blob: 0ac05d6100729a1042252436ff2f5d3993e1e3b1 [file] [log] [blame]
// -*- mode: c++; c-basic-offset: 4 -*-
/*
* Copyright (C) 2005, 2006, 2007, 2008 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef WTF_Vector_h
#define WTF_Vector_h
#include "Assertions.h"
#include "FastMalloc.h"
#include "VectorTraits.h"
#include <limits>
#include <stdlib.h>
#include <string.h>
#include <utility>
namespace WTF {
using std::min;
using std::max;
template <bool needsDestruction, typename T>
class VectorDestructor;
template<typename T>
struct VectorDestructor<false, T>
{
static void destruct(T*, T*) {}
};
template<typename T>
struct VectorDestructor<true, T>
{
static void destruct(T* begin, T* end)
{
for (T* cur = begin; cur != end; ++cur)
cur->~T();
}
};
template <bool needsInitialization, bool canInitializeWithMemset, typename T>
class VectorInitializer;
template<bool ignore, typename T>
struct VectorInitializer<false, ignore, T>
{
static void initialize(T*, T*) {}
};
template<typename T>
struct VectorInitializer<true, false, T>
{
static void initialize(T* begin, T* end)
{
for (T* cur = begin; cur != end; ++cur)
new (cur) T;
}
};
template<typename T>
struct VectorInitializer<true, true, T>
{
static void initialize(T* begin, T* end)
{
memset(begin, 0, reinterpret_cast<char*>(end) - reinterpret_cast<char*>(begin));
}
};
template <bool canMoveWithMemcpy, typename T>
class VectorMover;
template<typename T>
struct VectorMover<false, T>
{
static void move(const T* src, const T* srcEnd, T* dst)
{
while (src != srcEnd) {
new (dst) T(*src);
src->~T();
++dst;
++src;
}
}
static void moveOverlapping(const T* src, const T* srcEnd, T* dst)
{
if (src > dst)
move(src, srcEnd, dst);
else {
T* dstEnd = dst + (srcEnd - src);
while (src != srcEnd) {
--srcEnd;
--dstEnd;
new (dstEnd) T(*srcEnd);
srcEnd->~T();
}
}
}
};
template<typename T>
struct VectorMover<true, T>
{
static void move(const T* src, const T* srcEnd, T* dst)
{
memcpy(dst, src, reinterpret_cast<const char*>(srcEnd) - reinterpret_cast<const char*>(src));
}
static void moveOverlapping(const T* src, const T* srcEnd, T* dst)
{
memmove(dst, src, reinterpret_cast<const char*>(srcEnd) - reinterpret_cast<const char*>(src));
}
};
template <bool canCopyWithMemcpy, typename T>
class VectorCopier;
template<typename T>
struct VectorCopier<false, T>
{
static void uninitializedCopy(const T* src, const T* srcEnd, T* dst)
{
while (src != srcEnd) {
new (dst) T(*src);
++dst;
++src;
}
}
};
template<typename T>
struct VectorCopier<true, T>
{
static void uninitializedCopy(const T* src, const T* srcEnd, T* dst)
{
memcpy(dst, src, reinterpret_cast<const char*>(srcEnd) - reinterpret_cast<const char*>(src));
}
};
template <bool canFillWithMemset, typename T>
class VectorFiller;
template<typename T>
struct VectorFiller<false, T>
{
static void uninitializedFill(T* dst, T* dstEnd, const T& val)
{
while (dst != dstEnd) {
new (dst) T(val);
++dst;
}
}
};
template<typename T>
struct VectorFiller<true, T>
{
static void uninitializedFill(T* dst, T* dstEnd, const T& val)
{
ASSERT(sizeof(T) == sizeof(char));
memset(dst, val, dstEnd - dst);
}
};
template<bool canCompareWithMemcmp, typename T>
class VectorComparer;
template<typename T>
struct VectorComparer<false, T>
{
static bool compare(const T* a, const T* b, size_t size)
{
for (size_t i = 0; i < size; ++i)
if (a[i] != b[i])
return false;
return true;
}
};
template<typename T>
struct VectorComparer<true, T>
{
static bool compare(const T* a, const T* b, size_t size)
{
return memcmp(a, b, sizeof(T) * size) == 0;
}
};
template<typename T>
struct VectorTypeOperations
{
static void destruct(T* begin, T* end)
{
VectorDestructor<VectorTraits<T>::needsDestruction, T>::destruct(begin, end);
}
static void initialize(T* begin, T* end)
{
VectorInitializer<VectorTraits<T>::needsInitialization, VectorTraits<T>::canInitializeWithMemset, T>::initialize(begin, end);
}
static void move(const T* src, const T* srcEnd, T* dst)
{
VectorMover<VectorTraits<T>::canMoveWithMemcpy, T>::move(src, srcEnd, dst);
}
static void moveOverlapping(const T* src, const T* srcEnd, T* dst)
{
VectorMover<VectorTraits<T>::canMoveWithMemcpy, T>::moveOverlapping(src, srcEnd, dst);
}
static void uninitializedCopy(const T* src, const T* srcEnd, T* dst)
{
VectorCopier<VectorTraits<T>::canCopyWithMemcpy, T>::uninitializedCopy(src, srcEnd, dst);
}
static void uninitializedFill(T* dst, T* dstEnd, const T& val)
{
VectorFiller<VectorTraits<T>::canFillWithMemset, T>::uninitializedFill(dst, dstEnd, val);
}
static bool compare(const T* a, const T* b, size_t size)
{
return VectorComparer<VectorTraits<T>::canCompareWithMemcmp, T>::compare(a, b, size);
}
};
template<typename T>
class VectorBufferBase {
public:
void allocateBuffer(size_t newCapacity)
{
ASSERT(newCapacity >= m_capacity);
m_capacity = newCapacity;
if (newCapacity > std::numeric_limits<size_t>::max() / sizeof(T))
CRASH();
m_buffer = static_cast<T*>(fastMalloc(newCapacity * sizeof(T)));
}
void deallocateBuffer(T* bufferToDeallocate)
{
fastFree(bufferToDeallocate);
}
T* buffer() { return m_buffer; }
const T* buffer() const { return m_buffer; }
size_t capacity() const { return m_capacity; }
T* releaseBuffer()
{
T* buffer = m_buffer;
m_buffer = 0;
m_capacity = 0;
return buffer;
}
protected:
VectorBufferBase()
: m_buffer(0)
, m_capacity(0)
{
}
VectorBufferBase(T* buffer, size_t capacity)
: m_buffer(buffer)
, m_capacity(capacity)
{
}
~VectorBufferBase()
{
// FIXME: It would be nice to find a way to ASSERT that m_buffer hasn't leaked here.
}
T* m_buffer;
size_t m_capacity;
};
template<typename T, size_t inlineCapacity>
class VectorBuffer;
template<typename T>
class VectorBuffer<T, 0> : private VectorBufferBase<T> {
private:
typedef VectorBufferBase<T> Base;
public:
VectorBuffer()
{
}
VectorBuffer(size_t capacity)
{
allocateBuffer(capacity);
}
~VectorBuffer()
{
deallocateBuffer(buffer());
}
void swap(VectorBuffer<T, 0>& other)
{
std::swap(m_buffer, other.m_buffer);
std::swap(m_capacity, other.m_capacity);
}
using Base::allocateBuffer;
using Base::deallocateBuffer;
using Base::buffer;
using Base::capacity;
using Base::releaseBuffer;
private:
using Base::m_buffer;
using Base::m_capacity;
};
template<typename T, size_t inlineCapacity>
class VectorBuffer : private VectorBufferBase<T> {
private:
typedef VectorBufferBase<T> Base;
public:
VectorBuffer()
: Base(inlineBuffer(), inlineCapacity)
{
}
VectorBuffer(size_t capacity)
: Base(inlineBuffer(), inlineCapacity)
{
if (capacity > inlineCapacity)
allocateBuffer(capacity);
}
~VectorBuffer()
{
deallocateBuffer(buffer());
}
using Base::allocateBuffer;
void deallocateBuffer(T* bufferToDeallocate)
{
if (bufferToDeallocate == inlineBuffer())
return;
Base::deallocateBuffer(bufferToDeallocate);
}
using Base::buffer;
using Base::capacity;
T* releaseBuffer()
{
if (buffer() == inlineBuffer())
return 0;
return Base::releaseBuffer();
}
private:
using Base::m_buffer;
using Base::m_capacity;
static const size_t m_inlineBufferSize = inlineCapacity * sizeof(T);
T* inlineBuffer() { return reinterpret_cast<T*>(&m_inlineBuffer); }
// FIXME: Nothing guarantees this buffer is appropriately aligned to hold objects of type T.
char m_inlineBuffer[m_inlineBufferSize];
};
template<typename T, size_t inlineCapacity = 0>
class Vector {
private:
typedef VectorBuffer<T, inlineCapacity> Impl;
typedef VectorTypeOperations<T> TypeOperations;
public:
typedef T ValueType;
typedef T* iterator;
typedef const T* const_iterator;
Vector()
: m_size(0)
{
}
explicit Vector(size_t size)
: m_size(size)
, m_impl(size)
{
TypeOperations::initialize(begin(), end());
}
~Vector()
{
clear();
}
Vector(const Vector&);
template<size_t otherCapacity>
Vector(const Vector<T, otherCapacity>&);
Vector& operator=(const Vector&);
template<size_t otherCapacity>
Vector& operator=(const Vector<T, otherCapacity>&);
size_t size() const { return m_size; }
size_t capacity() const { return m_impl.capacity(); }
bool isEmpty() const { return !size(); }
T& at(size_t i)
{
ASSERT(i < size());
return m_impl.buffer()[i];
}
const T& at(size_t i) const
{
ASSERT(i < size());
return m_impl.buffer()[i];
}
T& operator[](size_t i) { return at(i); }
const T& operator[](size_t i) const { return at(i); }
T* data() { return m_impl.buffer(); }
const T* data() const { return m_impl.buffer(); }
iterator begin() { return data(); }
iterator end() { return begin() + m_size; }
const_iterator begin() const { return data(); }
const_iterator end() const { return begin() + m_size; }
T& first() { return at(0); }
const T& first() const { return at(0); }
T& last() { return at(size() - 1); }
const T& last() const { return at(size() - 1); }
void shrink(size_t size);
void grow(size_t size);
void resize(size_t size);
void reserveCapacity(size_t newCapacity);
void clear() { if (m_size) shrink(0); }
template<typename U> void append(const U*, size_t);
template<typename U> void append(const U&);
template<typename U> void uncheckedAppend(const U& val);
template<size_t otherCapacity> void append(const Vector<T, otherCapacity>&);
template<typename U> void insert(size_t position, const U*, size_t);
template<typename U> void insert(size_t position, const U&);
template<typename U, size_t c> void insert(size_t position, const Vector<U, c>&);
template<typename U> void prepend(const U*, size_t);
template<typename U> void prepend(const U&);
template<typename U, size_t c> void prepend(const Vector<U, c>&);
void remove(size_t position);
void remove(size_t position, size_t length);
void removeLast()
{
ASSERT(!isEmpty());
shrink(size() - 1);
}
Vector(size_t size, const T& val)
: m_size(size)
, m_impl(size)
{
TypeOperations::uninitializedFill(begin(), end(), val);
}
void fill(const T&, size_t);
void fill(const T& val) { fill(val, size()); }
template<typename Iterator> void appendRange(Iterator start, Iterator end);
T* releaseBuffer();
void swap(Vector<T, inlineCapacity>& other)
{
std::swap(m_size, other.m_size);
m_impl.swap(other.m_impl);
}
private:
void expandCapacity(size_t newMinCapacity);
const T* expandCapacity(size_t newMinCapacity, const T*);
template<typename U> U* expandCapacity(size_t newMinCapacity, U*);
size_t m_size;
Impl m_impl;
};
template<typename T, size_t inlineCapacity>
Vector<T, inlineCapacity>::Vector(const Vector& other)
: m_size(other.size())
, m_impl(other.capacity())
{
TypeOperations::uninitializedCopy(other.begin(), other.end(), begin());
}
template<typename T, size_t inlineCapacity>
template<size_t otherCapacity>
Vector<T, inlineCapacity>::Vector(const Vector<T, otherCapacity>& other)
: m_size(other.size())
, m_impl(other.capacity())
{
TypeOperations::uninitializedCopy(other.begin(), other.end(), begin());
}
template<typename T, size_t inlineCapacity>
Vector<T, inlineCapacity>& Vector<T, inlineCapacity>::operator=(const Vector<T, inlineCapacity>& other)
{
if (&other == this)
return *this;
if (size() > other.size())
shrink(other.size());
else if (other.size() > capacity()) {
clear();
reserveCapacity(other.size());
}
std::copy(other.begin(), other.begin() + size(), begin());
TypeOperations::uninitializedCopy(other.begin() + size(), other.end(), end());
m_size = other.size();
return *this;
}
template<typename T, size_t inlineCapacity>
template<size_t otherCapacity>
Vector<T, inlineCapacity>& Vector<T, inlineCapacity>::operator=(const Vector<T, otherCapacity>& other)
{
if (&other == this)
return *this;
if (size() > other.size())
shrink(other.size());
else if (other.size() > capacity()) {
clear();
reserveCapacity(other.size());
}
std::copy(other.begin(), other.begin() + size(), begin());
TypeOperations::uninitializedCopy(other.begin() + size(), other.end(), end());
m_size = other.size();
return *this;
}
template<typename T, size_t inlineCapacity>
void Vector<T, inlineCapacity>::fill(const T& val, size_t newSize)
{
if (size() > newSize)
shrink(newSize);
else if (newSize > capacity()) {
clear();
reserveCapacity(newSize);
}
std::fill(begin(), end(), val);
TypeOperations::uninitializedFill(end(), begin() + newSize, val);
m_size = newSize;
}
template<typename T, size_t inlineCapacity>
template<typename Iterator>
void Vector<T, inlineCapacity>::appendRange(Iterator start, Iterator end)
{
for (Iterator it = start; it != end; ++it)
append(*it);
}
template<typename T, size_t inlineCapacity>
void Vector<T, inlineCapacity>::expandCapacity(size_t newMinCapacity)
{
reserveCapacity(max(newMinCapacity, max(static_cast<size_t>(16), capacity() + capacity() / 4 + 1)));
}
template<typename T, size_t inlineCapacity>
const T* Vector<T, inlineCapacity>::expandCapacity(size_t newMinCapacity, const T* ptr)
{
if (ptr < begin() || ptr >= end()) {
expandCapacity(newMinCapacity);
return ptr;
}
size_t index = ptr - begin();
expandCapacity(newMinCapacity);
return begin() + index;
}
template<typename T, size_t inlineCapacity> template<typename U>
inline U* Vector<T, inlineCapacity>::expandCapacity(size_t newMinCapacity, U* ptr)
{
expandCapacity(newMinCapacity);
return ptr;
}
template<typename T, size_t inlineCapacity>
void Vector<T, inlineCapacity>::resize(size_t size)
{
if (size <= m_size)
TypeOperations::destruct(begin() + size, end());
else {
if (size > capacity())
expandCapacity(size);
TypeOperations::initialize(end(), begin() + size);
}
m_size = size;
}
template<typename T, size_t inlineCapacity>
void Vector<T, inlineCapacity>::shrink(size_t size)
{
ASSERT(size <= m_size);
TypeOperations::destruct(begin() + size, end());
m_size = size;
}
template<typename T, size_t inlineCapacity>
void Vector<T, inlineCapacity>::grow(size_t size)
{
ASSERT(size >= m_size);
if (size > capacity())
expandCapacity(size);
TypeOperations::initialize(end(), begin() + size);
m_size = size;
}
template<typename T, size_t inlineCapacity>
void Vector<T, inlineCapacity>::reserveCapacity(size_t newCapacity)
{
if (newCapacity <= capacity())
return;
T* oldBuffer = begin();
T* oldEnd = end();
m_impl.allocateBuffer(newCapacity);
TypeOperations::move(oldBuffer, oldEnd, begin());
m_impl.deallocateBuffer(oldBuffer);
}
// Templatizing these is better than just letting the conversion happen implicitly,
// because for instance it allows a PassRefPtr to be appended to a RefPtr vector
// without refcount thrash.
template<typename T, size_t inlineCapacity> template<typename U>
void Vector<T, inlineCapacity>::append(const U* data, size_t dataSize)
{
size_t newSize = m_size + dataSize;
if (newSize > capacity())
data = expandCapacity(newSize, data);
T* dest = end();
for (size_t i = 0; i < dataSize; ++i)
new (&dest[i]) T(data[i]);
m_size = newSize;
}
template<typename T, size_t inlineCapacity> template<typename U>
inline void Vector<T, inlineCapacity>::append(const U& val)
{
const U* ptr = &val;
if (size() == capacity())
ptr = expandCapacity(size() + 1, ptr);
// FIXME: MSVC7 generates compilation errors when trying to assign
// a pointer to a Vector of its base class (i.e. can't downcast). So far
// I've been unable to determine any logical reason for this, so I can
// only assume it is a bug with the compiler. Casting is very bad
// however because it subverts implicit conversions, so a better
// solution is direly needed.
#if COMPILER(MSVC7)
new (end()) T(static_cast<T>(*ptr));
#else
new (end()) T(*ptr);
#endif
++m_size;
}
// This version of append saves a branch in the case where you know that the
// vector's capacity is large enough for the append to succeed.
template<typename T, size_t inlineCapacity> template<typename U>
inline void Vector<T, inlineCapacity>::uncheckedAppend(const U& val)
{
ASSERT(size() < capacity());
const U* ptr = &val;
new (end()) T(*ptr);
++m_size;
}
// This method should not be called append, a better name would be appendElements.
// It could also be eliminated entirely, and call sites could just use
// appendRange(val.begin(), val.end()).
template<typename T, size_t inlineCapacity> template<size_t otherCapacity>
inline void Vector<T, inlineCapacity>::append(const Vector<T, otherCapacity>& val)
{
append(val.begin(), val.size());
}
template<typename T, size_t inlineCapacity> template<typename U>
void Vector<T, inlineCapacity>::insert(size_t position, const U* data, size_t dataSize)
{
ASSERT(position <= size());
size_t newSize = m_size + dataSize;
if (newSize > capacity())
data = expandCapacity(newSize, data);
T* spot = begin() + position;
TypeOperations::moveOverlapping(spot, end(), spot + dataSize);
for (size_t i = 0; i < dataSize; ++i)
new (&spot[i]) T(data[i]);
m_size = newSize;
}
template<typename T, size_t inlineCapacity> template<typename U>
inline void Vector<T, inlineCapacity>::insert(size_t position, const U& val)
{
ASSERT(position <= size());
const U* data = &val;
if (size() == capacity())
data = expandCapacity(size() + 1, data);
T* spot = begin() + position;
TypeOperations::moveOverlapping(spot, end(), spot + 1);
new (spot) T(*data);
++m_size;
}
template<typename T, size_t inlineCapacity> template<typename U, size_t c>
inline void Vector<T, inlineCapacity>::insert(size_t position, const Vector<U, c>& val)
{
insert(position, val.begin(), val.size());
}
template<typename T, size_t inlineCapacity> template<typename U>
void Vector<T, inlineCapacity>::prepend(const U* data, size_t dataSize)
{
insert(0, data, dataSize);
}
template<typename T, size_t inlineCapacity> template<typename U>
inline void Vector<T, inlineCapacity>::prepend(const U& val)
{
insert(0, val);
}
template<typename T, size_t inlineCapacity> template<typename U, size_t c>
inline void Vector<T, inlineCapacity>::prepend(const Vector<U, c>& val)
{
insert(0, val.begin(), val.size());
}
template<typename T, size_t inlineCapacity>
inline void Vector<T, inlineCapacity>::remove(size_t position)
{
ASSERT(position < size());
T* spot = begin() + position;
spot->~T();
TypeOperations::moveOverlapping(spot + 1, end(), spot);
--m_size;
}
template<typename T, size_t inlineCapacity>
inline void Vector<T, inlineCapacity>::remove(size_t position, size_t length)
{
ASSERT(position < size());
ASSERT(position + length < size());
T* beginSpot = begin() + position;
T* endSpot = beginSpot + length;
TypeOperations::destruct(beginSpot, endSpot);
TypeOperations::moveOverlapping(endSpot, end(), beginSpot);
m_size -= length;
}
template<typename T, size_t inlineCapacity>
inline T* Vector<T, inlineCapacity>::releaseBuffer()
{
T* buffer = m_impl.releaseBuffer();
if (inlineCapacity && !buffer && m_size) {
// If the vector had some data, but no buffer to release,
// that means it was using the inline buffer. In that case,
// we create a brand new buffer so the caller always gets one.
size_t bytes = m_size * sizeof(T);
buffer = static_cast<T*>(fastMalloc(bytes));
memcpy(buffer, data(), bytes);
}
ASSERT(buffer);
m_size = 0;
return buffer;
}
template<typename T, size_t inlineCapacity>
void deleteAllValues(const Vector<T, inlineCapacity>& collection)
{
typedef typename Vector<T, inlineCapacity>::const_iterator iterator;
iterator end = collection.end();
for (iterator it = collection.begin(); it != end; ++it)
delete *it;
}
template<typename T, size_t inlineCapacity>
inline void swap(Vector<T, inlineCapacity>& a, Vector<T, inlineCapacity>& b)
{
a.swap(b);
}
template<typename T, size_t inlineCapacity>
bool operator==(const Vector<T, inlineCapacity>& a, const Vector<T, inlineCapacity>& b)
{
if (a.size() != b.size())
return false;
return VectorTypeOperations<T>::compare(a.data(), b.data(), a.size());
}
template<typename T, size_t inlineCapacity>
inline bool operator!=(const Vector<T, inlineCapacity>& a, const Vector<T, inlineCapacity>& b)
{
return !(a == b);
}
} // namespace WTF
using WTF::Vector;
#endif // WTF_Vector_h