| /* |
| * Copyright (C) 2006, 2007 Eric Seidel <eric@webkit.org> |
| * Copyright (C) 2015 Apple Inc. All rights reserved. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Library General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Library General Public License for more details. |
| * |
| * You should have received a copy of the GNU Library General Public License |
| * along with this library; see the file COPYING.LIB. If not, write to |
| * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, |
| * Boston, MA 02110-1301, USA. |
| */ |
| |
| #include "config.h" |
| #include "PathTraversalState.h" |
| |
| #include <wtf/MathExtras.h> |
| #include <wtf/Vector.h> |
| |
| namespace WebCore { |
| |
| static const float kPathSegmentLengthTolerance = 0.00001f; |
| |
| static inline FloatPoint midPoint(const FloatPoint& first, const FloatPoint& second) |
| { |
| return FloatPoint((first.x() + second.x()) / 2.0f, (first.y() + second.y()) / 2.0f); |
| } |
| |
| static inline float distanceLine(const FloatPoint& start, const FloatPoint& end) |
| { |
| return std::hypot(end.x() - start.x(), end.y() - start.y()); |
| } |
| |
| struct QuadraticBezier { |
| QuadraticBezier() { } |
| QuadraticBezier(const FloatPoint& s, const FloatPoint& c, const FloatPoint& e) |
| : start(s) |
| , control(c) |
| , end(e) |
| { |
| } |
| |
| bool operator==(const QuadraticBezier& rhs) const |
| { |
| return start == rhs.start |
| && control == rhs.control |
| && end == rhs.end; |
| } |
| |
| float approximateDistance() const |
| { |
| return distanceLine(start, control) + distanceLine(control, end); |
| } |
| |
| bool split(QuadraticBezier& left, QuadraticBezier& right) const |
| { |
| left.control = midPoint(start, control); |
| right.control = midPoint(control, end); |
| |
| FloatPoint leftControlToRightControl = midPoint(left.control, right.control); |
| left.end = leftControlToRightControl; |
| right.start = leftControlToRightControl; |
| |
| left.start = start; |
| right.end = end; |
| |
| return !(left == *this) && !(right == *this); |
| } |
| |
| FloatPoint start; |
| FloatPoint control; |
| FloatPoint end; |
| }; |
| |
| struct CubicBezier { |
| CubicBezier() { } |
| CubicBezier(const FloatPoint& s, const FloatPoint& c1, const FloatPoint& c2, const FloatPoint& e) |
| : start(s) |
| , control1(c1) |
| , control2(c2) |
| , end(e) |
| { |
| } |
| |
| bool operator==(const CubicBezier& rhs) const |
| { |
| return start == rhs.start |
| && control1 == rhs.control1 |
| && control2 == rhs.control2 |
| && end == rhs.end; |
| } |
| |
| float approximateDistance() const |
| { |
| return distanceLine(start, control1) + distanceLine(control1, control2) + distanceLine(control2, end); |
| } |
| |
| bool split(CubicBezier& left, CubicBezier& right) const |
| { |
| FloatPoint startToControl1 = midPoint(control1, control2); |
| |
| left.start = start; |
| left.control1 = midPoint(start, control1); |
| left.control2 = midPoint(left.control1, startToControl1); |
| |
| right.control2 = midPoint(control2, end); |
| right.control1 = midPoint(right.control2, startToControl1); |
| right.end = end; |
| |
| FloatPoint leftControl2ToRightControl1 = midPoint(left.control2, right.control1); |
| left.end = leftControl2ToRightControl1; |
| right.start = leftControl2ToRightControl1; |
| |
| return !(left == *this) && !(right == *this); |
| } |
| |
| FloatPoint start; |
| FloatPoint control1; |
| FloatPoint control2; |
| FloatPoint end; |
| }; |
| |
| // FIXME: This function is possibly very slow due to the ifs required for proper path measuring |
| // A simple speed-up would be to use an additional boolean template parameter to control whether |
| // to use the "fast" version of this function with no PathTraversalState updating, vs. the slow |
| // version which does update the PathTraversalState. We'll have to shark it to see if that's necessary. |
| // Another check which is possible up-front (to send us down the fast path) would be to check if |
| // approximateDistance() + current total distance > desired distance |
| template<class CurveType> |
| static float curveLength(const PathTraversalState& traversalState, const CurveType& originalCurve, FloatPoint& previous, FloatPoint& current) |
| { |
| static const unsigned curveStackDepthLimit = 20; |
| CurveType curve = originalCurve; |
| Vector<CurveType, curveStackDepthLimit> curveStack; |
| float totalLength = 0; |
| |
| while (true) { |
| float length = curve.approximateDistance(); |
| |
| CurveType leftCurve; |
| CurveType rightCurve; |
| |
| if ((length - distanceLine(curve.start, curve.end)) > kPathSegmentLengthTolerance && curveStack.size() < curveStackDepthLimit && curve.split(leftCurve, rightCurve)) { |
| curve = leftCurve; |
| curveStack.append(rightCurve); |
| continue; |
| } |
| |
| totalLength += length; |
| if (traversalState.action() == PathTraversalState::Action::VectorAtLength) { |
| previous = curve.start; |
| current = curve.end; |
| if (traversalState.totalLength() + totalLength > traversalState.desiredLength()) |
| break; |
| } |
| |
| if (curveStack.isEmpty()) |
| break; |
| |
| curve = curveStack.last(); |
| curveStack.removeLast(); |
| } |
| |
| if (traversalState.action() != PathTraversalState::Action::VectorAtLength) { |
| ASSERT(curve.end == originalCurve.end); |
| previous = curve.start; |
| current = curve.end; |
| } |
| |
| return totalLength; |
| } |
| |
| PathTraversalState::PathTraversalState(Action action, float desiredLength) |
| : m_action(action) |
| , m_desiredLength(desiredLength) |
| { |
| ASSERT(action != Action::TotalLength || !desiredLength); |
| } |
| |
| void PathTraversalState::closeSubpath() |
| { |
| m_totalLength += distanceLine(m_current, m_start); |
| m_current = m_start; |
| } |
| |
| void PathTraversalState::moveTo(const FloatPoint& point) |
| { |
| m_previous = m_current = m_start = point; |
| } |
| |
| void PathTraversalState::lineTo(const FloatPoint& point) |
| { |
| m_totalLength += distanceLine(m_current, point); |
| m_current = point; |
| } |
| |
| void PathTraversalState::quadraticBezierTo(const FloatPoint& newControl, const FloatPoint& newEnd) |
| { |
| m_totalLength += curveLength<QuadraticBezier>(*this, QuadraticBezier(m_current, newControl, newEnd), m_previous, m_current); |
| } |
| |
| void PathTraversalState::cubicBezierTo(const FloatPoint& newControl1, const FloatPoint& newControl2, const FloatPoint& newEnd) |
| { |
| m_totalLength += curveLength<CubicBezier>(*this, CubicBezier(m_current, newControl1, newControl2, newEnd), m_previous, m_current); |
| } |
| |
| bool PathTraversalState::finalizeAppendPathElement() |
| { |
| if (m_action == Action::TotalLength) |
| return false; |
| |
| if (m_action == Action::SegmentAtLength) { |
| if (m_totalLength >= m_desiredLength) |
| m_success = true; |
| return m_success; |
| } |
| |
| ASSERT(m_action == Action::VectorAtLength); |
| |
| if (m_totalLength >= m_desiredLength) { |
| float slope = FloatPoint(m_current - m_previous).slopeAngleRadians(); |
| float offset = m_desiredLength - m_totalLength; |
| m_current.move(offset * cosf(slope), offset * sinf(slope)); |
| |
| if (!m_isZeroVector && !m_desiredLength) |
| m_isZeroVector = true; |
| else { |
| m_success = true; |
| m_normalAngle = rad2deg(slope); |
| } |
| } |
| |
| m_previous = m_current; |
| return m_success; |
| } |
| |
| bool PathTraversalState::appendPathElement(PathElement::Type type, const FloatPoint* points) |
| { |
| switch (type) { |
| case PathElement::Type::MoveToPoint: |
| moveTo(points[0]); |
| break; |
| case PathElement::Type::AddLineToPoint: |
| lineTo(points[0]); |
| break; |
| case PathElement::Type::AddQuadCurveToPoint: |
| quadraticBezierTo(points[0], points[1]); |
| break; |
| case PathElement::Type::AddCurveToPoint: |
| cubicBezierTo(points[0], points[1], points[2]); |
| break; |
| case PathElement::Type::CloseSubpath: |
| closeSubpath(); |
| break; |
| } |
| |
| return finalizeAppendPathElement(); |
| } |
| |
| bool PathTraversalState::processPathElement(PathElement::Type type, const FloatPoint* points) |
| { |
| if (m_success) |
| return true; |
| |
| if (m_isZeroVector) { |
| PathTraversalState traversalState(*this); |
| m_success = traversalState.appendPathElement(type, points); |
| m_normalAngle = traversalState.m_normalAngle; |
| return m_success; |
| } |
| |
| return appendPathElement(type, points); |
| } |
| |
| } |
| |