| /* |
| * Copyright (C) 2011, 2012 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "DFGPredictionPropagationPhase.h" |
| |
| #if ENABLE(DFG_JIT) |
| |
| #include "DFGGraph.h" |
| #include "DFGPhase.h" |
| |
| namespace JSC { namespace DFG { |
| |
| class PredictionPropagationPhase : public Phase { |
| public: |
| PredictionPropagationPhase(Graph& graph) |
| : Phase(graph, "prediction propagation") |
| { |
| } |
| |
| void run() |
| { |
| #if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE) |
| m_count = 0; |
| #endif |
| // 1) propagate predictions |
| |
| do { |
| m_changed = false; |
| |
| // Forward propagation is near-optimal for both topologically-sorted and |
| // DFS-sorted code. |
| propagateForward(); |
| if (!m_changed) |
| break; |
| |
| // Backward propagation reduces the likelihood that pathological code will |
| // cause slowness. Loops (especially nested ones) resemble backward flow. |
| // This pass captures two cases: (1) it detects if the forward fixpoint |
| // found a sound solution and (2) short-circuits backward flow. |
| m_changed = false; |
| propagateBackward(); |
| } while (m_changed); |
| |
| // 2) repropagate predictions while doing double voting. |
| |
| do { |
| m_changed = false; |
| doRoundOfDoubleVoting(); |
| propagateForward(); |
| if (!m_changed) |
| break; |
| |
| m_changed = false; |
| doRoundOfDoubleVoting(); |
| propagateBackward(); |
| } while (m_changed); |
| } |
| |
| private: |
| bool setPrediction(PredictedType prediction) |
| { |
| ASSERT(m_graph[m_compileIndex].hasResult()); |
| |
| // setPrediction() is used when we know that there is no way that we can change |
| // our minds about what the prediction is going to be. There is no semantic |
| // difference between setPrediction() and mergePrediction() other than the |
| // increased checking to validate this property. |
| ASSERT(m_graph[m_compileIndex].prediction() == PredictNone || m_graph[m_compileIndex].prediction() == prediction); |
| |
| return m_graph[m_compileIndex].predict(prediction); |
| } |
| |
| bool mergePrediction(PredictedType prediction) |
| { |
| ASSERT(m_graph[m_compileIndex].hasResult()); |
| |
| return m_graph[m_compileIndex].predict(prediction); |
| } |
| |
| bool isNotNegZero(NodeIndex nodeIndex) |
| { |
| if (!m_graph.isNumberConstant(nodeIndex)) |
| return false; |
| double value = m_graph.valueOfNumberConstant(nodeIndex); |
| return !value && 1.0 / value < 0.0; |
| } |
| |
| bool isNotZero(NodeIndex nodeIndex) |
| { |
| if (!m_graph.isNumberConstant(nodeIndex)) |
| return false; |
| return !!m_graph.valueOfNumberConstant(nodeIndex); |
| } |
| |
| void propagate(Node& node) |
| { |
| if (!node.shouldGenerate()) |
| return; |
| |
| NodeType op = node.op(); |
| NodeFlags flags = node.flags() & NodeBackPropMask; |
| |
| #if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE) |
| dataLog(" %s @%u: %s ", Graph::opName(op), m_compileIndex, nodeFlagsAsString(flags)); |
| #endif |
| |
| bool changed = false; |
| |
| switch (op) { |
| case JSConstant: |
| case WeakJSConstant: { |
| changed |= setPrediction(predictionFromValue(m_graph.valueOfJSConstant(m_compileIndex))); |
| break; |
| } |
| |
| case GetLocal: { |
| VariableAccessData* variableAccessData = node.variableAccessData(); |
| PredictedType prediction = variableAccessData->prediction(); |
| if (prediction) |
| changed |= mergePrediction(prediction); |
| |
| changed |= variableAccessData->mergeFlags(flags); |
| break; |
| } |
| |
| case SetLocal: { |
| VariableAccessData* variableAccessData = node.variableAccessData(); |
| changed |= variableAccessData->predict(m_graph[node.child1()].prediction()); |
| changed |= m_graph[node.child1()].mergeFlags(variableAccessData->flags()); |
| break; |
| } |
| |
| case Flush: { |
| // Make sure that the analysis knows that flushed locals escape. |
| VariableAccessData* variableAccessData = node.variableAccessData(); |
| changed |= variableAccessData->mergeFlags(NodeUsedAsValue); |
| break; |
| } |
| |
| case BitAnd: |
| case BitOr: |
| case BitXor: |
| case BitRShift: |
| case BitLShift: |
| case BitURShift: { |
| changed |= setPrediction(PredictInt32); |
| flags |= NodeUsedAsInt; |
| flags &= ~(NodeUsedAsNumber | NodeNeedsNegZero); |
| changed |= m_graph[node.child1()].mergeFlags(flags); |
| changed |= m_graph[node.child2()].mergeFlags(flags); |
| break; |
| } |
| |
| case ValueToInt32: { |
| changed |= setPrediction(PredictInt32); |
| flags |= NodeUsedAsInt; |
| flags &= ~(NodeUsedAsNumber | NodeNeedsNegZero); |
| changed |= m_graph[node.child1()].mergeFlags(flags); |
| break; |
| } |
| |
| case ArrayPop: { |
| changed |= mergePrediction(node.getHeapPrediction()); |
| changed |= mergeDefaultFlags(node); |
| break; |
| } |
| |
| case ArrayPush: { |
| changed |= mergePrediction(node.getHeapPrediction()); |
| changed |= m_graph[node.child1()].mergeFlags(NodeUsedAsValue); |
| changed |= m_graph[node.child2()].mergeFlags(NodeUsedAsValue); |
| break; |
| } |
| |
| case RegExpExec: |
| case RegExpTest: { |
| changed |= mergePrediction(node.getHeapPrediction()); |
| changed |= mergeDefaultFlags(node); |
| break; |
| } |
| |
| case StringCharCodeAt: { |
| changed |= mergePrediction(PredictInt32); |
| changed |= m_graph[node.child1()].mergeFlags(NodeUsedAsValue); |
| changed |= m_graph[node.child2()].mergeFlags(NodeUsedAsNumber | NodeUsedAsInt); |
| break; |
| } |
| |
| case ArithMod: { |
| PredictedType left = m_graph[node.child1()].prediction(); |
| PredictedType right = m_graph[node.child2()].prediction(); |
| |
| if (left && right) { |
| if (isInt32Prediction(mergePredictions(left, right)) |
| && nodeCanSpeculateInteger(node.arithNodeFlags())) |
| changed |= mergePrediction(PredictInt32); |
| else |
| changed |= mergePrediction(PredictDouble); |
| } |
| |
| flags |= NodeUsedAsValue; |
| changed |= m_graph[node.child1()].mergeFlags(flags); |
| changed |= m_graph[node.child2()].mergeFlags(flags); |
| break; |
| } |
| |
| case UInt32ToNumber: { |
| if (nodeCanSpeculateInteger(node.arithNodeFlags())) |
| changed |= mergePrediction(PredictInt32); |
| else |
| changed |= mergePrediction(PredictNumber); |
| |
| changed |= m_graph[node.child1()].mergeFlags(flags); |
| break; |
| } |
| |
| case ValueAdd: { |
| PredictedType left = m_graph[node.child1()].prediction(); |
| PredictedType right = m_graph[node.child2()].prediction(); |
| |
| if (left && right) { |
| if (isNumberPrediction(left) && isNumberPrediction(right)) { |
| if (m_graph.addShouldSpeculateInteger(node)) |
| changed |= mergePrediction(PredictInt32); |
| else |
| changed |= mergePrediction(PredictDouble); |
| } else if (!(left & PredictNumber) || !(right & PredictNumber)) { |
| // left or right is definitely something other than a number. |
| changed |= mergePrediction(PredictString); |
| } else |
| changed |= mergePrediction(PredictString | PredictInt32 | PredictDouble); |
| } |
| |
| if (isNotNegZero(node.child1().index()) || isNotNegZero(node.child2().index())) |
| flags &= ~NodeNeedsNegZero; |
| |
| changed |= m_graph[node.child1()].mergeFlags(flags); |
| changed |= m_graph[node.child2()].mergeFlags(flags); |
| break; |
| } |
| |
| case ArithAdd: { |
| PredictedType left = m_graph[node.child1()].prediction(); |
| PredictedType right = m_graph[node.child2()].prediction(); |
| |
| if (left && right) { |
| if (m_graph.addShouldSpeculateInteger(node)) |
| changed |= mergePrediction(PredictInt32); |
| else |
| changed |= mergePrediction(PredictDouble); |
| } |
| |
| if (isNotNegZero(node.child1().index()) || isNotNegZero(node.child2().index())) |
| flags &= ~NodeNeedsNegZero; |
| |
| changed |= m_graph[node.child1()].mergeFlags(flags); |
| changed |= m_graph[node.child2()].mergeFlags(flags); |
| break; |
| } |
| |
| case ArithSub: { |
| PredictedType left = m_graph[node.child1()].prediction(); |
| PredictedType right = m_graph[node.child2()].prediction(); |
| |
| if (left && right) { |
| if (m_graph.addShouldSpeculateInteger(node)) |
| changed |= mergePrediction(PredictInt32); |
| else |
| changed |= mergePrediction(PredictDouble); |
| } |
| |
| if (isNotZero(node.child1().index()) || isNotZero(node.child2().index())) |
| flags &= ~NodeNeedsNegZero; |
| |
| changed |= m_graph[node.child1()].mergeFlags(flags); |
| changed |= m_graph[node.child2()].mergeFlags(flags); |
| break; |
| } |
| |
| case ArithNegate: |
| if (m_graph[node.child1()].prediction()) { |
| if (m_graph.negateShouldSpeculateInteger(node)) |
| changed |= mergePrediction(PredictInt32); |
| else |
| changed |= mergePrediction(PredictDouble); |
| } |
| |
| changed |= m_graph[node.child1()].mergeFlags(flags); |
| break; |
| |
| case ArithMin: |
| case ArithMax: { |
| PredictedType left = m_graph[node.child1()].prediction(); |
| PredictedType right = m_graph[node.child2()].prediction(); |
| |
| if (left && right) { |
| if (isInt32Prediction(mergePredictions(left, right)) |
| && nodeCanSpeculateInteger(node.arithNodeFlags())) |
| changed |= mergePrediction(PredictInt32); |
| else |
| changed |= mergePrediction(PredictDouble); |
| } |
| |
| flags |= NodeUsedAsNumber; |
| changed |= m_graph[node.child1()].mergeFlags(flags); |
| changed |= m_graph[node.child2()].mergeFlags(flags); |
| break; |
| } |
| |
| case ArithMul: |
| case ArithDiv: { |
| PredictedType left = m_graph[node.child1()].prediction(); |
| PredictedType right = m_graph[node.child2()].prediction(); |
| |
| if (left && right) { |
| if (isInt32Prediction(mergePredictions(left, right)) |
| && nodeCanSpeculateInteger(node.arithNodeFlags())) |
| changed |= mergePrediction(PredictInt32); |
| else |
| changed |= mergePrediction(PredictDouble); |
| } |
| |
| // As soon as a multiply happens, we can easily end up in the part |
| // of the double domain where the point at which you do truncation |
| // can change the outcome. So, ArithMul always checks for overflow |
| // no matter what, and always forces its inputs to check as well. |
| |
| flags |= NodeUsedAsNumber | NodeNeedsNegZero; |
| changed |= m_graph[node.child1()].mergeFlags(flags); |
| changed |= m_graph[node.child2()].mergeFlags(flags); |
| break; |
| } |
| |
| case ArithSqrt: { |
| changed |= setPrediction(PredictDouble); |
| changed |= m_graph[node.child1()].mergeFlags(flags | NodeUsedAsValue); |
| break; |
| } |
| |
| case ArithAbs: { |
| PredictedType child = m_graph[node.child1()].prediction(); |
| if (nodeCanSpeculateInteger(node.arithNodeFlags())) |
| changed |= mergePrediction(child); |
| else |
| changed |= setPrediction(PredictDouble); |
| |
| flags &= ~NodeNeedsNegZero; |
| changed |= m_graph[node.child1()].mergeFlags(flags); |
| break; |
| } |
| |
| case LogicalNot: |
| case CompareLess: |
| case CompareLessEq: |
| case CompareGreater: |
| case CompareGreaterEq: |
| case CompareEq: |
| case CompareStrictEq: |
| case InstanceOf: { |
| changed |= setPrediction(PredictBoolean); |
| changed |= mergeDefaultFlags(node); |
| break; |
| } |
| |
| case GetById: { |
| changed |= mergePrediction(node.getHeapPrediction()); |
| changed |= mergeDefaultFlags(node); |
| break; |
| } |
| |
| case GetByIdFlush: |
| changed |= mergePrediction(node.getHeapPrediction()); |
| changed |= mergeDefaultFlags(node); |
| break; |
| |
| case GetByVal: { |
| if (m_graph[node.child1()].shouldSpeculateFloat32Array() |
| || m_graph[node.child1()].shouldSpeculateFloat64Array()) |
| changed |= mergePrediction(PredictDouble); |
| else |
| changed |= mergePrediction(node.getHeapPrediction()); |
| |
| changed |= m_graph[node.child1()].mergeFlags(NodeUsedAsValue); |
| changed |= m_graph[node.child2()].mergeFlags(NodeUsedAsNumber | NodeUsedAsInt); |
| break; |
| } |
| |
| case GetPropertyStorage: |
| case GetIndexedPropertyStorage: { |
| changed |= setPrediction(PredictOther); |
| changed |= mergeDefaultFlags(node); |
| break; |
| } |
| |
| case GetByOffset: { |
| changed |= mergePrediction(node.getHeapPrediction()); |
| changed |= mergeDefaultFlags(node); |
| break; |
| } |
| |
| case Call: |
| case Construct: { |
| changed |= mergePrediction(node.getHeapPrediction()); |
| for (unsigned childIdx = node.firstChild(); |
| childIdx < node.firstChild() + node.numChildren(); |
| ++childIdx) { |
| Edge edge = m_graph.m_varArgChildren[childIdx]; |
| changed |= m_graph[edge].mergeFlags(NodeUsedAsValue); |
| } |
| break; |
| } |
| |
| case ConvertThis: { |
| PredictedType prediction = m_graph[node.child1()].prediction(); |
| if (prediction) { |
| if (prediction & ~PredictObjectMask) { |
| prediction &= PredictObjectMask; |
| prediction = mergePredictions(prediction, PredictObjectOther); |
| } |
| changed |= mergePrediction(prediction); |
| } |
| changed |= mergeDefaultFlags(node); |
| break; |
| } |
| |
| case GetGlobalVar: { |
| PredictedType prediction = m_graph.getGlobalVarPrediction(node.varNumber()); |
| changed |= mergePrediction(prediction); |
| break; |
| } |
| |
| case PutGlobalVar: { |
| changed |= m_graph.predictGlobalVar( |
| node.varNumber(), m_graph[node.child1()].prediction()); |
| changed |= m_graph[node.child1()].mergeFlags(NodeUsedAsValue); |
| break; |
| } |
| |
| case GetScopedVar: |
| case Resolve: |
| case ResolveBase: |
| case ResolveBaseStrictPut: |
| case ResolveGlobal: { |
| PredictedType prediction = node.getHeapPrediction(); |
| changed |= mergePrediction(prediction); |
| break; |
| } |
| |
| case GetScopeChain: { |
| changed |= setPrediction(PredictCellOther); |
| break; |
| } |
| |
| case GetCallee: { |
| changed |= setPrediction(PredictFunction); |
| break; |
| } |
| |
| case CreateThis: |
| case NewObject: { |
| changed |= setPrediction(PredictFinalObject); |
| changed |= mergeDefaultFlags(node); |
| break; |
| } |
| |
| case NewArray: { |
| changed |= setPrediction(PredictArray); |
| for (unsigned childIdx = node.firstChild(); |
| childIdx < node.firstChild() + node.numChildren(); |
| ++childIdx) { |
| Edge edge = m_graph.m_varArgChildren[childIdx]; |
| changed |= m_graph[edge].mergeFlags(NodeUsedAsValue); |
| } |
| break; |
| } |
| |
| case NewArrayBuffer: { |
| changed |= setPrediction(PredictArray); |
| break; |
| } |
| |
| case NewRegexp: { |
| changed |= setPrediction(PredictObjectOther); |
| break; |
| } |
| |
| case StringCharAt: { |
| changed |= setPrediction(PredictString); |
| changed |= m_graph[node.child1()].mergeFlags(NodeUsedAsValue); |
| changed |= m_graph[node.child2()].mergeFlags(NodeUsedAsNumber | NodeUsedAsInt); |
| break; |
| } |
| |
| case StrCat: { |
| changed |= setPrediction(PredictString); |
| for (unsigned childIdx = node.firstChild(); |
| childIdx < node.firstChild() + node.numChildren(); |
| ++childIdx) |
| changed |= m_graph[m_graph.m_varArgChildren[childIdx]].mergeFlags(NodeUsedAsNumber); |
| break; |
| } |
| |
| case ToPrimitive: { |
| PredictedType child = m_graph[node.child1()].prediction(); |
| if (child) { |
| if (isObjectPrediction(child)) { |
| // I'd love to fold this case into the case below, but I can't, because |
| // removing PredictObjectMask from something that only has an object |
| // prediction and nothing else means we have an ill-formed PredictedType |
| // (strong predict-none). This should be killed once we remove all traces |
| // of static (aka weak) predictions. |
| changed |= mergePrediction(PredictString); |
| } else if (child & PredictObjectMask) { |
| // Objects get turned into strings. So if the input has hints of objectness, |
| // the output will have hinsts of stringiness. |
| changed |= mergePrediction( |
| mergePredictions(child & ~PredictObjectMask, PredictString)); |
| } else |
| changed |= mergePrediction(child); |
| } |
| changed |= m_graph[node.child1()].mergeFlags(flags); |
| break; |
| } |
| |
| case CreateActivation: { |
| changed |= setPrediction(PredictObjectOther); |
| break; |
| } |
| |
| case NewFunction: |
| case NewFunctionNoCheck: |
| case NewFunctionExpression: { |
| changed |= setPrediction(PredictFunction); |
| break; |
| } |
| |
| case PutByValAlias: |
| case GetArrayLength: |
| case GetByteArrayLength: |
| case GetInt8ArrayLength: |
| case GetInt16ArrayLength: |
| case GetInt32ArrayLength: |
| case GetUint8ArrayLength: |
| case GetUint8ClampedArrayLength: |
| case GetUint16ArrayLength: |
| case GetUint32ArrayLength: |
| case GetFloat32ArrayLength: |
| case GetFloat64ArrayLength: |
| case GetStringLength: |
| case Int32ToDouble: { |
| // This node should never be visible at this stage of compilation. It is |
| // inserted by fixup(), which follows this phase. |
| ASSERT_NOT_REACHED(); |
| break; |
| } |
| |
| case PutByVal: |
| changed |= m_graph[node.child1()].mergeFlags(NodeUsedAsValue); |
| changed |= m_graph[node.child2()].mergeFlags(NodeUsedAsNumber | NodeUsedAsInt); |
| changed |= m_graph[node.child3()].mergeFlags(NodeUsedAsValue); |
| break; |
| |
| case PutScopedVar: |
| case Return: |
| case Throw: |
| changed |= m_graph[node.child1()].mergeFlags(NodeUsedAsValue); |
| break; |
| |
| case PutById: |
| case PutByIdDirect: |
| changed |= m_graph[node.child1()].mergeFlags(NodeUsedAsValue); |
| changed |= m_graph[node.child2()].mergeFlags(NodeUsedAsValue); |
| break; |
| |
| case PutByOffset: |
| changed |= m_graph[node.child1()].mergeFlags(NodeUsedAsValue); |
| changed |= m_graph[node.child3()].mergeFlags(NodeUsedAsValue); |
| break; |
| |
| case Phi: |
| break; |
| |
| #ifndef NDEBUG |
| // These get ignored because they don't return anything. |
| case DFG::Jump: |
| case Branch: |
| case Breakpoint: |
| case CheckHasInstance: |
| case ThrowReferenceError: |
| case ForceOSRExit: |
| case SetArgument: |
| case CheckStructure: |
| case CheckFunction: |
| case PutStructure: |
| case TearOffActivation: |
| changed |= mergeDefaultFlags(node); |
| break; |
| |
| // These gets ignored because it doesn't do anything. |
| case Phantom: |
| case InlineStart: |
| case Nop: |
| break; |
| |
| case LastNodeType: |
| ASSERT_NOT_REACHED(); |
| break; |
| #else |
| default: |
| changed |= mergeDefaultFlags(node); |
| break; |
| #endif |
| } |
| |
| #if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE) |
| dataLog("%s\n", predictionToString(m_graph[m_compileIndex].prediction())); |
| #endif |
| |
| m_changed |= changed; |
| } |
| |
| bool mergeDefaultFlags(Node& node) |
| { |
| bool changed = false; |
| if (node.flags() & NodeHasVarArgs) { |
| for (unsigned childIdx = node.firstChild(); |
| childIdx < node.firstChild() + node.numChildren(); |
| childIdx++) |
| changed |= m_graph[m_graph.m_varArgChildren[childIdx]].mergeFlags(NodeUsedAsValue); |
| } else { |
| if (!node.child1()) |
| return changed; |
| changed |= m_graph[node.child1()].mergeFlags(NodeUsedAsValue); |
| if (!node.child2()) |
| return changed; |
| changed |= m_graph[node.child2()].mergeFlags(NodeUsedAsValue); |
| if (!node.child3()) |
| return changed; |
| changed |= m_graph[node.child3()].mergeFlags(NodeUsedAsValue); |
| } |
| return changed; |
| } |
| |
| void propagateForward() |
| { |
| #if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE) |
| dataLog("Propagating predictions forward [%u]\n", ++m_count); |
| #endif |
| for (m_compileIndex = 0; m_compileIndex < m_graph.size(); ++m_compileIndex) |
| propagate(m_graph[m_compileIndex]); |
| } |
| |
| void propagateBackward() |
| { |
| #if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE) |
| dataLog("Propagating predictions backward [%u]\n", ++m_count); |
| #endif |
| for (m_compileIndex = m_graph.size(); m_compileIndex-- > 0;) |
| propagate(m_graph[m_compileIndex]); |
| } |
| |
| void vote(Edge nodeUse, VariableAccessData::Ballot ballot) |
| { |
| switch (m_graph[nodeUse].op()) { |
| case ValueToInt32: |
| case UInt32ToNumber: |
| nodeUse = m_graph[nodeUse].child1(); |
| break; |
| default: |
| break; |
| } |
| |
| if (m_graph[nodeUse].op() == GetLocal) |
| m_graph[nodeUse].variableAccessData()->vote(ballot); |
| } |
| |
| void vote(Node& node, VariableAccessData::Ballot ballot) |
| { |
| if (node.flags() & NodeHasVarArgs) { |
| for (unsigned childIdx = node.firstChild(); |
| childIdx < node.firstChild() + node.numChildren(); |
| childIdx++) |
| vote(m_graph.m_varArgChildren[childIdx], ballot); |
| return; |
| } |
| |
| if (!node.child1()) |
| return; |
| vote(node.child1(), ballot); |
| if (!node.child2()) |
| return; |
| vote(node.child2(), ballot); |
| if (!node.child3()) |
| return; |
| vote(node.child3(), ballot); |
| } |
| |
| void doRoundOfDoubleVoting() |
| { |
| #if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE) |
| dataLog("Voting on double uses of locals [%u]\n", m_count); |
| #endif |
| for (unsigned i = 0; i < m_graph.m_variableAccessData.size(); ++i) |
| m_graph.m_variableAccessData[i].find()->clearVotes(); |
| for (m_compileIndex = 0; m_compileIndex < m_graph.size(); ++m_compileIndex) { |
| Node& node = m_graph[m_compileIndex]; |
| switch (node.op()) { |
| case ValueAdd: |
| case ArithAdd: |
| case ArithSub: { |
| PredictedType left = m_graph[node.child1()].prediction(); |
| PredictedType right = m_graph[node.child2()].prediction(); |
| |
| VariableAccessData::Ballot ballot; |
| |
| if (isNumberPrediction(left) && isNumberPrediction(right) |
| && !m_graph.addShouldSpeculateInteger(node)) |
| ballot = VariableAccessData::VoteDouble; |
| else |
| ballot = VariableAccessData::VoteValue; |
| |
| vote(node.child1(), ballot); |
| vote(node.child2(), ballot); |
| break; |
| } |
| |
| case ArithMul: |
| case ArithMin: |
| case ArithMax: |
| case ArithMod: |
| case ArithDiv: { |
| PredictedType left = m_graph[node.child1()].prediction(); |
| PredictedType right = m_graph[node.child2()].prediction(); |
| |
| VariableAccessData::Ballot ballot; |
| |
| if (isNumberPrediction(left) && isNumberPrediction(right) |
| && !(Node::shouldSpeculateInteger(m_graph[node.child1()], m_graph[node.child1()]) |
| && node.canSpeculateInteger())) |
| ballot = VariableAccessData::VoteDouble; |
| else |
| ballot = VariableAccessData::VoteValue; |
| |
| vote(node.child1(), ballot); |
| vote(node.child2(), ballot); |
| break; |
| } |
| |
| case ArithAbs: |
| VariableAccessData::Ballot ballot; |
| if (!(m_graph[node.child1()].shouldSpeculateInteger() |
| && node.canSpeculateInteger())) |
| ballot = VariableAccessData::VoteDouble; |
| else |
| ballot = VariableAccessData::VoteValue; |
| |
| vote(node.child1(), ballot); |
| break; |
| |
| case ArithSqrt: |
| vote(node.child1(), VariableAccessData::VoteDouble); |
| break; |
| |
| case SetLocal: { |
| PredictedType prediction = m_graph[node.child1()].prediction(); |
| if (isDoublePrediction(prediction)) |
| node.variableAccessData()->vote(VariableAccessData::VoteDouble); |
| else if (!isNumberPrediction(prediction) || isInt32Prediction(prediction)) |
| node.variableAccessData()->vote(VariableAccessData::VoteValue); |
| break; |
| } |
| |
| default: |
| vote(node, VariableAccessData::VoteValue); |
| break; |
| } |
| } |
| for (unsigned i = 0; i < m_graph.m_variableAccessData.size(); ++i) { |
| VariableAccessData* variableAccessData = m_graph.m_variableAccessData[i].find(); |
| if (operandIsArgument(variableAccessData->local()) |
| || m_graph.isCaptured(variableAccessData->local())) |
| continue; |
| m_changed |= variableAccessData->tallyVotesForShouldUseDoubleFormat(); |
| } |
| } |
| |
| NodeIndex m_compileIndex; |
| bool m_changed; |
| |
| #if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE) |
| unsigned m_count; |
| #endif |
| }; |
| |
| void performPredictionPropagation(Graph& graph) |
| { |
| runPhase<PredictionPropagationPhase>(graph); |
| } |
| |
| } } // namespace JSC::DFG |
| |
| #endif // ENABLE(DFG_JIT) |
| |