blob: 91a515c489f99ae2537c408056a2dd467721c627 [file] [log] [blame]
/*
* Copyright (C) 2011 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGOSRExitCompiler.h"
#if ENABLE(DFG_JIT) && USE(JSVALUE64)
#include "DFGOperations.h"
namespace JSC { namespace DFG {
void OSRExitCompiler::compileExit(const OSRExit& exit, SpeculationRecovery* recovery)
{
// 1) Pro-forma stuff.
#if DFG_ENABLE(DEBUG_VERBOSE)
dataLog("OSR exit for Node @%d (", (int)exit.m_nodeIndex);
for (CodeOrigin codeOrigin = exit.m_codeOrigin; ; codeOrigin = codeOrigin.inlineCallFrame->caller) {
dataLog("bc#%u", codeOrigin.bytecodeIndex);
if (!codeOrigin.inlineCallFrame)
break;
dataLog(" -> %p ", codeOrigin.inlineCallFrame->executable.get());
}
dataLog(") ");
exit.dump(WTF::dataFile());
#endif
#if DFG_ENABLE(VERBOSE_SPECULATION_FAILURE)
SpeculationFailureDebugInfo* debugInfo = new SpeculationFailureDebugInfo;
debugInfo->codeBlock = m_jit.codeBlock();
debugInfo->nodeIndex = exit.m_nodeIndex;
m_jit.debugCall(debugOperationPrintSpeculationFailure, debugInfo);
#endif
#if DFG_ENABLE(JIT_BREAK_ON_SPECULATION_FAILURE)
m_jit.breakpoint();
#endif
#if DFG_ENABLE(SUCCESS_STATS)
static SamplingCounter counter("SpeculationFailure");
m_jit.emitCount(counter);
#endif
// 2) Perform speculation recovery. This only comes into play when an operation
// starts mutating state before verifying the speculation it has already made.
GPRReg alreadyBoxed = InvalidGPRReg;
if (recovery) {
switch (recovery->type()) {
case SpeculativeAdd:
m_jit.sub32(recovery->src(), recovery->dest());
m_jit.orPtr(GPRInfo::tagTypeNumberRegister, recovery->dest());
alreadyBoxed = recovery->dest();
break;
case BooleanSpeculationCheck:
m_jit.xorPtr(AssemblyHelpers::TrustedImm32(static_cast<int32_t>(ValueFalse)), recovery->dest());
break;
default:
break;
}
}
// 3) Refine some value profile, if appropriate.
if (!!exit.m_jsValueSource && !!exit.m_valueProfile) {
EncodedJSValue* bucket = exit.m_valueProfile.getSpecFailBucket(0);
#if DFG_ENABLE(VERBOSE_SPECULATION_FAILURE)
dataLog(" (have exit profile, bucket %p) ", bucket);
#endif
if (exit.m_jsValueSource.isAddress()) {
// We can't be sure that we have a spare register. So use the tagTypeNumberRegister,
// since we know how to restore it.
m_jit.loadPtr(AssemblyHelpers::Address(exit.m_jsValueSource.asAddress()), GPRInfo::tagTypeNumberRegister);
m_jit.storePtr(GPRInfo::tagTypeNumberRegister, bucket);
m_jit.move(AssemblyHelpers::TrustedImmPtr(bitwise_cast<void*>(TagTypeNumber)), GPRInfo::tagTypeNumberRegister);
} else
m_jit.storePtr(exit.m_jsValueSource.gpr(), bucket);
}
// 4) Figure out how many scratch slots we'll need. We need one for every GPR/FPR
// whose destination is now occupied by a DFG virtual register, and we need
// one for every displaced virtual register if there are more than
// GPRInfo::numberOfRegisters of them. Also see if there are any constants,
// any undefined slots, any FPR slots, and any unboxed ints.
Vector<bool> poisonedVirtualRegisters(exit.m_variables.size());
for (unsigned i = 0; i < poisonedVirtualRegisters.size(); ++i)
poisonedVirtualRegisters[i] = false;
unsigned numberOfPoisonedVirtualRegisters = 0;
unsigned numberOfDisplacedVirtualRegisters = 0;
// Booleans for fast checks. We expect that most OSR exits do not have to rebox
// Int32s, have no FPRs, and have no constants. If there are constants, we
// expect most of them to be jsUndefined(); if that's true then we handle that
// specially to minimize code size and execution time.
bool haveUnboxedInt32s = false;
bool haveUnboxedDoubles = false;
bool haveFPRs = false;
bool haveConstants = false;
bool haveUndefined = false;
bool haveUInt32s = false;
for (int index = 0; index < exit.numberOfRecoveries(); ++index) {
const ValueRecovery& recovery = exit.valueRecovery(index);
switch (recovery.technique()) {
case Int32DisplacedInRegisterFile:
case DoubleDisplacedInRegisterFile:
case DisplacedInRegisterFile:
numberOfDisplacedVirtualRegisters++;
ASSERT((int)recovery.virtualRegister() >= 0);
// See if we might like to store to this virtual register before doing
// virtual register shuffling. If so, we say that the virtual register
// is poisoned: it cannot be stored to until after displaced virtual
// registers are handled. We track poisoned virtual register carefully
// to ensure this happens efficiently. Note that we expect this case
// to be rare, so the handling of it is optimized for the cases in
// which it does not happen.
if (recovery.virtualRegister() < (int)exit.m_variables.size()) {
switch (exit.m_variables[recovery.virtualRegister()].technique()) {
case InGPR:
case UnboxedInt32InGPR:
case UInt32InGPR:
case InFPR:
if (!poisonedVirtualRegisters[recovery.virtualRegister()]) {
poisonedVirtualRegisters[recovery.virtualRegister()] = true;
numberOfPoisonedVirtualRegisters++;
}
break;
default:
break;
}
}
break;
case UnboxedInt32InGPR:
case AlreadyInRegisterFileAsUnboxedInt32:
haveUnboxedInt32s = true;
break;
case AlreadyInRegisterFileAsUnboxedDouble:
haveUnboxedDoubles = true;
break;
case UInt32InGPR:
haveUInt32s = true;
break;
case InFPR:
haveFPRs = true;
break;
case Constant:
haveConstants = true;
if (recovery.constant().isUndefined())
haveUndefined = true;
break;
default:
break;
}
}
#if DFG_ENABLE(DEBUG_VERBOSE)
dataLog(" ");
if (numberOfPoisonedVirtualRegisters)
dataLog("Poisoned=%u ", numberOfPoisonedVirtualRegisters);
if (numberOfDisplacedVirtualRegisters)
dataLog("Displaced=%u ", numberOfDisplacedVirtualRegisters);
if (haveUnboxedInt32s)
dataLog("UnboxedInt32 ");
if (haveUnboxedDoubles)
dataLog("UnboxedDoubles ");
if (haveUInt32s)
dataLog("UInt32 ");
if (haveFPRs)
dataLog("FPR ");
if (haveConstants)
dataLog("Constants ");
if (haveUndefined)
dataLog("Undefined ");
dataLog(" ");
#endif
EncodedJSValue* scratchBuffer = static_cast<EncodedJSValue*>(m_jit.globalData()->scratchBufferForSize(sizeof(EncodedJSValue) * std::max(haveUInt32s ? 2u : 0u, numberOfPoisonedVirtualRegisters + (numberOfDisplacedVirtualRegisters <= GPRInfo::numberOfRegisters ? 0 : numberOfDisplacedVirtualRegisters))));
// From here on, the code assumes that it is profitable to maximize the distance
// between when something is computed and when it is stored.
// 5) Perform all reboxing of integers.
if (haveUnboxedInt32s || haveUInt32s) {
for (int index = 0; index < exit.numberOfRecoveries(); ++index) {
const ValueRecovery& recovery = exit.valueRecovery(index);
switch (recovery.technique()) {
case UnboxedInt32InGPR:
if (recovery.gpr() != alreadyBoxed)
m_jit.orPtr(GPRInfo::tagTypeNumberRegister, recovery.gpr());
break;
case AlreadyInRegisterFileAsUnboxedInt32:
m_jit.store32(AssemblyHelpers::TrustedImm32(static_cast<uint32_t>(TagTypeNumber >> 32)), AssemblyHelpers::tagFor(static_cast<VirtualRegister>(exit.operandForIndex(index))));
break;
case UInt32InGPR: {
// This occurs when the speculative JIT left an unsigned 32-bit integer
// in a GPR. If it's positive, we can just box the int. Otherwise we
// need to turn it into a boxed double.
// We don't try to be clever with register allocation here; we assume
// that the program is using FPRs and we don't try to figure out which
// ones it is using. Instead just temporarily save fpRegT0 and then
// restore it. This makes sense because this path is not cheap to begin
// with, and should happen very rarely.
GPRReg addressGPR = GPRInfo::regT0;
if (addressGPR == recovery.gpr())
addressGPR = GPRInfo::regT1;
m_jit.storePtr(addressGPR, scratchBuffer);
m_jit.move(AssemblyHelpers::TrustedImmPtr(scratchBuffer + 1), addressGPR);
m_jit.storeDouble(FPRInfo::fpRegT0, addressGPR);
AssemblyHelpers::Jump positive = m_jit.branch32(AssemblyHelpers::GreaterThanOrEqual, recovery.gpr(), AssemblyHelpers::TrustedImm32(0));
m_jit.convertInt32ToDouble(recovery.gpr(), FPRInfo::fpRegT0);
m_jit.addDouble(AssemblyHelpers::AbsoluteAddress(&AssemblyHelpers::twoToThe32), FPRInfo::fpRegT0);
m_jit.boxDouble(FPRInfo::fpRegT0, recovery.gpr());
AssemblyHelpers::Jump done = m_jit.jump();
positive.link(&m_jit);
m_jit.orPtr(GPRInfo::tagTypeNumberRegister, recovery.gpr());
done.link(&m_jit);
m_jit.loadDouble(addressGPR, FPRInfo::fpRegT0);
m_jit.loadPtr(scratchBuffer, addressGPR);
break;
}
default:
break;
}
}
}
// 6) Dump all non-poisoned GPRs. For poisoned GPRs, save them into the scratch storage.
// Note that GPRs do not have a fast change (like haveFPRs) because we expect that
// most OSR failure points will have at least one GPR that needs to be dumped.
initializePoisoned(exit.m_variables.size());
unsigned currentPoisonIndex = 0;
for (int index = 0; index < exit.numberOfRecoveries(); ++index) {
const ValueRecovery& recovery = exit.valueRecovery(index);
int operand = exit.operandForIndex(index);
switch (recovery.technique()) {
case InGPR:
case UnboxedInt32InGPR:
case UInt32InGPR:
if (exit.isVariable(index) && poisonedVirtualRegisters[exit.variableForIndex(index)]) {
m_jit.storePtr(recovery.gpr(), scratchBuffer + currentPoisonIndex);
m_poisonScratchIndices[exit.variableForIndex(index)] = currentPoisonIndex;
currentPoisonIndex++;
} else
m_jit.storePtr(recovery.gpr(), AssemblyHelpers::addressFor((VirtualRegister)operand));
break;
default:
break;
}
}
// At this point all GPRs are available for scratch use.
if (haveFPRs) {
// 7) Box all doubles (relies on there being more GPRs than FPRs)
for (int index = 0; index < exit.numberOfRecoveries(); ++index) {
const ValueRecovery& recovery = exit.valueRecovery(index);
if (recovery.technique() != InFPR)
continue;
FPRReg fpr = recovery.fpr();
GPRReg gpr = GPRInfo::toRegister(FPRInfo::toIndex(fpr));
m_jit.boxDouble(fpr, gpr);
}
// 8) Dump all doubles into the register file, or to the scratch storage if
// the destination virtual register is poisoned.
for (int index = 0; index < exit.numberOfRecoveries(); ++index) {
const ValueRecovery& recovery = exit.valueRecovery(index);
if (recovery.technique() != InFPR)
continue;
GPRReg gpr = GPRInfo::toRegister(FPRInfo::toIndex(recovery.fpr()));
if (exit.isVariable(index) && poisonedVirtualRegisters[exit.variableForIndex(index)]) {
m_jit.storePtr(gpr, scratchBuffer + currentPoisonIndex);
m_poisonScratchIndices[exit.variableForIndex(index)] = currentPoisonIndex;
currentPoisonIndex++;
} else
m_jit.storePtr(gpr, AssemblyHelpers::addressFor((VirtualRegister)exit.operandForIndex(index)));
}
}
// At this point all GPRs and FPRs are available for scratch use.
// 9) Box all unboxed doubles in the register file.
if (haveUnboxedDoubles) {
for (int index = 0; index < exit.numberOfRecoveries(); ++index) {
const ValueRecovery& recovery = exit.valueRecovery(index);
if (recovery.technique() != AlreadyInRegisterFileAsUnboxedDouble)
continue;
m_jit.loadDouble(AssemblyHelpers::addressFor((VirtualRegister)exit.operandForIndex(index)), FPRInfo::fpRegT0);
m_jit.boxDouble(FPRInfo::fpRegT0, GPRInfo::regT0);
m_jit.storePtr(GPRInfo::regT0, AssemblyHelpers::addressFor((VirtualRegister)exit.operandForIndex(index)));
}
}
ASSERT(currentPoisonIndex == numberOfPoisonedVirtualRegisters);
// 10) Reshuffle displaced virtual registers. Optimize for the case that
// the number of displaced virtual registers is not more than the number
// of available physical registers.
if (numberOfDisplacedVirtualRegisters) {
if (numberOfDisplacedVirtualRegisters <= GPRInfo::numberOfRegisters) {
// So far this appears to be the case that triggers all the time, but
// that is far from guaranteed.
unsigned displacementIndex = 0;
for (int index = 0; index < exit.numberOfRecoveries(); ++index) {
const ValueRecovery& recovery = exit.valueRecovery(index);
switch (recovery.technique()) {
case DisplacedInRegisterFile:
m_jit.loadPtr(AssemblyHelpers::addressFor(recovery.virtualRegister()), GPRInfo::toRegister(displacementIndex++));
break;
case Int32DisplacedInRegisterFile: {
GPRReg gpr = GPRInfo::toRegister(displacementIndex++);
m_jit.load32(AssemblyHelpers::addressFor(recovery.virtualRegister()), gpr);
m_jit.orPtr(GPRInfo::tagTypeNumberRegister, gpr);
break;
}
case DoubleDisplacedInRegisterFile: {
GPRReg gpr = GPRInfo::toRegister(displacementIndex++);
m_jit.loadPtr(AssemblyHelpers::addressFor(recovery.virtualRegister()), gpr);
m_jit.subPtr(GPRInfo::tagTypeNumberRegister, gpr);
break;
}
default:
break;
}
}
displacementIndex = 0;
for (int index = 0; index < exit.numberOfRecoveries(); ++index) {
const ValueRecovery& recovery = exit.valueRecovery(index);
switch (recovery.technique()) {
case DisplacedInRegisterFile:
case Int32DisplacedInRegisterFile:
case DoubleDisplacedInRegisterFile:
m_jit.storePtr(GPRInfo::toRegister(displacementIndex++), AssemblyHelpers::addressFor((VirtualRegister)exit.operandForIndex(index)));
break;
default:
break;
}
}
} else {
// FIXME: This should use the shuffling algorithm that we use
// for speculative->non-speculative jumps, if we ever discover that
// some hot code with lots of live values that get displaced and
// spilled really enjoys frequently failing speculation.
// For now this code is engineered to be correct but probably not
// super. In particular, it correctly handles cases where for example
// the displacements are a permutation of the destination values, like
//
// 1 -> 2
// 2 -> 1
//
// It accomplishes this by simply lifting all of the virtual registers
// from their old (DFG JIT) locations and dropping them in a scratch
// location in memory, and then transferring from that scratch location
// to their new (old JIT) locations.
unsigned scratchIndex = numberOfPoisonedVirtualRegisters;
for (int index = 0; index < exit.numberOfRecoveries(); ++index) {
const ValueRecovery& recovery = exit.valueRecovery(index);
switch (recovery.technique()) {
case DisplacedInRegisterFile:
m_jit.loadPtr(AssemblyHelpers::addressFor(recovery.virtualRegister()), GPRInfo::regT0);
m_jit.storePtr(GPRInfo::regT0, scratchBuffer + scratchIndex++);
break;
case Int32DisplacedInRegisterFile: {
m_jit.load32(AssemblyHelpers::addressFor(recovery.virtualRegister()), GPRInfo::regT0);
m_jit.orPtr(GPRInfo::tagTypeNumberRegister, GPRInfo::regT0);
m_jit.storePtr(GPRInfo::regT0, scratchBuffer + scratchIndex++);
break;
}
case DoubleDisplacedInRegisterFile: {
m_jit.loadPtr(AssemblyHelpers::addressFor(recovery.virtualRegister()), GPRInfo::regT0);
m_jit.subPtr(GPRInfo::tagTypeNumberRegister, GPRInfo::regT0);
m_jit.storePtr(GPRInfo::regT0, scratchBuffer + scratchIndex++);
break;
}
default:
break;
}
}
scratchIndex = numberOfPoisonedVirtualRegisters;
for (int index = 0; index < exit.numberOfRecoveries(); ++index) {
const ValueRecovery& recovery = exit.valueRecovery(index);
switch (recovery.technique()) {
case DisplacedInRegisterFile:
case Int32DisplacedInRegisterFile:
case DoubleDisplacedInRegisterFile:
m_jit.loadPtr(scratchBuffer + scratchIndex++, GPRInfo::regT0);
m_jit.storePtr(GPRInfo::regT0, AssemblyHelpers::addressFor((VirtualRegister)exit.operandForIndex(index)));
break;
default:
break;
}
}
ASSERT(scratchIndex == numberOfPoisonedVirtualRegisters + numberOfDisplacedVirtualRegisters);
}
}
// 11) Dump all poisoned virtual registers.
if (numberOfPoisonedVirtualRegisters) {
for (int virtualRegister = 0; virtualRegister < (int)exit.m_variables.size(); ++virtualRegister) {
if (!poisonedVirtualRegisters[virtualRegister])
continue;
const ValueRecovery& recovery = exit.m_variables[virtualRegister];
switch (recovery.technique()) {
case InGPR:
case UnboxedInt32InGPR:
case UInt32InGPR:
case InFPR:
m_jit.loadPtr(scratchBuffer + poisonIndex(virtualRegister), GPRInfo::regT0);
m_jit.storePtr(GPRInfo::regT0, AssemblyHelpers::addressFor((VirtualRegister)virtualRegister));
break;
default:
break;
}
}
}
// 12) Dump all constants. Optimize for Undefined, since that's a constant we see
// often.
if (haveConstants) {
if (haveUndefined)
m_jit.move(AssemblyHelpers::TrustedImmPtr(JSValue::encode(jsUndefined())), GPRInfo::regT0);
for (int index = 0; index < exit.numberOfRecoveries(); ++index) {
const ValueRecovery& recovery = exit.valueRecovery(index);
if (recovery.technique() != Constant)
continue;
if (recovery.constant().isUndefined())
m_jit.storePtr(GPRInfo::regT0, AssemblyHelpers::addressFor((VirtualRegister)exit.operandForIndex(index)));
else
m_jit.storePtr(AssemblyHelpers::TrustedImmPtr(JSValue::encode(recovery.constant())), AssemblyHelpers::addressFor((VirtualRegister)exit.operandForIndex(index)));
}
}
// 13) Adjust the old JIT's execute counter. Since we are exiting OSR, we know
// that all new calls into this code will go to the new JIT, so the execute
// counter only affects call frames that performed OSR exit and call frames
// that were still executing the old JIT at the time of another call frame's
// OSR exit. We want to ensure that the following is true:
//
// (a) Code the performs an OSR exit gets a chance to reenter optimized
// code eventually, since optimized code is faster. But we don't
// want to do such reentery too aggressively (see (c) below).
//
// (b) If there is code on the call stack that is still running the old
// JIT's code and has never OSR'd, then it should get a chance to
// perform OSR entry despite the fact that we've exited.
//
// (c) Code the performs an OSR exit should not immediately retry OSR
// entry, since both forms of OSR are expensive. OSR entry is
// particularly expensive.
//
// (d) Frequent OSR failures, even those that do not result in the code
// running in a hot loop, result in recompilation getting triggered.
//
// To ensure (c), we'd like to set the execute counter to
// counterValueForOptimizeAfterWarmUp(). This seems like it would endanger
// (a) and (b), since then every OSR exit would delay the opportunity for
// every call frame to perform OSR entry. Essentially, if OSR exit happens
// frequently and the function has few loops, then the counter will never
// become non-negative and OSR entry will never be triggered. OSR entry
// will only happen if a loop gets hot in the old JIT, which does a pretty
// good job of ensuring (a) and (b). But that doesn't take care of (d),
// since each speculation failure would reset the execute counter.
// So we check here if the number of speculation failures is significantly
// larger than the number of successes (we want 90% success rate), and if
// there have been a large enough number of failures. If so, we set the
// counter to 0; otherwise we set the counter to
// counterValueForOptimizeAfterWarmUp().
m_jit.add32(AssemblyHelpers::TrustedImm32(1), AssemblyHelpers::AbsoluteAddress(&exit.m_count));
m_jit.move(AssemblyHelpers::TrustedImmPtr(m_jit.codeBlock()), GPRInfo::regT0);
m_jit.load32(AssemblyHelpers::Address(GPRInfo::regT0, CodeBlock::offsetOfSpeculativeFailCounter()), GPRInfo::regT2);
m_jit.load32(AssemblyHelpers::Address(GPRInfo::regT0, CodeBlock::offsetOfSpeculativeSuccessCounter()), GPRInfo::regT1);
m_jit.add32(AssemblyHelpers::TrustedImm32(1), GPRInfo::regT2);
m_jit.add32(AssemblyHelpers::TrustedImm32(-1), GPRInfo::regT1);
m_jit.store32(GPRInfo::regT2, AssemblyHelpers::Address(GPRInfo::regT0, CodeBlock::offsetOfSpeculativeFailCounter()));
m_jit.store32(GPRInfo::regT1, AssemblyHelpers::Address(GPRInfo::regT0, CodeBlock::offsetOfSpeculativeSuccessCounter()));
m_jit.move(AssemblyHelpers::TrustedImmPtr(m_jit.baselineCodeBlock()), GPRInfo::regT0);
AssemblyHelpers::Jump fewFails = m_jit.branch32(AssemblyHelpers::BelowOrEqual, GPRInfo::regT2, AssemblyHelpers::TrustedImm32(m_jit.codeBlock()->largeFailCountThreshold()));
m_jit.mul32(AssemblyHelpers::TrustedImm32(Options::desiredSpeculativeSuccessFailRatio), GPRInfo::regT2, GPRInfo::regT2);
AssemblyHelpers::Jump lowFailRate = m_jit.branch32(AssemblyHelpers::BelowOrEqual, GPRInfo::regT2, GPRInfo::regT1);
// Reoptimize as soon as possible.
m_jit.store32(AssemblyHelpers::TrustedImm32(0), AssemblyHelpers::Address(GPRInfo::regT0, CodeBlock::offsetOfJITExecuteCounter()));
m_jit.store32(AssemblyHelpers::TrustedImm32(0), AssemblyHelpers::Address(GPRInfo::regT0, CodeBlock::offsetOfJITExecutionActiveThreshold()));
AssemblyHelpers::Jump doneAdjusting = m_jit.jump();
fewFails.link(&m_jit);
lowFailRate.link(&m_jit);
// Adjust the execution counter such that the target is to only optimize after a while.
int32_t targetValue =
ExecutionCounter::applyMemoryUsageHeuristicsAndConvertToInt(
m_jit.baselineCodeBlock()->counterValueForOptimizeAfterLongWarmUp(),
m_jit.baselineCodeBlock());
m_jit.store32(AssemblyHelpers::TrustedImm32(-targetValue), AssemblyHelpers::Address(GPRInfo::regT0, CodeBlock::offsetOfJITExecuteCounter()));
m_jit.store32(AssemblyHelpers::TrustedImm32(targetValue), AssemblyHelpers::Address(GPRInfo::regT0, CodeBlock::offsetOfJITExecutionActiveThreshold()));
m_jit.store32(AssemblyHelpers::TrustedImm32(ExecutionCounter::formattedTotalCount(targetValue)), AssemblyHelpers::Address(GPRInfo::regT0, CodeBlock::offsetOfJITExecutionTotalCount()));
doneAdjusting.link(&m_jit);
// 14) Load the result of the last bytecode operation into regT0.
if (exit.m_lastSetOperand != std::numeric_limits<int>::max())
m_jit.loadPtr(AssemblyHelpers::addressFor((VirtualRegister)exit.m_lastSetOperand), GPRInfo::cachedResultRegister);
// 15) Fix call frame(s).
ASSERT(m_jit.baselineCodeBlock()->getJITType() == JITCode::BaselineJIT);
m_jit.storePtr(AssemblyHelpers::TrustedImmPtr(m_jit.baselineCodeBlock()), AssemblyHelpers::addressFor((VirtualRegister)RegisterFile::CodeBlock));
for (CodeOrigin codeOrigin = exit.m_codeOrigin; codeOrigin.inlineCallFrame; codeOrigin = codeOrigin.inlineCallFrame->caller) {
InlineCallFrame* inlineCallFrame = codeOrigin.inlineCallFrame;
CodeBlock* baselineCodeBlock = m_jit.baselineCodeBlockFor(codeOrigin);
CodeBlock* baselineCodeBlockForCaller = m_jit.baselineCodeBlockFor(inlineCallFrame->caller);
Vector<BytecodeAndMachineOffset>& decodedCodeMap = m_jit.decodedCodeMapFor(baselineCodeBlockForCaller);
unsigned returnBytecodeIndex = inlineCallFrame->caller.bytecodeIndex + OPCODE_LENGTH(op_call);
BytecodeAndMachineOffset* mapping = binarySearch<BytecodeAndMachineOffset, unsigned, BytecodeAndMachineOffset::getBytecodeIndex>(decodedCodeMap.begin(), decodedCodeMap.size(), returnBytecodeIndex);
ASSERT(mapping);
ASSERT(mapping->m_bytecodeIndex == returnBytecodeIndex);
void* jumpTarget = baselineCodeBlockForCaller->getJITCode().executableAddressAtOffset(mapping->m_machineCodeOffset);
GPRReg callerFrameGPR;
if (inlineCallFrame->caller.inlineCallFrame) {
m_jit.addPtr(AssemblyHelpers::TrustedImm32(inlineCallFrame->caller.inlineCallFrame->stackOffset * sizeof(EncodedJSValue)), GPRInfo::callFrameRegister, GPRInfo::regT3);
callerFrameGPR = GPRInfo::regT3;
} else
callerFrameGPR = GPRInfo::callFrameRegister;
m_jit.storePtr(AssemblyHelpers::TrustedImmPtr(baselineCodeBlock), AssemblyHelpers::addressFor((VirtualRegister)(inlineCallFrame->stackOffset + RegisterFile::CodeBlock)));
m_jit.storePtr(AssemblyHelpers::TrustedImmPtr(inlineCallFrame->callee->scope()), AssemblyHelpers::addressFor((VirtualRegister)(inlineCallFrame->stackOffset + RegisterFile::ScopeChain)));
m_jit.storePtr(callerFrameGPR, AssemblyHelpers::addressFor((VirtualRegister)(inlineCallFrame->stackOffset + RegisterFile::CallerFrame)));
m_jit.storePtr(AssemblyHelpers::TrustedImmPtr(jumpTarget), AssemblyHelpers::addressFor((VirtualRegister)(inlineCallFrame->stackOffset + RegisterFile::ReturnPC)));
m_jit.store32(AssemblyHelpers::TrustedImm32(inlineCallFrame->arguments.size()), AssemblyHelpers::payloadFor((VirtualRegister)(inlineCallFrame->stackOffset + RegisterFile::ArgumentCount)));
m_jit.storePtr(AssemblyHelpers::TrustedImmPtr(inlineCallFrame->callee.get()), AssemblyHelpers::addressFor((VirtualRegister)(inlineCallFrame->stackOffset + RegisterFile::Callee)));
}
if (exit.m_codeOrigin.inlineCallFrame)
m_jit.addPtr(AssemblyHelpers::TrustedImm32(exit.m_codeOrigin.inlineCallFrame->stackOffset * sizeof(EncodedJSValue)), GPRInfo::callFrameRegister);
// 16) Jump into the corresponding baseline JIT code.
CodeBlock* baselineCodeBlock = m_jit.baselineCodeBlockFor(exit.m_codeOrigin);
Vector<BytecodeAndMachineOffset>& decodedCodeMap = m_jit.decodedCodeMapFor(baselineCodeBlock);
BytecodeAndMachineOffset* mapping = binarySearch<BytecodeAndMachineOffset, unsigned, BytecodeAndMachineOffset::getBytecodeIndex>(decodedCodeMap.begin(), decodedCodeMap.size(), exit.m_codeOrigin.bytecodeIndex);
ASSERT(mapping);
ASSERT(mapping->m_bytecodeIndex == exit.m_codeOrigin.bytecodeIndex);
void* jumpTarget = baselineCodeBlock->getJITCode().executableAddressAtOffset(mapping->m_machineCodeOffset);
ASSERT(GPRInfo::regT1 != GPRInfo::cachedResultRegister);
m_jit.move(AssemblyHelpers::TrustedImmPtr(jumpTarget), GPRInfo::regT1);
m_jit.jump(GPRInfo::regT1);
#if DFG_ENABLE(DEBUG_VERBOSE)
dataLog("-> %p\n", jumpTarget);
#endif
}
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT) && USE(JSVALUE64)