| /* |
| * Copyright (C) 2013 Google Inc. All rights reserved. |
| * Copyright (C) 2013-2016 Apple Inc. All rights reserved. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Library General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Library General Public License for more details. |
| * |
| * You should have received a copy of the GNU Library General Public License |
| * along with this library; see the file COPYING.LIB. If not, write to |
| * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, |
| * Boston, MA 02110-1301, USA. |
| */ |
| |
| #include "config.h" |
| #include "EventPath.h" |
| |
| #include "Event.h" |
| #include "EventContext.h" |
| #include "EventNames.h" |
| #include "HTMLSlotElement.h" |
| #include "Node.h" |
| #include "PseudoElement.h" |
| #include "ShadowRoot.h" |
| #include "TouchEvent.h" |
| |
| namespace WebCore { |
| |
| static inline bool shouldEventCrossShadowBoundary(Event& event, ShadowRoot& shadowRoot, EventTarget& target) |
| { |
| Node* targetNode = target.toNode(); |
| |
| #if ENABLE(FULLSCREEN_API) && ENABLE(VIDEO) |
| // Video-only full screen is a mode where we use the shadow DOM as an implementation |
| // detail that should not be detectable by the web content. |
| if (targetNode) { |
| if (Element* element = targetNode->document().webkitCurrentFullScreenElement()) { |
| // FIXME: We assume that if the full screen element is a media element that it's |
| // the video-only full screen. Both here and elsewhere. But that is probably wrong. |
| if (element->isMediaElement() && shadowRoot.host() == element) |
| return false; |
| } |
| } |
| #endif |
| |
| bool targetIsInShadowRoot = targetNode && &targetNode->treeScope().rootNode() == &shadowRoot; |
| return !targetIsInShadowRoot || !event.scoped(); |
| } |
| |
| static Node* nodeOrHostIfPseudoElement(Node* node) |
| { |
| return is<PseudoElement>(*node) ? downcast<PseudoElement>(*node).hostElement() : node; |
| } |
| |
| class RelatedNodeRetargeter { |
| public: |
| RelatedNodeRetargeter(Node& relatedNode, Node& target); |
| |
| Node* currentNode(Node& currentTreeScope); |
| void moveToNewTreeScope(TreeScope* previousTreeScope, TreeScope& newTreeScope); |
| |
| private: |
| |
| Node* nodeInLowestCommonAncestor(); |
| void collectTreeScopes(); |
| |
| #if ASSERT_DISABLED |
| void checkConsistency(Node&) { } |
| #else |
| void checkConsistency(Node& currentTarget); |
| #endif |
| |
| Node& m_relatedNode; |
| Node* m_retargetedRelatedNode; |
| Vector<TreeScope*, 8> m_ancestorTreeScopes; |
| unsigned m_lowestCommonAncestorIndex { 0 }; |
| bool m_hasDifferentTreeRoot { false }; |
| }; |
| |
| EventPath::EventPath(Node& originalTarget, Event& event) |
| : m_event(event) |
| { |
| bool isMouseOrFocusEvent = event.isMouseEvent() || event.isFocusEvent(); |
| #if ENABLE(TOUCH_EVENTS) |
| bool isTouchEvent = event.isTouchEvent(); |
| #endif |
| Node* node = nodeOrHostIfPseudoElement(&originalTarget); |
| Node* target = eventTargetRespectingTargetRules(*node); |
| while (node) { |
| while (node) { |
| EventTarget* currentTarget = eventTargetRespectingTargetRules(*node); |
| |
| if (isMouseOrFocusEvent) |
| m_path.append(std::make_unique<MouseOrFocusEventContext>(node, currentTarget, target)); |
| #if ENABLE(TOUCH_EVENTS) |
| else if (isTouchEvent) |
| m_path.append(std::make_unique<TouchEventContext>(node, currentTarget, target)); |
| #endif |
| else |
| m_path.append(std::make_unique<EventContext>(node, currentTarget, target)); |
| |
| if (is<ShadowRoot>(*node)) |
| break; |
| |
| ContainerNode* parent = node->parentNode(); |
| if (!parent) |
| return; |
| |
| #if ENABLE(SHADOW_DOM) || ENABLE(DETAILS_ELEMENT) |
| if (ShadowRoot* shadowRootOfParent = parent->shadowRoot()) { |
| if (auto* assignedSlot = shadowRootOfParent->findAssignedSlot(*node)) { |
| // node is assigned to a slot. Continue dispatching the event at this slot. |
| parent = assignedSlot; |
| } |
| } |
| #endif |
| node = parent; |
| } |
| |
| bool exitingShadowTreeOfTarget = &target->treeScope() == &node->treeScope(); |
| ShadowRoot& shadowRoot = downcast<ShadowRoot>(*node); |
| if (!shouldEventCrossShadowBoundary(event, shadowRoot, originalTarget)) |
| return; |
| node = shadowRoot.host(); |
| if (exitingShadowTreeOfTarget) |
| target = eventTargetRespectingTargetRules(*node); |
| |
| } |
| } |
| |
| void EventPath::setRelatedTarget(Node& origin, EventTarget& relatedTarget) |
| { |
| Node* relatedNode = relatedTarget.toNode(); |
| if (!relatedNode || m_path.isEmpty()) |
| return; |
| |
| RelatedNodeRetargeter retargeter(*relatedNode, *m_path[0]->node()); |
| |
| bool originIsRelatedTarget = &origin == relatedNode; |
| bool relatedTargetScoped = m_event.relatedTargetScoped(); |
| Node& rootNodeInOriginTreeScope = origin.treeScope().rootNode(); |
| TreeScope* previousTreeScope = nullptr; |
| size_t originalEventPathSize = m_path.size(); |
| for (unsigned contextIndex = 0; contextIndex < originalEventPathSize; contextIndex++) { |
| auto& context = downcast<MouseOrFocusEventContext>(*m_path[contextIndex]); |
| |
| Node& currentTarget = *context.node(); |
| TreeScope& currentTreeScope = currentTarget.treeScope(); |
| if (UNLIKELY(previousTreeScope && ¤tTreeScope != previousTreeScope)) |
| retargeter.moveToNewTreeScope(previousTreeScope, currentTreeScope); |
| |
| Node* currentRelatedNode = retargeter.currentNode(currentTarget); |
| if (UNLIKELY(relatedTargetScoped && !originIsRelatedTarget && context.target() == currentRelatedNode)) { |
| m_path.shrink(contextIndex); |
| break; |
| } |
| |
| context.setRelatedTarget(currentRelatedNode); |
| |
| if (UNLIKELY(relatedTargetScoped && originIsRelatedTarget && context.node() == &rootNodeInOriginTreeScope)) { |
| m_path.shrink(contextIndex + 1); |
| break; |
| } |
| |
| previousTreeScope = ¤tTreeScope; |
| } |
| } |
| |
| #if ENABLE(TOUCH_EVENTS) |
| void EventPath::retargetTouch(TouchEventContext::TouchListType touchListType, const Touch& touch) |
| { |
| EventTarget* eventTarget = touch.target(); |
| if (!eventTarget) |
| return; |
| |
| Node* targetNode = eventTarget->toNode(); |
| if (!targetNode) |
| return; |
| |
| RelatedNodeRetargeter retargeter(*targetNode, *m_path[0]->node()); |
| TreeScope* previousTreeScope = nullptr; |
| for (auto& context : m_path) { |
| Node& currentTarget = *context->node(); |
| TreeScope& currentTreeScope = currentTarget.treeScope(); |
| if (UNLIKELY(previousTreeScope && ¤tTreeScope != previousTreeScope)) |
| retargeter.moveToNewTreeScope(previousTreeScope, currentTreeScope); |
| |
| Node* currentRelatedNode = retargeter.currentNode(currentTarget); |
| downcast<TouchEventContext>(*context).touchList(touchListType)->append(touch.cloneWithNewTarget(currentRelatedNode)); |
| |
| previousTreeScope = ¤tTreeScope; |
| } |
| } |
| |
| void EventPath::retargetTouchLists(const TouchEvent& touchEvent) |
| { |
| if (touchEvent.touches()) { |
| for (size_t i = 0; i < touchEvent.touches()->length(); ++i) |
| retargetTouch(TouchEventContext::Touches, *touchEvent.touches()->item(i)); |
| } |
| |
| if (touchEvent.targetTouches()) { |
| for (size_t i = 0; i < touchEvent.targetTouches()->length(); ++i) |
| retargetTouch(TouchEventContext::TargetTouches, *touchEvent.targetTouches()->item(i)); |
| } |
| |
| if (touchEvent.changedTouches()) { |
| for (size_t i = 0; i < touchEvent.changedTouches()->length(); ++i) |
| retargetTouch(TouchEventContext::ChangedTouches, *touchEvent.changedTouches()->item(i)); |
| } |
| } |
| #endif |
| |
| bool EventPath::hasEventListeners(const AtomicString& eventType) const |
| { |
| for (auto& context : m_path) { |
| if (context->node()->hasEventListeners(eventType)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| Vector<EventTarget*> EventPath::computePathUnclosedToTarget(const EventTarget& target) const |
| { |
| Vector<EventTarget*> path; |
| const Node* targetNode = const_cast<EventTarget&>(target).toNode(); |
| if (!targetNode) |
| return path; |
| |
| for (auto& context : m_path) { |
| if (Node* nodeInPath = context->currentTarget()->toNode()) { |
| if (targetNode->isUnclosedNode(*nodeInPath)) |
| path.append(context->currentTarget()); |
| } |
| } |
| |
| return path; |
| } |
| |
| static Node* moveOutOfAllShadowRoots(Node& startingNode) |
| { |
| Node* node = &startingNode; |
| while (node->isInShadowTree()) |
| node = downcast<ShadowRoot>(node->treeScope().rootNode()).host(); |
| return node; |
| } |
| |
| RelatedNodeRetargeter::RelatedNodeRetargeter(Node& relatedNode, Node& target) |
| : m_relatedNode(relatedNode) |
| , m_retargetedRelatedNode(&relatedNode) |
| { |
| auto& targetTreeScope = target.treeScope(); |
| TreeScope* currentTreeScope = &m_relatedNode.treeScope(); |
| if (LIKELY(currentTreeScope == &targetTreeScope && target.inDocument() && m_relatedNode.inDocument())) |
| return; |
| |
| if (¤tTreeScope->documentScope() != &targetTreeScope.documentScope()) { |
| m_hasDifferentTreeRoot = true; |
| m_retargetedRelatedNode = nullptr; |
| return; |
| } |
| if (relatedNode.inDocument() != target.inDocument()) { |
| m_hasDifferentTreeRoot = true; |
| m_retargetedRelatedNode = moveOutOfAllShadowRoots(relatedNode); |
| return; |
| } |
| |
| collectTreeScopes(); |
| |
| // FIXME: We should collect this while constructing the event path. |
| Vector<TreeScope*, 8> targetTreeScopeAncestors; |
| for (TreeScope* currentTreeScope = &targetTreeScope; currentTreeScope; currentTreeScope = currentTreeScope->parentTreeScope()) |
| targetTreeScopeAncestors.append(currentTreeScope); |
| ASSERT_WITH_SECURITY_IMPLICATION(!targetTreeScopeAncestors.isEmpty()); |
| |
| unsigned i = m_ancestorTreeScopes.size(); |
| unsigned j = targetTreeScopeAncestors.size(); |
| ASSERT_WITH_SECURITY_IMPLICATION(m_ancestorTreeScopes.last() == targetTreeScopeAncestors.last()); |
| while (m_ancestorTreeScopes[i - 1] == targetTreeScopeAncestors[j - 1]) { |
| i--; |
| j--; |
| if (!i || !j) |
| break; |
| } |
| |
| bool lowestCommonAncestorIsDocumentScope = i + 1 == m_ancestorTreeScopes.size(); |
| if (lowestCommonAncestorIsDocumentScope && !relatedNode.inDocument() && !target.inDocument()) { |
| Node& targetAncestorInDocumentScope = i ? *downcast<ShadowRoot>(m_ancestorTreeScopes[i - 1]->rootNode()).shadowHost() : target; |
| Node& relatedNodeAncestorInDocumentScope = j ? *downcast<ShadowRoot>(targetTreeScopeAncestors[j - 1]->rootNode()).shadowHost() : relatedNode; |
| if (targetAncestorInDocumentScope.rootNode() != relatedNodeAncestorInDocumentScope.rootNode()) { |
| m_hasDifferentTreeRoot = true; |
| m_retargetedRelatedNode = moveOutOfAllShadowRoots(relatedNode); |
| return; |
| } |
| } |
| |
| m_lowestCommonAncestorIndex = i; |
| m_retargetedRelatedNode = nodeInLowestCommonAncestor(); |
| } |
| |
| inline Node* RelatedNodeRetargeter::currentNode(Node& currentTarget) |
| { |
| checkConsistency(currentTarget); |
| return m_retargetedRelatedNode; |
| } |
| |
| void RelatedNodeRetargeter::moveToNewTreeScope(TreeScope* previousTreeScope, TreeScope& newTreeScope) |
| { |
| if (m_hasDifferentTreeRoot) |
| return; |
| |
| auto& currentRelatedNodeScope = m_retargetedRelatedNode->treeScope(); |
| if (previousTreeScope != ¤tRelatedNodeScope) { |
| // currentRelatedNode is still outside our shadow tree. New tree scope may contain currentRelatedNode |
| // but there is no need to re-target it. Moving into a slot (thereby a deeper shadow tree) doesn't matter. |
| return; |
| } |
| |
| bool enteredSlot = newTreeScope.parentTreeScope() == previousTreeScope; |
| if (enteredSlot) { |
| if (m_lowestCommonAncestorIndex) { |
| if (m_ancestorTreeScopes.isEmpty()) |
| collectTreeScopes(); |
| bool relatedNodeIsInSlot = m_ancestorTreeScopes[m_lowestCommonAncestorIndex - 1] == &newTreeScope; |
| if (relatedNodeIsInSlot) { |
| m_lowestCommonAncestorIndex--; |
| m_retargetedRelatedNode = nodeInLowestCommonAncestor(); |
| ASSERT(&newTreeScope == &m_retargetedRelatedNode->treeScope()); |
| } |
| } else |
| ASSERT(m_retargetedRelatedNode == &m_relatedNode); |
| } else { |
| ASSERT(previousTreeScope->parentTreeScope() == &newTreeScope); |
| m_lowestCommonAncestorIndex++; |
| ASSERT_WITH_SECURITY_IMPLICATION(m_ancestorTreeScopes.isEmpty() || m_lowestCommonAncestorIndex < m_ancestorTreeScopes.size()); |
| m_retargetedRelatedNode = downcast<ShadowRoot>(currentRelatedNodeScope.rootNode()).host(); |
| ASSERT(&newTreeScope == &m_retargetedRelatedNode->treeScope()); |
| } |
| } |
| |
| inline Node* RelatedNodeRetargeter::nodeInLowestCommonAncestor() |
| { |
| if (!m_lowestCommonAncestorIndex) |
| return &m_relatedNode; |
| auto& rootNode = m_ancestorTreeScopes[m_lowestCommonAncestorIndex - 1]->rootNode(); |
| return downcast<ShadowRoot>(rootNode).host(); |
| } |
| |
| void RelatedNodeRetargeter::collectTreeScopes() |
| { |
| ASSERT(m_ancestorTreeScopes.isEmpty()); |
| for (TreeScope* currentTreeScope = &m_relatedNode.treeScope(); currentTreeScope; currentTreeScope = currentTreeScope->parentTreeScope()) |
| m_ancestorTreeScopes.append(currentTreeScope); |
| ASSERT_WITH_SECURITY_IMPLICATION(!m_ancestorTreeScopes.isEmpty()); |
| } |
| |
| #if !ASSERT_DISABLED |
| void RelatedNodeRetargeter::checkConsistency(Node& currentTarget) |
| { |
| ASSERT(!m_retargetedRelatedNode || currentTarget.isUnclosedNode(*m_retargetedRelatedNode)); |
| |
| // http://w3c.github.io/webcomponents/spec/shadow/#dfn-retargeting-algorithm |
| Node& base = currentTarget; |
| for (Node* targetAncestor = &m_relatedNode; targetAncestor; targetAncestor = targetAncestor->parentOrShadowHostNode()) { |
| if (targetAncestor->rootNode()->containsIncludingShadowDOM(&base)) { |
| ASSERT(m_retargetedRelatedNode == targetAncestor); |
| return; |
| } |
| } |
| ASSERT(!m_retargetedRelatedNode || m_hasDifferentTreeRoot); |
| } |
| #endif |
| |
| } |