blob: 1773946bc05c6281ae0ba29976a0d0433f307995 [file] [log] [blame]
/*
* Copyright (C) 1999-2001 Harri Porten (porten@kde.org)
* Copyright (C) 2001 Peter Kelly (pmk@post.com)
* Copyright (C) 2003, 2006, 2007, 2008, 2009, 2010, 2013 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include "config.h"
#include "Parser.h"
#include "ASTBuilder.h"
#include "CodeBlock.h"
#include "Debugger.h"
#include "JSCJSValueInlines.h"
#include "Lexer.h"
#include "NodeInfo.h"
#include "JSCInlines.h"
#include "SourceProvider.h"
#include "VM.h"
#include <utility>
#include <wtf/HashFunctions.h>
#include <wtf/OwnPtr.h>
#include <wtf/StringPrintStream.h>
#include <wtf/WTFThreadData.h>
#define updateErrorMessage(shouldPrintToken, ...) do {\
propagateError(); \
logError(shouldPrintToken, __VA_ARGS__); \
} while (0)
#define propagateError() do { if (hasError()) return 0; } while (0)
#define internalFailWithMessage(shouldPrintToken, ...) do { updateErrorMessage(shouldPrintToken, __VA_ARGS__); return 0; } while (0)
#define handleErrorToken() do { if (m_token.m_type == EOFTOK || m_token.m_type & ErrorTokenFlag) { failDueToUnexpectedToken(); } } while (0)
#define failWithMessage(...) do { { handleErrorToken(); updateErrorMessage(true, __VA_ARGS__); } return 0; } while (0)
#define failWithStackOverflow() do { updateErrorMessage(false, "Stack exhausted"); m_hasStackOverflow = true; return 0; } while (0)
#define failIfFalse(cond, ...) do { if (!(cond)) { handleErrorToken(); internalFailWithMessage(true, __VA_ARGS__); } } while (0)
#define failIfTrue(cond, ...) do { if (cond) { handleErrorToken(); internalFailWithMessage(true, __VA_ARGS__); } } while (0)
#define failIfTrueIfStrict(cond, ...) do { if ((cond) && strictMode()) internalFailWithMessage(false, __VA_ARGS__); } while (0)
#define failIfFalseIfStrict(cond, ...) do { if ((!(cond)) && strictMode()) internalFailWithMessage(false, __VA_ARGS__); } while (0)
#define consumeOrFail(tokenType, ...) do { if (!consume(tokenType)) { handleErrorToken(); internalFailWithMessage(true, __VA_ARGS__); } } while (0)
#define consumeOrFailWithFlags(tokenType, flags, ...) do { if (!consume(tokenType, flags)) { handleErrorToken(); internalFailWithMessage(true, __VA_ARGS__); } } while (0)
#define matchOrFail(tokenType, ...) do { if (!match(tokenType)) { handleErrorToken(); internalFailWithMessage(true, __VA_ARGS__); } } while (0)
#define failIfStackOverflow() do { if (!canRecurse()) failWithStackOverflow(); } while (0)
#define semanticFail(...) do { internalFailWithMessage(false, __VA_ARGS__); } while (0)
#define semanticFailIfTrue(cond, ...) do { if (cond) internalFailWithMessage(false, __VA_ARGS__); } while (0)
#define semanticFailIfFalse(cond, ...) do { if (!(cond)) internalFailWithMessage(false, __VA_ARGS__); } while (0)
#define regexFail(failure) do { setErrorMessage(failure); return 0; } while (0)
#define failDueToUnexpectedToken() do {\
logError(true);\
return 0;\
} while (0)
#define handleProductionOrFail(token, tokenString, operation, production) do {\
consumeOrFail(token, "Expected '", tokenString, "' to ", operation, " a ", production);\
} while (0)
#define semanticFailureDueToKeyword(...) do { \
if (strictMode() && m_token.m_type == RESERVED_IF_STRICT) \
semanticFail("Cannot use the reserved word '", getToken(), "' as a ", __VA_ARGS__, " in strict mode"); \
if (m_token.m_type == RESERVED || m_token.m_type == RESERVED_IF_STRICT) \
semanticFail("Cannot use the reserved word '", getToken(), "' as a ", __VA_ARGS__); \
if (m_token.m_type & KeywordTokenFlag) \
semanticFail("Cannot use the keyword '", getToken(), "' as a ", __VA_ARGS__); \
} while (0)
using namespace std;
namespace JSC {
template <typename LexerType>
void Parser<LexerType>::logError(bool)
{
if (hasError())
return;
StringPrintStream stream;
printUnexpectedTokenText(stream);
setErrorMessage(stream.toString());
}
template <typename LexerType> template <typename A>
void Parser<LexerType>::logError(bool shouldPrintToken, const A& value1)
{
if (hasError())
return;
StringPrintStream stream;
if (shouldPrintToken) {
printUnexpectedTokenText(stream);
stream.print(". ");
}
stream.print(value1, ".");
setErrorMessage(stream.toString());
}
template <typename LexerType> template <typename A, typename B>
void Parser<LexerType>::logError(bool shouldPrintToken, const A& value1, const B& value2)
{
if (hasError())
return;
StringPrintStream stream;
if (shouldPrintToken) {
printUnexpectedTokenText(stream);
stream.print(". ");
}
stream.print(value1, value2, ".");
setErrorMessage(stream.toString());
}
template <typename LexerType> template <typename A, typename B, typename C>
void Parser<LexerType>::logError(bool shouldPrintToken, const A& value1, const B& value2, const C& value3)
{
if (hasError())
return;
StringPrintStream stream;
if (shouldPrintToken) {
printUnexpectedTokenText(stream);
stream.print(". ");
}
stream.print(value1, value2, value3, ".");
setErrorMessage(stream.toString());
}
template <typename LexerType> template <typename A, typename B, typename C, typename D>
void Parser<LexerType>::logError(bool shouldPrintToken, const A& value1, const B& value2, const C& value3, const D& value4)
{
if (hasError())
return;
StringPrintStream stream;
if (shouldPrintToken) {
printUnexpectedTokenText(stream);
stream.print(". ");
}
stream.print(value1, value2, value3, value4, ".");
setErrorMessage(stream.toString());
}
template <typename LexerType> template <typename A, typename B, typename C, typename D, typename E>
void Parser<LexerType>::logError(bool shouldPrintToken, const A& value1, const B& value2, const C& value3, const D& value4, const E& value5)
{
if (hasError())
return;
StringPrintStream stream;
if (shouldPrintToken) {
printUnexpectedTokenText(stream);
stream.print(". ");
}
stream.print(value1, value2, value3, value4, value5, ".");
setErrorMessage(stream.toString());
}
template <typename LexerType> template <typename A, typename B, typename C, typename D, typename E, typename F>
void Parser<LexerType>::logError(bool shouldPrintToken, const A& value1, const B& value2, const C& value3, const D& value4, const E& value5, const F& value6)
{
if (hasError())
return;
StringPrintStream stream;
if (shouldPrintToken) {
printUnexpectedTokenText(stream);
stream.print(". ");
}
stream.print(value1, value2, value3, value4, value5, value6, ".");
setErrorMessage(stream.toString());
}
template <typename LexerType> template <typename A, typename B, typename C, typename D, typename E, typename F, typename G>
void Parser<LexerType>::logError(bool shouldPrintToken, const A& value1, const B& value2, const C& value3, const D& value4, const E& value5, const F& value6, const G& value7)
{
if (hasError())
return;
StringPrintStream stream;
if (shouldPrintToken) {
printUnexpectedTokenText(stream);
stream.print(". ");
}
stream.print(value1, value2, value3, value4, value5, value6, value7, ".");
setErrorMessage(stream.toString());
}
template <typename LexerType>
Parser<LexerType>::Parser(VM* vm, const SourceCode& source, FunctionParameters* parameters, const Identifier& name, JSParserStrictness strictness, JSParserMode parserMode)
: m_vm(vm)
, m_source(&source)
, m_hasStackOverflow(false)
, m_allowsIn(true)
, m_assignmentCount(0)
, m_nonLHSCount(0)
, m_syntaxAlreadyValidated(source.provider()->isValid())
, m_statementDepth(0)
, m_nonTrivialExpressionCount(0)
, m_lastIdentifier(0)
, m_lastFunctionName(nullptr)
, m_sourceElements(0)
, m_parsingBuiltin(strictness == JSParseBuiltin)
{
m_lexer = adoptPtr(new LexerType(vm, strictness));
m_arena = m_vm->parserArena.get();
m_lexer->setCode(source, m_arena);
m_token.m_location.line = source.firstLine();
m_token.m_location.startOffset = source.startOffset();
m_token.m_location.endOffset = source.startOffset();
m_token.m_location.lineStartOffset = source.startOffset();
m_functionCache = vm->addSourceProviderCache(source.provider());
ScopeRef scope = pushScope();
if (parserMode == JSParseFunctionCode)
scope->setIsFunction();
if (strictness == JSParseStrict)
scope->setStrictMode();
if (parameters) {
bool hadBindingParameters = false;
for (unsigned i = 0; i < parameters->size(); i++) {
auto parameter = parameters->at(i);
if (!parameter->isBindingNode()) {
hadBindingParameters = true;
continue;
}
scope->declareParameter(&static_cast<BindingNode*>(parameter)->boundProperty());
}
if (hadBindingParameters) {
Vector<Identifier> boundParameterNames;
for (unsigned i = 0; i < parameters->size(); i++) {
auto parameter = parameters->at(i);
if (parameter->isBindingNode())
continue;
parameter->collectBoundIdentifiers(boundParameterNames);
}
for (auto& boundParameterName : boundParameterNames)
scope->declareVariable(&boundParameterName);
}
}
if (!name.isNull())
scope->declareCallee(&name);
next();
}
template <typename LexerType>
Parser<LexerType>::~Parser()
{
}
template <typename LexerType>
String Parser<LexerType>::parseInner()
{
String parseError = String();
ASTBuilder context(const_cast<VM*>(m_vm), const_cast<SourceCode*>(m_source));
if (m_lexer->isReparsing())
m_statementDepth--;
ScopeRef scope = currentScope();
SourceElements* sourceElements = parseSourceElements(context, CheckForStrictMode);
if (!sourceElements || !consume(EOFTOK)) {
if (hasError())
parseError = m_errorMessage;
else
parseError = ASCIILiteral("Parser error");
}
IdentifierSet capturedVariables;
bool modifiedParameter = false;
scope->getCapturedVariables(capturedVariables, modifiedParameter);
CodeFeatures features = context.features();
if (scope->strictMode())
features |= StrictModeFeature;
if (scope->shadowsArguments())
features |= ShadowsArgumentsFeature;
if (modifiedParameter)
features |= ModifiedParameterFeature;
Vector<RefPtr<StringImpl>> closedVariables;
if (m_parsingBuiltin) {
RELEASE_ASSERT(!capturedVariables.size());
IdentifierSet usedVariables;
scope->getUsedVariables(usedVariables);
for (const auto& variable : usedVariables) {
if (scope->hasDeclaredVariable(Identifier(m_vm, variable.get())))
continue;
if (scope->hasDeclaredParameter(Identifier(m_vm, variable.get())))
continue;
closedVariables.append(variable);
}
}
didFinishParsing(sourceElements, context.varDeclarations(), context.funcDeclarations(), features,
context.numConstants(), capturedVariables, WTF::move(closedVariables));
return parseError;
}
template <typename LexerType>
void Parser<LexerType>::didFinishParsing(SourceElements* sourceElements, ParserArenaData<DeclarationStacks::VarStack>* varStack,
ParserArenaData<DeclarationStacks::FunctionStack>* funcStack, CodeFeatures features, int numConstants, IdentifierSet& capturedVars, const Vector<RefPtr<StringImpl>>&& closedVariables)
{
m_sourceElements = sourceElements;
m_varDeclarations = varStack;
m_funcDeclarations = funcStack;
m_capturedVariables.swap(capturedVars);
m_closedVariables = closedVariables;
m_features = features;
m_numConstants = numConstants;
}
template <typename LexerType>
bool Parser<LexerType>::allowAutomaticSemicolon()
{
return match(CLOSEBRACE) || match(EOFTOK) || m_lexer->prevTerminator();
}
template <typename LexerType>
template <class TreeBuilder> TreeSourceElements Parser<LexerType>::parseSourceElements(TreeBuilder& context, SourceElementsMode mode)
{
const unsigned lengthOfUseStrictLiteral = 12; // "use strict".length
TreeSourceElements sourceElements = context.createSourceElements();
bool seenNonDirective = false;
const Identifier* directive = 0;
unsigned directiveLiteralLength = 0;
auto savePoint = createSavePoint();
bool hasSetStrict = false;
while (TreeStatement statement = parseStatement(context, directive, &directiveLiteralLength)) {
if (mode == CheckForStrictMode && !seenNonDirective) {
if (directive) {
// "use strict" must be the exact literal without escape sequences or line continuation.
if (!hasSetStrict && directiveLiteralLength == lengthOfUseStrictLiteral && m_vm->propertyNames->useStrictIdentifier == *directive) {
setStrictMode();
hasSetStrict = true;
if (!isValidStrictMode()) {
if (m_lastFunctionName) {
if (m_vm->propertyNames->arguments == *m_lastFunctionName)
semanticFail("Cannot name a function 'arguments' in strict mode");
if (m_vm->propertyNames->eval == *m_lastFunctionName)
semanticFail("Cannot name a function 'eval' in strict mode");
}
if (hasDeclaredVariable(m_vm->propertyNames->arguments))
semanticFail("Cannot declare a variable named 'arguments' in strict mode");
if (hasDeclaredVariable(m_vm->propertyNames->eval))
semanticFail("Cannot declare a variable named 'eval' in strict mode");
semanticFailIfFalse(isValidStrictMode(), "Invalid parameters or function name in strict mode");
}
restoreSavePoint(savePoint);
propagateError();
continue;
}
} else
seenNonDirective = true;
}
context.appendStatement(sourceElements, statement);
}
propagateError();
return sourceElements;
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseVarDeclaration(TreeBuilder& context)
{
ASSERT(match(VAR));
JSTokenLocation location(tokenLocation());
int start = tokenLine();
int end = 0;
int scratch;
TreeDeconstructionPattern scratch1 = 0;
TreeExpression scratch2 = 0;
JSTextPosition scratch3;
TreeExpression varDecls = parseVarDeclarationList(context, scratch, scratch1, scratch2, scratch3, scratch3, scratch3);
propagateError();
failIfFalse(autoSemiColon(), "Expected ';' after var declaration");
return context.createVarStatement(location, varDecls, start, end);
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseConstDeclaration(TreeBuilder& context)
{
ASSERT(match(CONSTTOKEN));
JSTokenLocation location(tokenLocation());
int start = tokenLine();
int end = 0;
TreeConstDeclList constDecls = parseConstDeclarationList(context);
propagateError();
failIfFalse(autoSemiColon(), "Expected ';' after const declaration");
return context.createConstStatement(location, constDecls, start, end);
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseDoWhileStatement(TreeBuilder& context)
{
ASSERT(match(DO));
int startLine = tokenLine();
next();
const Identifier* unused = 0;
startLoop();
TreeStatement statement = parseStatement(context, unused);
endLoop();
failIfFalse(statement, "Expected a statement following 'do'");
int endLine = tokenLine();
JSTokenLocation location(tokenLocation());
handleProductionOrFail(WHILE, "while", "end", "do-while loop");
handleProductionOrFail(OPENPAREN, "(", "start", "do-while loop condition");
semanticFailIfTrue(match(CLOSEPAREN), "Must provide an expression as a do-while loop condition");
TreeExpression expr = parseExpression(context);
failIfFalse(expr, "Unable to parse do-while loop condition");
handleProductionOrFail(CLOSEPAREN, ")", "end", "do-while loop condition");
if (match(SEMICOLON))
next(); // Always performs automatic semicolon insertion.
return context.createDoWhileStatement(location, statement, expr, startLine, endLine);
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseWhileStatement(TreeBuilder& context)
{
ASSERT(match(WHILE));
JSTokenLocation location(tokenLocation());
int startLine = tokenLine();
next();
handleProductionOrFail(OPENPAREN, "(", "start", "while loop condition");
semanticFailIfTrue(match(CLOSEPAREN), "Must provide an expression as a while loop condition");
TreeExpression expr = parseExpression(context);
failIfFalse(expr, "Unable to parse while loop condition");
int endLine = tokenLine();
handleProductionOrFail(CLOSEPAREN, ")", "end", "while loop condition");
const Identifier* unused = 0;
startLoop();
TreeStatement statement = parseStatement(context, unused);
endLoop();
failIfFalse(statement, "Expected a statement as the body of a while loop");
return context.createWhileStatement(location, expr, statement, startLine, endLine);
}
template <typename LexerType>
template <class TreeBuilder> TreeExpression Parser<LexerType>::parseVarDeclarationList(TreeBuilder& context, int& declarations, TreeDeconstructionPattern& lastPattern, TreeExpression& lastInitializer, JSTextPosition& identStart, JSTextPosition& initStart, JSTextPosition& initEnd)
{
TreeExpression varDecls = 0;
const Identifier* lastIdent;
do {
lastIdent = 0;
lastPattern = 0;
JSTokenLocation location(tokenLocation());
next();
TreeExpression node = 0;
declarations++;
bool hasInitializer = false;
if (match(IDENT)) {
JSTextPosition varStart = tokenStartPosition();
identStart = varStart;
const Identifier* name = m_token.m_data.ident;
lastIdent = name;
next();
hasInitializer = match(EQUAL);
failIfFalseIfStrict(declareVariable(name), "Cannot declare a variable named ", name->impl(), " in strict mode");
context.addVar(name, (hasInitializer || (!m_allowsIn && (match(INTOKEN) || isofToken()))) ? DeclarationStacks::HasInitializer : 0);
if (hasInitializer) {
JSTextPosition varDivot = tokenStartPosition() + 1;
initStart = tokenStartPosition();
next(TreeBuilder::DontBuildStrings); // consume '='
TreeExpression initializer = parseAssignmentExpression(context);
initEnd = lastTokenEndPosition();
lastInitializer = initializer;
failIfFalse(initializer, "Expected expression as the intializer for the variable '", name->impl(), "'");
node = context.createAssignResolve(location, *name, initializer, varStart, varDivot, lastTokenEndPosition());
}
} else {
lastIdent = 0;
auto pattern = parseDeconstructionPattern(context, DeconstructToVariables);
failIfFalse(pattern, "Cannot parse this deconstruction pattern");
hasInitializer = match(EQUAL);
lastPattern = pattern;
if (hasInitializer) {
next(TreeBuilder::DontBuildStrings); // consume '='
TreeExpression rhs = parseAssignmentExpression(context);
node = context.createDeconstructingAssignment(location, pattern, rhs);
lastInitializer = rhs;
}
}
if (hasInitializer) {
if (!varDecls)
varDecls = node;
else
varDecls = context.combineCommaNodes(location, varDecls, node);
}
} while (match(COMMA));
if (lastIdent)
lastPattern = createBindingPattern(context, DeconstructToVariables, *lastIdent, 0);
return varDecls;
}
template <typename LexerType>
template <class TreeBuilder> TreeDeconstructionPattern Parser<LexerType>::createBindingPattern(TreeBuilder& context, DeconstructionKind kind, const Identifier& name, int depth)
{
ASSERT(!name.isEmpty());
ASSERT(!name.isNull());
ASSERT(name.impl()->isAtomic());
if (depth) {
if (kind == DeconstructToVariables)
failIfFalseIfStrict(declareVariable(&name), "Cannot deconstruct to a variable named '", name.impl(), "' in strict mode");
if (kind == DeconstructToParameters) {
auto bindingResult = declareBoundParameter(&name);
if (bindingResult == Scope::StrictBindingFailed && strictMode()) {
semanticFailIfTrue(m_vm->propertyNames->arguments == name || m_vm->propertyNames->eval == name, "Cannot deconstruct to a parameter name '", name.impl(), "' in strict mode");
if (m_lastFunctionName && name == *m_lastFunctionName)
semanticFail("Cannot deconstruct to '", name.impl(), "' as it shadows the name of a strict mode function");
semanticFailureDueToKeyword("bound parameter name");
if (hasDeclaredParameter(name))
semanticFail("Cannot deconstruct to '", name.impl(), "' as it has already been declared");
semanticFail("Cannot bind to a parameter named '", name.impl(), "' in strict mode");
}
if (bindingResult == Scope::BindingFailed) {
semanticFailureDueToKeyword("bound parameter name");
if (hasDeclaredParameter(name))
semanticFail("Cannot deconstruct to '", name.impl(), "' as it has already been declared");
semanticFail("Cannot deconstruct to a parameter named '", name.impl(), "'");
}
}
if (kind != DeconstructToExpressions)
context.addVar(&name, DeclarationStacks::HasInitializer);
} else {
if (kind == DeconstructToVariables) {
failIfFalseIfStrict(declareVariable(&name), "Cannot declare a variable named '", name.impl(), "' in strict mode");
context.addVar(&name, DeclarationStacks::HasInitializer);
}
if (kind == DeconstructToParameters) {
bool declarationResult = declareParameter(&name);
if (!declarationResult && strictMode()) {
semanticFailIfTrue(m_vm->propertyNames->arguments == name || m_vm->propertyNames->eval == name, "Cannot deconstruct to a parameter name '", name.impl(), "' in strict mode");
if (m_lastFunctionName && name == *m_lastFunctionName)
semanticFail("Cannot declare a parameter named '", name.impl(), "' as it shadows the name of a strict mode function");
semanticFailureDueToKeyword("parameter name");
if (hasDeclaredParameter(name))
semanticFail("Cannot declare a parameter named '", name.impl(), "' in strict mode as it has already been declared");
semanticFail("Cannot declare a parameter named '", name.impl(), "' in strict mode");
}
}
}
return context.createBindingLocation(m_token.m_location, name, m_token.m_startPosition, m_token.m_endPosition);
}
template <typename LexerType>
template <class TreeBuilder> TreeDeconstructionPattern Parser<LexerType>::tryParseDeconstructionPatternExpression(TreeBuilder& context)
{
return parseDeconstructionPattern(context, DeconstructToExpressions);
}
template <typename LexerType>
template <class TreeBuilder> TreeDeconstructionPattern Parser<LexerType>::parseDeconstructionPattern(TreeBuilder& context, DeconstructionKind kind, int depth)
{
failIfStackOverflow();
int nonLHSCount = m_nonLHSCount;
TreeDeconstructionPattern pattern;
switch (m_token.m_type) {
case OPENBRACKET: {
auto arrayPattern = context.createArrayPattern(m_token.m_location);
next();
if (kind == DeconstructToExpressions && match(CLOSEBRACKET))
return 0;
failIfTrue(match(CLOSEBRACKET), "There must be at least one bound property in an array deconstruction pattern");
do {
while (match(COMMA)) {
context.appendArrayPatternSkipEntry(arrayPattern, m_token.m_location);
next();
}
propagateError();
JSTokenLocation location = m_token.m_location;
auto innerPattern = parseDeconstructionPattern(context, kind, depth + 1);
if (kind == DeconstructToExpressions && !innerPattern)
return 0;
failIfFalse(innerPattern, "Cannot parse this deconstruction pattern");
context.appendArrayPatternEntry(arrayPattern, location, innerPattern);
} while (consume(COMMA));
if (kind == DeconstructToExpressions && !match(CLOSEBRACKET))
return 0;
consumeOrFail(CLOSEBRACKET, "Expected either a closing ']' or a ',' following an element deconstruction pattern");
pattern = arrayPattern;
break;
}
case OPENBRACE: {
next();
if (kind == DeconstructToExpressions && match(CLOSEBRACE))
return 0;
failIfTrue(match(CLOSEBRACE), "There must be at least one bound property in an object deconstruction pattern");
auto objectPattern = context.createObjectPattern(m_token.m_location);
bool wasString = false;
do {
Identifier propertyName;
TreeDeconstructionPattern innerPattern = 0;
JSTokenLocation location = m_token.m_location;
if (match(IDENT)) {
propertyName = *m_token.m_data.ident;
next();
if (consume(COLON))
innerPattern = parseDeconstructionPattern(context, kind, depth + 1);
else
innerPattern = createBindingPattern(context, kind, propertyName, depth);
} else {
JSTokenType tokenType = m_token.m_type;
switch (m_token.m_type) {
case NUMBER:
propertyName = Identifier::from(m_vm, m_token.m_data.doubleValue);
break;
case STRING:
propertyName = *m_token.m_data.ident;
wasString = true;
break;
default:
if (m_token.m_type != RESERVED && m_token.m_type != RESERVED_IF_STRICT && !(m_token.m_type & KeywordTokenFlag)) {
if (kind == DeconstructToExpressions)
return 0;
failWithMessage("Expected a property name");
}
propertyName = *m_token.m_data.ident;
break;
}
next();
if (!consume(COLON)) {
if (kind == DeconstructToExpressions)
return 0;
semanticFailIfTrue(tokenType == RESERVED, "Cannot use abbreviated deconstruction syntax for reserved name '", propertyName.impl(), "'");
semanticFailIfTrue(tokenType == RESERVED_IF_STRICT, "Cannot use abbreviated deconstruction syntax for reserved name '", propertyName.impl(), "' in strict mode");
semanticFailIfTrue(tokenType & KeywordTokenFlag, "Cannot use abbreviated deconstruction syntax for keyword '", propertyName.impl(), "'");
failWithMessage("Expected a ':' prior to named property deconstruction");
}
innerPattern = parseDeconstructionPattern(context, kind, depth + 1);
}
if (kind == DeconstructToExpressions && !innerPattern)
return 0;
failIfFalse(innerPattern, "Cannot parse this deconstruction pattern");
context.appendObjectPatternEntry(objectPattern, location, wasString, propertyName, innerPattern);
} while (consume(COMMA));
if (kind == DeconstructToExpressions && !match(CLOSEBRACE))
return 0;
consumeOrFail(CLOSEBRACE, "Expected either a closing '}' or an ',' after a property deconstruction pattern");
pattern = objectPattern;
break;
}
default: {
if (!match(IDENT)) {
if (kind == DeconstructToExpressions)
return 0;
semanticFailureDueToKeyword("variable name");
failWithMessage("Expected a parameter pattern or a ')' in parameter list");
}
pattern = createBindingPattern(context, kind, *m_token.m_data.ident, depth);
next();
break;
}
}
m_nonLHSCount = nonLHSCount;
return pattern;
}
template <typename LexerType>
template <class TreeBuilder> TreeConstDeclList Parser<LexerType>::parseConstDeclarationList(TreeBuilder& context)
{
failIfTrue(strictMode(), "Const declarations are not supported in strict mode");
TreeConstDeclList constDecls = 0;
TreeConstDeclList tail = 0;
do {
JSTokenLocation location(tokenLocation());
next();
matchOrFail(IDENT, "Expected an identifier name in const declaration");
const Identifier* name = m_token.m_data.ident;
next();
bool hasInitializer = match(EQUAL);
declareVariable(name);
context.addVar(name, DeclarationStacks::IsConstant | (hasInitializer ? DeclarationStacks::HasInitializer : 0));
TreeExpression initializer = 0;
if (hasInitializer) {
next(TreeBuilder::DontBuildStrings); // consume '='
initializer = parseAssignmentExpression(context);
failIfFalse(!!initializer, "Unable to parse initializer");
}
tail = context.appendConstDecl(location, tail, name, initializer);
if (!constDecls)
constDecls = tail;
} while (match(COMMA));
return constDecls;
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseForStatement(TreeBuilder& context)
{
ASSERT(match(FOR));
JSTokenLocation location(tokenLocation());
int startLine = tokenLine();
next();
handleProductionOrFail(OPENPAREN, "(", "start", "for-loop header");
int nonLHSCount = m_nonLHSCount;
int declarations = 0;
JSTextPosition declsStart;
JSTextPosition declsEnd;
TreeExpression decls = 0;
TreeDeconstructionPattern pattern = 0;
if (match(VAR)) {
/*
for (var IDENT in expression) statement
for (var varDeclarationList; expressionOpt; expressionOpt)
*/
TreeDeconstructionPattern forInTarget = 0;
TreeExpression forInInitializer = 0;
m_allowsIn = false;
JSTextPosition initStart;
JSTextPosition initEnd;
decls = parseVarDeclarationList(context, declarations, forInTarget, forInInitializer, declsStart, initStart, initEnd);
m_allowsIn = true;
propagateError();
// Remainder of a standard for loop is handled identically
if (match(SEMICOLON))
goto standardForLoop;
failIfFalse(declarations == 1, "can only declare a single variable in an enumeration");
failIfTrueIfStrict(forInInitializer, "Cannot use initialiser syntax in a strict mode enumeration");
if (forInInitializer)
failIfFalse(context.isBindingNode(forInTarget), "Cannot use initialiser syntax when binding to a pattern during enumeration");
// Handle for-in with var declaration
JSTextPosition inLocation = tokenStartPosition();
bool isOfEnumeration = false;
if (!consume(INTOKEN)) {
failIfFalse(match(IDENT) && *m_token.m_data.ident == m_vm->propertyNames->of, "Expected either 'in' or 'of' in enumeration syntax");
isOfEnumeration = true;
failIfTrue(forInInitializer, "Cannot use initialiser syntax in a for-of enumeration");
next();
}
TreeExpression expr = parseExpression(context);
failIfFalse(expr, "Expected expression to enumerate");
JSTextPosition exprEnd = lastTokenEndPosition();
int endLine = tokenLine();
handleProductionOrFail(CLOSEPAREN, ")", "end", (isOfEnumeration ? "for-of header" : "for-in header"));
const Identifier* unused = 0;
startLoop();
TreeStatement statement = parseStatement(context, unused);
endLoop();
failIfFalse(statement, "Expected statement as body of for-", isOfEnumeration ? "of" : "in", " statement");
if (isOfEnumeration)
return context.createForOfLoop(location, forInTarget, expr, statement, declsStart, inLocation, exprEnd, startLine, endLine);
return context.createForInLoop(location, forInTarget, expr, statement, declsStart, inLocation, exprEnd, startLine, endLine);
}
if (!match(SEMICOLON)) {
if (match(OPENBRACE) || match(OPENBRACKET)) {
SavePoint savePoint = createSavePoint();
declsStart = tokenStartPosition();
pattern = tryParseDeconstructionPatternExpression(context);
declsEnd = lastTokenEndPosition();
if (pattern && (match(INTOKEN) || (match(IDENT) && *m_token.m_data.ident == m_vm->propertyNames->of)))
goto enumerationLoop;
pattern = 0;
restoreSavePoint(savePoint);
}
m_allowsIn = false;
declsStart = tokenStartPosition();
decls = parseExpression(context);
declsEnd = lastTokenEndPosition();
m_allowsIn = true;
failIfFalse(decls, "Cannot parse for loop declarations");
}
if (match(SEMICOLON)) {
standardForLoop:
// Standard for loop
next();
TreeExpression condition = 0;
if (!match(SEMICOLON)) {
condition = parseExpression(context);
failIfFalse(condition, "Cannot parse for loop condition expression");
}
consumeOrFail(SEMICOLON, "Expected a ';' after the for loop condition expression");
TreeExpression increment = 0;
if (!match(CLOSEPAREN)) {
increment = parseExpression(context);
failIfFalse(increment, "Cannot parse for loop iteration expression");
}
int endLine = tokenLine();
handleProductionOrFail(CLOSEPAREN, ")", "end", "for-loop header");
const Identifier* unused = 0;
startLoop();
TreeStatement statement = parseStatement(context, unused);
endLoop();
failIfFalse(statement, "Expected a statement as the body of a for loop");
return context.createForLoop(location, decls, condition, increment, statement, startLine, endLine);
}
// For-in loop
enumerationLoop:
failIfFalse(nonLHSCount == m_nonLHSCount, "Expected a reference on the left hand side of an enumeration statement");
bool isOfEnumeration = false;
if (!consume(INTOKEN)) {
failIfFalse(match(IDENT) && *m_token.m_data.ident == m_vm->propertyNames->of, "Expected either 'in' or 'of' in enumeration syntax");
isOfEnumeration = true;
next();
}
TreeExpression expr = parseExpression(context);
failIfFalse(expr, "Cannot parse subject for-", isOfEnumeration ? "of" : "in", " statement");
JSTextPosition exprEnd = lastTokenEndPosition();
int endLine = tokenLine();
handleProductionOrFail(CLOSEPAREN, ")", "end", (isOfEnumeration ? "for-of header" : "for-in header"));
const Identifier* unused = 0;
startLoop();
TreeStatement statement = parseStatement(context, unused);
endLoop();
failIfFalse(statement, "Expected a statement as the body of a for-", isOfEnumeration ? "of" : "in", "loop");
if (pattern) {
ASSERT(!decls);
if (isOfEnumeration)
return context.createForOfLoop(location, pattern, expr, statement, declsStart, declsEnd, exprEnd, startLine, endLine);
return context.createForInLoop(location, pattern, expr, statement, declsStart, declsEnd, exprEnd, startLine, endLine);
}
if (isOfEnumeration)
return context.createForOfLoop(location, decls, expr, statement, declsStart, declsEnd, exprEnd, startLine, endLine);
return context.createForInLoop(location, decls, expr, statement, declsStart, declsEnd, exprEnd, startLine, endLine);
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseBreakStatement(TreeBuilder& context)
{
ASSERT(match(BREAK));
JSTokenLocation location(tokenLocation());
JSTextPosition start = tokenStartPosition();
JSTextPosition end = tokenEndPosition();
next();
if (autoSemiColon()) {
semanticFailIfFalse(breakIsValid(), "'break' is only valid inside a switch or loop statement");
return context.createBreakStatement(location, start, end);
}
matchOrFail(IDENT, "Expected an identifier as the target for a break statement");
const Identifier* ident = m_token.m_data.ident;
semanticFailIfFalse(getLabel(ident), "Cannot use the undeclared label '", ident->impl(), "'");
end = tokenEndPosition();
next();
failIfFalse(autoSemiColon(), "Expected a ';' following a targeted break statement");
return context.createBreakStatement(location, ident, start, end);
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseContinueStatement(TreeBuilder& context)
{
ASSERT(match(CONTINUE));
JSTokenLocation location(tokenLocation());
JSTextPosition start = tokenStartPosition();
JSTextPosition end = tokenEndPosition();
next();
if (autoSemiColon()) {
semanticFailIfFalse(continueIsValid(), "'continue' is only valid inside a loop statement");
return context.createContinueStatement(location, start, end);
}
matchOrFail(IDENT, "Expected an identifier as the target for a continue statement");
const Identifier* ident = m_token.m_data.ident;
ScopeLabelInfo* label = getLabel(ident);
semanticFailIfFalse(label, "Cannot use the undeclared label '", ident->impl(), "'");
semanticFailIfFalse(label->m_isLoop, "Cannot continue to the label '", ident->impl(), "' as it is not targeting a loop");
end = tokenEndPosition();
next();
failIfFalse(autoSemiColon(), "Expected a ';' following a targeted continue statement");
return context.createContinueStatement(location, ident, start, end);
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseReturnStatement(TreeBuilder& context)
{
ASSERT(match(RETURN));
JSTokenLocation location(tokenLocation());
semanticFailIfFalse(currentScope()->isFunction(), "Return statements are only valid inside functions");
JSTextPosition start = tokenStartPosition();
JSTextPosition end = tokenEndPosition();
next();
// We do the auto semicolon check before attempting to parse expression
// as we need to ensure the a line break after the return correctly terminates
// the statement
if (match(SEMICOLON))
end = tokenEndPosition();
if (autoSemiColon())
return context.createReturnStatement(location, 0, start, end);
TreeExpression expr = parseExpression(context);
failIfFalse(expr, "Cannot parse the return expression");
end = lastTokenEndPosition();
if (match(SEMICOLON))
end = tokenEndPosition();
if (!autoSemiColon())
failWithMessage("Expected a ';' following a return statement");
return context.createReturnStatement(location, expr, start, end);
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseThrowStatement(TreeBuilder& context)
{
ASSERT(match(THROW));
JSTokenLocation location(tokenLocation());
JSTextPosition start = tokenStartPosition();
next();
failIfTrue(match(SEMICOLON), "Expected expression after 'throw'");
semanticFailIfTrue(autoSemiColon(), "Cannot have a newline after 'throw'");
TreeExpression expr = parseExpression(context);
failIfFalse(expr, "Cannot parse expression for throw statement");
JSTextPosition end = lastTokenEndPosition();
failIfFalse(autoSemiColon(), "Expected a ';' after a throw statement");
return context.createThrowStatement(location, expr, start, end);
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseWithStatement(TreeBuilder& context)
{
ASSERT(match(WITH));
JSTokenLocation location(tokenLocation());
semanticFailIfTrue(strictMode(), "'with' statements are not valid in strict mode");
currentScope()->setNeedsFullActivation();
int startLine = tokenLine();
next();
handleProductionOrFail(OPENPAREN, "(", "start", "subject of a 'with' statement");
int start = tokenStart();
TreeExpression expr = parseExpression(context);
failIfFalse(expr, "Cannot parse 'with' subject expression");
JSTextPosition end = lastTokenEndPosition();
int endLine = tokenLine();
handleProductionOrFail(CLOSEPAREN, ")", "start", "subject of a 'with' statement");
const Identifier* unused = 0;
TreeStatement statement = parseStatement(context, unused);
failIfFalse(statement, "A 'with' statement must have a body");
return context.createWithStatement(location, expr, statement, start, end, startLine, endLine);
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseSwitchStatement(TreeBuilder& context)
{
ASSERT(match(SWITCH));
JSTokenLocation location(tokenLocation());
int startLine = tokenLine();
next();
handleProductionOrFail(OPENPAREN, "(", "start", "subject of a 'switch'");
TreeExpression expr = parseExpression(context);
failIfFalse(expr, "Cannot parse switch subject expression");
int endLine = tokenLine();
handleProductionOrFail(CLOSEPAREN, ")", "end", "subject of a 'switch'");
handleProductionOrFail(OPENBRACE, "{", "start", "body of a 'switch'");
startSwitch();
TreeClauseList firstClauses = parseSwitchClauses(context);
propagateError();
TreeClause defaultClause = parseSwitchDefaultClause(context);
propagateError();
TreeClauseList secondClauses = parseSwitchClauses(context);
propagateError();
endSwitch();
handleProductionOrFail(CLOSEBRACE, "}", "end", "body of a 'switch'");
return context.createSwitchStatement(location, expr, firstClauses, defaultClause, secondClauses, startLine, endLine);
}
template <typename LexerType>
template <class TreeBuilder> TreeClauseList Parser<LexerType>::parseSwitchClauses(TreeBuilder& context)
{
if (!match(CASE))
return 0;
next();
TreeExpression condition = parseExpression(context);
failIfFalse(condition, "Cannot parse switch clause");
consumeOrFail(COLON, "Expected a ':' after switch clause expression");
TreeSourceElements statements = parseSourceElements(context, DontCheckForStrictMode);
failIfFalse(statements, "Cannot parse the body of a switch clause");
TreeClause clause = context.createClause(condition, statements);
TreeClauseList clauseList = context.createClauseList(clause);
TreeClauseList tail = clauseList;
while (match(CASE)) {
next();
TreeExpression condition = parseExpression(context);
failIfFalse(condition, "Cannot parse switch case expression");
consumeOrFail(COLON, "Expected a ':' after switch clause expression");
TreeSourceElements statements = parseSourceElements(context, DontCheckForStrictMode);
failIfFalse(statements, "Cannot parse the body of a switch clause");
clause = context.createClause(condition, statements);
tail = context.createClauseList(tail, clause);
}
return clauseList;
}
template <typename LexerType>
template <class TreeBuilder> TreeClause Parser<LexerType>::parseSwitchDefaultClause(TreeBuilder& context)
{
if (!match(DEFAULT))
return 0;
next();
consumeOrFail(COLON, "Expected a ':' after switch default clause");
TreeSourceElements statements = parseSourceElements(context, DontCheckForStrictMode);
failIfFalse(statements, "Cannot parse the body of a switch default clause");
return context.createClause(0, statements);
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseTryStatement(TreeBuilder& context)
{
ASSERT(match(TRY));
JSTokenLocation location(tokenLocation());
TreeStatement tryBlock = 0;
const Identifier* ident = &m_vm->propertyNames->nullIdentifier;
TreeStatement catchBlock = 0;
TreeStatement finallyBlock = 0;
int firstLine = tokenLine();
next();
matchOrFail(OPENBRACE, "Expected a block statement as body of a try statement");
tryBlock = parseBlockStatement(context);
failIfFalse(tryBlock, "Cannot parse the body of try block");
int lastLine = m_lastTokenEndPosition.line;
if (match(CATCH)) {
currentScope()->setNeedsFullActivation();
next();
handleProductionOrFail(OPENPAREN, "(", "start", "'catch' target");
if (!match(IDENT)) {
semanticFailureDueToKeyword("catch variable name");
failWithMessage("Expected identifier name as catch target");
}
ident = m_token.m_data.ident;
next();
AutoPopScopeRef catchScope(this, pushScope());
failIfFalseIfStrict(declareVariable(ident), "Cannot declare a catch variable named '", ident->impl(), "' in strict mode");
catchScope->preventNewDecls();
handleProductionOrFail(CLOSEPAREN, ")", "end", "'catch' target");
matchOrFail(OPENBRACE, "Expected exception handler to be a block statement");
catchBlock = parseBlockStatement(context);
failIfFalse(catchBlock, "Unable to parse 'catch' block");
failIfFalse(popScope(catchScope, TreeBuilder::NeedsFreeVariableInfo), "Parse error");
}
if (match(FINALLY)) {
next();
matchOrFail(OPENBRACE, "Expected block statement for finally body");
finallyBlock = parseBlockStatement(context);
failIfFalse(finallyBlock, "Cannot parse finally body");
}
failIfFalse(catchBlock || finallyBlock, "Try statements must have at least a catch or finally block");
return context.createTryStatement(location, tryBlock, ident, catchBlock, finallyBlock, firstLine, lastLine);
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseDebuggerStatement(TreeBuilder& context)
{
ASSERT(match(DEBUGGER));
JSTokenLocation location(tokenLocation());
int startLine = tokenLine();
int endLine = startLine;
next();
if (match(SEMICOLON))
startLine = tokenLine();
failIfFalse(autoSemiColon(), "Debugger keyword must be followed by a ';'");
return context.createDebugger(location, startLine, endLine);
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseBlockStatement(TreeBuilder& context)
{
ASSERT(match(OPENBRACE));
JSTokenLocation location(tokenLocation());
int start = tokenLine();
next();
if (match(CLOSEBRACE)) {
next();
return context.createBlockStatement(location, 0, start, m_lastTokenEndPosition.line);
}
TreeSourceElements subtree = parseSourceElements(context, DontCheckForStrictMode);
failIfFalse(subtree, "Cannot parse the body of the block statement");
matchOrFail(CLOSEBRACE, "Expected a closing '}' at the end of a block statement");
next();
return context.createBlockStatement(location, subtree, start, m_lastTokenEndPosition.line);
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseStatement(TreeBuilder& context, const Identifier*& directive, unsigned* directiveLiteralLength)
{
DepthManager statementDepth(&m_statementDepth);
m_statementDepth++;
directive = 0;
int nonTrivialExpressionCount = 0;
failIfStackOverflow();
switch (m_token.m_type) {
case OPENBRACE:
return parseBlockStatement(context);
case VAR:
return parseVarDeclaration(context);
case CONSTTOKEN:
return parseConstDeclaration(context);
case FUNCTION:
failIfFalseIfStrict(m_statementDepth == 1, "Strict mode does not allow function declarations in a lexically nested statement");
return parseFunctionDeclaration(context);
case SEMICOLON: {
JSTokenLocation location(tokenLocation());
next();
return context.createEmptyStatement(location);
}
case IF:
return parseIfStatement(context);
case DO:
return parseDoWhileStatement(context);
case WHILE:
return parseWhileStatement(context);
case FOR:
return parseForStatement(context);
case CONTINUE:
return parseContinueStatement(context);
case BREAK:
return parseBreakStatement(context);
case RETURN:
return parseReturnStatement(context);
case WITH:
return parseWithStatement(context);
case SWITCH:
return parseSwitchStatement(context);
case THROW:
return parseThrowStatement(context);
case TRY:
return parseTryStatement(context);
case DEBUGGER:
return parseDebuggerStatement(context);
case EOFTOK:
case CASE:
case CLOSEBRACE:
case DEFAULT:
// These tokens imply the end of a set of source elements
return 0;
case IDENT:
return parseExpressionOrLabelStatement(context);
case STRING:
directive = m_token.m_data.ident;
if (directiveLiteralLength)
*directiveLiteralLength = m_token.m_location.endOffset - m_token.m_location.startOffset;
nonTrivialExpressionCount = m_nonTrivialExpressionCount;
FALLTHROUGH;
default:
TreeStatement exprStatement = parseExpressionStatement(context);
if (directive && nonTrivialExpressionCount != m_nonTrivialExpressionCount)
directive = 0;
return exprStatement;
}
}
template <typename LexerType>
template <class TreeBuilder> TreeFormalParameterList Parser<LexerType>::parseFormalParameters(TreeBuilder& context)
{
auto parameter = parseDeconstructionPattern(context, DeconstructToParameters);
failIfFalse(parameter, "Cannot parse parameter pattern");
TreeFormalParameterList list = context.createFormalParameterList(parameter);
TreeFormalParameterList tail = list;
while (consume(COMMA)) {
parameter = parseDeconstructionPattern(context, DeconstructToParameters);
failIfFalse(parameter, "Cannot parse parameter pattern");
tail = context.createFormalParameterList(tail, parameter);
}
return list;
}
template <typename LexerType>
template <class TreeBuilder> TreeFunctionBody Parser<LexerType>::parseFunctionBody(TreeBuilder& context)
{
JSTokenLocation startLocation(tokenLocation());
unsigned startColumn = tokenColumn();
next();
if (match(CLOSEBRACE)) {
unsigned endColumn = tokenColumn();
return context.createFunctionBody(startLocation, tokenLocation(), startColumn, endColumn, strictMode());
}
DepthManager statementDepth(&m_statementDepth);
m_statementDepth = 0;
typename TreeBuilder::FunctionBodyBuilder bodyBuilder(const_cast<VM*>(m_vm), m_lexer.get());
failIfFalse(parseSourceElements(bodyBuilder, CheckForStrictMode), "Cannot parse body of this function");
unsigned endColumn = tokenColumn();
return context.createFunctionBody(startLocation, tokenLocation(), startColumn, endColumn, strictMode());
}
static const char* stringForFunctionMode(FunctionParseMode mode)
{
switch (mode) {
case GetterMode:
return "getter";
case SetterMode:
return "setter";
case FunctionMode:
return "function";
}
RELEASE_ASSERT_NOT_REACHED();
return nullptr;
}
template <typename LexerType>
template <class TreeBuilder> bool Parser<LexerType>::parseFunctionInfo(TreeBuilder& context, FunctionRequirements requirements, FunctionParseMode mode, bool nameIsInContainingScope, const Identifier*& name, TreeFormalParameterList& parameters, TreeFunctionBody& body, unsigned& openBraceOffset, unsigned& closeBraceOffset, int& bodyStartLine, unsigned& bodyStartColumn)
{
AutoPopScopeRef functionScope(this, pushScope());
functionScope->setIsFunction();
int functionNameStart = m_token.m_location.startOffset;
const Identifier* lastFunctionName = m_lastFunctionName;
m_lastFunctionName = nullptr;
if (match(IDENT)) {
name = m_token.m_data.ident;
m_lastFunctionName = name;
next();
if (!nameIsInContainingScope)
failIfFalseIfStrict(functionScope->declareVariable(name), "'", name->impl(), "' is not a valid ", stringForFunctionMode(mode), " name in strict mode");
} else if (requirements == FunctionNeedsName) {
if (match(OPENPAREN) && mode == FunctionMode)
semanticFail("Function statements must have a name");
semanticFailureDueToKeyword(stringForFunctionMode(mode), " name");
failDueToUnexpectedToken();
return false;
}
if (!consume(OPENPAREN)) {
semanticFailureDueToKeyword(stringForFunctionMode(mode), " name");
failWithMessage("Expected an opening '(' before a ", stringForFunctionMode(mode), "'s parameter list");
}
if (!match(CLOSEPAREN)) {
parameters = parseFormalParameters(context);
failIfFalse(parameters, "Cannot parse parameters for this ", stringForFunctionMode(mode));
}
consumeOrFail(CLOSEPAREN, "Expected a ')' or a ',' after a parameter declaration");
matchOrFail(OPENBRACE, "Expected an opening '{' at the start of a ", stringForFunctionMode(mode), " body");
openBraceOffset = m_token.m_data.offset;
bodyStartLine = tokenLine();
bodyStartColumn = m_token.m_data.offset - m_token.m_data.lineStartOffset;
JSTokenLocation startLocation(tokenLocation());
// If we know about this function already, we can use the cached info and skip the parser to the end of the function.
if (const SourceProviderCacheItem* cachedInfo = TreeBuilder::CanUseFunctionCache ? findCachedFunctionInfo(openBraceOffset) : 0) {
// If we're in a strict context, the cached function info must say it was strict too.
ASSERT(!strictMode() || cachedInfo->strictMode);
JSTokenLocation endLocation;
endLocation.line = cachedInfo->closeBraceLine;
endLocation.startOffset = cachedInfo->closeBraceOffset;
endLocation.lineStartOffset = cachedInfo->closeBraceLineStartOffset;
bool endColumnIsOnStartLine = (endLocation.line == bodyStartLine);
ASSERT(endLocation.startOffset >= endLocation.lineStartOffset);
unsigned bodyEndColumn = endColumnIsOnStartLine ?
endLocation.startOffset - m_token.m_data.lineStartOffset :
endLocation.startOffset - endLocation.lineStartOffset;
body = context.createFunctionBody(startLocation, endLocation, bodyStartColumn, bodyEndColumn, cachedInfo->strictMode);
functionScope->restoreFromSourceProviderCache(cachedInfo);
failIfFalse(popScope(functionScope, TreeBuilder::NeedsFreeVariableInfo), "Parser error");
closeBraceOffset = cachedInfo->closeBraceOffset;
context.setFunctionNameStart(body, functionNameStart);
m_token = cachedInfo->closeBraceToken();
m_lexer->setOffset(m_token.m_location.endOffset, m_token.m_location.lineStartOffset);
m_lexer->setLineNumber(m_token.m_location.line);
next();
return true;
}
m_lastFunctionName = lastFunctionName;
ParserState oldState = saveState();
body = parseFunctionBody(context);
restoreState(oldState);
failIfFalse(body, "Cannot parse the body of this ", stringForFunctionMode(mode));
if (functionScope->strictMode() && name) {
RELEASE_ASSERT(mode == FunctionMode);
semanticFailIfTrue(m_vm->propertyNames->arguments == *name, "'", name->impl(), "' is not a valid function name in strict mode");
semanticFailIfTrue(m_vm->propertyNames->eval == *name, "'", name->impl(), "' is not a valid function name in strict mode");
}
closeBraceOffset = m_token.m_data.offset;
unsigned closeBraceLine = m_token.m_data.line;
unsigned closeBraceLineStartOffset = m_token.m_data.lineStartOffset;
// Cache the tokenizer state and the function scope the first time the function is parsed.
// Any future reparsing can then skip the function.
static const int minimumFunctionLengthToCache = 16;
std::unique_ptr<SourceProviderCacheItem> newInfo;
int functionLength = closeBraceOffset - openBraceOffset;
if (TreeBuilder::CanUseFunctionCache && m_functionCache && functionLength > minimumFunctionLengthToCache) {
SourceProviderCacheItemCreationParameters parameters;
parameters.functionNameStart = functionNameStart;
parameters.closeBraceLine = closeBraceLine;
parameters.closeBraceOffset = closeBraceOffset;
parameters.closeBraceLineStartOffset = closeBraceLineStartOffset;
functionScope->fillParametersForSourceProviderCache(parameters);
newInfo = SourceProviderCacheItem::create(parameters);
}
context.setFunctionNameStart(body, functionNameStart);
failIfFalse(popScope(functionScope, TreeBuilder::NeedsFreeVariableInfo), "Parser error");
matchOrFail(CLOSEBRACE, "Expected a closing '}' after a ", stringForFunctionMode(mode), " body");
if (newInfo)
m_functionCache->add(openBraceOffset, WTF::move(newInfo));
next();
return true;
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseFunctionDeclaration(TreeBuilder& context)
{
ASSERT(match(FUNCTION));
JSTokenLocation location(tokenLocation());
next();
const Identifier* name = 0;
TreeFormalParameterList parameters = 0;
TreeFunctionBody body = 0;
unsigned openBraceOffset = 0;
unsigned closeBraceOffset = 0;
int bodyStartLine = 0;
unsigned bodyStartColumn = 0;
failIfFalse((parseFunctionInfo(context, FunctionNeedsName, FunctionMode, true, name, parameters, body, openBraceOffset, closeBraceOffset, bodyStartLine, bodyStartColumn)), "Cannot parse this function");
failIfFalse(name, "Function statements must have a name");
failIfFalseIfStrict(declareVariable(name), "Cannot declare a function named '", name->impl(), "' in strict mode");
return context.createFuncDeclStatement(location, name, body, parameters, openBraceOffset, closeBraceOffset, bodyStartLine, m_lastTokenEndPosition.line, bodyStartColumn);
}
struct LabelInfo {
LabelInfo(const Identifier* ident, const JSTextPosition& start, const JSTextPosition& end)
: m_ident(ident)
, m_start(start)
, m_end(end)
{
}
const Identifier* m_ident;
JSTextPosition m_start;
JSTextPosition m_end;
};
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseExpressionOrLabelStatement(TreeBuilder& context)
{
/* Expression and Label statements are ambiguous at LL(1), so we have a
* special case that looks for a colon as the next character in the input.
*/
Vector<LabelInfo> labels;
JSTokenLocation location;
do {
JSTextPosition start = tokenStartPosition();
location = tokenLocation();
if (!nextTokenIsColon()) {
// If we hit this path we're making a expression statement, which
// by definition can't make use of continue/break so we can just
// ignore any labels we might have accumulated.
TreeExpression expression = parseExpression(context);
failIfFalse(expression, "Cannot parse expression statement");
if (!autoSemiColon())
failDueToUnexpectedToken();
return context.createExprStatement(location, expression, start, m_lastTokenEndPosition.line);
}
const Identifier* ident = m_token.m_data.ident;
JSTextPosition end = tokenEndPosition();
next();
consumeOrFail(COLON, "Labels must be followed by a ':'");
if (!m_syntaxAlreadyValidated) {
// This is O(N^2) over the current list of consecutive labels, but I
// have never seen more than one label in a row in the real world.
for (size_t i = 0; i < labels.size(); i++)
failIfTrue(ident->impl() == labels[i].m_ident->impl(), "Attempted to redeclare the label '", ident->impl(), "'");
failIfTrue(getLabel(ident), "Cannot find scope for the label '", ident->impl(), "'");
labels.append(LabelInfo(ident, start, end));
}
} while (match(IDENT));
bool isLoop = false;
switch (m_token.m_type) {
case FOR:
case WHILE:
case DO:
isLoop = true;
break;
default:
break;
}
const Identifier* unused = 0;
if (!m_syntaxAlreadyValidated) {
for (size_t i = 0; i < labels.size(); i++)
pushLabel(labels[i].m_ident, isLoop);
}
TreeStatement statement = parseStatement(context, unused);
if (!m_syntaxAlreadyValidated) {
for (size_t i = 0; i < labels.size(); i++)
popLabel();
}
failIfFalse(statement, "Cannot parse statement");
for (size_t i = 0; i < labels.size(); i++) {
const LabelInfo& info = labels[labels.size() - i - 1];
statement = context.createLabelStatement(location, info.m_ident, statement, info.m_start, info.m_end);
}
return statement;
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseExpressionStatement(TreeBuilder& context)
{
JSTextPosition start = tokenStartPosition();
JSTokenLocation location(tokenLocation());
TreeExpression expression = parseExpression(context);
failIfFalse(expression, "Cannot parse expression statement");
failIfFalse(autoSemiColon(), "Parse error");
return context.createExprStatement(location, expression, start, m_lastTokenEndPosition.line);
}
template <typename LexerType>
template <class TreeBuilder> TreeStatement Parser<LexerType>::parseIfStatement(TreeBuilder& context)
{
ASSERT(match(IF));
JSTokenLocation ifLocation(tokenLocation());
int start = tokenLine();
next();
handleProductionOrFail(OPENPAREN, "(", "start", "'if' condition");
TreeExpression condition = parseExpression(context);
failIfFalse(condition, "Expected a expression as the condition for an if statement");
int end = tokenLine();
handleProductionOrFail(CLOSEPAREN, ")", "end", "'if' condition");
const Identifier* unused = 0;
TreeStatement trueBlock = parseStatement(context, unused);
failIfFalse(trueBlock, "Expected a statement as the body of an if block");
if (!match(ELSE))
return context.createIfStatement(ifLocation, condition, trueBlock, 0, start, end);
Vector<TreeExpression> exprStack;
Vector<std::pair<int, int>> posStack;
Vector<JSTokenLocation> tokenLocationStack;
Vector<TreeStatement> statementStack;
bool trailingElse = false;
do {
JSTokenLocation tempLocation = tokenLocation();
next();
if (!match(IF)) {
const Identifier* unused = 0;
TreeStatement block = parseStatement(context, unused);
failIfFalse(block, "Expected a statement as the body of an else block");
statementStack.append(block);
trailingElse = true;
break;
}
int innerStart = tokenLine();
next();
handleProductionOrFail(OPENPAREN, "(", "start", "'if' condition");
TreeExpression innerCondition = parseExpression(context);
failIfFalse(innerCondition, "Expected a expression as the condition for an if statement");
int innerEnd = tokenLine();
handleProductionOrFail(CLOSEPAREN, ")", "end", "'if' condition");
const Identifier* unused = 0;
TreeStatement innerTrueBlock = parseStatement(context, unused);
failIfFalse(innerTrueBlock, "Expected a statement as the body of an if block");
tokenLocationStack.append(tempLocation);
exprStack.append(innerCondition);
posStack.append(std::make_pair(innerStart, innerEnd));
statementStack.append(innerTrueBlock);
} while (match(ELSE));
if (!trailingElse) {
TreeExpression condition = exprStack.last();
exprStack.removeLast();
TreeStatement trueBlock = statementStack.last();
statementStack.removeLast();
std::pair<int, int> pos = posStack.last();
posStack.removeLast();
JSTokenLocation elseLocation = tokenLocationStack.last();
tokenLocationStack.removeLast();
statementStack.append(context.createIfStatement(elseLocation, condition, trueBlock, 0, pos.first, pos.second));
}
while (!exprStack.isEmpty()) {
TreeExpression condition = exprStack.last();
exprStack.removeLast();
TreeStatement falseBlock = statementStack.last();
statementStack.removeLast();
TreeStatement trueBlock = statementStack.last();
statementStack.removeLast();
std::pair<int, int> pos = posStack.last();
posStack.removeLast();
JSTokenLocation elseLocation = tokenLocationStack.last();
tokenLocationStack.removeLast();
statementStack.append(context.createIfStatement(elseLocation, condition, trueBlock, falseBlock, pos.first, pos.second));
}
return context.createIfStatement(ifLocation, condition, trueBlock, statementStack.last(), start, end);
}
template <typename LexerType>
template <class TreeBuilder> TreeExpression Parser<LexerType>::parseExpression(TreeBuilder& context)
{
failIfStackOverflow();
JSTokenLocation location(tokenLocation());
TreeExpression node = parseAssignmentExpression(context);
failIfFalse(node, "Cannot parse expression");
if (!match(COMMA))
return node;
next();
m_nonTrivialExpressionCount++;
m_nonLHSCount++;
TreeExpression right = parseAssignmentExpression(context);
failIfFalse(right, "Cannot parse expression in a comma expression");
typename TreeBuilder::Comma commaNode = context.createCommaExpr(location, node, right);
while (match(COMMA)) {
next(TreeBuilder::DontBuildStrings);
right = parseAssignmentExpression(context);
failIfFalse(right, "Cannot parse expression in a comma expression");
context.appendToComma(commaNode, right);
}
return commaNode;
}
template <typename LexerType>
template <typename TreeBuilder> TreeExpression Parser<LexerType>::parseAssignmentExpression(TreeBuilder& context)
{
failIfStackOverflow();
JSTextPosition start = tokenStartPosition();
JSTokenLocation location(tokenLocation());
int initialAssignmentCount = m_assignmentCount;
int initialNonLHSCount = m_nonLHSCount;
if (match(OPENBRACE) || match(OPENBRACKET)) {
SavePoint savePoint = createSavePoint();
auto pattern = tryParseDeconstructionPatternExpression(context);
if (pattern && consume(EQUAL)) {
auto rhs = parseAssignmentExpression(context);
if (rhs)
return context.createDeconstructingAssignment(location, pattern, rhs);
}
restoreSavePoint(savePoint);
}
TreeExpression lhs = parseConditionalExpression(context);
failIfFalse(lhs, "Cannot parse expression");
if (initialNonLHSCount != m_nonLHSCount) {
if (m_token.m_type >= EQUAL && m_token.m_type <= OREQUAL)
semanticFail("Left hand side of operator '", getToken(), "' must be a reference");
return lhs;
}
int assignmentStack = 0;
Operator op;
bool hadAssignment = false;
while (true) {
switch (m_token.m_type) {
case EQUAL: op = OpEqual; break;
case PLUSEQUAL: op = OpPlusEq; break;
case MINUSEQUAL: op = OpMinusEq; break;
case MULTEQUAL: op = OpMultEq; break;
case DIVEQUAL: op = OpDivEq; break;
case LSHIFTEQUAL: op = OpLShift; break;
case RSHIFTEQUAL: op = OpRShift; break;
case URSHIFTEQUAL: op = OpURShift; break;
case ANDEQUAL: op = OpAndEq; break;
case XOREQUAL: op = OpXOrEq; break;
case OREQUAL: op = OpOrEq; break;
case MODEQUAL: op = OpModEq; break;
default:
goto end;
}
m_nonTrivialExpressionCount++;
hadAssignment = true;
context.assignmentStackAppend(assignmentStack, lhs, start, tokenStartPosition(), m_assignmentCount, op);
start = tokenStartPosition();
m_assignmentCount++;
next(TreeBuilder::DontBuildStrings);
if (strictMode() && m_lastIdentifier && context.isResolve(lhs)) {
failIfTrueIfStrict(m_vm->propertyNames->eval == *m_lastIdentifier, "Cannot modify 'eval' in strict mode");
failIfTrueIfStrict(m_vm->propertyNames->arguments == *m_lastIdentifier, "Cannot modify 'arguments' in strict mode");
declareWrite(m_lastIdentifier);
m_lastIdentifier = 0;
}
lhs = parseAssignmentExpression(context);
failIfFalse(lhs, "Cannot parse the right hand side of an assignment expression");
if (initialNonLHSCount != m_nonLHSCount) {
if (m_token.m_type >= EQUAL && m_token.m_type <= OREQUAL)
semanticFail("Left hand side of operator '", getToken(), "' must be a reference");
break;
}
}
end:
if (hadAssignment)
m_nonLHSCount++;
if (!TreeBuilder::CreatesAST)
return lhs;
while (assignmentStack)
lhs = context.createAssignment(location, assignmentStack, lhs, initialAssignmentCount, m_assignmentCount, lastTokenEndPosition());
return lhs;
}
template <typename LexerType>
template <class TreeBuilder> TreeExpression Parser<LexerType>::parseConditionalExpression(TreeBuilder& context)
{
JSTokenLocation location(tokenLocation());
TreeExpression cond = parseBinaryExpression(context);
failIfFalse(cond, "Cannot parse expression");
if (!match(QUESTION))
return cond;
m_nonTrivialExpressionCount++;
m_nonLHSCount++;
next(TreeBuilder::DontBuildStrings);
TreeExpression lhs = parseAssignmentExpression(context);
failIfFalse(lhs, "Cannot parse left hand side of ternary operator");
consumeOrFailWithFlags(COLON, TreeBuilder::DontBuildStrings, "Expected ':' in ternary operator");
TreeExpression rhs = parseAssignmentExpression(context);
failIfFalse(rhs, "Cannot parse right hand side of ternary operator");
return context.createConditionalExpr(location, cond, lhs, rhs);
}
ALWAYS_INLINE static bool isUnaryOp(JSTokenType token)
{
return token & UnaryOpTokenFlag;
}
template <typename LexerType>
int Parser<LexerType>::isBinaryOperator(JSTokenType token)
{
if (m_allowsIn)
return token & (BinaryOpTokenPrecedenceMask << BinaryOpTokenAllowsInPrecedenceAdditionalShift);
return token & BinaryOpTokenPrecedenceMask;
}
template <typename LexerType>
template <class TreeBuilder> TreeExpression Parser<LexerType>::parseBinaryExpression(TreeBuilder& context)
{
int operandStackDepth = 0;
int operatorStackDepth = 0;
typename TreeBuilder::BinaryExprContext binaryExprContext(context);
JSTokenLocation location(tokenLocation());
while (true) {
JSTextPosition exprStart = tokenStartPosition();
int initialAssignments = m_assignmentCount;
TreeExpression current = parseUnaryExpression(context);
failIfFalse(current, "Cannot parse expression");
context.appendBinaryExpressionInfo(operandStackDepth, current, exprStart, lastTokenEndPosition(), lastTokenEndPosition(), initialAssignments != m_assignmentCount);
int precedence = isBinaryOperator(m_token.m_type);
if (!precedence)
break;
m_nonTrivialExpressionCount++;
m_nonLHSCount++;
int operatorToken = m_token.m_type;
next(TreeBuilder::DontBuildStrings);
while (operatorStackDepth && context.operatorStackHasHigherPrecedence(operatorStackDepth, precedence)) {
ASSERT(operandStackDepth > 1);
typename TreeBuilder::BinaryOperand rhs = context.getFromOperandStack(-1);
typename TreeBuilder::BinaryOperand lhs = context.getFromOperandStack(-2);
context.shrinkOperandStackBy(operandStackDepth, 2);
context.appendBinaryOperation(location, operandStackDepth, operatorStackDepth, lhs, rhs);
context.operatorStackPop(operatorStackDepth);
}
context.operatorStackAppend(operatorStackDepth, operatorToken, precedence);
}
while (operatorStackDepth) {
ASSERT(operandStackDepth > 1);
typename TreeBuilder::BinaryOperand rhs = context.getFromOperandStack(-1);
typename TreeBuilder::BinaryOperand lhs = context.getFromOperandStack(-2);
context.shrinkOperandStackBy(operandStackDepth, 2);
context.appendBinaryOperation(location, operandStackDepth, operatorStackDepth, lhs, rhs);
context.operatorStackPop(operatorStackDepth);
}
return context.popOperandStack(operandStackDepth);
}
template <typename LexerType>
template <class TreeBuilder> TreeProperty Parser<LexerType>::parseProperty(TreeBuilder& context, bool complete)
{
bool wasIdent = false;
switch (m_token.m_type) {
namedProperty:
case IDENT:
wasIdent = true;
FALLTHROUGH;
case STRING: {
const Identifier* ident = m_token.m_data.ident;
if (complete || (wasIdent && (*ident == m_vm->propertyNames->get || *ident == m_vm->propertyNames->set)))
nextExpectIdentifier(LexerFlagsIgnoreReservedWords);
else
nextExpectIdentifier(LexerFlagsIgnoreReservedWords | TreeBuilder::DontBuildKeywords);
if (match(COLON)) {
next();
TreeExpression node = parseAssignmentExpression(context);
failIfFalse(node, "Cannot parse expression for property declaration");
return context.createProperty(ident, node, PropertyNode::Constant, complete);
}
failIfFalse(wasIdent, "Expected an identifier as property name");
const Identifier* accessorName = 0;
TreeFormalParameterList parameters = 0;
TreeFunctionBody body = 0;
unsigned openBraceOffset = 0;
unsigned closeBraceOffset = 0;
int bodyStartLine = 0;
unsigned bodyStartColumn = 0;
PropertyNode::Type type;
if (*ident == m_vm->propertyNames->get)
type = PropertyNode::Getter;
else if (*ident == m_vm->propertyNames->set)
type = PropertyNode::Setter;
else
failWithMessage("Expected a ':' following the property name '", ident->impl(), "'");
const Identifier* stringPropertyName = 0;
double numericPropertyName = 0;
if (m_token.m_type == IDENT || m_token.m_type == STRING)
stringPropertyName = m_token.m_data.ident;
else if (m_token.m_type == NUMBER)
numericPropertyName = m_token.m_data.doubleValue;
else
failDueToUnexpectedToken();
JSTokenLocation location(tokenLocation());
next();
if (type == PropertyNode::Getter) {
failIfFalse(match(OPENPAREN), "Expected a parameter list for getter definition");
failIfFalse((parseFunctionInfo(context, FunctionNoRequirements, GetterMode, false, accessorName, parameters, body, openBraceOffset, closeBraceOffset, bodyStartLine, bodyStartColumn)), "Cannot parse getter definition");
} else {
failIfFalse(match(OPENPAREN), "Expected a parameter list for setter definition");
failIfFalse((parseFunctionInfo(context, FunctionNoRequirements, SetterMode, false, accessorName, parameters, body, openBraceOffset, closeBraceOffset, bodyStartLine, bodyStartColumn)), "Cannot parse setter definition");
}
if (stringPropertyName)
return context.createGetterOrSetterProperty(location, type, complete, stringPropertyName, parameters, body, openBraceOffset, closeBraceOffset, bodyStartLine, m_lastTokenEndPosition.line, bodyStartColumn);
return context.createGetterOrSetterProperty(const_cast<VM*>(m_vm), location, type, complete, numericPropertyName, parameters, body, openBraceOffset, closeBraceOffset, bodyStartLine, m_lastTokenEndPosition.line, bodyStartColumn);
}
case NUMBER: {
double propertyName = m_token.m_data.doubleValue;
next();
consumeOrFail(COLON, "Expected ':' after property name");
TreeExpression node = parseAssignmentExpression(context);
failIfFalse(node, "Cannot parse expression for property declaration");
return context.createProperty(const_cast<VM*>(m_vm), propertyName, node, PropertyNode::Constant, complete);
}
case OPENBRACKET: {
next();
auto propertyName = parseExpression(context);
failIfFalse(propertyName, "Cannot parse computed property name");
handleProductionOrFail(CLOSEBRACKET, "]", "end", "computed property name");
consumeOrFail(COLON, "Expected ':' after property name");
TreeExpression node = parseAssignmentExpression(context);
failIfFalse(node, "Cannot parse expression for property declaration");
return context.createProperty(const_cast<VM*>(m_vm), propertyName, node, PropertyNode::Constant, complete);
}
default:
failIfFalse(m_token.m_type & KeywordTokenFlag, "Expected a property name");
goto namedProperty;
}
}
template <typename LexerType>
template <class TreeBuilder> TreeExpression Parser<LexerType>::parseObjectLiteral(TreeBuilder& context)
{
auto savePoint = createSavePoint();
consumeOrFailWithFlags(OPENBRACE, TreeBuilder::DontBuildStrings, "Expected opening '{' at the start of an object literal");
JSTokenLocation location(tokenLocation());
int oldNonLHSCount = m_nonLHSCount;
if (match(CLOSEBRACE)) {
next();
return context.createObjectLiteral(location);
}
TreeProperty property = parseProperty(context, false);
failIfFalse(property, "Cannot parse object literal property");
if (!m_syntaxAlreadyValidated && context.getType(property) != PropertyNode::Constant) {
restoreSavePoint(savePoint);
return parseStrictObjectLiteral(context);
}
TreePropertyList propertyList = context.createPropertyList(location, property);
TreePropertyList tail = propertyList;
while (match(COMMA)) {
next(TreeBuilder::DontBuildStrings);
// allow extra comma, see http://bugs.webkit.org/show_bug.cgi?id=5939
if (match(CLOSEBRACE))
break;
JSTokenLocation propertyLocation(tokenLocation());
property = parseProperty(context, false);
failIfFalse(property, "Cannot parse object literal property");
if (!m_syntaxAlreadyValidated && context.getType(property) != PropertyNode::Constant) {
restoreSavePoint(savePoint);
return parseStrictObjectLiteral(context);
}
tail = context.createPropertyList(propertyLocation, property, tail);
}
location = tokenLocation();
handleProductionOrFail(CLOSEBRACE, "}", "end", "object literal");
m_nonLHSCount = oldNonLHSCount;
return context.createObjectLiteral(location, propertyList);
}
template <typename LexerType>
template <class TreeBuilder> TreeExpression Parser<LexerType>::parseStrictObjectLiteral(TreeBuilder& context)
{
consumeOrFail(OPENBRACE, "Expected opening '{' at the start of an object literal");
int oldNonLHSCount = m_nonLHSCount;
JSTokenLocation location(tokenLocation());
if (match(CLOSEBRACE)) {
next();
return context.createObjectLiteral(location);
}
TreeProperty property = parseProperty(context, true);
failIfFalse(property, "Cannot parse object literal property");
typedef HashMap<RefPtr<StringImpl>, unsigned, IdentifierRepHash> ObjectValidationMap;
ObjectValidationMap objectValidator;
// Add the first property
if (!m_syntaxAlreadyValidated && context.getName(property))
objectValidator.add(context.getName(property)->impl(), context.getType(property));
TreePropertyList propertyList = context.createPropertyList(location, property);
TreePropertyList tail = propertyList;
while (match(COMMA)) {
next();
// allow extra comma, see http://bugs.webkit.org/show_bug.cgi?id=5939
if (match(CLOSEBRACE))
break;
JSTokenLocation propertyLocation(tokenLocation());
property = parseProperty(context, true);
failIfFalse(property, "Cannot parse object literal property");
if (!m_syntaxAlreadyValidated && context.getName(property)) {
ObjectValidationMap::AddResult propertyEntry = objectValidator.add(context.getName(property)->impl(), context.getType(property));
if (!propertyEntry.isNewEntry) {
semanticFailIfTrue(propertyEntry.iterator->value == PropertyNode::Constant, "Attempted to redefine property '", propertyEntry.iterator->key.get(), "'");
semanticFailIfTrue(context.getType(property) == PropertyNode::Constant, "Attempted to redefine property '", propertyEntry.iterator->key.get(), "'");
semanticFailIfTrue(context.getType(property) & propertyEntry.iterator->value, "Attempted to redefine property '", propertyEntry.iterator->key.get(), "'");
propertyEntry.iterator->value |= context.getType(property);
}
}
tail = context.createPropertyList(propertyLocation, property, tail);
}
location = tokenLocation();
handleProductionOrFail(CLOSEBRACE, "}", "end", "object literal");
m_nonLHSCount = oldNonLHSCount;
return context.createObjectLiteral(location, propertyList);
}
template <typename LexerType>
template <class TreeBuilder> TreeExpression Parser<LexerType>::parseArrayLiteral(TreeBuilder& context)
{
consumeOrFailWithFlags(OPENBRACKET, TreeBuilder::DontBuildStrings, "Expected an opening '[' at the beginning of an array literal");
int oldNonLHSCount = m_nonLHSCount;
int elisions = 0;
while (match(COMMA)) {
next(TreeBuilder::DontBuildStrings);
elisions++;
}
if (match(CLOSEBRACKET)) {
JSTokenLocation location(tokenLocation());
next(TreeBuilder::DontBuildStrings);
return context.createArray(location, elisions);
}
TreeExpression elem;
if (UNLIKELY(match(DOTDOTDOT))) {
auto spreadLocation = m_token.m_location;
auto start = m_token.m_startPosition;
auto divot = m_token.m_endPosition;
next();
auto spreadExpr = parseAssignmentExpression(context);
failIfFalse(spreadExpr, "Cannot parse subject of a spread operation");
elem = context.createSpreadExpression(spreadLocation, spreadExpr, start, divot, m_lastTokenEndPosition);
} else
elem = parseAssignmentExpression(context);
failIfFalse(elem, "Cannot parse array literal element");
typename TreeBuilder::ElementList elementList = context.createElementList(elisions, elem);
typename TreeBuilder::ElementList tail = elementList;
elisions = 0;
while (match(COMMA)) {
next(TreeBuilder::DontBuildStrings);
elisions = 0;
while (match(COMMA)) {
next();
elisions++;
}
if (match(CLOSEBRACKET)) {
JSTokenLocation location(tokenLocation());
next(TreeBuilder::DontBuildStrings);
return context.createArray(location, elisions, elementList);
}
if (UNLIKELY(match(DOTDOTDOT))) {
auto spreadLocation = m_token.m_location;
auto start = m_token.m_startPosition;
auto divot = m_token.m_endPosition;
next();
TreeExpression elem = parseAssignmentExpression(context);
failIfFalse(elem, "Cannot parse subject of a spread operation");
auto spread = context.createSpreadExpression(spreadLocation, elem, start, divot, m_lastTokenEndPosition);
tail = context.createElementList(tail, elisions, spread);
continue;
}
TreeExpression elem = parseAssignmentExpression(context);
failIfFalse(elem, "Cannot parse array literal element");
tail = context.createElementList(tail, elisions, elem);
}
JSTokenLocation location(tokenLocation());
if (!consume(CLOSEBRACKET)) {
failIfFalse(match(DOTDOTDOT), "Expected either a closing ']' or a ',' following an array element");
semanticFail("The '...' operator should come before a target expression");
}
m_nonLHSCount = oldNonLHSCount;
return context.createArray(location, elementList);
}
template <typename LexerType>
template <class TreeBuilder> TreeExpression Parser<LexerType>::parsePrimaryExpression(TreeBuilder& context)
{
failIfStackOverflow();
switch (m_token.m_type) {
case OPENBRACE:
if (strictMode())
return parseStrictObjectLiteral(context);
return parseObjectLiteral(context);
case OPENBRACKET:
return parseArrayLiteral(context);
case OPENPAREN: {
next();
int oldNonLHSCount = m_nonLHSCount;
TreeExpression result = parseExpression(context);
m_nonLHSCount = oldNonLHSCount;
handleProductionOrFail(CLOSEPAREN, ")", "end", "compound expression");
return result;
}
case THISTOKEN: {
JSTokenLocation location(tokenLocation());
next();
return context.thisExpr(location);
}
case IDENT: {
JSTextPosition start = tokenStartPosition();
const Identifier* ident = m_token.m_data.ident;
JSTokenLocation location(tokenLocation());
next();
currentScope()->useVariable(ident, m_vm->propertyNames->eval == *ident);
m_lastIdentifier = ident;
return context.createResolve(location, ident, start);
}
case STRING: {
const Identifier* ident = m_token.m_data.ident;
JSTokenLocation location(tokenLocation());
next();
return context.createString(location, ident);
}
case NUMBER: {
double d = m_token.m_data.doubleValue;
JSTokenLocation location(tokenLocation());
next();
return context.createNumberExpr(location, d);
}
case NULLTOKEN: {
JSTokenLocation location(tokenLocation());
next();
return context.createNull(location);
}
case TRUETOKEN: {
JSTokenLocation location(tokenLocation());
next();
return context.createBoolean(location, true);
}
case FALSETOKEN: {
JSTokenLocation location(tokenLocation());
next();
return context.createBoolean(location, false);
}
case DIVEQUAL:
case DIVIDE: {
/* regexp */
const Identifier* pattern;
const Identifier* flags;
if (match(DIVEQUAL))
failIfFalse(m_lexer->scanRegExp(pattern, flags, '='), "Invalid regular expression");
else
failIfFalse(m_lexer->scanRegExp(pattern, flags), "Invalid regular expression");
JSTextPosition start = tokenStartPosition();
JSTokenLocation location(tokenLocation());
next();
TreeExpression re = context.createRegExp(location, *pattern, *flags, start);
if (!re) {
const char* yarrErrorMsg = Yarr::checkSyntax(pattern->string());
regexFail(yarrErrorMsg);
}
return re;
}
default:
failDueToUnexpectedToken();
}
}
template <typename LexerType>
template <class TreeBuilder> TreeArguments Parser<LexerType>::parseArguments(TreeBuilder& context, SpreadMode mode)
{
consumeOrFailWithFlags(OPENPAREN, TreeBuilder::DontBuildStrings, "Expected opening '(' at start of argument list");
JSTokenLocation location(tokenLocation());
if (match(CLOSEPAREN)) {
next(TreeBuilder::DontBuildStrings);
return context.createArguments();
}
if (match(DOTDOTDOT) && mode == AllowSpread) {
JSTokenLocation spreadLocation(tokenLocation());
auto start = m_token.m_startPosition;
auto divot = m_token.m_endPosition;
next();
auto spreadExpr = parseAssignmentExpression(context);
auto end = m_lastTokenEndPosition;
if (!spreadExpr)
failWithMessage("Cannot parse spread expression");
if (!consume(CLOSEPAREN)) {
if (match(COMMA))
semanticFail("Spread operator may only be applied to the last argument passed to a function");
handleProductionOrFail(CLOSEPAREN, ")", "end", "argument list");
}
auto spread = context.createSpreadExpression(spreadLocation, spreadExpr, start, divot, end);
TreeArgumentsList argList = context.createArgumentsList(location, spread);
return context.createArguments(argList);
}
TreeExpression firstArg = parseAssignmentExpression(context);
failIfFalse(firstArg, "Cannot parse function argument");
TreeArgumentsList argList = context.createArgumentsList(location, firstArg);
TreeArgumentsList tail = argList;
while (match(COMMA)) {
JSTokenLocation argumentLocation(tokenLocation());
next(TreeBuilder::DontBuildStrings);
TreeExpression arg = parseAssignmentExpression(context);
failIfFalse(arg, "Cannot parse function argument");
tail = context.createArgumentsList(argumentLocation, tail, arg);
}
semanticFailIfTrue(match(DOTDOTDOT), "The '...' operator should come before the target expression");
handleProductionOrFail(CLOSEPAREN, ")", "end", "argument list");
return context.createArguments(argList);
}
template <typename LexerType>
template <class TreeBuilder> TreeExpression Parser<LexerType>::parseMemberExpression(TreeBuilder& context)
{
TreeExpression base = 0;
JSTextPosition expressionStart = tokenStartPosition();
int newCount = 0;
JSTokenLocation location;
while (match(NEW)) {
next();
newCount++;
}
if (match(FUNCTION)) {
const Identifier* name = &m_vm->propertyNames->nullIdentifier;
TreeFormalParameterList parameters = 0;
TreeFunctionBody body = 0;
unsigned openBraceOffset = 0;
unsigned closeBraceOffset = 0;
int bodyStartLine = 0;
unsigned bodyStartColumn = 0;
location = tokenLocation();
next();
failIfFalse((parseFunctionInfo(context, FunctionNoRequirements, FunctionMode, false, name, parameters, body, openBraceOffset, closeBraceOffset, bodyStartLine, bodyStartColumn)), "Cannot parse function expression");
base = context.createFunctionExpr(location, name, body, parameters, openBraceOffset, closeBraceOffset, bodyStartLine, m_lastTokenEndPosition.line, bodyStartColumn);
} else
base = parsePrimaryExpression(context);
failIfFalse(base, "Cannot parse base expression");
while (true) {
location = tokenLocation();
switch (m_token.m_type) {
case OPENBRACKET: {
m_nonTrivialExpressionCount++;
JSTextPosition expressionEnd = lastTokenEndPosition();
next();
int nonLHSCount = m_nonLHSCount;
int initialAssignments = m_assignmentCount;
TreeExpression property = parseExpression(context);
failIfFalse(property, "Cannot parse subscript expression");
base = context.createBracketAccess(location, base, property, initialAssignments != m_assignmentCount, expressionStart, expressionEnd, tokenEndPosition());
handleProductionOrFail(CLOSEBRACKET, "]", "end", "subscript expression");
m_nonLHSCount = nonLHSCount;
break;
}
case OPENPAREN: {
m_nonTrivialExpressionCount++;
int nonLHSCount = m_nonLHSCount;
if (newCount) {
newCount--;
JSTextPosition expressionEnd = lastTokenEndPosition();
TreeArguments arguments = parseArguments(context, AllowSpread);
failIfFalse(arguments, "Cannot parse call arguments");
base = context.createNewExpr(location, base, arguments, expressionStart, expressionEnd, lastTokenEndPosition());
} else {
JSTextPosition expressionEnd = lastTokenEndPosition();
TreeArguments arguments = parseArguments(context, AllowSpread);
failIfFalse(arguments, "Cannot parse call arguments");
base = context.makeFunctionCallNode(location, base, arguments, expressionStart, expressionEnd, lastTokenEndPosition());
}
m_nonLHSCount = nonLHSCount;
break;
}
case DOT: {
m_nonTrivialExpressionCount++;
JSTextPosition expressionEnd = lastTokenEndPosition();
nextExpectIdentifier(LexerFlagsIgnoreReservedWords | TreeBuilder::DontBuildKeywords);
matchOrFail(IDENT, "Expected a property name after '.'");
base = context.createDotAccess(location, base, m_token.m_data.ident, expressionStart, expressionEnd, tokenEndPosition());
next();
break;
}
default:
goto endMemberExpression;
}
}
endMemberExpression:
while (newCount--)
base = context.createNewExpr(location, base, expressionStart, lastTokenEndPosition());
return base;
}
static const char* operatorString(bool prefix, unsigned tok)
{
switch (tok) {
case MINUSMINUS:
case AUTOMINUSMINUS:
return prefix ? "prefix-decrement" : "decrement";
case PLUSPLUS:
case AUTOPLUSPLUS:
return prefix ? "prefix-increment" : "increment";
case EXCLAMATION:
return "logical-not";
case TILDE:
return "bitwise-not";
case TYPEOF:
return "typeof";
case VOIDTOKEN:
return "void";
case DELETETOKEN:
return "delete";
}
RELEASE_ASSERT_NOT_REACHED();
return "error";
}
template <typename LexerType>
template <class TreeBuilder> TreeExpression Parser<LexerType>::parseUnaryExpression(TreeBuilder& context)
{
typename TreeBuilder::UnaryExprContext unaryExprContext(context);
AllowInOverride allowInOverride(this);
int tokenStackDepth = 0;
bool modifiesExpr = false;
bool requiresLExpr = false;
unsigned lastOperator = 0;
while (isUnaryOp(m_token.m_type)) {
if (strictMode()) {
switch (m_token.m_type) {
case PLUSPLUS:
case MINUSMINUS:
case AUTOPLUSPLUS:
case AUTOMINUSMINUS:
semanticFailIfTrue(requiresLExpr, "The ", operatorString(true, lastOperator), " operator requires a reference expression");
modifiesExpr = true;
requiresLExpr = true;
break;
case DELETETOKEN:
semanticFailIfTrue(requiresLExpr, "The ", operatorString(true, lastOperator), " operator requires a reference expression");
requiresLExpr = true;
break;
default:
semanticFailIfTrue(requiresLExpr, "The ", operatorString(true, lastOperator), " operator requires a reference expression");
break;
}
}
lastOperator = m_token.m_type;
m_nonLHSCount++;
context.appendUnaryToken(tokenStackDepth, m_token.m_type, tokenStartPosition());
next();
m_nonTrivialExpressionCount++;
}
JSTextPosition subExprStart = tokenStartPosition();
ASSERT(subExprStart.offset >= subExprStart.lineStartOffset);
JSTokenLocation location(tokenLocation());
TreeExpression expr = parseMemberExpression(context);
if (!expr) {
if (lastOperator)
failWithMessage("Cannot parse subexpression of ", operatorString(true, lastOperator), "operator");
failWithMessage("Cannot parse member expression");
}
bool isEvalOrArguments = false;
if (strictMode() && !m_syntaxAlreadyValidated) {
if (context.isResolve(expr))
isEvalOrArguments = *m_lastIdentifier == m_vm->propertyNames->eval || *m_lastIdentifier == m_vm->propertyNames->arguments;
}
failIfTrueIfStrict(isEvalOrArguments && modifiesExpr, "Cannot modify '", m_lastIdentifier->impl(), "' in strict mode");
switch (m_token.m_type) {
case PLUSPLUS:
m_nonTrivialExpressionCount++;
m_nonLHSCount++;
expr = context.makePostfixNode(location, expr, OpPlusPlus, subExprStart, lastTokenEndPosition(), tokenEndPosition());
m_assignmentCount++;
failIfTrueIfStrict(isEvalOrArguments, "Cannot modify '", m_lastIdentifier->impl(), "' in strict mode");
semanticFailIfTrue(requiresLExpr, "The ", operatorString(false, lastOperator), " operator requires a reference expression");
lastOperator = PLUSPLUS;
next();
break;
case MINUSMINUS:
m_nonTrivialExpressionCount++;
m_nonLHSCount++;
expr = context.makePostfixNode(location, expr, OpMinusMinus, subExprStart, lastTokenEndPosition(), tokenEndPosition());
m_assignmentCount++;
failIfTrueIfStrict(isEvalOrArguments, "'", m_lastIdentifier->impl(), "' cannot be modified in strict mode");
semanticFailIfTrue(requiresLExpr, "The ", operatorString(false, lastOperator), " operator requires a reference expression");
lastOperator = PLUSPLUS;
next();
break;
default:
break;
}
JSTextPosition end = lastTokenEndPosition();
if (!TreeBuilder::CreatesAST && (m_syntaxAlreadyValidated || !strictMode()))
return expr;
location = tokenLocation();
location.line = m_lexer->lastLineNumber();
while (tokenStackDepth) {
switch (context.unaryTokenStackLastType(tokenStackDepth)) {
case EXCLAMATION:
expr = context.createLogicalNot(location, expr);
break;
case TILDE:
expr = context.makeBitwiseNotNode(location, expr);
break;
case MINUS:
expr = context.makeNegateNode(location, expr);
break;
case PLUS:
expr = context.createUnaryPlus(location, expr);
break;
case PLUSPLUS:
case AUTOPLUSPLUS:
expr = context.makePrefixNode(location, expr, OpPlusPlus, context.unaryTokenStackLastStart(tokenStackDepth), subExprStart + 1, end);
m_assignmentCount++;
break;
case MINUSMINUS:
case AUTOMINUSMINUS:
expr = context.makePrefixNode(location, expr, OpMinusMinus, context.unaryTokenStackLastStart(tokenStackDepth), subExprStart + 1, end);
m_assignmentCount++;
break;
case TYPEOF:
expr = context.makeTypeOfNode(location, expr);
break;
case VOIDTOKEN:
expr = context.createVoid(location, expr);
break;
case DELETETOKEN:
failIfTrueIfStrict(context.isResolve(expr), "Cannot delete unqualified property '", m_lastIdentifier->impl(), "' in strict mode");
expr = context.makeDeleteNode(location, expr, context.unaryTokenStackLastStart(tokenStackDepth), end, end);
break;
default:
// If we get here something has gone horribly horribly wrong
CRASH();
}
subExprStart = context.unaryTokenStackLastStart(tokenStackDepth);
context.unaryTokenStackRemoveLast(tokenStackDepth);
}
return expr;
}
template <typename LexerType> void Parser<LexerType>::printUnexpectedTokenText(WTF::PrintStream& out)
{
switch (m_token.m_type) {
case EOFTOK:
out.print("Unexpected end of script");
return;
case UNTERMINATED_IDENTIFIER_ESCAPE_ERRORTOK:
case UNTERMINATED_IDENTIFIER_UNICODE_ESCAPE_ERRORTOK:
out.print("Incomplete unicode escape in identifier: '", getToken(), "'");
return;
case UNTERMINATED_MULTILINE_COMMENT_ERRORTOK:
out.print("Unterminated multiline comment");
return;
case UNTERMINATED_NUMERIC_LITERAL_ERRORTOK:
out.print("Unterminated numeric literal '", getToken(), "'");
return;
case UNTERMINATED_STRING_LITERAL_ERRORTOK:
out.print("Unterminated string literal '", getToken(), "'");
return;
case INVALID_IDENTIFIER_ESCAPE_ERRORTOK:
out.print("Invalid escape in identifier: '", getToken(), "'");
return;
case INVALID_IDENTIFIER_UNICODE_ESCAPE_ERRORTOK:
out.print("Invalid unicode escape in identifier: '", getToken(), "'");
return;
case INVALID_NUMERIC_LITERAL_ERRORTOK:
out.print("Invalid numeric literal: '", getToken(), "'");
return;
case INVALID_OCTAL_NUMBER_ERRORTOK:
out.print("Invalid use of octal: '", getToken(), "'");
return;
case INVALID_STRING_LITERAL_ERRORTOK:
out.print("Invalid string literal: '", getToken(), "'");
return;
case ERRORTOK:
out.print("Unrecognized token '", getToken(), "'");
return;
case STRING:
out.print("Unexpected string literal ", getToken());
return;
case NUMBER:
out.print("Unexpected number '", getToken(), "'");
return;
case RESERVED_IF_STRICT:
out.print("Unexpected use of reserved word '", getToken(), "' in strict mode");
return;
case RESERVED:
out.print("Unexpected use of reserved word '", getToken(), "'");
return;
case INVALID_PRIVATE_NAME_ERRORTOK:
out.print("Invalid private name '", getToken(), "'");
return;
case IDENT:
out.print("Unexpected identifier '", getToken(), "'");
return;
default:
break;
}
if (m_token.m_type & KeywordTokenFlag) {
out.print("Unexpected keyword '", getToken(), "'");
return;
}
out.print("Unexpected token '", getToken(), "'");
}
// Instantiate the two flavors of Parser we need instead of putting most of this file in Parser.h
template class Parser<Lexer<LChar>>;
template class Parser<Lexer<UChar>>;
} // namespace JSC