blob: 86c0a4eeb7b96a44006eaef9e20bc38c9332c535 [file] [log] [blame]
/*
* Copyright (C) 2011 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGGraph.h"
#include "CodeBlock.h"
#include <wtf/BoundsCheckedPointer.h>
#if ENABLE(DFG_JIT)
namespace JSC { namespace DFG {
// Creates an array of stringized names.
static const char* dfgOpNames[] = {
#define STRINGIZE_DFG_OP_ENUM(opcode, flags) #opcode ,
FOR_EACH_DFG_OP(STRINGIZE_DFG_OP_ENUM)
#undef STRINGIZE_DFG_OP_ENUM
};
const char *Graph::opName(NodeType op)
{
return dfgOpNames[op];
}
const char* Graph::nameOfVariableAccessData(VariableAccessData* variableAccessData)
{
// Variables are already numbered. For readability of IR dumps, this returns
// an alphabetic name for the variable access data, so that you don't have to
// reason about two numbers (variable number and live range number), but instead
// a number and a letter.
unsigned index = std::numeric_limits<unsigned>::max();
for (unsigned i = 0; i < m_variableAccessData.size(); ++i) {
if (&m_variableAccessData[i] == variableAccessData) {
index = i;
break;
}
}
ASSERT(index != std::numeric_limits<unsigned>::max());
if (!index)
return "A";
static char buf[10];
BoundsCheckedPointer<char> ptr(buf, sizeof(buf));
while (index) {
*ptr++ = 'A' + (index % 26);
index /= 26;
}
*ptr++ = 0;
return buf;
}
static void printWhiteSpace(unsigned amount)
{
while (amount-- > 0)
dataLog(" ");
}
void Graph::dumpCodeOrigin(NodeIndex prevNodeIndex, NodeIndex nodeIndex)
{
if (prevNodeIndex == NoNode)
return;
Node& currentNode = at(nodeIndex);
Node& previousNode = at(prevNodeIndex);
if (previousNode.codeOrigin.inlineCallFrame == currentNode.codeOrigin.inlineCallFrame)
return;
Vector<CodeOrigin> previousInlineStack = previousNode.codeOrigin.inlineStack();
Vector<CodeOrigin> currentInlineStack = currentNode.codeOrigin.inlineStack();
unsigned commonSize = std::min(previousInlineStack.size(), currentInlineStack.size());
unsigned indexOfDivergence = commonSize;
for (unsigned i = 0; i < commonSize; ++i) {
if (previousInlineStack[i].inlineCallFrame != currentInlineStack[i].inlineCallFrame) {
indexOfDivergence = i;
break;
}
}
// Print the pops.
for (unsigned i = previousInlineStack.size(); i-- > indexOfDivergence;) {
printWhiteSpace(i * 2);
dataLog("<-- %p\n", previousInlineStack[i].inlineCallFrame->executable.get());
}
// Print the pushes.
for (unsigned i = indexOfDivergence; i < currentInlineStack.size(); ++i) {
printWhiteSpace(i * 2);
dataLog("--> %p\n", currentInlineStack[i].inlineCallFrame->executable.get());
}
}
void Graph::dump(NodeIndex nodeIndex)
{
Node& node = at(nodeIndex);
NodeType op = node.op();
unsigned refCount = node.refCount();
bool skipped = !refCount;
bool mustGenerate = node.mustGenerate();
if (mustGenerate) {
ASSERT(refCount);
--refCount;
}
printWhiteSpace((node.codeOrigin.inlineDepth() - 1) * 2);
// Example/explanation of dataflow dump output
//
// 14: <!2:7> GetByVal(@3, @13)
// ^1 ^2 ^3 ^4 ^5
//
// (1) The nodeIndex of this operation.
// (2) The reference count. The number printed is the 'real' count,
// not including the 'mustGenerate' ref. If the node is
// 'mustGenerate' then the count it prefixed with '!'.
// (3) The virtual register slot assigned to this node.
// (4) The name of the operation.
// (5) The arguments to the operation. The may be of the form:
// @# - a NodeIndex referencing a prior node in the graph.
// arg# - an argument number.
// $# - the index in the CodeBlock of a constant { for numeric constants the value is displayed | for integers, in both decimal and hex }.
// id# - the index in the CodeBlock of an identifier { if codeBlock is passed to dump(), the string representation is displayed }.
// var# - the index of a var on the global object, used by GetGlobalVar/PutGlobalVar operations.
dataLog("% 4d:%s<%c%u:", (int)nodeIndex, skipped ? " skipped " : " ", mustGenerate ? '!' : ' ', refCount);
if (node.hasResult() && !skipped && node.hasVirtualRegister())
dataLog("%u", node.virtualRegister());
else
dataLog("-");
dataLog(">\t%s(", opName(op));
bool hasPrinted = false;
if (node.flags() & NodeHasVarArgs) {
for (unsigned childIdx = node.firstChild(); childIdx < node.firstChild() + node.numChildren(); childIdx++) {
if (hasPrinted)
dataLog(", ");
else
hasPrinted = true;
dataLog("%s@%u%s",
useKindToString(m_varArgChildren[childIdx].useKind()),
m_varArgChildren[childIdx].index(),
predictionToAbbreviatedString(at(childIdx).prediction()));
}
} else {
if (!!node.child1()) {
dataLog("%s@%u%s",
useKindToString(node.child1().useKind()),
node.child1().index(),
predictionToAbbreviatedString(at(node.child1()).prediction()));
}
if (!!node.child2()) {
dataLog(", %s@%u%s",
useKindToString(node.child2().useKind()),
node.child2().index(),
predictionToAbbreviatedString(at(node.child2()).prediction()));
}
if (!!node.child3()) {
dataLog(", %s@%u%s",
useKindToString(node.child3().useKind()),
node.child3().index(),
predictionToAbbreviatedString(at(node.child3()).prediction()));
}
hasPrinted = !!node.child1();
}
if (node.flags()) {
dataLog("%s%s", hasPrinted ? ", " : "", nodeFlagsAsString(node.flags()));
hasPrinted = true;
}
if (node.hasVarNumber()) {
dataLog("%svar%u", hasPrinted ? ", " : "", node.varNumber());
hasPrinted = true;
}
if (node.hasIdentifier()) {
dataLog("%sid%u{%s}", hasPrinted ? ", " : "", node.identifierNumber(), m_codeBlock->identifier(node.identifierNumber()).ustring().utf8().data());
hasPrinted = true;
}
if (node.hasStructureSet()) {
for (size_t i = 0; i < node.structureSet().size(); ++i) {
dataLog("%sstruct(%p)", hasPrinted ? ", " : "", node.structureSet()[i]);
hasPrinted = true;
}
}
if (node.hasStructureTransitionData()) {
dataLog("%sstruct(%p -> %p)", hasPrinted ? ", " : "", node.structureTransitionData().previousStructure, node.structureTransitionData().newStructure);
hasPrinted = true;
}
if (node.hasStorageAccessData()) {
StorageAccessData& storageAccessData = m_storageAccessData[node.storageAccessDataIndex()];
dataLog("%sid%u{%s}", hasPrinted ? ", " : "", storageAccessData.identifierNumber, m_codeBlock->identifier(storageAccessData.identifierNumber).ustring().utf8().data());
dataLog(", %lu", static_cast<unsigned long>(storageAccessData.offset));
hasPrinted = true;
}
ASSERT(node.hasVariableAccessData() == node.hasLocal());
if (node.hasVariableAccessData()) {
VariableAccessData* variableAccessData = node.variableAccessData();
int operand = variableAccessData->operand();
if (operandIsArgument(operand))
dataLog("%sarg%u(%s)", hasPrinted ? ", " : "", operandToArgument(operand), nameOfVariableAccessData(variableAccessData));
else
dataLog("%sr%u(%s)", hasPrinted ? ", " : "", operand, nameOfVariableAccessData(variableAccessData));
hasPrinted = true;
}
if (node.hasConstantBuffer()) {
if (hasPrinted)
dataLog(", ");
dataLog("%u:[", node.startConstant());
for (unsigned i = 0; i < node.numConstants(); ++i) {
if (i)
dataLog(", ");
dataLog("%s", m_codeBlock->constantBuffer(node.startConstant())[i].description());
}
dataLog("]");
hasPrinted = true;
}
if (op == JSConstant) {
dataLog("%s$%u", hasPrinted ? ", " : "", node.constantNumber());
JSValue value = valueOfJSConstant(nodeIndex);
dataLog(" = %s", value.description());
hasPrinted = true;
}
if (op == WeakJSConstant) {
dataLog("%s%p", hasPrinted ? ", " : "", node.weakConstant());
hasPrinted = true;
}
if (node.isBranch() || node.isJump()) {
dataLog("%sT:#%u", hasPrinted ? ", " : "", node.takenBlockIndex());
hasPrinted = true;
}
if (node.isBranch()) {
dataLog("%sF:#%u", hasPrinted ? ", " : "", node.notTakenBlockIndex());
hasPrinted = true;
}
(void)hasPrinted;
dataLog(")");
if (!skipped) {
if (node.hasVariableAccessData())
dataLog(" predicting %s, double ratio %lf%s", predictionToString(node.variableAccessData()->prediction()), node.variableAccessData()->doubleVoteRatio(), node.variableAccessData()->shouldUseDoubleFormat() ? ", forcing double" : "");
else if (node.hasHeapPrediction())
dataLog(" predicting %s", predictionToString(node.getHeapPrediction()));
else if (node.hasVarNumber())
dataLog(" predicting %s", predictionToString(getGlobalVarPrediction(node.varNumber())));
}
dataLog("\n");
}
void Graph::dump()
{
NodeIndex lastNodeIndex = NoNode;
for (size_t b = 0; b < m_blocks.size(); ++b) {
BasicBlock* block = m_blocks[b].get();
dataLog("Block #%u (bc#%u): %s%s\n", (int)b, block->bytecodeBegin, block->isReachable ? "" : " (skipped)", block->isOSRTarget ? " (OSR target)" : "");
dataLog(" Phi Nodes:\n");
for (size_t i = 0; i < block->phis.size(); ++i) {
// Dumping the dead Phi nodes is just annoying!
if (at(block->phis[i]).refCount())
dump(block->phis[i]);
}
dataLog(" vars before: ");
if (block->cfaHasVisited)
dumpOperands(block->valuesAtHead, WTF::dataFile());
else
dataLog("<empty>");
dataLog("\n");
dataLog(" var links: ");
dumpOperands(block->variablesAtHead, WTF::dataFile());
dataLog("\n");
for (size_t i = 0; i < block->size(); ++i) {
dumpCodeOrigin(lastNodeIndex, block->at(i));
dump(block->at(i));
lastNodeIndex = block->at(i);
}
dataLog(" vars after: ");
if (block->cfaHasVisited)
dumpOperands(block->valuesAtTail, WTF::dataFile());
else
dataLog("<empty>");
dataLog("\n");
}
}
// FIXME: Convert this to be iterative, not recursive.
#define DO_TO_CHILDREN(node, thingToDo) do { \
Node& _node = (node); \
if (_node.flags() & NodeHasVarArgs) { \
for (unsigned _childIdx = _node.firstChild(); \
_childIdx < _node.firstChild() + _node.numChildren(); \
_childIdx++) \
thingToDo(m_varArgChildren[_childIdx]); \
} else { \
if (!_node.child1()) { \
ASSERT(!_node.child2() \
&& !_node.child3()); \
break; \
} \
thingToDo(_node.child1()); \
\
if (!_node.child2()) { \
ASSERT(!_node.child3()); \
break; \
} \
thingToDo(_node.child2()); \
\
if (!_node.child3()) \
break; \
thingToDo(_node.child3()); \
} \
} while (false)
void Graph::refChildren(NodeIndex op)
{
DO_TO_CHILDREN(at(op), ref);
}
void Graph::derefChildren(NodeIndex op)
{
DO_TO_CHILDREN(at(op), deref);
}
void Graph::predictArgumentTypes()
{
ASSERT(m_codeBlock->numParameters() >= 1);
for (size_t arg = 0; arg < static_cast<size_t>(m_codeBlock->numParameters()); ++arg) {
ValueProfile* profile = m_profiledBlock->valueProfileForArgument(arg);
if (!profile)
continue;
at(m_arguments[arg]).variableAccessData()->predict(profile->computeUpdatedPrediction());
#if DFG_ENABLE(DEBUG_VERBOSE)
dataLog("Argument [%zu] prediction: %s\n", arg, predictionToString(at(m_arguments[arg]).variableAccessData()->prediction()));
#endif
}
}
} } // namespace JSC::DFG
#endif