkSubpassDescriptionDepthStencilResolve-stencilResolveMode-parameter",
// https://issuetracker.google.com/175584609
"VUID-vkCmdDraw-None-04584",
"VUID-vkCmdDrawIndexed-None-04584",
"VUID-vkCmdDrawIndirect-None-04584",
"VUID-vkCmdDrawIndirectCount-None-04584",
"VUID-vkCmdDrawIndexedIndirect-None-04584",
"VUID-vkCmdDrawIndexedIndirectCount-None-04584",
// https://anglebug.com/5912
"VUID-VkImageViewCreateInfo-pNext-01585",
// https://anglebug.com/6262
"VUID-vkCmdClearAttachments-baseArrayLayer-00018",
// http://anglebug.com/6442
"UNASSIGNED-CoreValidation-Shader-InterfaceTypeMismatch",
// http://anglebug.com/6514
"vkEnumeratePhysicalDevices: One or more layers modified physical devices",
};
struct SkippedSyncvalMessage
{
const char *messageId;
const char *messageContents1;
const char *messageContents2;
bool resolvedWithStoreOpNone;
};
constexpr SkippedSyncvalMessage kSkippedSyncvalMessages[] = {
// This error is generated for multiple reasons:
//
// - http://anglebug.com/6411
// - http://anglebug.com/5371: This is resolved with storeOp=NONE
{"SYNC-HAZARD-WRITE_AFTER_WRITE",
"Access info (usage: SYNC_IMAGE_LAYOUT_TRANSITION, prior_usage: "
"SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE, write_barriers: 0, command: "
"vkCmdEndRenderPass",
"", false},
// http://anglebug.com/6411
{"SYNC-HAZARD-WRITE_AFTER_WRITE",
"aspect depth during load with loadOp VK_ATTACHMENT_LOAD_OP_DONT_CARE. Access info (usage: "
"SYNC_EARLY_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE, prior_usage: "
"SYNC_IMAGE_LAYOUT_TRANSITION, write_barriers: "
"SYNC_EARLY_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_READ|SYNC_LATE_FRAGMENT_TESTS_DEPTH_"
"STENCIL_ATTACHMENT_READ, command: vkCmdPipelineBarrier",
"", false},
{"SYNC-HAZARD-WRITE_AFTER_WRITE",
"aspect stencil during load with loadOp VK_ATTACHMENT_LOAD_OP_DONT_CARE. Access info (usage: "
"SYNC_EARLY_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE, prior_usage: "
"SYNC_IMAGE_LAYOUT_TRANSITION, write_barriers: "
"SYNC_EARLY_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_READ|SYNC_LATE_FRAGMENT_TESTS_DEPTH_"
"STENCIL_ATTACHMENT_READ, command: vkCmdPipelineBarrier",
"", false},
// http://angkebug.com/6584
{"SYNC-HAZARD-WRITE_AFTER_WRITE",
"aspect depth during load with loadOp VK_ATTACHMENT_LOAD_OP_DONT_CARE. Access info (usage: "
"SYNC_EARLY_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE, prior_usage: "
"SYNC_IMAGE_LAYOUT_TRANSITION, write_barriers: "
"SYNC_EARLY_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_READ|SYNC_LATE_FRAGMENT_TESTS_DEPTH_"
"STENCIL_ATTACHMENT_READ|SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_READ|SYNC_COLOR_"
"ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE, command: vkCmdPipelineBarrier",
"", false},
// http://anglebug.com/6416
// http://anglebug.com/6421
{"SYNC-HAZARD-WRITE_AFTER_WRITE",
"Access info (usage: SYNC_IMAGE_LAYOUT_TRANSITION, prior_usage: SYNC_IMAGE_LAYOUT_TRANSITION, "
"write_barriers: 0, command: vkCmdEndRenderPass",
"", false},
// These errors are generated when simultaneously using a read-only depth/stencil attachment as
// sampler. This is valid Vulkan.
//
// When storeOp=NONE is not present, ANGLE uses storeOp=STORE, but considers the image read-only
// and produces a hazard. ANGLE relies on storeOp=NONE and so this is not expected to be worked
// around.
//
// With storeOp=NONE, there is another bug where a depth/stencil attachment may use storeOp=NONE
// for depth while storeOp=DONT_CARE for stencil, and the latter causes a synchronization error
// (similarly to the previous case as DONT_CARE is also a write operation).
// http://anglebug.com/5962
{"SYNC-HAZARD-WRITE_AFTER_READ",
"depth aspect during store with storeOp VK_ATTACHMENT_STORE_OP_STORE. Access info (usage: "
"SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE, prior_usage: "
"SYNC_FRAGMENT_SHADER_SHADER_STORAGE_READ, read_barriers: VK_PIPELINE_STAGE_2_NONE_KHR, "
"command: vkCmdDraw",
"", true},
{"SYNC-HAZARD-READ_AFTER_WRITE",
"type: VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, imageLayout: "
"VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, binding ",
"Access info (usage: "
"SYNC_FRAGMENT_SHADER_SHADER_STORAGE_READ, prior_usage: "
"SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE, write_barriers: 0, command: "
"vkCmdEndRenderPass",
true},
{"SYNC-HAZARD-READ_AFTER_WRITE",
"type: VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, imageLayout: "
"VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, binding ",
"Access info (usage: "
"SYNC_FRAGMENT_SHADER_SHADER_STORAGE_READ, prior_usage: "
"SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE, write_barriers: "
"SYNC_EARLY_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_READ|SYNC_EARLY_FRAGMENT_TESTS_DEPTH_"
"STENCIL_ATTACHMENT_WRITE|SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_READ|SYNC_LATE_"
"FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE, command: "
"vkCmdEndRenderPass",
true},
{"SYNC-HAZARD-WRITE_AFTER_WRITE",
"aspect stencil during load with loadOp VK_ATTACHMENT_LOAD_OP_DONT_CARE. Access info (usage: "
"SYNC_EARLY_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE, prior_usage: "
"SYNC_IMAGE_LAYOUT_TRANSITION, write_barriers: "
"SYNC_EARLY_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_READ|SYNC_FRAGMENT_SHADER_SHADER_SAMPLED_"
"READ|SYNC_FRAGMENT_SHADER_SHADER_STORAGE_READ|SYNC_FRAGMENT_SHADER_UNIFORM_READ|SYNC_LATE_"
"FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_READ, command: vkCmdPipelineBarrier",
"", false},
{"SYNC-HAZARD-WRITE_AFTER_WRITE",
"aspect stencil during load with loadOp VK_ATTACHMENT_LOAD_OP_DONT_CARE. Access info (usage: "
"SYNC_EARLY_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE, prior_usage: "
"SYNC_IMAGE_LAYOUT_TRANSITION, write_barriers: "
"SYNC_EARLY_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_READ|SYNC_LATE_FRAGMENT_TESTS_DEPTH_"
"STENCIL_ATTACHMENT_READ|SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_READ|SYNC_COLOR_"
"ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE, command: vkCmdPipelineBarrier",
"", false},
// http://anglebug.com/6422
{"VUID-vkCmdWaitEvents-srcStageMask-01158",
"vkCmdWaitEvents: srcStageMask 0x2000 contains stages not present in pEvents stageMask. Extra "
"stages are VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT.",
"", false},
// http://anglebug.com/6424
{"SYNC-HAZARD-READ_AFTER_WRITE",
"Access info (usage: SYNC_VERTEX_ATTRIBUTE_INPUT_VERTEX_ATTRIBUTE_READ, prior_usage: "
"SYNC_COMPUTE_SHADER_SHADER_STORAGE_WRITE, write_barriers: 0, command: vkCmdDispatch",
"", false},
// These errors are caused by a feedback loop tests that don't produce correct Vulkan to begin
// with. The message to check is made more specific (by checking the exact set/binding and part
// of seq_no) to reduce the chances of it suppressing a bug in other valid tests.
// http://anglebug.com/6417
//
// From: Texture2DBaseMaxTestES3.Fuzz545ImmutableTexRenderFeedback/ES3_Vulkan
{"SYNC-HAZARD-READ_AFTER_WRITE",
"type: VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, imageLayout: VK_IMAGE_LAYOUT_GENERAL, "
"binding #0, index 0. Access info (usage: SYNC_FRAGMENT_SHADER_SHADER_STORAGE_READ, "
"prior_usage: SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE, write_barriers: 0, "
"command: vkCmdBeginRenderPass, seq_no: 6",
"", false},
{"SYNC-HAZARD-READ_AFTER_WRITE",
"type: VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, imageLayout: VK_IMAGE_LAYOUT_GENERAL, "
"binding #0, index 0. Access info (usage: SYNC_FRAGMENT_SHADER_SHADER_STORAGE_READ, "
"prior_usage: SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE, write_barriers: 0, "
"command: vkCmdBeginRenderPass, seq_no: 7",
"", false},
{"SYNC-HAZARD-READ_AFTER_WRITE",
"type: VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, imageLayout: VK_IMAGE_LAYOUT_GENERAL, "
"binding #0, index 0. Access info (usage: SYNC_FRAGMENT_SHADER_SHADER_STORAGE_READ, "
"prior_usage: SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE, write_barriers: 0, "
"command: vkCmdDraw, seq_no: 6",
"", false},
{"SYNC-HAZARD-READ_AFTER_WRITE",
"type: VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, imageLayout: VK_IMAGE_LAYOUT_GENERAL, "
"binding #0, index 0. Access info (usage: SYNC_FRAGMENT_SHADER_SHADER_STORAGE_READ, "
"prior_usage: SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE, write_barriers: 0, "
"command: vkCmdDraw, seq_no: 7",
"", false},
// From: FramebufferTest_ES3.FramebufferBindToNewLevelAfterMaxIncreaseShouldntCrash/ES3_Vulkan
{"SYNC-HAZARD-READ_AFTER_WRITE",
"type: VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, imageLayout: VK_IMAGE_LAYOUT_GENERAL, "
"binding #0, index 0. Access info (usage: SYNC_FRAGMENT_SHADER_SHADER_STORAGE_READ, "
"prior_usage: SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE, write_barriers: 0, "
"command: vkCmdBeginRenderPass, seq_no: 10,",
"", false},
{"SYNC-HAZARD-READ_AFTER_WRITE",
"type: VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, imageLayout: VK_IMAGE_LAYOUT_GENERAL, "
"binding #0, index 0. Access info (usage: SYNC_FRAGMENT_SHADER_SHADER_STORAGE_READ, "
"prior_usage: SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE, write_barriers: 0, "
"command: vkCmdBeginRenderPass, seq_no: 2,",
"", false},
{"SYNC-HAZARD-READ_AFTER_WRITE",
"type: VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, imageLayout: VK_IMAGE_LAYOUT_GENERAL, "
"binding #0, index 0. Access info (usage: SYNC_FRAGMENT_SHADER_SHADER_STORAGE_READ, "
"prior_usage: SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE, write_barriers: 0, "
"command: vkCmdBeginRenderPass, seq_no: 9,",
"", false},
// From: FramebufferTest_ES3.SampleFromAttachedTextureWithDifferentLOD/ES3_Vulkan
{"SYNC-HAZARD-READ_AFTER_WRITE",
"type: VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, imageLayout: VK_IMAGE_LAYOUT_GENERAL, "
"binding #0, index 0. Access info (usage: SYNC_FRAGMENT_SHADER_SHADER_STORAGE_READ, "
"prior_usage: SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE, write_barriers: 0, "
"command: vkCmdBeginRenderPass, seq_no: 8,",
"", false},
// With Vulkan secondary command buffers:
{"SYNC-HAZARD-READ_AFTER_WRITE",
"Recorded access info (recorded_usage: SYNC_FRAGMENT_SHADER_SHADER_STORAGE_READ, command: "
"vkCmdDraw, seq_no: 1, reset_no: 1). Access info (prior_usage: "
"SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE, write_barriers: 0, command: "
"vkCmdBeginRenderPass, seq_no:",
"", false},
// From: TracePerfTest.Run/vulkan_aztec_ruins
{"SYNC-HAZARD-READ_AFTER_WRITE",
"type: VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, imageLayout: VK_IMAGE_LAYOUT_GENERAL, "
"binding #0, index 0. Access info (usage: SYNC_FRAGMENT_SHADER_SHADER_STORAGE_READ, "
"prior_usage: SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE, write_barriers: 0, "
"command: vkCmdBeginRenderPass, seq_no: 11",
"", false},
// http://anglebug.com/6551
{"SYNC-HAZARD-WRITE_AFTER_WRITE",
"Access info (usage: SYNC_IMAGE_LAYOUT_TRANSITION, prior_usage: "
"SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE, write_barriers: "
"SYNC_EARLY_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_READ|SYNC_EARLY_FRAGMENT_TESTS_DEPTH_"
"STENCIL_ATTACHMENT_WRITE|SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_READ|SYNC_LATE_"
"FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE|SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_"
"READ|SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE, command: vkCmdEndRenderPass",
"", false},
{"SYNC-HAZARD-WRITE_AFTER_WRITE",
"Access info (usage: SYNC_IMAGE_LAYOUT_TRANSITION, prior_usage: "
"SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE, write_barriers: "
"SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_READ|SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_"
"ATTACHMENT_WRITE, command: vkCmdEndRenderPass",
"", false},
{"SYNC-HAZARD-WRITE_AFTER_WRITE",
"Access info (usage: SYNC_IMAGE_LAYOUT_TRANSITION, prior_usage: "
"SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE, write_barriers: "
"SYNC_TRANSFORM_FEEDBACK_EXT_TRANSFORM_FEEDBACK_COUNTER_READ_EXT|SYNC_TRANSFORM_FEEDBACK_EXT_"
"TRANSFORM_FEEDBACK_COUNTER_WRITE_EXT|SYNC_TRANSFORM_FEEDBACK_EXT_TRANSFORM_FEEDBACK_WRITE_"
"EXT|SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_READ|SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_"
"ATTACHMENT_WRITE, command: vkCmdEndRenderPass",
"", false},
// From: TracePerfTest.Run/vulkan_swiftshader_slingshot_test1 http://anglebug.com/6566
{"SYNC-HAZARD-READ_AFTER_WRITE",
"type: VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, imageLayout: "
"VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, binding #0, index 0. Access info (usage: "
"SYNC_VERTEX_SHADER_SHADER_STORAGE_READ, prior_usage: SYNC_IMAGE_LAYOUT_TRANSITION, "
"write_barriers: "
"SYNC_FRAGMENT_SHADER_SHADER_SAMPLED_READ|SYNC_FRAGMENT_SHADER_SHADER_STORAGE_READ|SYNC_"
"FRAGMENT_SHADER_UNIFORM_READ|SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_READ|SYNC_COLOR_"
"ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE, command: vkCmdPipelineBarrier, seq_no: 38",
"", false},
// From: TracePerfTest.Run/vulkan_swiftshader_manhattan_31 http://anglebug.com/6701
{"SYNC-HAZARD-WRITE_AFTER_WRITE",
"Hazard WRITE_AFTER_WRITE in subpass 0 for attachment 1 aspect stencil during load with "
"loadOp VK_ATTACHMENT_LOAD_OP_DONT_CARE. Access info (usage: "
"SYNC_EARLY_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE, prior_usage: "
"SYNC_IMAGE_LAYOUT_TRANSITION",
"", false},
// From various tests. The validation layer does not calculate the exact vertexCounts that's
// been
// accessed. http://anglebug.com/6725
{"SYNC-HAZARD-READ_AFTER_WRITE", "vkCmdDrawIndexed: Hazard READ_AFTER_WRITE for vertex",
"usage: SYNC_VERTEX_ATTRIBUTE_INPUT_VERTEX_ATTRIBUTE_READ", false},
{"SYNC-HAZARD-READ_AFTER_WRITE", "vkCmdDrawIndexedIndirect: Hazard READ_AFTER_WRITE for vertex",
"usage: SYNC_VERTEX_ATTRIBUTE_INPUT_VERTEX_ATTRIBUTE_READ", false},
{"SYNC-HAZARD-READ_AFTER_WRITE", "vkCmdDrawIndirect: Hazard READ_AFTER_WRITE for vertex",
"usage: SYNC_VERTEX_ATTRIBUTE_INPUT_VERTEX_ATTRIBUTE_READ", false},
{"SYNC-HAZARD-READ_AFTER_WRITE", "vkCmdDrawIndexedIndirect: Hazard READ_AFTER_WRITE for index",
"usage: SYNC_INDEX_INPUT_INDEX_READ", false},
{"SYNC-HAZARD-WRITE_AFTER_READ", "vkCmdDraw: Hazard WRITE_AFTER_READ for VkBuffer",
"Access info (usage: SYNC_VERTEX_SHADER_SHADER_STORAGE_WRITE, prior_usage: "
"SYNC_VERTEX_ATTRIBUTE_INPUT_VERTEX_ATTRIBUTE_READ",
false},
{"SYNC-HAZARD-WRITE_AFTER_READ", "vkCmdDispatch: Hazard WRITE_AFTER_READ for VkBuffer",
"Access info (usage: SYNC_COMPUTE_SHADER_SHADER_STORAGE_WRITE, prior_usage: "
"SYNC_VERTEX_ATTRIBUTE_INPUT_VERTEX_ATTRIBUTE_READ",
false},
// From: MultisampledRenderToTextureES3Test.TransformFeedbackTest. http://anglebug.com/6725
{"SYNC-HAZARD-WRITE_AFTER_WRITE", "vkCmdBeginRenderPass: Hazard WRITE_AFTER_WRITE in subpass",
"write_barriers: "
"SYNC_TRANSFORM_FEEDBACK_EXT_TRANSFORM_FEEDBACK_COUNTER_READ_EXT|SYNC_TRANSFORM_FEEDBACK_EXT_"
"TRANSFORM_FEEDBACK_COUNTER_WRITE_EXT",
false},
// From: TracePerfTest.Run/vulkan_swiftshader_manhattan_31. These failures appears related to
// dynamic uniform buffers. The failures are gone if I force mUniformBufferDescriptorType to
// VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER. My guess is that syncval is not doing a fine grain enough
// range tracking with dynamic uniform buffers. http://anglebug.com/6725
{"SYNC-HAZARD-WRITE_AFTER_READ", "usage: SYNC_VERTEX_SHADER_UNIFORM_READ", "", false},
{"SYNC-HAZARD-READ_AFTER_WRITE", "usage: SYNC_VERTEX_SHADER_UNIFORM_READ", "", false},
{"SYNC-HAZARD-WRITE_AFTER_READ", "type: VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC", "", false},
{"SYNC-HAZARD-READ_AFTER_WRITE", "type: VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC", "", false},
};
enum class DebugMessageReport
{
Ignore,
Print,
};
// Suppress validation errors that are known. Returns DebugMessageReport::Ignore in that case.
DebugMessageReport ShouldReportDebugMessage(RendererVk *renderer,
const char *messageId,
const char *message)
{
if (message == nullptr)
{
return DebugMessageReport::Print;
}
// Check with non-syncval messages:
for (const char *msg : kSkippedMessages)
{
if (strstr(message, msg) != nullptr)
{
return DebugMessageReport::Ignore;
}
}
// Then check with syncval messages:
const bool isStoreOpNoneSupported =
renderer->getFeatures().supportsRenderPassLoadStoreOpNone.enabled ||
renderer->getFeatures().supportsRenderPassStoreOpNoneQCOM.enabled;
for (const SkippedSyncvalMessage &msg : kSkippedSyncvalMessages)
{
if (strstr(messageId, msg.messageId) == nullptr ||
strstr(message, msg.messageContents1) == nullptr ||
strstr(message, msg.messageContents2) == nullptr)
{
continue;
}
// If storeOp=NONE is supported, we expected the error to be resolved by it, and yet we
// still get this error, report it.
if (msg.resolvedWithStoreOpNone && isStoreOpNoneSupported)
{
return DebugMessageReport::Print;
}
// Otherwise ignore the message; they are either not resolved by storeOp=NONE, or they are
// but the platform doesn't support the extension yet.
return DebugMessageReport::Ignore;
}
return DebugMessageReport::Print;
}
const char *GetVkObjectTypeName(VkObjectType type)
{
switch (type)
{
case VK_OBJECT_TYPE_UNKNOWN:
return "Unknown";
case VK_OBJECT_TYPE_INSTANCE:
return "Instance";
case VK_OBJECT_TYPE_PHYSICAL_DEVICE:
return "Physical Device";
case VK_OBJECT_TYPE_DEVICE:
return "Device";
case VK_OBJECT_TYPE_QUEUE:
return "Queue";
case VK_OBJECT_TYPE_SEMAPHORE:
return "Semaphore";
case VK_OBJECT_TYPE_COMMAND_BUFFER:
return "Command Buffer";
case VK_OBJECT_TYPE_FENCE:
return "Fence";
case VK_OBJECT_TYPE_DEVICE_MEMORY:
return "Device Memory";
case VK_OBJECT_TYPE_BUFFER:
return "Buffer";
case VK_OBJECT_TYPE_IMAGE:
return "Image";
case VK_OBJECT_TYPE_EVENT:
return "Event";
case VK_OBJECT_TYPE_QUERY_POOL:
return "Query Pool";
case VK_OBJECT_TYPE_BUFFER_VIEW:
return "Buffer View";
case VK_OBJECT_TYPE_IMAGE_VIEW:
return "Image View";
case VK_OBJECT_TYPE_SHADER_MODULE:
return "Shader Module";
case VK_OBJECT_TYPE_PIPELINE_CACHE:
return "Pipeline Cache";
case VK_OBJECT_TYPE_PIPELINE_LAYOUT:
return "Pipeline Layout";
case VK_OBJECT_TYPE_RENDER_PASS:
return "Render Pass";
case VK_OBJECT_TYPE_PIPELINE:
return "Pipeline";
case VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT:
return "Descriptor Set Layout";
case VK_OBJECT_TYPE_SAMPLER:
return "Sampler";
case VK_OBJECT_TYPE_DESCRIPTOR_POOL:
return "Descriptor Pool";
case VK_OBJECT_TYPE_DESCRIPTOR_SET:
return "Descriptor Set";
case VK_OBJECT_TYPE_FRAMEBUFFER:
return "Framebuffer";
case VK_OBJECT_TYPE_COMMAND_POOL:
return "Command Pool";
case VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION:
return "Sampler YCbCr Conversion";
case VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE:
return "Descriptor Update Template";
case VK_OBJECT_TYPE_SURFACE_KHR:
return "Surface";
case VK_OBJECT_TYPE_SWAPCHAIN_KHR:
return "Swapchain";
case VK_OBJECT_TYPE_DISPLAY_KHR:
return "Display";
case VK_OBJECT_TYPE_DISPLAY_MODE_KHR:
return "Display Mode";
case VK_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT:
return "Debug Report Callback";
case VK_OBJECT_TYPE_INDIRECT_COMMANDS_LAYOUT_NV:
return "Indirect Commands Layout";
case VK_OBJECT_TYPE_DEBUG_UTILS_MESSENGER_EXT:
return "Debug Utils Messenger";
case VK_OBJECT_TYPE_VALIDATION_CACHE_EXT:
return "Validation Cache";
case VK_OBJECT_TYPE_ACCELERATION_STRUCTURE_NV:
return "Acceleration Structure";
default:
return "<Unrecognized>";
}
}
VKAPI_ATTR VkBool32 VKAPI_CALL
DebugUtilsMessenger(VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity,
VkDebugUtilsMessageTypeFlagsEXT messageTypes,
const VkDebugUtilsMessengerCallbackDataEXT *callbackData,
void *userData)
{
RendererVk *rendererVk = static_cast<RendererVk *>(userData);
// See if it's an issue we are aware of and don't want to be spammed about.
if (ShouldReportDebugMessage(rendererVk, callbackData->pMessageIdName,
callbackData->pMessage) == DebugMessageReport::Ignore)
{
return VK_FALSE;
}
std::ostringstream log;
if (callbackData->pMessageIdName)
{
log << "[ " << callbackData->pMessageIdName << " ] ";
}
log << callbackData->pMessage << std::endl;
// Aesthetic value based on length of the function name, line number, etc.
constexpr size_t kStartIndent = 28;
// Output the debug marker hierarchy under which this error has occured.
size_t indent = kStartIndent;
if (callbackData->queueLabelCount > 0)
{
log << std::string(indent++, ' ') << "<Queue Label Hierarchy:>" << std::endl;
for (uint32_t i = 0; i < callbackData->queueLabelCount; ++i)
{
log << std::string(indent++, ' ') << callbackData->pQueueLabels[i].pLabelName
<< std::endl;
}
}
if (callbackData->cmdBufLabelCount > 0)
{
log << std::string(indent++, ' ') << "<Command Buffer Label Hierarchy:>" << std::endl;
for (uint32_t i = 0; i < callbackData->cmdBufLabelCount; ++i)
{
log << std::string(indent++, ' ') << callbackData->pCmdBufLabels[i].pLabelName
<< std::endl;
}
}
// Output the objects involved in this error message.
if (callbackData->objectCount > 0)
{
for (uint32_t i = 0; i < callbackData->objectCount; ++i)
{
const char *objectName = callbackData->pObjects[i].pObjectName;
const char *objectType = GetVkObjectTypeName(callbackData->pObjects[i].objectType);
uint64_t objectHandle = callbackData->pObjects[i].objectHandle;
log << std::string(indent, ' ') << "Object: ";
if (objectHandle == 0)
{
log << "VK_NULL_HANDLE";
}
else
{
log << "0x" << std::hex << objectHandle << std::dec;
}
log << " (type = " << objectType << "(" << callbackData->pObjects[i].objectType << "))";
if (objectName)
{
log << " [" << objectName << "]";
}
log << std::endl;
}
}
bool isError = (messageSeverity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT) != 0;
std::string msg = log.str();
rendererVk->onNewValidationMessage(msg);
if (isError)
{
ERR() << msg;
}
else
{
WARN() << msg;
}
return VK_FALSE;
}
VKAPI_ATTR VkBool32 VKAPI_CALL DebugReportCallback(VkDebugReportFlagsEXT flags,
VkDebugReportObjectTypeEXT objectType,
uint64_t object,
size_t location,
int32_t messageCode,
const char *layerPrefix,
const char *message,
void *userData)
{
RendererVk *rendererVk = static_cast<RendererVk *>(userData);
if (ShouldReportDebugMessage(rendererVk, message, message) == DebugMessageReport::Ignore)
{
return VK_FALSE;
}
if ((flags & VK_DEBUG_REPORT_ERROR_BIT_EXT) != 0)
{
ERR() << message;
#if !defined(NDEBUG)
// Abort the call in Debug builds.
return VK_TRUE;
#endif
}
else if ((flags & VK_DEBUG_REPORT_WARNING_BIT_EXT) != 0)
{
WARN() << message;
}
else
{
// Uncomment this if you want Vulkan spam.
// WARN() << message;
}
return VK_FALSE;
}
VKAPI_ATTR void VKAPI_CALL
MemoryReportCallback(const VkDeviceMemoryReportCallbackDataEXT *callbackData, void *userData)
{
RendererVk *rendererVk = static_cast<RendererVk *>(userData);
rendererVk->processMemoryReportCallback(*callbackData);
}
bool ShouldUseValidationLayers(const egl::AttributeMap &attribs)
{
#if defined(ANGLE_ENABLE_VULKAN_VALIDATION_LAYERS_BY_DEFAULT)
return ShouldUseDebugLayers(attribs);
#else
EGLAttrib debugSetting =
attribs.get(EGL_PLATFORM_ANGLE_DEBUG_LAYERS_ENABLED_ANGLE, EGL_DONT_CARE);
return debugSetting == EGL_TRUE;
#endif // defined(ANGLE_ENABLE_VULKAN_VALIDATION_LAYERS_BY_DEFAULT)
}
gl::Version LimitVersionTo(const gl::Version &current, const gl::Version &lower)
{
return std::min(current, lower);
}
ANGLE_MAYBE_UNUSED bool FencePropertiesCompatibleWithAndroid(
const VkExternalFenceProperties &externalFenceProperties)
{
// handleType here is the external fence type -
// we want type compatible with creating and export/dup() Android FD
// Imported handleType that can be exported - need for vkGetFenceFdKHR()
if ((externalFenceProperties.exportFromImportedHandleTypes &
VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT_KHR) == 0)
{
return false;
}
// HandleTypes which can be specified at creating a fence
if ((externalFenceProperties.compatibleHandleTypes &
VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT_KHR) == 0)
{
return false;
}
constexpr VkExternalFenceFeatureFlags kFeatureFlags =
(VK_EXTERNAL_FENCE_FEATURE_IMPORTABLE_BIT_KHR |
VK_EXTERNAL_FENCE_FEATURE_EXPORTABLE_BIT_KHR);
if ((externalFenceProperties.externalFenceFeatures & kFeatureFlags) != kFeatureFlags)
{
return false;
}
return true;
}
ANGLE_MAYBE_UNUSED bool SemaphorePropertiesCompatibleWithAndroid(
const VkExternalSemaphoreProperties &externalSemaphoreProperties)
{
// handleType here is the external semaphore type -
// we want type compatible with importing an Android FD
constexpr VkExternalSemaphoreFeatureFlags kFeatureFlags =
(VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT_KHR);
if ((externalSemaphoreProperties.externalSemaphoreFeatures & kFeatureFlags) != kFeatureFlags)
{
return false;
}
return true;
}
void ComputePipelineCacheVkChunkKey(VkPhysicalDeviceProperties physicalDeviceProperties,
const uint8_t chunkIndex,
egl::BlobCache::Key *hashOut)
{
std::ostringstream hashStream("ANGLE Pipeline Cache: ", std::ios_base::ate);
// Add the pipeline cache UUID to make sure the blob cache always gives a compatible pipeline
// cache. It's not particularly necessary to write it as a hex number as done here, so long as
// there is no '\0' in the result.
for (const uint32_t c : physicalDeviceProperties.pipelineCacheUUID)
{
hashStream << std::hex << c;
}
// Add the vendor and device id too for good measure.
hashStream << std::hex << physicalDeviceProperties.vendorID;
hashStream << std::hex << physicalDeviceProperties.deviceID;
// Add chunkIndex to generate unique key for chunks.
hashStream << std::hex << chunkIndex;
const std::string &hashString = hashStream.str();
angle::base::SHA1HashBytes(reinterpret_cast<const unsigned char *>(hashString.c_str()),
hashString.length(), hashOut->data());
}
bool CompressAndStorePipelineCacheVk(VkPhysicalDeviceProperties physicalDeviceProperties,
DisplayVk *displayVk,
ContextVk *contextVk,
const std::vector<uint8_t> &cacheData,
const size_t maxTotalSize)
{
// Though the pipeline cache will be compressed and divided into several chunks to store in blob
// cache, the largest total size of blob cache is only 2M in android now, so there is no use to
// handle big pipeline cache when android will reject it finally.
if (cacheData.size() >= maxTotalSize)
{
// TODO: handle the big pipeline cache. http://anglebug.com/4722
ANGLE_PERF_WARNING(contextVk->getDebug(), GL_DEBUG_SEVERITY_LOW,
"Skip syncing pipeline cache data when it's larger than maxTotalSize.");
return false;
}
// To make it possible to store more pipeline cache data, compress the whole pipelineCache.
angle::MemoryBuffer compressedData;
if (!egl::CompressBlobCacheData(cacheData.size(), cacheData.data(), &compressedData))
{
return false;
}
// If the size of compressedData is larger than (kMaxBlobCacheSize - sizeof(numChunks)),
// the pipelineCache still can't be stored in blob cache. Divide the large compressed
// pipelineCache into several parts to store seperately. There is no function to
// query the limit size in android.
constexpr size_t kMaxBlobCacheSize = 64 * 1024;
// Store {numChunks, chunkCompressedData} in keyData, numChunks is used to validate the data.
// For example, if the compressed size is 68841 bytes(67k), divide into {2,34421 bytes} and
// {2,34420 bytes}.
constexpr size_t kBlobHeaderSize = sizeof(uint8_t);
size_t compressedOffset = 0;
const size_t numChunks = UnsignedCeilDivide(static_cast<unsigned int>(compressedData.size()),
kMaxBlobCacheSize - kBlobHeaderSize);
size_t chunkSize = UnsignedCeilDivide(static_cast<unsigned int>(compressedData.size()),
static_cast<unsigned int>(numChunks));
for (size_t chunkIndex = 0; chunkIndex < numChunks; ++chunkIndex)
{
if (chunkIndex == numChunks - 1)
{
chunkSize = compressedData.size() - compressedOffset;
}
angle::MemoryBuffer keyData;
if (!keyData.resize(kBlobHeaderSize + chunkSize))
{
return false;
}
ASSERT(numChunks <= UINT8_MAX);
keyData.data()[0] = static_cast<uint8_t>(numChunks);
memcpy(keyData.data() + kBlobHeaderSize, compressedData.data() + compressedOffset,
chunkSize);
compressedOffset += chunkSize;
// Create unique hash key.
egl::BlobCache::Key chunkCacheHash;
ComputePipelineCacheVkChunkKey(physicalDeviceProperties, chunkIndex, &chunkCacheHash);
displayVk->getBlobCache()->putApplication(chunkCacheHash, keyData);
}
return true;
}
class CompressAndStorePipelineCacheTask : public angle::Closure
{
public:
CompressAndStorePipelineCacheTask(DisplayVk *displayVk,
ContextVk *contextVk,
std::vector<uint8_t> &&cacheData,
size_t kMaxTotalSize)
: mDisplayVk(displayVk),
mContextVk(contextVk),
mCacheData(std::move(cacheData)),
mMaxTotalSize(kMaxTotalSize),
mResult(true)
{}
void operator()() override
{
ANGLE_TRACE_EVENT0("gpu.angle", "CompressAndStorePipelineCacheVk");
mResult = CompressAndStorePipelineCacheVk(
mContextVk->getRenderer()->getPhysicalDeviceProperties(), mDisplayVk, mContextVk,
mCacheData, mMaxTotalSize);
}
bool getResult() { return mResult; }
private:
DisplayVk *mDisplayVk;
ContextVk *mContextVk;
std::vector<uint8_t> mCacheData;
size_t mMaxTotalSize;
bool mResult;
};
class WaitableCompressEventImpl : public WaitableCompressEvent
{
public:
WaitableCompressEventImpl(std::shared_ptr<angle::WaitableEvent> waitableEvent,
std::shared_ptr<CompressAndStorePipelineCacheTask> compressTask)
: WaitableCompressEvent(waitableEvent), mCompressTask(compressTask)
{}
bool getResult() override { return mCompressTask->getResult(); }
private:
std::shared_ptr<CompressAndStorePipelineCacheTask> mCompressTask;
};
angle::Result GetAndDecompressPipelineCacheVk(VkPhysicalDeviceProperties physicalDeviceProperties,
DisplayVk *displayVk,
angle::MemoryBuffer *uncompressedData,
bool *success)
{
// Compute the hash key of chunkIndex 0 and find the first cache data in blob cache.
egl::BlobCache::Key chunkCacheHash;
ComputePipelineCacheVkChunkKey(physicalDeviceProperties, 0, &chunkCacheHash);
egl::BlobCache::Value keyData;
size_t keySize = 0;
constexpr size_t kBlobHeaderSize = sizeof(uint8_t);
if (!displayVk->getBlobCache()->get(displayVk->getScratchBuffer(), chunkCacheHash, &keyData,
&keySize) ||
keyData.size() < kBlobHeaderSize)
{
// Nothing in the cache.
return angle::Result::Continue;
}
// Get the number of chunks.
size_t numChunks = keyData.data()[0];
size_t chunkSize = keySize - kBlobHeaderSize;
size_t compressedSize = 0;
// Allocate enough memory.
angle::MemoryBuffer compressedData;
ANGLE_VK_CHECK(displayVk, compressedData.resize(chunkSize * numChunks),
VK_ERROR_INITIALIZATION_FAILED);
// To combine the parts of the pipelineCache data.
for (size_t chunkIndex = 0; chunkIndex < numChunks; ++chunkIndex)
{
// Get the unique key by chunkIndex.
ComputePipelineCacheVkChunkKey(physicalDeviceProperties, chunkIndex, &chunkCacheHash);
if (!displayVk->getBlobCache()->get(displayVk->getScratchBuffer(), chunkCacheHash, &keyData,
&keySize) ||
keyData.size() < kBlobHeaderSize)
{
// Can't find every part of the cache data.
WARN() << "Failed to get pipeline cache chunk " << chunkIndex << " of " << numChunks;
return angle::Result::Continue;
}
size_t checkNumber = keyData.data()[0];
chunkSize = keySize - kBlobHeaderSize;
if (checkNumber != numChunks || compressedData.size() < (compressedSize + chunkSize))
{
// Validate the number value and enough space to store.
WARN() << "Pipeline cache chunk header corrupted: checkNumber = " << checkNumber
<< ", numChunks = " << numChunks
<< ", compressedData.size() = " << compressedData.size()
<< ", (compressedSize + chunkSize) = " << (compressedSize + chunkSize);
return angle::Result::Continue;
}
memcpy(compressedData.data() + compressedSize, keyData.data() + kBlobHeaderSize, chunkSize);
compressedSize += chunkSize;
}
ANGLE_VK_CHECK(
displayVk,
egl::DecompressBlobCacheData(compressedData.data(), compressedSize, uncompressedData),
VK_ERROR_INITIALIZATION_FAILED);
*success = true;
return angle::Result::Continue;
}
// Environment variable (and associated Android property) to enable Vulkan debug-utils markers
constexpr char kEnableDebugMarkersVarName[] = "ANGLE_ENABLE_DEBUG_MARKERS";
constexpr char kEnableDebugMarkersPropertyName[] = "debug.angle.markers";
} // namespace
// RendererVk implementation.
RendererVk::RendererVk()
: mDisplay(nullptr),
mCapsInitialized(false),
mApiVersion(0),
mInstance(VK_NULL_HANDLE),
mEnableValidationLayers(false),
mEnableDebugUtils(false),
mAngleDebuggerMode(false),
mEnabledICD(angle::vk::ICD::Default),
mDebugUtilsMessenger(VK_NULL_HANDLE),
mDebugReportCallback(VK_NULL_HANDLE),
mPhysicalDevice(VK_NULL_HANDLE),
mMaxVertexAttribDivisor(1),
mCurrentQueueFamilyIndex(std::numeric_limits<uint32_t>::max()),
mMaxVertexAttribStride(0),
mMinImportedHostPointerAlignment(1),
mDefaultUniformBufferSize(kPreferredDefaultUniformBufferSize),
mDevice(VK_NULL_HANDLE),
mDeviceLost(false),
mPipelineCacheVkUpdateTimeout(kPipelineCacheVkUpdatePeriod),
mPipelineCacheDirty(false),
mPipelineCacheInitialized(false),
mValidationMessageCount(0),
mCommandProcessor(this),
mSupportedVulkanPipelineStageMask(0)
{
VkFormatProperties invalid = {0, 0, kInvalidFormatFeatureFlags};
mFormatProperties.fill(invalid);
// We currently don't have any big-endian devices in the list of supported platforms. There are
// a number of places in the Vulkan backend that make this assumption. This assertion is made
// early to fail immediately on big-endian platforms.
ASSERT(IsLittleEndian());
}
RendererVk::~RendererVk()
{
mAllocator.release();
mPipelineCache.release();
ASSERT(!hasSharedGarbage());
}
bool RendererVk::hasSharedGarbage()
{
std::lock_guard<std::mutex> lock(mGarbageMutex);
return !mSharedGarbage.empty();
}
void RendererVk::releaseSharedResources(vk::ResourceUseList *resourceList)
{
// resource list may access same resources referenced by garbage collection so need to protect
// that access with a lock.
std::lock_guard<std::mutex> lock(mGarbageMutex);
resourceList->releaseResourceUses();
}
void RendererVk::onDestroy(vk::Context *context)
{
{
std::lock_guard<std::mutex> lock(mCommandQueueMutex);
if (isAsyncCommandQueueEnabled())
{
mCommandProcessor.destroy(context);
}
else
{
mCommandQueue.destroy(context);
}
}
// Assigns an infinite "last completed" serial to force garbage to delete.
(void)cleanupGarbage(Serial::Infinite());
ASSERT(!hasSharedGarbage());
for (PendingOneOffCommands &pending : mPendingOneOffCommands)
{
pending.commandBuffer.releaseHandle();
}
mOneOffCommandPool.destroy(mDevice);
mPipelineCache.destroy(mDevice);
mSamplerCache.destroy(this);
mYuvConversionCache.destroy(this);
mVkFormatDescriptorCountMap.clear();
mCommandBufferRecycler.onDestroy();
mBufferMemoryAllocator.destroy(this);
mAllocator.destroy();
sh::FinalizeGlslang();
if (mDevice)
{
vkDestroyDevice(mDevice, nullptr);
mDevice = VK_NULL_HANDLE;
}
if (mDebugUtilsMessenger)
{
vkDestroyDebugUtilsMessengerEXT(mInstance, mDebugUtilsMessenger, nullptr);
ASSERT(mDebugReportCallback == VK_NULL_HANDLE);
}
else if (mDebugReportCallback)
{
vkDestroyDebugReportCallbackEXT(mInstance, mDebugReportCallback, nullptr);
}
logCacheStats();
if (mInstance)
{
vkDestroyInstance(mInstance, nullptr);
mInstance = VK_NULL_HANDLE;
}
if (mCompressEvent)
{
mCompressEvent->wait();
mCompressEvent.reset();
}
mMemoryProperties.destroy();
mPhysicalDevice = VK_NULL_HANDLE;
}
void RendererVk::notifyDeviceLost()
{
mDeviceLost = true;
mDisplay->notifyDeviceLost();
}
bool RendererVk::isDeviceLost() const
{
return mDeviceLost;
}
angle::Result RendererVk::initialize(DisplayVk *displayVk,
egl::Display *display,
const char *wsiExtension,
const char *wsiLayer)
{
bool canLoadDebugUtils = true;
#if defined(ANGLE_SHARED_LIBVULKAN)
mLibVulkanLibrary = angle::vk::OpenLibVulkan();
ANGLE_VK_CHECK(displayVk, mLibVulkanLibrary, VK_ERROR_INITIALIZATION_FAILED);
PFN_vkGetInstanceProcAddr vulkanLoaderGetInstanceProcAddr = nullptr;
mLibVulkanLibrary->getAs("vkGetInstanceProcAddr", &vulkanLoaderGetInstanceProcAddr);
// Set all vk* function ptrs
volkInitializeCustom(vulkanLoaderGetInstanceProcAddr);
uint32_t ver = volkGetInstanceVersion();
if (!IsAndroid() && VK_API_VERSION_MAJOR(ver) == 1 &&
(VK_API_VERSION_MINOR(ver) < 1 ||
(VK_API_VERSION_MINOR(ver) == 1 && VK_API_VERSION_PATCH(ver) < 91)))
{
// http://crbug.com/1205999 - non-Android Vulkan Loader versions before 1.1.91 have a bug
// which prevents loading VK_EXT_debug_utils function pointers.
canLoadDebugUtils = false;
}
#endif // defined(ANGLE_SHARED_LIBVULKAN)
mDisplay = display;
const egl::AttributeMap &attribs = mDisplay->getAttributeMap();
angle::vk::ScopedVkLoaderEnvironment scopedEnvironment(ShouldUseValidationLayers(attribs),
ChooseICDFromAttribs(attribs));
mEnableValidationLayers = scopedEnvironment.canEnableValidationLayers();
mEnabledICD = scopedEnvironment.getEnabledICD();
// Gather global layer properties.
uint32_t instanceLayerCount = 0;
{
ANGLE_SCOPED_DISABLE_LSAN();
ANGLE_VK_TRY(displayVk, vkEnumerateInstanceLayerProperties(&instanceLayerCount, nullptr));
}
std::vector<VkLayerProperties> instanceLayerProps(instanceLayerCount);
if (instanceLayerCount > 0)
{
ANGLE_SCOPED_DISABLE_LSAN();
ANGLE_VK_TRY(displayVk, vkEnumerateInstanceLayerProperties(&instanceLayerCount,
instanceLayerProps.data()));
}
VulkanLayerVector enabledInstanceLayerNames;
if (mEnableValidationLayers)
{
bool layersRequested =
(attribs.get(EGL_PLATFORM_ANGLE_DEBUG_LAYERS_ENABLED_ANGLE, EGL_DONT_CARE) == EGL_TRUE);
mEnableValidationLayers = GetAvailableValidationLayers(instanceLayerProps, layersRequested,
&enabledInstanceLayerNames);
}
if (wsiLayer)
{
enabledInstanceLayerNames.push_back(wsiLayer);
}
// Enumerate instance extensions that are provided by the vulkan
// implementation and implicit layers.
uint32_t instanceExtensionCount = 0;
{
ANGLE_SCOPED_DISABLE_LSAN();
ANGLE_VK_TRY(displayVk, vkEnumerateInstanceExtensionProperties(
nullptr, &instanceExtensionCount, nullptr));
}
std::vector<VkExtensionProperties> instanceExtensionProps(instanceExtensionCount);
if (instanceExtensionCount > 0)
{
ANGLE_SCOPED_DISABLE_LSAN();
ANGLE_VK_TRY(displayVk,
vkEnumerateInstanceExtensionProperties(nullptr, &instanceExtensionCount,
instanceExtensionProps.data()));
}
// Enumerate instance extensions that are provided by explicit layers.
for (const char *layerName : enabledInstanceLayerNames)
{
uint32_t previousExtensionCount = static_cast<uint32_t>(instanceExtensionProps.size());
uint32_t instanceLayerExtensionCount = 0;
{
ANGLE_SCOPED_DISABLE_LSAN();
ANGLE_VK_TRY(displayVk, vkEnumerateInstanceExtensionProperties(
layerName, &instanceLayerExtensionCount, nullptr));
}
instanceExtensionProps.resize(previousExtensionCount + instanceLayerExtensionCount);
{
ANGLE_SCOPED_DISABLE_LSAN();
ANGLE_VK_TRY(displayVk, vkEnumerateInstanceExtensionProperties(
layerName, &instanceLayerExtensionCount,
instanceExtensionProps.data() + previousExtensionCount));
}
}
vk::ExtensionNameList instanceExtensionNames;
if (!instanceExtensionProps.empty())
{
for (const VkExtensionProperties &i : instanceExtensionProps)
{
instanceExtensionNames.push_back(i.extensionName);
}
std::sort(instanceExtensionNames.begin(), instanceExtensionNames.end(), StrLess);
}
if (displayVk->isUsingSwapchain())
{
mEnabledInstanceExtensions.push_back(VK_KHR_SURFACE_EXTENSION_NAME);
}
if (wsiExtension)
{
mEnabledInstanceExtensions.push_back(wsiExtension);
}
mEnableDebugUtils = canLoadDebugUtils && mEnableValidationLayers &&
ExtensionFound(VK_EXT_DEBUG_UTILS_EXTENSION_NAME, instanceExtensionNames);
bool enableDebugReport =
mEnableValidationLayers && !mEnableDebugUtils &&
ExtensionFound(VK_EXT_DEBUG_REPORT_EXTENSION_NAME, instanceExtensionNames);
if (mEnableDebugUtils)
{
mEnabledInstanceExtensions.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME);
}
else if (enableDebugReport)
{
mEnabledInstanceExtensions.push_back(VK_EXT_DEBUG_REPORT_EXTENSION_NAME);
}
if (ExtensionFound(VK_KHR_GET_SURFACE_CAPABILITIES_2_EXTENSION_NAME, instanceExtensionNames))
{
mEnabledInstanceExtensions.push_back(VK_KHR_GET_SURFACE_CAPABILITIES_2_EXTENSION_NAME);
ANGLE_FEATURE_CONDITION(&mFeatures, supportsSurfaceCapabilities2Extension, true);
}
if (ExtensionFound(VK_KHR_SURFACE_PROTECTED_CAPABILITIES_EXTENSION_NAME,
instanceExtensionNames))
{
mEnabledInstanceExtensions.push_back(VK_KHR_SURFACE_PROTECTED_CAPABILITIES_EXTENSION_NAME);
ANGLE_FEATURE_CONDITION(&mFeatures, supportsSurfaceProtectedCapabilitiesExtension, true);
}
// Verify the required extensions are in the extension names set. Fail if not.
std::sort(mEnabledInstanceExtensions.begin(), mEnabledInstanceExtensions.end(), StrLess);
ANGLE_VK_TRY(displayVk,
VerifyExtensionsPresent(instanceExtensionNames, mEnabledInstanceExtensions));
// Enable VK_KHR_get_physical_device_properties_2 if available.
if (ExtensionFound(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME,
instanceExtensionNames))
{
mEnabledInstanceExtensions.push_back(
VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
VkApplicationInfo applicationInfo = {};
applicationInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
std::string appName = angle::GetExecutableName();
applicationInfo.pApplicationName = appName.c_str();
applicationInfo.applicationVersion = 1;
applicationInfo.pEngineName = "ANGLE";
applicationInfo.engineVersion = 1;
auto enumerateInstanceVersion = reinterpret_cast<PFN_vkEnumerateInstanceVersion>(
vkGetInstanceProcAddr(mInstance, "vkEnumerateInstanceVersion"));
if (!enumerateInstanceVersion)
{
mApiVersion = VK_API_VERSION_1_0;
}
else
{
uint32_t apiVersion = VK_API_VERSION_1_0;
{
ANGLE_SCOPED_DISABLE_LSAN();
ANGLE_VK_TRY(displayVk, enumerateInstanceVersion(&apiVersion));
}
if ((VK_VERSION_MAJOR(apiVersion) > 1) || (VK_VERSION_MINOR(apiVersion) >= 1))
{
// This is the highest version of core Vulkan functionality that ANGLE uses.
mApiVersion = kPreferredVulkanAPIVersion;
}
else
{
// Since only 1.0 instance-level functionality is available, this must set to 1.0.
mApiVersion = VK_API_VERSION_1_0;
}
}
applicationInfo.apiVersion = mApiVersion;
VkInstanceCreateInfo instanceInfo = {};
instanceInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
instanceInfo.flags = 0;
instanceInfo.pApplicationInfo = &applicationInfo;
// Enable requested layers and extensions.
instanceInfo.enabledExtensionCount = static_cast<uint32_t>(mEnabledInstanceExtensions.size());
instanceInfo.ppEnabledExtensionNames =
mEnabledInstanceExtensions.empty() ? nullptr : mEnabledInstanceExtensions.data();
mEnabledInstanceExtensions.push_back(nullptr);
instanceInfo.enabledLayerCount = static_cast<uint32_t>(enabledInstanceLayerNames.size());
instanceInfo.ppEnabledLayerNames = enabledInstanceLayerNames.data();
VkValidationFeatureEnableEXT enabledFeatures[] = {
VK_VALIDATION_FEATURE_ENABLE_BEST_PRACTICES_EXT};
VkValidationFeaturesEXT validationFeatures = {};
validationFeatures.sType = VK_STRUCTURE_TYPE_VALIDATION_FEATURES_EXT;
validationFeatures.enabledValidationFeatureCount = 1;
validationFeatures.pEnabledValidationFeatures = enabledFeatures;
if (mEnableValidationLayers)
{
// Enable best practices output which includes perfdoc layer
vk::AddToPNextChain(&instanceInfo, &validationFeatures);
}
ANGLE_VK_TRY(displayVk, vkCreateInstance(&instanceInfo, nullptr, &mInstance));
#if defined(ANGLE_SHARED_LIBVULKAN)
// Load volk if we are linking dynamically
volkLoadInstance(mInstance);
#endif // defined(ANGLE_SHARED_LIBVULKAN)
if (mEnableDebugUtils)
{
// Use the newer EXT_debug_utils if it exists.
#if !defined(ANGLE_SHARED_LIBVULKAN)
InitDebugUtilsEXTFunctions(mInstance);
#endif // !defined(ANGLE_SHARED_LIBVULKAN)
// Create the messenger callback.
VkDebugUtilsMessengerCreateInfoEXT messengerInfo = {};
constexpr VkDebugUtilsMessageSeverityFlagsEXT kSeveritiesToLog =
VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT;
constexpr VkDebugUtilsMessageTypeFlagsEXT kMessagesToLog =
VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT;
messengerInfo.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT;
messengerInfo.messageSeverity = kSeveritiesToLog;
messengerInfo.messageType = kMessagesToLog;
messengerInfo.pfnUserCallback = &DebugUtilsMessenger;
messengerInfo.pUserData = this;
ANGLE_VK_TRY(displayVk, vkCreateDebugUtilsMessengerEXT(mInstance, &messengerInfo, nullptr,
&mDebugUtilsMessenger));
}
else if (enableDebugReport)
{
// Fallback to EXT_debug_report.
#if !defined(ANGLE_SHARED_LIBVULKAN)
InitDebugReportEXTFunctions(mInstance);
#endif // !defined(ANGLE_SHARED_LIBVULKAN)
VkDebugReportCallbackCreateInfoEXT debugReportInfo = {};
debugReportInfo.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT;
debugReportInfo.flags = VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT;
debugReportInfo.pfnCallback = &DebugReportCallback;
debugReportInfo.pUserData = this;
ANGLE_VK_TRY(displayVk, vkCreateDebugReportCallbackEXT(mInstance, &debugReportInfo, nullptr,
&mDebugReportCallback));
}
if (std::find(mEnabledInstanceExtensions.begin(), mEnabledInstanceExtensions.end(),
VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME) !=
mEnabledInstanceExtensions.end())
{
#if !defined(ANGLE_SHARED_LIBVULKAN)
InitGetPhysicalDeviceProperties2KHRFunctions(mInstance);
#endif // !defined(ANGLE_SHARED_LIBVULKAN)
ASSERT(vkGetPhysicalDeviceProperties2KHR);
}
uint32_t physicalDeviceCount = 0;
ANGLE_VK_TRY(displayVk, vkEnumeratePhysicalDevices(mInstance, &physicalDeviceCount, nullptr));
ANGLE_VK_CHECK(displayVk, physicalDeviceCount > 0, VK_ERROR_INITIALIZATION_FAILED);
// TODO(jmadill): Handle multiple physical devices. For now, use the first device.
std::vector<VkPhysicalDevice> physicalDevices(physicalDeviceCount);
ANGLE_VK_TRY(displayVk, vkEnumeratePhysicalDevices(mInstance, &physicalDeviceCount,
physicalDevices.data()));
ChoosePhysicalDevice(vkGetPhysicalDeviceProperties, physicalDevices, mEnabledICD,
&mPhysicalDevice, &mPhysicalDeviceProperties);
mGarbageCollectionFlushThreshold =
static_cast<uint32_t>(mPhysicalDeviceProperties.limits.maxMemoryAllocationCount *
kPercentMaxMemoryAllocationCount);
vkGetPhysicalDeviceFeatures(mPhysicalDevice, &mPhysicalDeviceFeatures);
// Ensure we can find a graphics queue family.
uint32_t queueFamilyCount = 0;
vkGetPhysicalDeviceQueueFamilyProperties(mPhysicalDevice, &queueFamilyCount, nullptr);
ANGLE_VK_CHECK(displayVk, queueFamilyCount > 0, VK_ERROR_INITIALIZATION_FAILED);
mQueueFamilyProperties.resize(queueFamilyCount);
vkGetPhysicalDeviceQueueFamilyProperties(mPhysicalDevice, &queueFamilyCount,
mQueueFamilyProperties.data());
uint32_t queueFamilyMatchCount = 0;
// Try first for a protected graphics queue family
uint32_t firstGraphicsQueueFamily = vk::QueueFamily::FindIndex(
mQueueFamilyProperties,
(VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT | VK_QUEUE_PROTECTED_BIT), 0,
&queueFamilyMatchCount);
// else just a graphics queue family
if (queueFamilyMatchCount == 0)
{
firstGraphicsQueueFamily = vk::QueueFamily::FindIndex(
mQueueFamilyProperties, (VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT), 0,
&queueFamilyMatchCount);
}
ANGLE_VK_CHECK(displayVk, queueFamilyMatchCount > 0, VK_ERROR_INITIALIZATION_FAILED);
// If only one queue family, go ahead and initialize the device. If there is more than one
// queue, we'll have to wait until we see a WindowSurface to know which supports present.
if (queueFamilyMatchCount == 1)
{
ANGLE_TRY(initializeDevice(displayVk, firstGraphicsQueueFamily));
}
VkDeviceSize preferredLargeHeapBlockSize = 0;
if (mFeatures.preferredLargeHeapBlockSize4MB.enabled)
{
// This number matches Chromium and was picked by looking at memory usage of
// Android apps. The allocator will start making blocks at 1/8 the max size
// and builds up block size as needed before capping at the max set here.
preferredLargeHeapBlockSize = 4 * 1024 * 1024;
}
// Store the physical device memory properties so we can find the right memory pools.
mMemoryProperties.init(mPhysicalDevice);
// Create VMA allocator
ANGLE_VK_TRY(displayVk,
mAllocator.init(mPhysicalDevice, mDevice, mInstance, applicationInfo.apiVersion,
preferredLargeHeapBlockSize));
// Create buffer memory allocator
ANGLE_VK_TRY(displayVk, mBufferMemoryAllocator.initialize(this, preferredLargeHeapBlockSize));
{
ANGLE_TRACE_EVENT0("gpu.angle,startup", "GlslangWarmup");
sh::InitializeGlslang();
}
// Initialize the format table.
mFormatTable.initialize(this, &mNativeTextureCaps, &mNativeCaps.compressedTextureFormats);
setGlobalDebugAnnotator();
return angle::Result::Continue;
}
void RendererVk::queryDeviceExtensionFeatures(const vk::ExtensionNameList &deviceExtensionNames)
{
// Default initialize all extension features to false.
mLineRasterizationFeatures = {};
mLineRasterizationFeatures.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT;
mProvokingVertexFeatures = {};
mProvokingVertexFeatures.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_FEATURES_EXT;
mVertexAttributeDivisorFeatures = {};
mVertexAttributeDivisorFeatures.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT;
mVertexAttributeDivisorProperties = {};
mVertexAttributeDivisorProperties.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT;
mTransformFeedbackFeatures = {};
mTransformFeedbackFeatures.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT;
mIndexTypeUint8Features = {};
mIndexTypeUint8Features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT;
mSubgroupProperties = {};
mSubgroupProperties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES;
mMemoryReportFeatures = {};
mMemoryReportFeatures.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEVICE_MEMORY_REPORT_FEATURES_EXT;
mExternalMemoryHostProperties = {};
mExternalMemoryHostProperties.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT;
mShaderFloat16Int8Features = {};
mShaderFloat16Int8Features.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_FLOAT16_INT8_FEATURES;
mDepthStencilResolveProperties = {};
mDepthStencilResolveProperties.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES;
mCustomBorderColorFeatures = {};
mCustomBorderColorFeatures.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_FEATURES_EXT;
mMultisampledRenderToSingleSampledFeatures = {};
mMultisampledRenderToSingleSampledFeatures.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTISAMPLED_RENDER_TO_SINGLE_SAMPLED_FEATURES_EXT;
mMultiviewFeatures = {};
mMultiviewFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES;
mMultiviewProperties = {};
mMultiviewProperties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES;
mDriverProperties = {};
mDriverProperties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES;
mExternalFenceProperties = {};
mExternalFenceProperties.sType = VK_STRUCTURE_TYPE_EXTERNAL_FENCE_PROPERTIES;
mExternalSemaphoreProperties = {};
mExternalSemaphoreProperties.sType = VK_STRUCTURE_TYPE_EXTERNAL_SEMAPHORE_PROPERTIES;
mSamplerYcbcrConversionFeatures = {};
mSamplerYcbcrConversionFeatures.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES;
mProtectedMemoryFeatures = {};
mProtectedMemoryFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES;
mProtectedMemoryProperties = {};
mProtectedMemoryProperties.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES;
mHostQueryResetFeatures = {};
mHostQueryResetFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT;
if (!vkGetPhysicalDeviceProperties2KHR || !vkGetPhysicalDeviceFeatures2KHR)
{
return;
}
// Query features and properties.
VkPhysicalDeviceFeatures2KHR deviceFeatures = {};
deviceFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
VkPhysicalDeviceProperties2 deviceProperties = {};
deviceProperties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
// Query line rasterization features
if (ExtensionFound(VK_EXT_LINE_RASTERIZATION_EXTENSION_NAME, deviceExtensionNames))
{
vk::AddToPNextChain(&deviceFeatures, &mLineRasterizationFeatures);
}
// Query provoking vertex features
if (ExtensionFound(VK_EXT_PROVOKING_VERTEX_EXTENSION_NAME, deviceExtensionNames))
{
vk::AddToPNextChain(&deviceFeatures, &mProvokingVertexFeatures);
}
// Query attribute divisor features and properties
if (ExtensionFound(VK_EXT_VERTEX_ATTRIBUTE_DIVISOR_EXTENSION_NAME, deviceExtensionNames))
{
vk::AddToPNextChain(&deviceFeatures, &mVertexAttributeDivisorFeatures);
vk::AddToPNextChain(&deviceProperties, &mVertexAttributeDivisorProperties);
}
// Query transform feedback features
if (ExtensionFound(VK_EXT_TRANSFORM_FEEDBACK_EXTENSION_NAME, deviceExtensionNames))
{
vk::AddToPNextChain(&deviceFeatures, &mTransformFeedbackFeatures);
}
// Query uint8 index type features
if (ExtensionFound(VK_EXT_INDEX_TYPE_UINT8_EXTENSION_NAME, deviceExtensionNames))
{
vk::AddToPNextChain(&deviceFeatures, &mIndexTypeUint8Features);
}
// Query memory report features
if (ExtensionFound(VK_EXT_DEVICE_MEMORY_REPORT_EXTENSION_NAME, deviceExtensionNames))
{
vk::AddToPNextChain(&deviceFeatures, &mMemoryReportFeatures);
}
// Query external memory host properties
if (ExtensionFound(VK_EXT_EXTERNAL_MEMORY_HOST_EXTENSION_NAME, deviceExtensionNames))
{
vk::AddToPNextChain(&deviceProperties, &mExternalMemoryHostProperties);
}
// Query Ycbcr conversion properties
if (ExtensionFound(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME, deviceExtensionNames))
{
vk::AddToPNextChain(&deviceFeatures, &mSamplerYcbcrConversionFeatures);
}
// Query float16/int8 features
if (ExtensionFound(VK_KHR_SHADER_FLOAT16_INT8_EXTENSION_NAME, deviceExtensionNames))
{
vk::AddToPNextChain(&deviceFeatures, &mShaderFloat16Int8Features);
}
// Query depth/stencil resolve properties
if (ExtensionFound(VK_KHR_DEPTH_STENCIL_RESOLVE_EXTENSION_NAME, deviceExtensionNames))
{
vk::AddToPNextChain(&deviceProperties, &mDepthStencilResolveProperties);
}
// Query multisampled render to single-sampled features
if (ExtensionFound(VK_EXT_MULTISAMPLED_RENDER_TO_SINGLE_SAMPLED_EXTENSION_NAME,
deviceExtensionNames))
{
vk::AddToPNextChain(&deviceFeatures, &mMultisampledRenderToSingleSampledFeatures);
}
// Query multiview features and properties
if (ExtensionFound(VK_KHR_MULTIVIEW_EXTENSION_NAME, deviceExtensionNames))
{
vk::AddToPNextChain(&deviceFeatures, &mMultiviewFeatures);
vk::AddToPNextChain(&deviceProperties, &mMultiviewProperties);
}
// Query driver properties
if (ExtensionFound(VK_KHR_DRIVER_PROPERTIES_EXTENSION_NAME, deviceExtensionNames))
{
vk::AddToPNextChain(&deviceProperties, &mDriverProperties);
}
// Query custom border color features
if (ExtensionFound(VK_EXT_CUSTOM_BORDER_COLOR_EXTENSION_NAME, deviceExtensionNames))
{
vk::AddToPNextChain(&deviceFeatures, &mCustomBorderColorFeatures);
}
// Query subgroup properties
vk::AddToPNextChain(&deviceProperties, &mSubgroupProperties);
// Query protected memory features and properties
if (mPhysicalDeviceProperties.apiVersion >= VK_MAKE_VERSION(1, 1, 0))
{
vk::AddToPNextChain(&deviceFeatures, &mProtectedMemoryFeatures);
vk::AddToPNextChain(&deviceProperties, &mProtectedMemoryProperties);
}
// Query host query reset features
if (ExtensionFound(VK_EXT_HOST_QUERY_RESET_EXTENSION_NAME, deviceExtensionNames) ||
mPhysicalDeviceProperties.apiVersion >= VK_MAKE_VERSION(1, 2, 0))
{
vk::AddToPNextChain(&deviceFeatures, &mHostQueryResetFeatures);
}
vkGetPhysicalDeviceFeatures2KHR(mPhysicalDevice, &deviceFeatures);
vkGetPhysicalDeviceProperties2KHR(mPhysicalDevice, &deviceProperties);
// Fence properties
if (mFeatures.supportsExternalFenceCapabilities.enabled)
{
VkPhysicalDeviceExternalFenceInfo externalFenceInfo = {};
externalFenceInfo.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_FENCE_INFO;
externalFenceInfo.handleType = VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT_KHR;
vkGetPhysicalDeviceExternalFencePropertiesKHR(mPhysicalDevice, &externalFenceInfo,
&mExternalFenceProperties);
}
// Semaphore properties
if (mFeatures.supportsExternalSemaphoreCapabilities.enabled)
{
VkPhysicalDeviceExternalSemaphoreInfo externalSemaphoreInfo = {};
externalSemaphoreInfo.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_SEMAPHORE_INFO;
externalSemaphoreInfo.handleType = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT_KHR;
vkGetPhysicalDeviceExternalSemaphorePropertiesKHR(mPhysicalDevice, &externalSemaphoreInfo,
&mExternalSemaphoreProperties);
}
// Clean up pNext chains
mLineRasterizationFeatures.pNext = nullptr;
mMemoryReportFeatures.pNext = nullptr;
mProvokingVertexFeatures.pNext = nullptr;
mVertexAttributeDivisorFeatures.pNext = nullptr;
mVertexAttributeDivisorProperties.pNext = nullptr;
mTransformFeedbackFeatures.pNext = nullptr;
mIndexTypeUint8Features.pNext = nullptr;
mSubgroupProperties.pNext = nullptr;
mExternalMemoryHostProperties.pNext = nullptr;
mCustomBorderColorFeatures.pNext = nullptr;
mShaderFloat16Int8Features.pNext = nullptr;
mDepthStencilResolveProperties.pNext = nullptr;
mMultisampledRenderToSingleSampledFeatures.pNext = nullptr;
mMultiviewFeatures.pNext = nullptr;
mMultiviewProperties.pNext = nullptr;
mDriverProperties.pNext = nullptr;
mSamplerYcbcrConversionFeatures.pNext = nullptr;
mProtectedMemoryFeatures.pNext = nullptr;
mProtectedMemoryProperties.pNext = nullptr;
mHostQueryResetFeatures.pNext = nullptr;
}
angle::Result RendererVk::initializeDevice(DisplayVk *displayVk, uint32_t queueFamilyIndex)
{
uint32_t deviceLayerCount = 0;
ANGLE_VK_TRY(displayVk,
vkEnumerateDeviceLayerProperties(mPhysicalDevice, &deviceLayerCount, nullptr));
std::vector<VkLayerProperties> deviceLayerProps(deviceLayerCount);
ANGLE_VK_TRY(displayVk, vkEnumerateDeviceLayerProperties(mPhysicalDevice, &deviceLayerCount,
deviceLayerProps.data()));
VulkanLayerVector enabledDeviceLayerNames;
if (mEnableValidationLayers)
{
mEnableValidationLayers =
GetAvailableValidationLayers(deviceLayerProps, false, &enabledDeviceLayerNames);
}
const char *wsiLayer = displayVk->getWSILayer();
if (wsiLayer)
{
enabledDeviceLayerNames.push_back(wsiLayer);
}
// Enumerate device extensions that are provided by the vulkan
// implementation and implicit layers.
uint32_t deviceExtensionCount = 0;
ANGLE_VK_TRY(displayVk, vkEnumerateDeviceExtensionProperties(mPhysicalDevice, nullptr,
&deviceExtensionCount, nullptr));
// Work-around a race condition in the Android platform during Android start-up, that can cause
// the second call to vkEnumerateDeviceExtensionProperties to have an additional extension. In
// that case, the second call will return VK_INCOMPLETE. To work-around that, add 1 to
// deviceExtensionCount and ask for one more extension property than the first call said there
// were. See: http://anglebug.com/6715 and internal-to-Google bug: b/206733351.
deviceExtensionCount++;
std::vector<VkExtensionProperties> deviceExtensionProps(deviceExtensionCount);
ANGLE_VK_TRY(displayVk,
vkEnumerateDeviceExtensionProperties(
mPhysicalDevice, nullptr, &deviceExtensionCount, deviceExtensionProps.data()));
// In case fewer items were returned than requested, resize deviceExtensionProps to the number
// of extensions returned (i.e. deviceExtensionCount). See: b/208937840
deviceExtensionProps.resize(deviceExtensionCount);
// Enumerate device extensions that are provided by explicit layers.
for (const char *layerName : enabledDeviceLayerNames)
{
uint32_t previousExtensionCount = static_cast<uint32_t>(deviceExtensionProps.size());
uint32_t deviceLayerExtensionCount = 0;
ANGLE_VK_TRY(displayVk,
vkEnumerateDeviceExtensionProperties(mPhysicalDevice, layerName,
&deviceLayerExtensionCount, nullptr));
deviceExtensionProps.resize(previousExtensionCount + deviceLayerExtensionCount);
ANGLE_VK_TRY(displayVk, vkEnumerateDeviceExtensionProperties(
mPhysicalDevice, layerName, &deviceLayerExtensionCount,
deviceExtensionProps.data() + previousExtensionCount));
}
vk::ExtensionNameList deviceExtensionNames;
if (!deviceExtensionProps.empty())
{
ASSERT(deviceExtensionNames.size() <= deviceExtensionProps.size());
for (const VkExtensionProperties &prop : deviceExtensionProps)
{
deviceExtensionNames.push_back(prop.extensionName);
}
std::sort(deviceExtensionNames.begin(), deviceExtensionNames.end(), StrLess);
}
if (displayVk->isUsingSwapchain())
{
mEnabledDeviceExtensions.push_back(VK_KHR_SWAPCHAIN_EXTENSION_NAME);
}
// Query extensions and their features.
queryDeviceExtensionFeatures(deviceExtensionNames);
// Initialize features and workarounds.
initFeatures(displayVk, deviceExtensionNames);
// Enable VK_KHR_shared_presentable_image
if (ExtensionFound(VK_KHR_SHARED_PRESENTABLE_IMAGE_EXTENSION_NAME, deviceExtensionNames))
{
mEnabledDeviceExtensions.push_back(VK_KHR_SHARED_PRESENTABLE_IMAGE_EXTENSION_NAME);
ANGLE_FEATURE_CONDITION(&mFeatures, supportsSharedPresentableImageExtension, true);
}
// Enable VK_EXT_depth_clip_enable, if supported
if (ExtensionFound(VK_EXT_DEPTH_CLIP_ENABLE_EXTENSION_NAME, deviceExtensionNames))
{
mEnabledDeviceExtensions.push_back(VK_EXT_DEPTH_CLIP_ENABLE_EXTENSION_NAME);
}
// Enable VK_KHR_get_memory_requirements2, if supported
bool hasGetMemoryRequirements2KHR = false;
if (ExtensionFound(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME, deviceExtensionNames))
{
mEnabledDeviceExtensions.push_back(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME);
hasGetMemoryRequirements2KHR = true;
}
if (ExtensionFound(VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME, deviceExtensionNames))
{
mEnabledDeviceExtensions.push_back(VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME);
}
// Enable VK_KHR_bind_memory2, if supported
bool hasBindMemory2KHR = false;
if (ExtensionFound(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME, deviceExtensionNames))
{
hasBindMemory2KHR = true;
mEnabledDeviceExtensions.push_back(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME);
}
// Enable KHR_MAINTENANCE1 to support viewport flipping.
if (mPhysicalDeviceProperties.apiVersion < VK_MAKE_VERSION(1, 1, 0))
{
mEnabledDeviceExtensions.push_back(VK_KHR_MAINTENANCE1_EXTENSION_NAME);
}
if (getFeatures().supportsRenderpass2.enabled)
{
mEnabledDeviceExtensions.push_back(VK_KHR_CREATE_RENDERPASS_2_EXTENSION_NAME);
}
if (getFeatures().supportsIncrementalPresent.enabled)
{
mEnabledDeviceExtensions.push_back(VK_KHR_INCREMENTAL_PRESENT_EXTENSION_NAME);
}
#if defined(ANGLE_PLATFORM_ANDROID)
if (getFeatures().supportsAndroidHardwareBuffer.enabled)
{
mEnabledDeviceExtensions.push_back(VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME);
mEnabledDeviceExtensions.push_back(
VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME);
# if !defined(ANGLE_SHARED_LIBVULKAN)
InitExternalMemoryHardwareBufferANDROIDFunctions(mInstance);
# endif // !defined(ANGLE_SHARED_LIBVULKAN)
}
#else
ASSERT(!getFeatures().supportsAndroidHardwareBuffer.enabled);
#endif
#if defined(ANGLE_PLATFORM_GGP)
if (getFeatures().supportsGGPFrameToken.enabled)
{
mEnabledDeviceExtensions.push_back(VK_GGP_FRAME_TOKEN_EXTENSION_NAME);
}
ANGLE_VK_CHECK(displayVk, getFeatures().supportsGGPFrameToken.enabled,
VK_ERROR_EXTENSION_NOT_PRESENT);
#else
ASSERT(!getFeatures().supportsGGPFrameToken.enabled);
#endif
if (getFeatures().supportsAndroidHardwareBuffer.enabled ||
getFeatures().supportsExternalMemoryFd.enabled ||
getFeatures().supportsExternalMemoryFuchsia.enabled)
{
mEnabledDeviceExtensions.push_back(VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME);
}
if (getFeatures().supportsExternalMemoryFd.enabled)
{
mEnabledDeviceExtensions.push_back(VK_KHR_EXTERNAL_MEMORY_FD_EXTENSION_NAME);
}
if (getFeatures().supportsExternalMemoryFuchsia.enabled)
{
mEnabledDeviceExtensions.push_back(VK_FUCHSIA_EXTERNAL_MEMORY_EXTENSION_NAME);
}
if (getFeatures().supportsExternalSemaphoreFd.enabled ||
getFeatures().supportsExternalSemaphoreFuchsia.enabled)
{
mEnabledDeviceExtensions.push_back(VK_KHR_EXTERNAL_SEMAPHORE_EXTENSION_NAME);
#if !defined(ANGLE_SHARED_LIBVULKAN)
InitExternalSemaphoreFdFunctions(mInstance);
#endif // !defined(ANGLE_SHARED_LIBVULKAN)
}
if (getFeatures().supportsExternalSemaphoreCapabilities.enabled)
{
mEnabledDeviceExtensions.push_back(VK_KHR_EXTERNAL_SEMAPHORE_CAPABILITIES_EXTENSION_NAME);
}
if (getFeatures().supportsExternalFenceCapabilities.enabled)
{
mEnabledDeviceExtensions.push_back(VK_KHR_EXTERNAL_FENCE_CAPABILITIES_EXTENSION_NAME);
}
if (getFeatures().supportsExternalSemaphoreFd.enabled)
{
mEnabledDeviceExtensions.push_back(VK_KHR_EXTERNAL_SEMAPHORE_FD_EXTENSION_NAME);
}
if (getFeatures().supportsExternalSemaphoreCapabilities.enabled)
{
mEnabledDeviceExtensions.push_back(VK_KHR_EXTERNAL_SEMAPHORE_CAPABILITIES_EXTENSION_NAME);
#if !defined(ANGLE_SHARED_LIBVULKAN)
InitExternalSemaphoreCapabilitiesFunctions(mInstance);
#endif // !defined(ANGLE_SHARED_LIBVULKAN)
}
if (getFeatures().supportsExternalFenceFd.enabled)
{
mEnabledDeviceExtensions.push_back(VK_KHR_EXTERNAL_FENCE_FD_EXTENSION_NAME);
#if !defined(ANGLE_SHARED_LIBVULKAN)
InitExternalFenceFdFunctions(mInstance);
#endif // !defined(ANGLE_SHARED_LIBVULKAN)
}
if (getFeatures().supportsExternalFenceCapabilities.enabled)
{
mEnabledDeviceExtensions.push_back(VK_KHR_EXTERNAL_FENCE_CAPABILITIES_EXTENSION_NAME);
#if !defined(ANGLE_SHARED_LIBVULKAN)
InitExternalFenceCapabilitiesFunctions(mInstance);
#endif // !defined(ANGLE_SHARED_LIBVULKAN)
}
if (getFeatures().supportsExternalSemaphoreFuchsia.enabled)
{
mEnabledDeviceExtensions.push_back(VK_FUCHSIA_EXTERNAL_SEMAPHORE_EXTENSION_NAME);
}
if (getFeatures().supportsShaderStencilExport.enabled)
{
mEnabledDeviceExtensions.push_back(VK_EXT_SHADER_STENCIL_EXPORT_EXTENSION_NAME);
}
if (getFeatures().supportsRenderPassLoadStoreOpNone.enabled)
{
mEnabledDeviceExtensions.push_back(VK_EXT_LOAD_STORE_OP_NONE_EXTENSION_NAME);
}
else if (getFeatures().supportsRenderPassStoreOpNoneQCOM.enabled)
{
mEnabledDeviceExtensions.push_back(VK_QCOM_RENDER_PASS_STORE_OPS_EXTENSION_NAME);
}
if (getFeatures().supportsImageFormatList.enabled)
{
mEnabledDeviceExtensions.push_back(VK_KHR_IMAGE_FORMAT_LIST_EXTENSION_NAME);
}
std::sort(mEnabledDeviceExtensions.begin(), mEnabledDeviceExtensions.end(), StrLess);
ANGLE_VK_TRY(displayVk,
VerifyExtensionsPresent(deviceExtensionNames, mEnabledDeviceExtensions));
// Select additional features to be enabled.
mEnabledFeatures = {};
mEnabledFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
// Used to support cubemap array:
mEnabledFeatures.features.imageCubeArray = getFeatures().supportsImageCubeArray.enabled;
// Used to support framebuffers with multiple attachments:
mEnabledFeatures.features.independentBlend = mPhysicalDeviceFeatures.independentBlend;
// Used to support multi_draw_indirect
mEnabledFeatures.features.multiDrawIndirect = mPhysicalDeviceFeatures.multiDrawIndirect;
// Used to support robust buffer access:
mEnabledFeatures.features.robustBufferAccess = mPhysicalDeviceFeatures.robustBufferAccess;
// Used to support Anisotropic filtering:
mEnabledFeatures.features.samplerAnisotropy = mPhysicalDeviceFeatures.samplerAnisotropy;
// Used to support wide lines:
mEnabledFeatures.features.wideLines = mPhysicalDeviceFeatures.wideLines;
// Used to emulate transform feedback:
mEnabledFeatures.features.vertexPipelineStoresAndAtomics =
mPhysicalDeviceFeatures.vertexPipelineStoresAndAtomics;
// Used to implement storage buffers and images in the fragment shader:
mEnabledFeatures.features.fragmentStoresAndAtomics =
mPhysicalDeviceFeatures.fragmentStoresAndAtomics;
// Used to emulate the primitives generated query:
mEnabledFeatures.features.pipelineStatisticsQuery =
getFeatures().supportsPipelineStatisticsQuery.enabled;
// Used to support geometry shaders:
mEnabledFeatures.features.geometryShader = mPhysicalDeviceFeatures.geometryShader;
// Used to support EXT_gpu_shader5:
mEnabledFeatures.features.shaderImageGatherExtended =
mPhysicalDeviceFeatures.shaderImageGatherExtended;
// Used to support EXT_gpu_shader5:
mEnabledFeatures.features.shaderUniformBufferArrayDynamicIndexing =
mPhysicalDeviceFeatures.shaderUniformBufferArrayDynamicIndexing;
mEnabledFeatures.features.shaderSampledImageArrayDynamicIndexing =
mPhysicalDeviceFeatures.shaderSampledImageArrayDynamicIndexing;
// Used to support APPLE_clip_distance
mEnabledFeatures.features.shaderClipDistance = mPhysicalDeviceFeatures.shaderClipDistance;
// Used to support OES_sample_shading
mEnabledFeatures.features.sampleRateShading = mPhysicalDeviceFeatures.sampleRateShading;
// Used to support depth clears through draw calls.
mEnabledFeatures.features.depthClamp = mPhysicalDeviceFeatures.depthClamp;
// Used to support EXT_clip_cull_distance
mEnabledFeatures.features.shaderCullDistance = mPhysicalDeviceFeatures.shaderCullDistance;
// Used to support tessellation Shader:
mEnabledFeatures.features.tessellationShader = mPhysicalDeviceFeatures.tessellationShader;
// Used to support EXT_blend_func_extended
mEnabledFeatures.features.dualSrcBlend = mPhysicalDeviceFeatures.dualSrcBlend;
if (!vk::CommandBuffer::ExecutesInline())
{
mEnabledFeatures.features.inheritedQueries = mPhysicalDeviceFeatures.inheritedQueries;
}
// Setup device initialization struct
VkDeviceCreateInfo createInfo = {};
// Based on available extension features, decide on which extensions and features to enable.
if (mLineRasterizationFeatures.bresenhamLines)
{
mEnabledDeviceExtensions.push_back(VK_EXT_LINE_RASTERIZATION_EXTENSION_NAME);
vk::AddToPNextChain(&mEnabledFeatures, &mLineRasterizationFeatures);
}
if (mProvokingVertexFeatures.provokingVertexLast)
{
mEnabledDeviceExtensions.push_back(VK_EXT_PROVOKING_VERTEX_EXTENSION_NAME);
vk::AddToPNextChain(&mEnabledFeatures, &mProvokingVertexFeatures);
}
if (mVertexAttributeDivisorFeatures.vertexAttributeInstanceRateDivisor)
{
mEnabledDeviceExtensions.push_back(VK_EXT_VERTEX_ATTRIBUTE_DIVISOR_EXTENSION_NAME);
vk::AddToPNextChain(&mEnabledFeatures, &mVertexAttributeDivisorFeatures);
// We only store 8 bit divisor in GraphicsPipelineDesc so capping value & we emulate if
// exceeded
mMaxVertexAttribDivisor =
std::min(mVertexAttributeDivisorProperties.maxVertexAttribDivisor,
static_cast<uint32_t>(std::numeric_limits<uint8_t>::max()));
}
if (getFeatures().supportsTransformFeedbackExtension.enabled)
{
mEnabledDeviceExtensions.push_back(VK_EXT_TRANSFORM_FEEDBACK_EXTENSION_NAME);
vk::AddToPNextChain(&mEnabledFeatures, &mTransformFeedbackFeatures);
}
if (getFeatures().supportsCustomBorderColorEXT.enabled)
{
mEnabledDeviceExtensions.push_back(VK_EXT_CUSTOM_BORDER_COLOR_EXTENSION_NAME);
vk::AddToPNextChain(&mEnabledFeatures, &mCustomBorderColorFeatures);
}
if (getFeatures().supportsIndexTypeUint8.enabled)
{
mEnabledDeviceExtensions.push_back(VK_EXT_INDEX_TYPE_UINT8_EXTENSION_NAME);
vk::AddToPNextChain(&mEnabledFeatures, &mIndexTypeUint8Features);
}
if (getFeatures().supportsDepthStencilResolve.enabled)
{
mEnabledDeviceExtensions.push_back(VK_KHR_DEPTH_STENCIL_RESOLVE_EXTENSION_NAME);
}
if (getFeatures().supportsMultisampledRenderToSingleSampled.enabled)
{
mEnabledDeviceExtensions.push_back(
VK_EXT_MULTISAMPLED_RENDER_TO_SINGLE_SAMPLED_EXTENSION_NAME);
vk::AddToPNextChain(&mEnabledFeatures, &mMultisampledRenderToSingleSampledFeatures);
}
if (getFeatures().supportsMultiview.enabled)
{
// OVR_multiview disallows multiview with geometry and tessellation, so don't request these
// features.
mMultiviewFeatures.multiviewGeometryShader = VK_FALSE;
mMultiviewFeatures.multiviewTessellationShader = VK_FALSE;
mEnabledDeviceExtensions.push_back(VK_KHR_MULTIVIEW_EXTENSION_NAME);
vk::AddToPNextChain(&mEnabledFeatures, &mMultiviewFeatures);
}
if (getFeatures().logMemoryReportCallbacks.enabled ||
getFeatures().logMemoryReportStats.enabled)
{
if (mMemoryReportFeatures.deviceMemoryReport)
{
mEnabledDeviceExtensions.push_back(VK_EXT_DEVICE_MEMORY_REPORT_EXTENSION_NAME);
mMemoryReportCallback = {};
mMemoryReportCallback.sType =
VK_STRUCTURE_TYPE_DEVICE_DEVICE_MEMORY_REPORT_CREATE_INFO_EXT;
mMemoryReportCallback.pfnUserCallback = &MemoryReportCallback;
mMemoryReportCallback.pUserData = this;
vk::AddToPNextChain(&createInfo, &mMemoryReportCallback);
}
else
{
WARN() << "Disabling the following feature(s) because driver does not support "
"VK_EXT_device_memory_report extension:";
if (getFeatures().logMemoryReportStats.enabled)
{
WARN() << "\tlogMemoryReportStats";
ANGLE_FEATURE_CONDITION(&mFeatures, logMemoryReportStats, false);
}
if (getFeatures().logMemoryReportCallbacks.enabled)
{
WARN() << "\tlogMemoryReportCallbacks";
ANGLE_FEATURE_CONDITION(&mFeatures, logMemoryReportCallbacks, false);
}
}
}
if (getFeatures().supportsExternalMemoryDmaBufAndModifiers.enabled)
{
mEnabledDeviceExtensions.push_back(VK_EXT_EXTERNAL_MEMORY_DMA_BUF_EXTENSION_NAME);
mEnabledDeviceExtensions.push_back(VK_EXT_IMAGE_DRM_FORMAT_MODIFIER_EXTENSION_NAME);
}
if (getFeatures().supportsExternalMemoryHost.enabled)
{
mEnabledDeviceExtensions.push_back(VK_EXT_EXTERNAL_MEMORY_HOST_EXTENSION_NAME);
mMinImportedHostPointerAlignment =
mExternalMemoryHostProperties.minImportedHostPointerAlignment;
#if !defined(ANGLE_SHARED_LIBVULKAN)
InitExternalMemoryHostFunctions(mInstance);
#endif // !defined(ANGLE_SHARED_LIBVULKAN)
}
if (getFeatures().supportsYUVSamplerConversion.enabled)
{
mEnabledDeviceExtensions.push_back(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME);
vk::AddToPNextChain(&mEnabledFeatures, &mSamplerYcbcrConversionFeatures);
}
if (getFeatures().supportsShaderFloat16.enabled)
{
mEnabledDeviceExtensions.push_back(VK_KHR_SHADER_FLOAT16_INT8_EXTENSION_NAME);
vk::AddToPNextChain(&mEnabledFeatures, &mShaderFloat16Int8Features);
}
if (getFeatures().supportsProtectedMemory.enabled)
{
vk::AddToPNextChain(&mEnabledFeatures, &mProtectedMemoryFeatures);
}
if (getFeatures().supportsHostQueryReset.enabled)
{
mEnabledDeviceExtensions.push_back(VK_EXT_HOST_QUERY_RESET_EXTENSION_NAME);
vk::AddToPNextChain(&mEnabledFeatures, &mHostQueryResetFeatures);
}
mCurrentQueueFamilyIndex = queueFamilyIndex;
vk::QueueFamily queueFamily;
queueFamily.initialize(mQueueFamilyProperties[queueFamilyIndex], queueFamilyIndex);
ANGLE_VK_CHECK(displayVk, queueFamily.getDeviceQueueCount() > 0,
VK_ERROR_INITIALIZATION_FAILED);
// We enable protected context only if both supportsProtectedMemory and device also supports
// protected. There are cases we have to disable supportsProtectedMemory feature due to driver
// bugs.
bool enableProtectedContent =
queueFamily.supportsProtected() && getFeatures().supportsProtectedMemory.enabled;
uint32_t queueCount = std::min(queueFamily.getDeviceQueueCount(),
static_cast<uint32_t>(egl::ContextPriority::EnumCount));
uint32_t queueCreateInfoCount = 1;
VkDeviceQueueCreateInfo queueCreateInfo[1] = {};
queueCreateInfo[0].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueCreateInfo[0].flags = enableProtectedContent ? VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT : 0;
queueCreateInfo[0].queueFamilyIndex = queueFamilyIndex;
queueCreateInfo[0].queueCount = queueCount;
queueCreateInfo[0].pQueuePriorities = vk::QueueFamily::kQueuePriorities;
// Create Device
createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
createInfo.flags = 0;
createInfo.queueCreateInfoCount = queueCreateInfoCount;
createInfo.pQueueCreateInfos = queueCreateInfo;
createInfo.enabledLayerCount = static_cast<uint32_t>(enabledDeviceLayerNames.size());
createInfo.ppEnabledLayerNames = enabledDeviceLayerNames.data();
createInfo.enabledExtensionCount = static_cast<uint32_t>(mEnabledDeviceExtensions.size());
createInfo.ppEnabledExtensionNames =
mEnabledDeviceExtensions.empty() ? nullptr : mEnabledDeviceExtensions.data();
mEnabledDeviceExtensions.push_back(nullptr);
// Enable core features without assuming VkPhysicalDeviceFeatures2KHR is accepted in the
// pNext chain of VkDeviceCreateInfo.
createInfo.pEnabledFeatures = &mEnabledFeatures.features;
// Append the feature structs chain to the end of createInfo structs chain.
if (mEnabledFeatures.pNext)
{
vk::AppendToPNextChain(&createInfo, mEnabledFeatures.pNext);
}
ANGLE_VK_TRY(displayVk, vkCreateDevice(mPhysicalDevice, &createInfo, nullptr, &mDevice));
#if defined(ANGLE_SHARED_LIBVULKAN)
// Load volk if we are loading dynamically
volkLoadDevice(mDevice);
#endif // defined(ANGLE_SHARED_LIBVULKAN)
vk::DeviceQueueMap graphicsQueueMap =
queueFamily.initializeQueueMap(mDevice, enableProtectedContent, 0, queueCount);
if (isAsyncCommandQueueEnabled())
{
ANGLE_TRY(mCommandProcessor.init(displayVk, graphicsQueueMap));
}
else
{
ANGLE_TRY(mCommandQueue.init(displayVk, graphicsQueueMap));
}
#if defined(ANGLE_SHARED_LIBVULKAN)
// Avoid compiler warnings on unused-but-set variables.
ANGLE_UNUSED_VARIABLE(hasGetMemoryRequirements2KHR);
ANGLE_UNUSED_VARIABLE(hasBindMemory2KHR);
#else
if (getFeatures().supportsHostQueryReset.enabled)
{
InitHostQueryResetFunctions(mInstance);
}
if (hasGetMemoryRequirements2KHR)
{
InitGetMemoryRequirements2KHRFunctions(mDevice);
}
if (hasBindMemory2KHR)
{
InitBindMemory2KHRFunctions(mDevice);
}
if (getFeatures().supportsTransformFeedbackExtension.enabled)
{
InitTransformFeedbackEXTFunctions(mDevice);
}
if (getFeatures().supportsYUVSamplerConversion.enabled)
{
InitSamplerYcbcrKHRFunctions(mDevice);
}
if (getFeatures().supportsRenderpass2.enabled)
{
InitRenderPass2KHRFunctions(mDevice);
}
#endif // !defined(ANGLE_SHARED_LIBVULKAN)
if (getFeatures().forceMaxUniformBufferSize16KB.enabled)
{
mDefaultUniformBufferSize = kMinDefaultUniformBufferSize;
}
// Cap it with the driver limit
mDefaultUniformBufferSize = std::min(
mDefaultUniformBufferSize, getPhysicalDeviceProperties().limits.maxUniformBufferRange);
// Initialize the vulkan pipeline cache.
bool success = false;
{
std::lock_guard<std::mutex> lock(mPipelineCacheMutex);
ANGLE_TRY(initPipelineCache(displayVk, &mPipelineCache, &success));
}
// Track the set of supported pipeline stages. This is used when issuing image layout
// transitions that cover many stages (such as AllGraphicsReadOnly) to mask out unsupported
// stages, which avoids enumerating every possible combination of stages in the layouts.
VkPipelineStageFlags unsupportedStages = 0;
if (!mPhysicalDeviceFeatures.tessellationShader)
{
unsupportedStages |= VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT |
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT;
}
if (!mPhysicalDeviceFeatures.geometryShader)
{
unsupportedStages |= VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT;
}
mSupportedVulkanPipelineStageMask = ~unsupportedStages;
return angle::Result::Continue;
}
angle::Result RendererVk::selectPresentQueueForSurface(DisplayVk *displayVk,
VkSurfaceKHR surface,
uint32_t *presentQueueOut)
{
// We've already initialized a device, and can't re-create it unless it's never been used.
// TODO(jmadill): Handle the re-creation case if necessary.
if (mDevice != VK_NULL_HANDLE)
{
ASSERT(mCurrentQueueFamilyIndex != std::numeric_limits<uint32_t>::max());
// Check if the current device supports present on this surface.
VkBool32 supportsPresent = VK_FALSE;
ANGLE_VK_TRY(displayVk,
vkGetPhysicalDeviceSurfaceSupportKHR(mPhysicalDevice, mCurrentQueueFamilyIndex,
surface, &supportsPresent));
if (supportsPresent == VK_TRUE)
{
*presentQueueOut = mCurrentQueueFamilyIndex;
return angle::Result::Continue;
}
}
// Find a graphics and present queue.
Optional<uint32_t> newPresentQueue;
uint32_t queueCount = static_cast<uint32_t>(mQueueFamilyProperties.size());
constexpr VkQueueFlags kGraphicsAndCompute = VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT;
for (uint32_t queueIndex = 0; queueIndex < queueCount; ++queueIndex)
{
const auto &queueInfo = mQueueFamilyProperties[queueIndex];
if ((queueInfo.queueFlags & kGraphicsAndCompute) == kGraphicsAndCompute)
{
VkBool32 supportsPresent = VK_FALSE;
ANGLE_VK_TRY(displayVk, vkGetPhysicalDeviceSurfaceSupportKHR(
mPhysicalDevice, queueIndex, surface, &supportsPresent));
if (supportsPresent == VK_TRUE)
{
newPresentQueue = queueIndex;
break;
}
}
}
ANGLE_VK_CHECK(displayVk, newPresentQueue.valid(), VK_ERROR_INITIALIZATION_FAILED);
ANGLE_TRY(initializeDevice(displayVk, newPresentQueue.value()));
*presentQueueOut = newPresentQueue.value();
return angle::Result::Continue;
}
std::string RendererVk::getVendorString() const
{
return GetVendorString(mPhysicalDeviceProperties.vendorID);
}
std::string RendererVk::getRendererDescription() const
{
std::stringstream strstr;
uint32_t apiVersion = mPhysicalDeviceProperties.apiVersion;
strstr << "Vulkan ";
strstr << VK_VERSION_MAJOR(apiVersion) << ".";
strstr << VK_VERSION_MINOR(apiVersion) << ".";
strstr << VK_VERSION_PATCH(apiVersion);
strstr << " (";
// In the case of NVIDIA, deviceName does not necessarily contain "NVIDIA". Add "NVIDIA" so that
// Vulkan end2end tests can be selectively disabled on NVIDIA. TODO(jmadill): should not be
// needed after http://anglebug.com/1874 is fixed and end2end_tests use more sophisticated
// driver detection.
if (mPhysicalDeviceProperties.vendorID == VENDOR_ID_NVIDIA)
{
strstr << GetVendorString(mPhysicalDeviceProperties.vendorID) << " ";
}
strstr << mPhysicalDeviceProperties.deviceName;
strstr << " (" << gl::FmtHex(mPhysicalDeviceProperties.deviceID) << ")";
strstr << ")";
return strstr.str();
}
std::string RendererVk::getVersionString() const
{
std::stringstream strstr;
uint32_t driverVersion = mPhysicalDeviceProperties.driverVersion;
std::string driverName = std::string(mDriverProperties.driverName);
if (!driverName.empty())
{
strstr << driverName;
}
else
{
strstr << GetVendorString(mPhysicalDeviceProperties.vendorID);
}
strstr << "-";
if (mPhysicalDeviceProperties.vendorID == VENDOR_ID_NVIDIA)
{
strstr << ANGLE_VK_VERSION_MAJOR_NVIDIA(driverVersion) << ".";
strstr << ANGLE_VK_VERSION_MINOR_NVIDIA(driverVersion) << ".";
strstr << ANGLE_VK_VERSION_SUB_MINOR_NVIDIA(driverVersion) << ".";
strstr << ANGLE_VK_VERSION_PATCH_NVIDIA(driverVersion);
}
else if (mPhysicalDeviceProperties.vendorID == VENDOR_ID_INTEL && IsWindows())
{
strstr << ANGLE_VK_VERSION_MAJOR_WIN_INTEL(driverVersion) << ".";
strstr << ANGLE_VK_VERSION_MAJOR_WIN_INTEL(driverVersion) << ".";
}
// All other drivers use the Vulkan standard
else
{
strstr << VK_VERSION_MAJOR(driverVersion) << ".";
strstr << VK_VERSION_MINOR(driverVersion) << ".";
strstr << VK_VERSION_PATCH(driverVersion);
}
return strstr.str();
}
gl::Version RendererVk::getMaxSupportedESVersion() const
{
// Current highest supported version
gl::Version maxVersion = gl::Version(3, 2);
// Early out without downgrading ES version if mock ICD enabled.
// Mock ICD doesn't expose sufficient capabilities yet.
// https://github.com/KhronosGroup/Vulkan-Tools/issues/84
if (isMockICDEnabled())
{
return maxVersion;
}
// Limit to ES3.1 if there are any blockers for 3.2.
if (!vk::CanSupportGPUShader5EXT(mPhysicalDeviceFeatures) &&
!mFeatures.exposeNonConformantExtensionsAndVersions.enabled)
{
maxVersion = LimitVersionTo(maxVersion, {3, 1});
}
// TODO: more extension checks for 3.2. http://anglebug.com/5366
if (!mFeatures.exposeNonConformantExtensionsAndVersions.enabled)
{
maxVersion = LimitVersionTo(maxVersion, {3, 1});
}
// Limit to ES3.0 if there are any blockers for 3.1.
// ES3.1 requires at least one atomic counter buffer and four storage buffers in compute.
// Atomic counter buffers are emulated with storage buffers. For simplicity, we always support
// either none or IMPLEMENTATION_MAX_ATOMIC_COUNTER_BUFFERS atomic counter buffers. So if
// Vulkan doesn't support at least that many storage buffers in compute, we don't support 3.1.
const uint32_t kMinimumStorageBuffersForES31 =
gl::limits::kMinimumComputeStorageBuffers +
gl::IMPLEMENTATION_MAX_ATOMIC_COUNTER_BUFFER_BINDINGS;
if (mPhysicalDeviceProperties.limits.maxPerStageDescriptorStorageBuffers <
kMinimumStorageBuffersForES31)
{
maxVersion = LimitVersionTo(maxVersion, {3, 0});
}
// ES3.1 requires at least a maximum offset of at least 2047.
// If the Vulkan implementation can't support that, we cannot support 3.1.
if (mPhysicalDeviceProperties.limits.maxVertexInputAttributeOffset < 2047)
{
maxVersion = LimitVersionTo(maxVersion, {3, 0});
}
// Limit to ES2.0 if there are any blockers for 3.0.
// TODO: http://anglebug.com/3972 Limit to GLES 2.0 if flat shading can't be emulated
// Multisample textures (ES3.1) and multisample renderbuffers (ES3.0) require the Vulkan driver
// to support the standard sample locations (in order to pass dEQP tests that check these
// locations). If the Vulkan implementation can't support that, we cannot support 3.0/3.1.
if (mPhysicalDeviceProperties.limits.standardSampleLocations != VK_TRUE)
{
maxVersion = LimitVersionTo(maxVersion, {2, 0});
}
// If independentBlend is not supported, we can't have a mix of has-alpha and emulated-alpha
// render targets in a framebuffer. We also cannot perform masked clears of multiple render
// targets.
if (!mPhysicalDeviceFeatures.independentBlend)
{
maxVersion = LimitVersionTo(maxVersion, {2, 0});
}
// If the Vulkan transform feedback extension is not present, we use an emulation path that
// requires the vertexPipelineStoresAndAtomics feature. Without the extension or this feature,
// we can't currently support transform feedback.
if (!mFeatures.supportsTransformFeedbackExtension.enabled &&
!mFeatures.emulateTransformFeedback.enabled)
{
maxVersion = LimitVersionTo(maxVersion, {2, 0});
}
// Limit to GLES 2.0 if maxPerStageDescriptorUniformBuffers is too low.
// Table 6.31 MAX_VERTEX_UNIFORM_BLOCKS minimum value = 12
// Table 6.32 MAX_FRAGMENT_UNIFORM_BLOCKS minimum value = 12
// NOTE: We reserve some uniform buffers for emulation, so use the NativeCaps which takes this
// into account, rather than the physical device maxPerStageDescriptorUniformBuffers limits.
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
if (static_cast<GLuint>(getNativeCaps().maxShaderUniformBlocks[shaderType]) <
gl::limits::kMinimumShaderUniformBlocks)
{
maxVersion = LimitVersionTo(maxVersion, {2, 0});
}
}
// Limit to GLES 2.0 if maxVertexOutputComponents is too low.
// Table 6.31 MAX VERTEX OUTPUT COMPONENTS minimum value = 64
// NOTE: We reserve some vertex output components for emulation, so use the NativeCaps which
// takes this into account, rather than the physical device maxVertexOutputComponents limits.
if (static_cast<GLuint>(getNativeCaps().maxVertexOutputComponents) <
gl::limits::kMinimumVertexOutputComponents)
{
maxVersion = LimitVersionTo(maxVersion, {2, 0});
}
return maxVersion;
}
gl::Version RendererVk::getMaxConformantESVersion() const
{
return LimitVersionTo(getMaxSupportedESVersion(), {3, 1});
}
void RendererVk::initFeatures(DisplayVk *displayVk,
const vk::ExtensionNameList &deviceExtensionNames)
{
if (displayVk->getState().featuresAllDisabled)
{
ApplyFeatureOverrides(&mFeatures, displayVk->getState());
return;
}
constexpr uint32_t kPixel2DriverWithRelaxedPrecision = 0x801EA000;
constexpr uint32_t kPixel4DriverWithWorkingSpecConstSupport = 0x80201000;
bool isAMD = IsAMD(mPhysicalDeviceProperties.vendorID);
bool isIntel = IsIntel(mPhysicalDeviceProperties.vendorID);
bool isNvidia = IsNvidia(mPhysicalDeviceProperties.vendorID);
bool isQualcomm = IsQualcomm(mPhysicalDeviceProperties.vendorID);
bool isARM = IsARM(mPhysicalDeviceProperties.vendorID);
bool isPowerVR = IsPowerVR(mPhysicalDeviceProperties.vendorID);
bool isSwiftShader =
IsSwiftshader(mPhysicalDeviceProperties.vendorID, mPhysicalDeviceProperties.deviceID);
bool supportsNegativeViewport =
ExtensionFound(VK_KHR_MAINTENANCE1_EXTENSION_NAME, deviceExtensionNames) ||
mPhysicalDeviceProperties.apiVersion >= VK_API_VERSION_1_1;
if (mLineRasterizationFeatures.bresenhamLines == VK_TRUE)
{
ASSERT(mLineRasterizationFeatures.sType ==
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT);
ANGLE_FEATURE_CONDITION(&mFeatures, bresenhamLineRasterization, true);
}
else
{
// Use OpenGL line rasterization rules if extension not available by default.
// TODO(jmadill): Fix Android support. http://anglebug.com/2830
ANGLE_FEATURE_CONDITION(&mFeatures, basicGLLineRasterization, !IsAndroid() && !isPowerVR);
}
if (mProvokingVertexFeatures.provokingVertexLast == VK_TRUE)
{
ASSERT(mProvokingVertexFeatures.sType ==
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_FEATURES_EXT);
ANGLE_FEATURE_CONDITION(&mFeatures, provokingVertex, true);
}
// http://b/208458772. ARM driver supports this protected memory extension but we are seeing
// excessive load/store unit activity when this extension is enabled, even if not been used.
// Disable this extension on ARM platform until we resolve this performance issue.
// http://anglebug.com/3965
ANGLE_FEATURE_CONDITION(&mFeatures, supportsProtectedMemory,
(mProtectedMemoryFeatures.protectedMemory == VK_TRUE) && !isARM);
// http://anglebug.com/6692
ANGLE_FEATURE_CONDITION(&mFeatures, supportsHostQueryReset,
(mHostQueryResetFeatures.hostQueryReset == VK_TRUE));
// Note: Protected Swapchains is not determined until we have a VkSurface to query.
// So here vendors should indicate support so that protected_content extension
// is enabled.
ANGLE_FEATURE_CONDITION(&mFeatures, supportsSurfaceProtectedSwapchains, IsAndroid());
// Work around incorrect NVIDIA point size range clamping.
// http://anglebug.com/2970#c10
// Clamp if driver version is:
// < 430 on Windows
// < 421 otherwise
angle::VersionInfo nvidiaVersion;
if (isNvidia)
{
nvidiaVersion =
angle::ParseNvidiaDriverVersion(this->mPhysicalDeviceProperties.driverVersion);
}
ANGLE_FEATURE_CONDITION(&mFeatures, clampPointSize,
isNvidia && nvidiaVersion.major < uint32_t(IsWindows() ? 430 : 421));
// http://anglebug.com/3970#c25.
// The workaround requires the VK_EXT_depth_clip_enable extension and the 'depthClamp' physical
// device feature. This workaround caused test failures on Quadro P400/driver 418.56/Linux.
// Therefore, on Linux we require a major version > 418.
ANGLE_FEATURE_CONDITION(
&mFeatures, depthClamping,
isNvidia && mPhysicalDeviceFeatures.depthClamp &&
ExtensionFound(VK_EXT_DEPTH_CLIP_ENABLE_EXTENSION_NAME, deviceExtensionNames) &&
(!IsLinux() || nvidiaVersion.major > 418u));
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsRenderpass2,
ExtensionFound(VK_KHR_CREATE_RENDERPASS_2_EXTENSION_NAME, deviceExtensionNames));
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsIncrementalPresent,
ExtensionFound(VK_KHR_INCREMENTAL_PRESENT_EXTENSION_NAME, deviceExtensionNames));
#if defined(ANGLE_PLATFORM_ANDROID)
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsAndroidHardwareBuffer,
IsAndroid() &&
ExtensionFound(VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME,
deviceExtensionNames) &&
ExtensionFound(VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME, deviceExtensionNames));
#endif
#if defined(ANGLE_PLATFORM_GGP)
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsGGPFrameToken,
ExtensionFound(VK_GGP_FRAME_TOKEN_EXTENSION_NAME, deviceExtensionNames));
#endif
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsExternalMemoryFd,
ExtensionFound(VK_KHR_EXTERNAL_MEMORY_FD_EXTENSION_NAME, deviceExtensionNames));
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsExternalMemoryFuchsia,
ExtensionFound(VK_FUCHSIA_EXTERNAL_MEMORY_EXTENSION_NAME, deviceExtensionNames));
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsFilteringPrecision,
ExtensionFound(VK_GOOGLE_SAMPLER_FILTERING_PRECISION_EXTENSION_NAME, deviceExtensionNames));
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsExternalFenceCapabilities,
ExtensionFound(VK_KHR_EXTERNAL_FENCE_CAPABILITIES_EXTENSION_NAME, deviceExtensionNames));
ANGLE_FEATURE_CONDITION(&mFeatures, supportsExternalSemaphoreCapabilities,
ExtensionFound(VK_KHR_EXTERNAL_SEMAPHORE_CAPABILITIES_EXTENSION_NAME,
deviceExtensionNames));
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsExternalSemaphoreFd,
ExtensionFound(VK_KHR_EXTERNAL_SEMAPHORE_FD_EXTENSION_NAME, deviceExtensionNames));
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsExternalSemaphoreFuchsia,
ExtensionFound(VK_FUCHSIA_EXTERNAL_SEMAPHORE_EXTENSION_NAME, deviceExtensionNames));
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsExternalFenceFd,
ExtensionFound(VK_KHR_EXTERNAL_FENCE_FD_EXTENSION_NAME, deviceExtensionNames));
#if defined(ANGLE_PLATFORM_ANDROID)
if (mFeatures.supportsExternalFenceCapabilities.enabled &&
mFeatures.supportsExternalSemaphoreCapabilities.enabled)
{
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsAndroidNativeFenceSync,
(mFeatures.supportsExternalFenceFd.enabled &&
FencePropertiesCompatibleWithAndroid(mExternalFenceProperties) &&
mFeatures.supportsExternalSemaphoreFd.enabled &&
SemaphorePropertiesCompatibleWithAndroid(mExternalSemaphoreProperties)));
}
else
{
ANGLE_FEATURE_CONDITION(&mFeatures, supportsAndroidNativeFenceSync,
(mFeatures.supportsExternalFenceFd.enabled &&
mFeatures.supportsExternalSemaphoreFd.enabled));
}
#endif // defined(ANGLE_PLATFORM_ANDROID)
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsShaderStencilExport,
ExtensionFound(VK_EXT_SHADER_STENCIL_EXPORT_EXTENSION_NAME, deviceExtensionNames));
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsRenderPassLoadStoreOpNone,
ExtensionFound(VK_EXT_LOAD_STORE_OP_NONE_EXTENSION_NAME, deviceExtensionNames));
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsRenderPassStoreOpNoneQCOM,
!mFeatures.supportsRenderPassLoadStoreOpNone.enabled &&
ExtensionFound(VK_QCOM_RENDER_PASS_STORE_OPS_EXTENSION_NAME, deviceExtensionNames));
ANGLE_FEATURE_CONDITION(&mFeatures, supportsTransformFeedbackExtension,
mTransformFeedbackFeatures.transformFeedback == VK_TRUE);
ANGLE_FEATURE_CONDITION(&mFeatures, supportsGeometryStreamsCapability,
mTransformFeedbackFeatures.geometryStreams == VK_TRUE);
ANGLE_FEATURE_CONDITION(&mFeatures, supportsIndexTypeUint8,
mIndexTypeUint8Features.indexTypeUint8 == VK_TRUE);
ANGLE_FEATURE_CONDITION(&mFeatures, supportsDepthStencilResolve,
mFeatures.supportsRenderpass2.enabled &&
mDepthStencilResolveProperties.supportedDepthResolveModes != 0);
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsMultisampledRenderToSingleSampled,
mFeatures.supportsRenderpass2.enabled && mFeatures.supportsDepthStencilResolve.enabled &&
mMultisampledRenderToSingleSampledFeatures.multisampledRenderToSingleSampled ==
VK_TRUE);
ANGLE_FEATURE_CONDITION(&mFeatures, supportsMultiview, mMultiviewFeatures.multiview == VK_TRUE);
ANGLE_FEATURE_CONDITION(&mFeatures, emulateTransformFeedback,
(!mFeatures.supportsTransformFeedbackExtension.enabled &&
mPhysicalDeviceFeatures.vertexPipelineStoresAndAtomics == VK_TRUE));
// TODO: http://anglebug.com/5927 - drop dependency on customBorderColorWithoutFormat.
// TODO: http://anglebug.com/6200 - re-enable on SwS when possible
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsCustomBorderColorEXT,
mCustomBorderColorFeatures.customBorderColors == VK_TRUE &&
mCustomBorderColorFeatures.customBorderColorWithoutFormat == VK_TRUE && !isSwiftShader);
ANGLE_FEATURE_CONDITION(&mFeatures, supportsMultiDrawIndirect,
mPhysicalDeviceFeatures.multiDrawIndirect == VK_TRUE);
ANGLE_FEATURE_CONDITION(&mFeatures, disableFifoPresentMode, IsLinux() && isIntel);
ANGLE_FEATURE_CONDITION(&mFeatures, bindEmptyForUnusedDescriptorSets,
IsAndroid() && isQualcomm);
ANGLE_FEATURE_CONDITION(&mFeatures, perFrameWindowSizeQuery,
isIntel || (IsWindows() && isAMD) || IsFuchsia());
// Disabled on AMD/windows due to buggy behavior.
ANGLE_FEATURE_CONDITION(&mFeatures, disallowSeamfulCubeMapEmulation, IsWindows() && isAMD);
ANGLE_FEATURE_CONDITION(&mFeatures, padBuffersToMaxVertexAttribStride, isAMD);
mMaxVertexAttribStride = std::min(static_cast<uint32_t>(gl::limits::kMaxVertexAttribStride),
mPhysicalDeviceProperties.limits.maxVertexInputBindingStride);
ANGLE_FEATURE_CONDITION(&mFeatures, forceD16TexFilter, IsAndroid() && isQualcomm);
ANGLE_FEATURE_CONDITION(&mFeatures, disableFlippingBlitWithCommand, IsAndroid() && isQualcomm);
// Allocation sanitization disabled by default because of a heaveyweight implementation
// that can cause OOM and timeouts.
ANGLE_FEATURE_CONDITION(&mFeatures, allocateNonZeroMemory, false);
ANGLE_FEATURE_CONDITION(&mFeatures, shadowBuffers, false);
// ARM does buffer copy on geometry pipeline, which may create a GPU pipeline bubble that
// prevents vertex shader to overlap with fragment shader. For now we always choose CPU to do
// copy on ARM. This may need to test with future ARM GPU architecture as well.
ANGLE_FEATURE_CONDITION(&mFeatures, preferCPUForBufferSubData, isARM);
// On android, we usually are GPU limited, we try to use CPU to do data copy when other
// conditions are the same. Set to zero will use GPU to do copy. This is subject to further
// tuning for each platform https://issuetracker.google.com/201826021
mMaxCopyBytesUsingCPUWhenPreservingBufferData =
IsAndroid() ? std::numeric_limits<uint32_t>::max() : 0;
ANGLE_FEATURE_CONDITION(&mFeatures, persistentlyMappedBuffers, true);
ANGLE_FEATURE_CONDITION(&mFeatures, logMemoryReportCallbacks, false);
ANGLE_FEATURE_CONDITION(&mFeatures, logMemoryReportStats, false);
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsExternalMemoryDmaBufAndModifiers,
ExtensionFound(VK_EXT_EXTERNAL_MEMORY_DMA_BUF_EXTENSION_NAME, deviceExtensionNames) &&
ExtensionFound(VK_EXT_IMAGE_DRM_FORMAT_MODIFIER_EXTENSION_NAME, deviceExtensionNames));
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsExternalMemoryHost,
ExtensionFound(VK_EXT_EXTERNAL_MEMORY_HOST_EXTENSION_NAME, deviceExtensionNames));
// Android pre-rotation support can be disabled.
ANGLE_FEATURE_CONDITION(&mFeatures, enablePreRotateSurfaces,
IsAndroid() && supportsNegativeViewport);
// http://anglebug.com/3078
ANGLE_FEATURE_CONDITION(
&mFeatures, enablePrecisionQualifiers,
!(IsPixel2(mPhysicalDeviceProperties.vendorID, mPhysicalDeviceProperties.deviceID) &&
(mPhysicalDeviceProperties.driverVersion < kPixel2DriverWithRelaxedPrecision)) &&
!IsPixel4(mPhysicalDeviceProperties.vendorID, mPhysicalDeviceProperties.deviceID));
// The following platforms are less sensitive to the src/dst stage masks in barriers, and behave
// more efficiently when all barriers are aggregated, rather than individually and precisely
// specified:
//
// - Desktop GPUs
// - SwiftShader
ANGLE_FEATURE_CONDITION(&mFeatures, preferAggregateBarrierCalls,
isNvidia || isAMD || isIntel || isSwiftShader);
// Currently disabled by default: http://anglebug.com/4324
ANGLE_FEATURE_CONDITION(&mFeatures, asyncCommandQueue, false);
ANGLE_FEATURE_CONDITION(&mFeatures, supportsYUVSamplerConversion,
mSamplerYcbcrConversionFeatures.samplerYcbcrConversion != VK_FALSE);
ANGLE_FEATURE_CONDITION(&mFeatures, supportsShaderFloat16,
mShaderFloat16Int8Features.shaderFloat16 == VK_TRUE);
// http://issuetracker.google.com/173636783 Qualcomm driver appears having issues with
// specialization constant
ANGLE_FEATURE_CONDITION(&mFeatures, forceDriverUniformOverSpecConst,
isQualcomm && mPhysicalDeviceProperties.driverVersion <
kPixel4DriverWithWorkingSpecConstSupport);
// The compute shader used to generate mipmaps uses a 256-wide workgroup. This path is only
// enabled on devices that meet this minimum requirement. Furthermore,
// VK_IMAGE_USAGE_STORAGE_BIT is detrimental to performance on many platforms, on which this
// path is not enabled. Platforms that are known to have better performance with this path are:
//
// - Nvidia
// - AMD
//
// Additionally, this path is disabled on buggy drivers:
//
// - AMD/Windows: Unfortunately the trybots use ancient AMD cards and drivers.
const uint32_t maxComputeWorkGroupInvocations =
mPhysicalDeviceProperties.limits.maxComputeWorkGroupInvocations;
ANGLE_FEATURE_CONDITION(
&mFeatures, allowGenerateMipmapWithCompute,
maxComputeWorkGroupInvocations >= 256 && (isNvidia || (isAMD && !IsWindows())));
bool isAdreno540 = mPhysicalDeviceProperties.deviceID == angle::kDeviceID_Adreno540;
ANGLE_FEATURE_CONDITION(&mFeatures, forceMaxUniformBufferSize16KB, isQualcomm && isAdreno540);
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsImageFormatList,
ExtensionFound(VK_KHR_IMAGE_FORMAT_LIST_EXTENSION_NAME, deviceExtensionNames));
// Feature disabled due to driver bugs:
//
// - Swiftshader:
// * Failure on mac: http://anglebug.com/4937
// * OOM: http://crbug.com/1263046
// - Intel on windows: http://anglebug.com/5032
// - AMD on windows: http://crbug.com/1132366
//
// Note that emulation of GL_EXT_multisampled_render_to_texture is only really useful on tiling
// hardware, but is exposed on desktop platforms purely to increase testing coverage.
ANGLE_FEATURE_CONDITION(&mFeatures, enableMultisampledRenderToTexture,
mFeatures.supportsMultisampledRenderToSingleSampled.enabled ||
(!isSwiftShader && !(IsWindows() && (isIntel || isAMD))));
// Currently we enable cube map arrays based on the imageCubeArray Vk feature.
// TODO: Check device caps for full cube map array support. http://anglebug.com/5143
ANGLE_FEATURE_CONDITION(&mFeatures, supportsImageCubeArray,
mPhysicalDeviceFeatures.imageCubeArray == VK_TRUE);
// TODO: Only enable if VK_EXT_primitives_generated_query is not present.
// http://anglebug.com/5430
ANGLE_FEATURE_CONDITION(&mFeatures, supportsPipelineStatisticsQuery,
mPhysicalDeviceFeatures.pipelineStatisticsQuery == VK_TRUE);
ANGLE_FEATURE_CONDITION(&mFeatures, preferredLargeHeapBlockSize4MB, !isQualcomm);
// Defer glFLush call causes manhattan 3.0 perf regression. Let Qualcomm driver opt out from
// this optimization.
ANGLE_FEATURE_CONDITION(&mFeatures, deferFlushUntilEndRenderPass, !isQualcomm);
// Android mistakenly destroys the old swapchain when creating a new one.
ANGLE_FEATURE_CONDITION(&mFeatures, waitIdleBeforeSwapchainRecreation, IsAndroid() && isARM);
for (size_t lodOffsetFeatureIdx = 0;
lodOffsetFeatureIdx < mFeatures.forceTextureLODOffset.size(); lodOffsetFeatureIdx++)
{
ANGLE_FEATURE_CONDITION(&mFeatures, forceTextureLODOffset[lodOffsetFeatureIdx], false);
}
ANGLE_FEATURE_CONDITION(&mFeatures, forceNearestFiltering, false);
ANGLE_FEATURE_CONDITION(&mFeatures, forceNearestMipFiltering, false);
ANGLE_FEATURE_CONDITION(&mFeatures, compressVertexData, false);
ANGLE_FEATURE_CONDITION(
&mFeatures, preferDrawClearOverVkCmdClearAttachments,
IsPixel2(mPhysicalDeviceProperties.vendorID, mPhysicalDeviceProperties.deviceID));
// r32f image emulation is done unconditionally so VK_FORMAT_FEATURE_STORAGE_*_ATOMIC_BIT is not
// required.
ANGLE_FEATURE_CONDITION(&mFeatures, emulateR32fImageAtomicExchange, true);
// Negative viewports are exposed in the Maintenance1 extension and in core Vulkan 1.1+.
ANGLE_FEATURE_CONDITION(&mFeatures, supportsNegativeViewport, supportsNegativeViewport);
// Whether non-conformant configurations and extensions should be exposed.
ANGLE_FEATURE_CONDITION(&mFeatures, exposeNonConformantExtensionsAndVersions,
kExposeNonConformantExtensionsAndVersions);
// Disabled by default. Only enable it for experimental purpose, as this will cause various
// tests to fail.
ANGLE_FEATURE_CONDITION(&mFeatures, forceFragmentShaderPrecisionHighpToMediump, false);
// Testing shows that on ARM GPU, doing implicit flush at framebuffer boundary improves
// performance. Most app traces shows frame time reduced and manhattan 3.1 offscreen score
// improves 7%.
ANGLE_FEATURE_CONDITION(&mFeatures, preferSubmitAtFBOBoundary, isARM);
// In order to support immutable samplers tied to external formats, we need to overallocate
// descriptor counts for such immutable samplers
ANGLE_FEATURE_CONDITION(&mFeatures, useMultipleDescriptorsForExternalFormats, true);
// http://anglebug.com/6651
// When creating a surface with the format GL_RGB8, override the format to be GL_RGBA8, since
// Android prevents creating swapchain images with VK_FORMAT_R8G8B8_UNORM.
// Do this for all platforms, since few (none?) IHVs support 24-bit formats with their HW
// natively anyway.
ANGLE_FEATURE_CONDITION(&mFeatures, overrideSurfaceFormatRGB8toRGBA8, true);
angle::PlatformMethods *platform = ANGLEPlatformCurrent();
platform->overrideFeaturesVk(platform, &mFeatures);
ApplyFeatureOverrides(&mFeatures, displayVk->getState());
// Disable async command queue when using Vulkan secondary command buffers temporarily to avoid
// threading hazards with ContextVk::mCommandPool. Note that this is done even if the feature
// is enabled through an override.
// TODO: Investigate whether async command queue is useful with Vulkan secondary command buffers
// and enable the feature. http://anglebug.com/6811
if (!vk::CommandBuffer::ExecutesInline())
{
mFeatures.asyncCommandQueue.enabled = false;
}
}
angle::Result RendererVk::initPipelineCache(DisplayVk *display,
vk::PipelineCache *pipelineCache,
bool *success)
{
angle::MemoryBuffer initialData;
ANGLE_TRY(
GetAndDecompressPipelineCacheVk(mPhysicalDeviceProperties, display, &initialData, success));
VkPipelineCacheCreateInfo pipelineCacheCreateInfo = {};
pipelineCacheCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
pipelineCacheCreateInfo.flags = 0;
pipelineCacheCreateInfo.initialDataSize = *success ? initialData.size() : 0;
pipelineCacheCreateInfo.pInitialData = *success ? initialData.data() : nullptr;
ANGLE_VK_TRY(display, pipelineCache->init(mDevice, pipelineCacheCreateInfo));
return angle::Result::Continue;
}
angle::Result RendererVk::getPipelineCache(vk::PipelineCache **pipelineCache)
{
// Note that unless external synchronization is specifically requested the pipeline cache
// is internally synchronized. See VK_EXT_pipeline_creation_cache_control. We might want
// to investigate controlling synchronization manually in ANGLE at some point for perf.
std::lock_guard<std::mutex> lock(mPipelineCacheMutex);
if (mPipelineCacheInitialized)
{
*pipelineCache = &mPipelineCache;
return angle::Result::Continue;
}
// We should now recreate the pipeline cache with the blob cache pipeline data.
vk::PipelineCache pCache;
bool success = false;
ANGLE_TRY(initPipelineCache(vk::GetImpl(mDisplay), &pCache, &success));
if (success)
{
// Merge the newly created pipeline cache into the existing one.
mPipelineCache.merge(mDevice, mPipelineCache.getHandle(), 1, pCache.ptr());
}
mPipelineCacheInitialized = true;
pCache.destroy(mDevice);
*pipelineCache = &mPipelineCache;
return angle::Result::Continue;
}
const gl::Caps &RendererVk::getNativeCaps() const
{
ensureCapsInitialized();
return mNativeCaps;
}
const gl::TextureCapsMap &RendererVk::getNativeTextureCaps() const
{
ensureCapsInitialized();
return mNativeTextureCaps;
}
const gl::Extensions &RendererVk::getNativeExtensions() const
{
ensureCapsInitialized();
return mNativeExtensions;
}
const gl::Limitations &RendererVk::getNativeLimitations() const
{
ensureCapsInitialized();
return mNativeLimitations;
}
angle::Result RendererVk::getPipelineCacheSize(DisplayVk *displayVk, size_t *pipelineCacheSizeOut)
{
VkResult result = mPipelineCache.getCacheData(mDevice, pipelineCacheSizeOut, nullptr);
ANGLE_VK_TRY(displayVk, result);
return angle::Result::Continue;
}
angle::Result RendererVk::syncPipelineCacheVk(DisplayVk *displayVk, const gl::Context *context)
{
// TODO: Synchronize access to the pipeline/blob caches?
ASSERT(mPipelineCache.valid());
if (--mPipelineCacheVkUpdateTimeout > 0)
{
return angle::Result::Continue;
}
if (!mPipelineCacheDirty)
{
mPipelineCacheVkUpdateTimeout = kPipelineCacheVkUpdatePeriod;
return angle::Result::Continue;
}
mPipelineCacheVkUpdateTimeout = kPipelineCacheVkUpdatePeriod;
size_t pipelineCacheSize = 0;
ANGLE_TRY(getPipelineCacheSize(displayVk, &pipelineCacheSize));
// Make sure we will receive enough data to hold the pipeline cache header
// Table 7. Layout for pipeline cache header version VK_PIPELINE_CACHE_HEADER_VERSION_ONE
const size_t kPipelineCacheHeaderSize = 16 + VK_UUID_SIZE;
if (pipelineCacheSize < kPipelineCacheHeaderSize)
{
// No pipeline cache data to read, so return
return angle::Result::Continue;
}
ContextVk *contextVk = vk::GetImpl(context);
// Use worker thread pool to complete compression.
// If the last task hasn't been finished, skip the syncing.
if (mCompressEvent && (!mCompressEvent->isReady() || !mCompressEvent->getResult()))
{
ANGLE_PERF_WARNING(contextVk->getDebug(), GL_DEBUG_SEVERITY_LOW,
"Skip syncing pipeline cache data when the last task is not ready or "
"the compress task failed.");
return angle::Result::Continue;
}
std::vector<uint8_t> pipelineCacheData(pipelineCacheSize);
size_t oldPipelineCacheSize = pipelineCacheSize;
VkResult result =
mPipelineCache.getCacheData(mDevice, &pipelineCacheSize, pipelineCacheData.data());
// We don't need all of the cache data, so just make sure we at least got the header
// Vulkan Spec 9.6. Pipeline Cache
// https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/chap9.html#pipelines-cache
// If pDataSize is less than what is necessary to store this header, nothing will be written to
// pData and zero will be written to pDataSize.
// Any data written to pData is valid and can be provided as the pInitialData member of the
// VkPipelineCacheCreateInfo structure passed to vkCreatePipelineCache.
if (ANGLE_UNLIKELY(pipelineCacheSize < kPipelineCacheHeaderSize))
{
WARN() << "Not enough pipeline cache data read.";
return angle::Result::Continue;
}
else if (ANGLE_UNLIKELY(result == VK_INCOMPLETE))
{
WARN() << "Received VK_INCOMPLETE: Old: " << oldPipelineCacheSize
<< ", New: " << pipelineCacheSize;
}
else
{
ANGLE_VK_TRY(displayVk, result);
}
// If vkGetPipelineCacheData ends up writing fewer bytes than requested, zero out the rest of
// the buffer to avoid leaking garbage memory.
ASSERT(pipelineCacheSize <= pipelineCacheData.size());
if (pipelineCacheSize < pipelineCacheData.size())
{
memset(pipelineCacheData.data() + pipelineCacheSize, 0,
pipelineCacheData.size() - pipelineCacheSize);
}
if (context->getFrontendFeatures().enableCompressingPipelineCacheInThreadPool.enabled)
{
// The function zlib_internal::GzipCompressHelper() can compress 10M pipeline cache data
// into about 2M, to save the time of compression, set kMaxTotalSize to 10M.
constexpr size_t kMaxTotalSize = 10 * 1024 * 1024;
// Create task to compress.
auto compressAndStorePipelineCacheTask =
std::make_shared<CompressAndStorePipelineCacheTask>(
displayVk, contextVk, std::move(pipelineCacheData), kMaxTotalSize);
mCompressEvent = std::make_shared<WaitableCompressEventImpl>(
angle::WorkerThreadPool::PostWorkerTask(context->getWorkerThreadPool(),
compressAndStorePipelineCacheTask),
compressAndStorePipelineCacheTask);
mPipelineCacheDirty = false;
}
else
{
// If enableCompressingPipelineCacheInThreadPool is diabled, to avoid the risk, set
// kMaxTotalSize to 64k.
constexpr size_t kMaxTotalSize = 64 * 1024;
bool compressResult = CompressAndStorePipelineCacheVk(
mPhysicalDeviceProperties, displayVk, contextVk, pipelineCacheData, kMaxTotalSize);
if (compressResult)
{
mPipelineCacheDirty = false;
}
}
return angle::Result::Continue;
}
Serial RendererVk::issueShaderSerial()
{
return mShaderSerialFactory.generate();
}
// These functions look at the mandatory format for support, and fallback to querying the device (if
// necessary) to test the availability of the bits.
bool RendererVk::hasLinearImageFormatFeatureBits(angle::FormatID formatID,
const VkFormatFeatureFlags featureBits) const
{
return hasFormatFeatureBits<&VkFormatProperties::linearTilingFeatures>(formatID, featureBits);
}
VkFormatFeatureFlags RendererVk::getLinearImageFormatFeatureBits(
angle::FormatID formatID,
const VkFormatFeatureFlags featureBits) const
{
return getFormatFeatureBits<&VkFormatProperties::linearTilingFeatures>(formatID, featureBits);
}
VkFormatFeatureFlags RendererVk::getImageFormatFeatureBits(
angle::FormatID formatID,
const VkFormatFeatureFlags featureBits) const
{
return getFormatFeatureBits<&VkFormatProperties::optimalTilingFeatures>(formatID, featureBits);
}
bool RendererVk::hasImageFormatFeatureBits(angle::FormatID formatID,
const VkFormatFeatureFlags featureBits) const
{
return hasFormatFeatureBits<&VkFormatProperties::optimalTilingFeatures>(formatID, featureBits);
}
bool RendererVk::hasBufferFormatFeatureBits(angle::FormatID formatID,
const VkFormatFeatureFlags featureBits) const
{
return hasFormatFeatureBits<&VkFormatProperties::bufferFeatures>(formatID, featureBits);
}
void RendererVk::outputVmaStatString()
{
// Output the VMA stats string
// This JSON string can be passed to VmaDumpVis.py to generate a visualization of the
// allocations the VMA has performed.
char *statsString;
mAllocator.buildStatsString(&statsString, true);
INFO() << std::endl << statsString << std::endl;
mAllocator.freeStatsString(statsString);
}
angle::Result RendererVk::queueSubmitOneOff(vk::Context *context,
vk::PrimaryCommandBuffer &&primary,
bool hasProtectedContent,
egl::ContextPriority priority,
const vk::Semaphore *waitSemaphore,
VkPipelineStageFlags waitSemaphoreStageMasks,
const vk::Fence *fence,
vk::SubmitPolicy submitPolicy,
Serial *serialOut)
{
ANGLE_TRACE_EVENT0("gpu.angle", "RendererVk::queueSubmitOneOff");
std::lock_guard<std::mutex> commandQueueLock(mCommandQueueMutex);
Serial submitQueueSerial;
if (isAsyncCommandQueueEnabled())
{
submitQueueSerial = mCommandProcessor.reserveSubmitSerial();
ANGLE_TRY(mCommandProcessor.queueSubmitOneOff(
context, hasProtectedContent, priority, primary.getHandle(), waitSemaphore,
waitSemaphoreStageMasks, fence, submitPolicy, submitQueueSerial));
}
else
{
submitQueueSerial = mCommandQueue.reserveSubmitSerial();
ANGLE_TRY(mCommandQueue.queueSubmitOneOff(
context, hasProtectedContent, priority, primary.getHandle(), waitSemaphore,
waitSemaphoreStageMasks, fence, submitPolicy, submitQueueSerial));
}
*serialOut = submitQueueSerial;
if (primary.valid())
{
mPendingOneOffCommands.push_back({*serialOut, std::move(primary)});
}
return angle::Result::Continue;
}
template <VkFormatFeatureFlags VkFormatProperties::*features>
VkFormatFeatureFlags RendererVk::getFormatFeatureBits(angle::FormatID formatID,
const VkFormatFeatureFlags featureBits) const
{
ASSERT(formatID != angle::FormatID::NONE);
VkFormatProperties &deviceProperties = mFormatProperties[formatID];
if (deviceProperties.bufferFeatures == kInvalidFormatFeatureFlags)
{
// If we don't have the actual device features, see if the requested features are mandatory.
// If so, there's no need to query the device.
const VkFormatProperties &mandatoryProperties = vk::GetMandatoryFormatSupport(formatID);
if (IsMaskFlagSet(mandatoryProperties.*features, featureBits))
{
return featureBits;
}
VkFormat vkFormat = vk::GetVkFormatFromFormatID(formatID);
ASSERT(vkFormat != VK_FORMAT_UNDEFINED);
// Otherwise query the format features and cache it.
vkGetPhysicalDeviceFormatProperties(mPhysicalDevice, vkFormat, &deviceProperties);
// Workaround for some Android devices that don't indicate filtering
// support on D16_UNORM and they should.
if (mFeatures.forceD16TexFilter.enabled && vkFormat == VK_FORMAT_D16_UNORM)
{
deviceProperties.*features |= VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT;
}
}
return deviceProperties.*features & featureBits;
}
template <VkFormatFeatureFlags VkFormatProperties::*features>
bool RendererVk::hasFormatFeatureBits(angle::FormatID formatID,
const VkFormatFeatureFlags featureBits) const
{
return IsMaskFlagSet(getFormatFeatureBits<features>(formatID, featureBits), featureBits);
}
bool RendererVk::haveSameFormatFeatureBits(angle::FormatID formatID1,
angle::FormatID formatID2) const
{
if (formatID1 == angle::FormatID::NONE || formatID2 == angle::FormatID::NONE)
{
return false;
}
constexpr VkFormatFeatureFlags kImageUsageFeatureBits =
VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT | VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT |
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT;
VkFormatFeatureFlags fmt1LinearFeatureBits =
getLinearImageFormatFeatureBits(formatID1, kImageUsageFeatureBits);
VkFormatFeatureFlags fmt1OptimalFeatureBits =
getImageFormatFeatureBits(formatID1, kImageUsageFeatureBits);
return hasLinearImageFormatFeatureBits(formatID2, fmt1LinearFeatureBits) &&
hasImageFormatFeatureBits(formatID2, fmt1OptimalFeatureBits);
}
angle::Result RendererVk::cleanupGarbage(Serial lastCompletedQueueSerial)
{
std::lock_guard<std::mutex> lock(mGarbageMutex);
for (auto garbageIter = mSharedGarbage.begin(); garbageIter != mSharedGarbage.end();)
{
// Possibly 'counter' should be always zero when we add the object to garbage.
vk::SharedGarbage &garbage = *garbageIter;
if (garbage.destroyIfComplete(this, lastCompletedQueueSerial))
{
garbageIter = mSharedGarbage.erase(garbageIter);
}
else
{
garbageIter++;
}
}
return angle::Result::Continue;
}
void RendererVk::cleanupCompletedCommandsGarbage()
{
(void)cleanupGarbage(getLastCompletedQueueSerial());
}
void RendererVk::onNewValidationMessage(const std::string &message)
{
mLastValidationMessage = message;
++mValidationMessageCount;
}
std::string RendererVk::getAndClearLastValidationMessage(uint32_t *countSinceLastClear)
{
*countSinceLastClear = mValidationMessageCount;
mValidationMessageCount = 0;
return std::move(mLastValidationMessage);
}
uint64_t RendererVk::getMaxFenceWaitTimeNs() const
{
constexpr uint64_t kMaxFenceWaitTimeNs = 120'000'000'000llu;
return kMaxFenceWaitTimeNs;
}
void RendererVk::setGlobalDebugAnnotator()
{
// Install one of two DebugAnnotator classes:
//
// 1) The global class enables basic ANGLE debug functionality (e.g. Vulkan validation errors
// will cause dEQP tests to fail).
//
// 2) The DebugAnnotatorVk class processes OpenGL ES commands that the application uses. It is
// installed for the following purposes:
//
// 1) To enable calling the vkCmd*DebugUtilsLabelEXT functions in order to communicate to
// debuggers (e.g. AGI) the OpenGL ES commands that the application uses. In addition to
// simply installing DebugAnnotatorVk, also enable calling vkCmd*DebugUtilsLabelEXT.
//
// 2) To enable logging to Android logcat the OpenGL ES commands that the application uses.
bool installDebugAnnotatorVk = false;
// Enable calling the vkCmd*DebugUtilsLabelEXT functions if the vkCmd*DebugUtilsLabelEXT
// functions exist, and if the kEnableDebugMarkersVarName environment variable is set.
if (vkCmdBeginDebugUtilsLabelEXT)
{
std::string enabled = angle::GetEnvironmentVarOrAndroidProperty(
kEnableDebugMarkersVarName, kEnableDebugMarkersPropertyName);
if (!enabled.empty() && enabled.compare("0") != 0)
{
mAngleDebuggerMode = true;
installDebugAnnotatorVk = true;
}
}
#if defined(ANGLE_ENABLE_TRACE_ANDROID_LOGCAT)
// Only install DebugAnnotatorVk to log all API commands to Android's logcat.
installDebugAnnotatorVk = true;
#endif
{
std::lock_guard<std::mutex> lock(gl::GetDebugMutex());
if (installDebugAnnotatorVk)
{
gl::InitializeDebugAnnotations(&mAnnotator);
}
else
{
mDisplay->setGlobalDebugAnnotator();
}
}
}
void RendererVk::reloadVolkIfNeeded() const
{
#if defined(ANGLE_SHARED_LIBVULKAN)
if ((mInstance != VK_NULL_HANDLE) && (volkGetLoadedInstance() != mInstance))
{
volkLoadInstance(mInstance);
}
if ((mDevice != VK_NULL_HANDLE) && (volkGetLoadedDevice() != mDevice))
{
volkLoadDevice(mDevice);
}
#endif // defined(ANGLE_SHARED_LIBVULKAN)
}
angle::Result RendererVk::getCommandBufferOneOff(vk::Context *context,
bool hasProtectedContent,
vk::PrimaryCommandBuffer *commandBufferOut)
{
if (!mOneOffCommandPool.valid())
{
VkCommandPoolCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
createInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT |
(hasProtectedContent ? VK_COMMAND_POOL_CREATE_PROTECTED_BIT : 0);
ANGLE_VK_TRY(context, mOneOffCommandPool.init(mDevice, createInfo));
}
if (!mPendingOneOffCommands.empty() &&
mPendingOneOffCommands.front().serial < getLastCompletedQueueSerial())
{
*commandBufferOut = std::move(mPendingOneOffCommands.front().commandBuffer);
mPendingOneOffCommands.pop_front();
ANGLE_VK_TRY(context, commandBufferOut->reset());
}
else
{
VkCommandBufferAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
allocInfo.commandBufferCount = 1;
allocInfo.commandPool = mOneOffCommandPool.getHandle();
ANGLE_VK_TRY(context, commandBufferOut->init(context->getDevice(), allocInfo));
}
VkCommandBufferBeginInfo beginInfo = {};
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
beginInfo.pInheritanceInfo = nullptr;
ANGLE_VK_TRY(context, commandBufferOut->begin(beginInfo));
return angle::Result::Continue;
}
angle::Result RendererVk::submitFrame(vk::Context *context,
bool hasProtectedContent,
egl::ContextPriority contextPriority,
std::vector<VkSemaphore> &&waitSemaphores,
std::vector<VkPipelineStageFlags> &&waitSemaphoreStageMasks,
const vk::Semaphore *signalSemaphore,
std::vector<vk::ResourceUseList> &&resourceUseLists,
vk::GarbageList &&currentGarbage,
vk::CommandPool *commandPool,
Serial *submitSerialOut)
{
std::lock_guard<std::mutex> commandQueueLock(mCommandQueueMutex);
if (isAsyncCommandQueueEnabled())
{
*submitSerialOut = mCommandProcessor.reserveSubmitSerial();
ANGLE_TRY(mCommandProcessor.submitFrame(
context, hasProtectedContent, contextPriority, waitSemaphores, waitSemaphoreStageMasks,
signalSemaphore, std::move(currentGarbage),
std::move(mCommandBufferRecycler.getCommandBuffersToReset()), commandPool,
*submitSerialOut));
}
else
{
*submitSerialOut = mCommandQueue.reserveSubmitSerial();
ANGLE_TRY(mCommandQueue.submitFrame(
context, hasProtectedContent, contextPriority, waitSemaphores, waitSemaphoreStageMasks,
signalSemaphore, std::move(currentGarbage),
std::move(mCommandBufferRecycler.getCommandBuffersToReset()), commandPool,
*submitSerialOut));
}
waitSemaphores.clear();
waitSemaphoreStageMasks.clear();
for (vk::ResourceUseList &it : resourceUseLists)
{
it.releaseResourceUsesAndUpdateSerials(*submitSerialOut);
}
resourceUseLists.clear();
return angle::Result::Continue;
}
void RendererVk::handleDeviceLost()
{
std::lock_guard<std::mutex> lock(mCommandQueueMutex);
if (isAsyncCommandQueueEnabled())
{
mCommandProcessor.handleDeviceLost(this);
}
else
{
mCommandQueue.handleDeviceLost(this);
}
}
angle::Result RendererVk::finishToSerial(vk::Context *context, Serial serial)
{
std::lock_guard<std::mutex> lock(mCommandQueueMutex);
if (isAsyncCommandQueueEnabled())
{
ANGLE_TRY(mCommandProcessor.finishToSerial(context, serial, getMaxFenceWaitTimeNs()));
}
else
{
ANGLE_TRY(mCommandQueue.finishToSerial(context, serial, getMaxFenceWaitTimeNs()));
}
return angle::Result::Continue;
}
angle::Result RendererVk::waitForSerialWithUserTimeout(vk::Context *context,
Serial serial,
uint64_t timeout,
VkResult *result)
{
ANGLE_TRACE_EVENT0("gpu.angle", "RendererVk::waitForSerialWithUserTimeout");
std::lock_guard<std::mutex> lock(mCommandQueueMutex);
if (isAsyncCommandQueueEnabled())
{
ANGLE_TRY(mCommandProcessor.waitForSerialWithUserTimeout(context, serial, timeout, result));
}
else
{
ANGLE_TRY(mCommandQueue.waitForSerialWithUserTimeout(context, serial, timeout, result));
}
return angle::Result::Continue;
}
angle::Result RendererVk::finish(vk::Context *context, bool hasProtectedContent)
{
std::lock_guard<std::mutex> lock(mCommandQueueMutex);
if (isAsyncCommandQueueEnabled())
{
ANGLE_TRY(mCommandProcessor.waitIdle(context, getMaxFenceWaitTimeNs()));
}
else
{
ANGLE_TRY(mCommandQueue.waitIdle(context, getMaxFenceWaitTimeNs()));
}
return angle::Result::Continue;
}
angle::Result RendererVk::checkCompletedCommands(vk::Context *context)
{
std::lock_guard<std::mutex> lock(mCommandQueueMutex);
// TODO: https://issuetracker.google.com/169788986 - would be better if we could just wait
// for the work we need but that requires QueryHelper to use the actual serial for the
// query.
if (isAsyncCommandQueueEnabled())
{
ANGLE_TRY(mCommandProcessor.checkCompletedCommands(context));
}
else
{
ANGLE_TRY(mCommandQueue.checkCompletedCommands(context));
}
return angle::Result::Continue;
}
angle::Result RendererVk::flushRenderPassCommands(vk::Context *context,
bool hasProtectedContent,
const vk::RenderPass &renderPass,
vk::CommandBufferHelper **renderPassCommands)
{
ANGLE_TRACE_EVENT0("gpu.angle", "RendererVk::flushRenderPassCommands");
std::lock_guard<std::mutex> lock(mCommandQueueMutex);
if (isAsyncCommandQueueEnabled())
{
ANGLE_TRY(mCommandProcessor.flushRenderPassCommands(context, hasProtectedContent,
renderPass, renderPassCommands));
}
else
{
ANGLE_TRY(mCommandQueue.flushRenderPassCommands(context, hasProtectedContent, renderPass,
renderPassCommands));
}
return angle::Result::Continue;
}
angle::Result RendererVk::flushOutsideRPCommands(vk::Context *context,
bool hasProtectedContent,
vk::CommandBufferHelper **outsideRPCommands)
{
ANGLE_TRACE_EVENT0("gpu.angle", "RendererVk::flushOutsideRPCommands");
std::lock_guard<std::mutex> lock(mCommandQueueMutex);
if (isAsyncCommandQueueEnabled())
{
ANGLE_TRY(mCommandProcessor.flushOutsideRPCommands(context, hasProtectedContent,
outsideRPCommands));
}
else
{
ANGLE_TRY(
mCommandQueue.flushOutsideRPCommands(context, hasProtectedContent, outsideRPCommands));
}
return angle::Result::Continue;
}
VkResult RendererVk::queuePresent(vk::Context *context,
egl::ContextPriority priority,
const VkPresentInfoKHR &presentInfo)
{
std::lock_guard<std::mutex> lock(mCommandQueueMutex);
VkResult result = VK_SUCCESS;
if (isAsyncCommandQueueEnabled())
{
result = mCommandProcessor.queuePresent(priority, presentInfo);
}
else
{
result = mCommandQueue.queuePresent(priority, presentInfo);
}
if (getFeatures().logMemoryReportStats.enabled)
{
mMemoryReport.logMemoryReportStats();
}
return result;
}
angle::Result RendererVk::getCommandBufferHelper(vk::Context *context,
bool hasRenderPass,
vk::CommandPool *commandPool,
vk::CommandBufferHelper **commandBufferHelperOut)
{
ANGLE_TRACE_EVENT0("gpu.angle", "RendererVk::getCommandBufferHelper");
std::unique_lock<std::mutex> lock(mCommandBufferRecyclerMutex);
return mCommandBufferRecycler.getCommandBufferHelper(context, hasRenderPass, commandPool,
commandBufferHelperOut);
}
void RendererVk::recycleCommandBufferHelper(VkDevice device,
vk::CommandBufferHelper **commandBuffer)
{
ANGLE_TRACE_EVENT0("gpu.angle", "RendererVk::recycleCommandBufferHelper");
std::lock_guard<std::mutex> lock(mCommandBufferRecyclerMutex);
mCommandBufferRecycler.recycleCommandBufferHelper(device, commandBuffer);
}
void RendererVk::logCacheStats() const
{
if (!vk::kOutputCumulativePerfCounters)
{
return;
}
std::lock_guard<std::mutex> localLock(mCacheStatsMutex);
int cacheType = 0;
INFO() << "Vulkan object cache hit ratios: ";
for (const CacheStats &stats : mVulkanCacheStats)
{
INFO() << " CacheType " << cacheType++ << ": " << stats.getHitRatio();
}
}
angle::Result RendererVk::getFormatDescriptorCountForVkFormat(ContextVk *contextVk,
VkFormat format,
uint32_t *descriptorCountOut)
{
if (mVkFormatDescriptorCountMap.count(format) == 0)
{
// Query device for descriptor count with basic values for most of
// VkPhysicalDeviceImageFormatInfo2 members.
VkPhysicalDeviceImageFormatInfo2 imageFormatInfo = {};
imageFormatInfo.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2;
imageFormatInfo.format = format;
imageFormatInfo.type = VK_IMAGE_TYPE_2D;
imageFormatInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageFormatInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
imageFormatInfo.flags = 0;
VkImageFormatProperties imageFormatProperties = {};
VkSamplerYcbcrConversionImageFormatProperties ycbcrImageFormatProperties = {};
ycbcrImageFormatProperties.sType =
VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_IMAGE_FORMAT_PROPERTIES;
VkImageFormatProperties2 imageFormatProperties2 = {};
imageFormatProperties2.sType = VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2;
imageFormatProperties2.pNext = &ycbcrImageFormatProperties;
imageFormatProperties2.imageFormatProperties = imageFormatProperties;
ANGLE_VK_TRY(contextVk, vkGetPhysicalDeviceImageFormatProperties2(
mPhysicalDevice, &imageFormatInfo, &imageFormatProperties2));
mVkFormatDescriptorCountMap[format] =
ycbcrImageFormatProperties.combinedImageSamplerDescriptorCount;
}
ASSERT(descriptorCountOut);
*descriptorCountOut = mVkFormatDescriptorCountMap[format];
return angle::Result::Continue;
}
angle::Result RendererVk::getFormatDescriptorCountForExternalFormat(ContextVk *contextVk,
uint64_t format,
uint32_t *descriptorCountOut)
{
// TODO: need to query for external formats as well once spec is fixed. http://anglebug.com/6141
if (getFeatures().useMultipleDescriptorsForExternalFormats.enabled)
{
// Vulkan spec has a gap in that there is no mechanism available to query the immutable
// sampler descriptor count of an external format. For now, return a default value.
constexpr uint32_t kExternalFormatDefaultDescriptorCount = 4;
ASSERT(descriptorCountOut);
*descriptorCountOut = kExternalFormatDefaultDescriptorCount;
return angle::Result::Continue;
}
ANGLE_VK_UNREACHABLE(contextVk);
return angle::Result::Stop;
}
void RendererVk::onAllocateHandle(vk::HandleType handleType)
{
std::lock_guard<std::mutex> localLock(mActiveHandleCountsMutex);
mActiveHandleCounts.onAllocate(handleType);
}
void RendererVk::onDeallocateHandle(vk::HandleType handleType)
{
std::lock_guard<std::mutex> localLock(mActiveHandleCountsMutex);
mActiveHandleCounts.onDeallocate(handleType);
}
VkDeviceSize RendererVk::getPreferedBufferBlockSize(uint32_t memoryTypeIndex) const
{
VkDeviceSize preferredBlockSize;
if (mFeatures.preferredLargeHeapBlockSize4MB.enabled)
{
// This number matches Chromium and was picked by looking at memory usage of
// Android apps. The allocator will start making blocks at 1/8 the max size
// and builds up block size as needed before capping at the max set here.
preferredBlockSize = 4 * 1024 * 1024;
}
else
{
preferredBlockSize = 32ull * 1024 * 1024;
}
// Try not to exceed 1/64 of heap size to begin with.
const VkDeviceSize heapSize = getMemoryProperties().getHeapSizeForMemoryType(memoryTypeIndex);
preferredBlockSize = std::min(heapSize / 64, preferredBlockSize);
return preferredBlockSize;
}
namespace vk
{
MemoryReport::MemoryReport()
: mCurrentTotalAllocatedMemory(0),
mMaxTotalAllocatedMemory(0),
mCurrentTotalImportedMemory(0),
mMaxTotalImportedMemory(0)
{}
void MemoryReport::processCallback(const VkDeviceMemoryReportCallbackDataEXT &callbackData,
bool logCallback)
{
std::lock_guard<std::mutex> lock(mMemoryReportMutex);
VkDeviceSize size = 0;
std::string reportType;
switch (callbackData.type)
{
case VK_DEVICE_MEMORY_REPORT_EVENT_TYPE_ALLOCATE_EXT:
reportType = "Allocate";
if ((mUniqueIDCounts[callbackData.memoryObjectId] += 1) > 1)
{
break;
}
size = mSizesPerType[callbackData.objectType].allocatedMemory + callbackData.size;
mSizesPerType[callbackData.objectType].allocatedMemory = size;
if (mSizesPerType[callbackData.objectType].allocatedMemoryMax < size)
{
mSizesPerType[callbackData.objectType].allocatedMemoryMax = size;
}
mCurrentTotalAllocatedMemory += callbackData.size;
if (mMaxTotalAllocatedMemory < mCurrentTotalAllocatedMemory)
{
mMaxTotalAllocatedMemory = mCurrentTotalAllocatedMemory;
}
break;
case VK_DEVICE_MEMORY_REPORT_EVENT_TYPE_FREE_EXT:
reportType = "Free";
ASSERT(mUniqueIDCounts[callbackData.memoryObjectId] > 0);
mUniqueIDCounts[callbackData.memoryObjectId] -= 1;
size = mSizesPerType[callbackData.objectType].allocatedMemory - callbackData.size;
mSizesPerType[callbackData.objectType].allocatedMemory = size;
mCurrentTotalAllocatedMemory -= callbackData.size;
break;
case VK_DEVICE_MEMORY_REPORT_EVENT_TYPE_IMPORT_EXT:
reportType = "Import";
if ((mUniqueIDCounts[callbackData.memoryObjectId] += 1) > 1)
{
break;
}
size = mSizesPerType[callbackData.objectType].importedMemory + callbackData.size;
mSizesPerType[callbackData.objectType].importedMemory = size;
if (mSizesPerType[callbackData.objectType].importedMemoryMax < size)
{
mSizesPerType[callbackData.objectType].importedMemoryMax = size;
}
mCurrentTotalImportedMemory += callbackData.size;
if (mMaxTotalImportedMemory < mCurrentTotalImportedMemory)
{
mMaxTotalImportedMemory = mCurrentTotalImportedMemory;
}
break;
case VK_DEVICE_MEMORY_REPORT_EVENT_TYPE_UNIMPORT_EXT:
reportType = "Un-Import";
ASSERT(mUniqueIDCounts[callbackData.memoryObjectId] > 0);
mUniqueIDCounts[callbackData.memoryObjectId] -= 1;
size = mSizesPerType[callbackData.objectType].importedMemory - callbackData.size;
mSizesPerType[callbackData.objectType].importedMemory = size;
mCurrentTotalImportedMemory -= callbackData.size;
break;
case VK_DEVICE_MEMORY_REPORT_EVENT_TYPE_ALLOCATION_FAILED_EXT:
reportType = "allocFail";
break;
default:
UNREACHABLE();
return;
}
if (logCallback)
{
INFO() << std::right << std::setw(9) << reportType << ": size=" << std::setw(10)
<< callbackData.size << "; type=" << std::setw(15) << std::left
<< GetVkObjectTypeName(callbackData.objectType)
<< "; heapIdx=" << callbackData.heapIndex << "; id=" << std::hex
<< callbackData.memoryObjectId << "; handle=" << std::hex
<< callbackData.objectHandle << ": Total=" << std::right << std::setw(10) << std::dec
<< size;
}
}
void MemoryReport::logMemoryReportStats() const
{
std::lock_guard<std::mutex> lock(mMemoryReportMutex);
INFO() << std::right << "GPU Memory Totals: Allocated=" << std::setw(10)
<< mCurrentTotalAllocatedMemory << " (max=" << std::setw(10) << mMaxTotalAllocatedMemory
<< "); Imported=" << std::setw(10) << mCurrentTotalImportedMemory
<< " (max=" << std::setw(10) << mMaxTotalImportedMemory << ")";
INFO() << "Sub-Totals per type:";
for (const auto &it : mSizesPerType)
{
VkObjectType objectType = it.first;
MemorySizes memorySizes = it.second;
VkDeviceSize allocatedMemory = memorySizes.allocatedMemory;
VkDeviceSize allocatedMemoryMax = memorySizes.allocatedMemoryMax;
VkDeviceSize importedMemory = memorySizes.importedMemory;
VkDeviceSize importedMemoryMax = memorySizes.importedMemoryMax;
INFO() << std::right << "- Type=" << std::setw(15) << GetVkObjectTypeName(objectType)
<< ": Allocated=" << std::setw(10) << allocatedMemory << " (max=" << std::setw(10)
<< allocatedMemoryMax << "); Imported=" << std::setw(10) << importedMemory
<< " (max=" << std::setw(10) << importedMemoryMax << ")";
}
}
// BufferMemoryAllocator implementation.
BufferMemoryAllocator::BufferMemoryAllocator() {}
BufferMemoryAllocator::~BufferMemoryAllocator() {}
VkResult BufferMemoryAllocator::initialize(RendererVk *renderer,
VkDeviceSize preferredLargeHeapBlockSize)
{
ASSERT(renderer->getAllocator().valid());
return VK_SUCCESS;
}
void BufferMemoryAllocator::destroy(RendererVk *renderer) {}
VkResult BufferMemoryAllocator::createBuffer(RendererVk *renderer,
const VkBufferCreateInfo &bufferCreateInfo,
VkMemoryPropertyFlags requiredFlags,
VkMemoryPropertyFlags preferredFlags,
bool persistentlyMappedBuffers,
uint32_t *memoryTypeIndexOut,
Buffer *bufferOut,
Allocation *allocationOut)
{
ASSERT(bufferOut && !bufferOut->valid());
ASSERT(allocationOut && !allocationOut->valid());
const Allocator &allocator = renderer->getAllocator();
return vma::CreateBuffer(allocator.getHandle(), &bufferCreateInfo, requiredFlags,
preferredFlags, persistentlyMappedBuffers, memoryTypeIndexOut,
&bufferOut->mHandle, &allocationOut->mHandle);
}
void BufferMemoryAllocator::getMemoryTypeProperties(RendererVk *renderer,
uint32_t memoryTypeIndex,
VkMemoryPropertyFlags *flagsOut) const
{
const Allocator &allocator = renderer->getAllocator();
vma::GetMemoryTypeProperties(allocator.getHandle(), memoryTypeIndex, flagsOut);
}
VkResult BufferMemoryAllocator::findMemoryTypeIndexForBufferInfo(
RendererVk *renderer,
const VkBufferCreateInfo &bufferCreateInfo,
VkMemoryPropertyFlags requiredFlags,
VkMemoryPropertyFlags preferredFlags,
bool persistentlyMappedBuffers,
uint32_t *memoryTypeIndexOut) const
{
const Allocator &allocator = renderer->getAllocator();
return vma::FindMemoryTypeIndexForBufferInfo(allocator.getHandle(), &bufferCreateInfo,
requiredFlags, preferredFlags,
persistentlyMappedBuffers, memoryTypeIndexOut);
}
} // namespace vk
} // namespace rx