blob: 29472f06c2aff5bdd79cc736df264e549fcd9de5 [file] [log] [blame]
/*
* Copyright (C) 2012, 2013 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGFixupPhase.h"
#if ENABLE(DFG_JIT)
#include "DFGGraph.h"
#include "DFGInsertionSet.h"
#include "DFGPhase.h"
#include "DFGVariableAccessDataDump.h"
#include "Operations.h"
namespace JSC { namespace DFG {
class FixupPhase : public Phase {
public:
FixupPhase(Graph& graph)
: Phase(graph, "fixup")
, m_insertionSet(graph)
{
}
bool run()
{
ASSERT(m_graph.m_fixpointState == BeforeFixpoint);
ASSERT(m_graph.m_form == ThreadedCPS);
m_profitabilityChanged = false;
for (BlockIndex blockIndex = 0; blockIndex < m_graph.m_blocks.size(); ++blockIndex)
fixupBlock(m_graph.m_blocks[blockIndex].get());
while (m_profitabilityChanged) {
m_profitabilityChanged = false;
for (unsigned i = m_graph.m_argumentPositions.size(); i--;)
m_graph.m_argumentPositions[i].mergeArgumentUnboxingAwareness();
for (BlockIndex blockIndex = 0; blockIndex < m_graph.m_blocks.size(); ++blockIndex)
fixupSetLocalsInBlock(m_graph.m_blocks[blockIndex].get());
}
return true;
}
private:
void fixupBlock(BasicBlock* block)
{
if (!block)
return;
ASSERT(block->isReachable);
m_block = block;
for (m_indexInBlock = 0; m_indexInBlock < block->size(); ++m_indexInBlock) {
m_currentNode = block->at(m_indexInBlock);
fixupNode(m_currentNode);
}
m_insertionSet.execute(block);
}
void fixupNode(Node* node)
{
NodeType op = node->op();
#if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE)
dataLogF(" %s @%u: ", Graph::opName(op), node->index());
#endif
switch (op) {
case SetLocal: {
// This gets handled by fixupSetLocalsInBlock().
break;
}
case BitAnd:
case BitOr:
case BitXor:
case BitRShift:
case BitLShift:
case BitURShift: {
fixIntEdge(node->child1());
fixIntEdge(node->child2());
break;
}
case UInt32ToNumber: {
setUseKindAndUnboxIfProfitable<KnownInt32Use>(node->child1());
break;
}
case DoubleAsInt32: {
RELEASE_ASSERT_NOT_REACHED();
break;
}
case ValueToInt32: {
if (node->child1()->shouldSpeculateInteger()) {
setUseKindAndUnboxIfProfitable<Int32Use>(node->child1());
break;
}
if (node->child1()->shouldSpeculateNumber()) {
setUseKindAndUnboxIfProfitable<NumberUse>(node->child1());
break;
}
if (node->child1()->shouldSpeculateBoolean()) {
setUseKindAndUnboxIfProfitable<BooleanUse>(node->child1());
break;
}
setUseKindAndUnboxIfProfitable<NotCellUse>(node->child1());
break;
}
case Int32ToDouble: {
RELEASE_ASSERT_NOT_REACHED();
break;
}
case ValueAdd: {
if (attemptToMakeIntegerAdd(node))
break;
if (Node::shouldSpeculateNumberExpectingDefined(node->child1().node(), node->child2().node())) {
fixDoubleEdge<NumberUse>(node->child1());
fixDoubleEdge<NumberUse>(node->child2());
break;
}
// FIXME: Optimize for the case where one of the operands is the
// empty string. Also consider optimizing for the case where we don't
// believe either side is the emtpy string. Both of these things should
// be easy.
if (node->child1()->shouldSpeculateString()
&& attemptToMakeFastStringAdd<StringUse>(node, node->child1(), node->child2()))
break;
if (node->child2()->shouldSpeculateString()
&& attemptToMakeFastStringAdd<StringUse>(node, node->child2(), node->child1()))
break;
if (node->child1()->shouldSpeculateStringObject()
&& attemptToMakeFastStringAdd<StringObjectUse>(node, node->child1(), node->child2()))
break;
if (node->child2()->shouldSpeculateStringObject()
&& attemptToMakeFastStringAdd<StringObjectUse>(node, node->child2(), node->child1()))
break;
if (node->child1()->shouldSpeculateStringOrStringObject()
&& attemptToMakeFastStringAdd<StringOrStringObjectUse>(node, node->child1(), node->child2()))
break;
if (node->child2()->shouldSpeculateStringOrStringObject()
&& attemptToMakeFastStringAdd<StringOrStringObjectUse>(node, node->child2(), node->child1()))
break;
break;
}
case ArithAdd:
case ArithSub: {
if (attemptToMakeIntegerAdd(node))
break;
fixDoubleEdge<NumberUse>(node->child1());
fixDoubleEdge<NumberUse>(node->child2());
break;
}
case ArithNegate: {
if (m_graph.negateShouldSpeculateInteger(node)) {
setUseKindAndUnboxIfProfitable<Int32Use>(node->child1());
break;
}
fixDoubleEdge<NumberUse>(node->child1());
break;
}
case ArithMul: {
if (m_graph.mulShouldSpeculateInteger(node)) {
setUseKindAndUnboxIfProfitable<Int32Use>(node->child1());
setUseKindAndUnboxIfProfitable<Int32Use>(node->child2());
break;
}
fixDoubleEdge<NumberUse>(node->child1());
fixDoubleEdge<NumberUse>(node->child2());
break;
}
case ArithDiv: {
if (Node::shouldSpeculateIntegerForArithmetic(node->child1().node(), node->child2().node())
&& node->canSpeculateInteger()) {
if (isX86() || isARMv7s()) {
setUseKindAndUnboxIfProfitable<Int32Use>(node->child1());
setUseKindAndUnboxIfProfitable<Int32Use>(node->child2());
break;
}
injectInt32ToDoubleNode(node->child1());
injectInt32ToDoubleNode(node->child2());
// We don't need to do ref'ing on the children because we're stealing them from
// the original division.
Node* newDivision = m_insertionSet.insertNode(
m_indexInBlock, SpecDouble, *node);
node->setOp(DoubleAsInt32);
node->children.initialize(Edge(newDivision, KnownNumberUse), Edge(), Edge());
break;
}
fixDoubleEdge<NumberUse>(node->child1());
fixDoubleEdge<NumberUse>(node->child2());
break;
}
case ArithMin:
case ArithMax:
case ArithMod: {
if (Node::shouldSpeculateIntegerForArithmetic(node->child1().node(), node->child2().node())
&& node->canSpeculateInteger()) {
setUseKindAndUnboxIfProfitable<Int32Use>(node->child1());
setUseKindAndUnboxIfProfitable<Int32Use>(node->child2());
break;
}
fixDoubleEdge<NumberUse>(node->child1());
fixDoubleEdge<NumberUse>(node->child2());
break;
}
case ArithAbs: {
if (node->child1()->shouldSpeculateIntegerForArithmetic()
&& node->canSpeculateInteger()) {
setUseKindAndUnboxIfProfitable<Int32Use>(node->child1());
break;
}
fixDoubleEdge<NumberUse>(node->child1());
break;
}
case ArithSqrt: {
fixDoubleEdge<NumberUse>(node->child1());
break;
}
case LogicalNot: {
if (node->child1()->shouldSpeculateBoolean())
setUseKindAndUnboxIfProfitable<BooleanUse>(node->child1());
else if (node->child1()->shouldSpeculateObjectOrOther())
setUseKindAndUnboxIfProfitable<ObjectOrOtherUse>(node->child1());
else if (node->child1()->shouldSpeculateInteger())
setUseKindAndUnboxIfProfitable<Int32Use>(node->child1());
else if (node->child1()->shouldSpeculateNumber())
fixDoubleEdge<NumberUse>(node->child1());
break;
}
case TypeOf: {
if (node->child1()->shouldSpeculateString())
setUseKindAndUnboxIfProfitable<StringUse>(node->child1());
else if (node->child1()->shouldSpeculateCell())
setUseKindAndUnboxIfProfitable<CellUse>(node->child1());
break;
}
case CompareEq:
case CompareEqConstant:
case CompareLess:
case CompareLessEq:
case CompareGreater:
case CompareGreaterEq: {
if (node->op() == CompareEqConstant)
break;
if (Node::shouldSpeculateInteger(node->child1().node(), node->child2().node())) {
setUseKindAndUnboxIfProfitable<Int32Use>(node->child1());
setUseKindAndUnboxIfProfitable<Int32Use>(node->child2());
break;
}
if (Node::shouldSpeculateNumber(node->child1().node(), node->child2().node())) {
fixDoubleEdge<NumberUse>(node->child1());
fixDoubleEdge<NumberUse>(node->child2());
break;
}
if (node->op() != CompareEq)
break;
if (node->child1()->shouldSpeculateString() && node->child2()->shouldSpeculateString())
break;
if (node->child1()->shouldSpeculateObject() && node->child2()->shouldSpeculateObject()) {
setUseKindAndUnboxIfProfitable<ObjectUse>(node->child1());
setUseKindAndUnboxIfProfitable<ObjectUse>(node->child2());
break;
}
if (node->child1()->shouldSpeculateObject() && node->child2()->shouldSpeculateObjectOrOther()) {
setUseKindAndUnboxIfProfitable<ObjectUse>(node->child1());
setUseKindAndUnboxIfProfitable<ObjectOrOtherUse>(node->child2());
break;
}
if (node->child1()->shouldSpeculateObjectOrOther() && node->child2()->shouldSpeculateObject()) {
setUseKindAndUnboxIfProfitable<ObjectOrOtherUse>(node->child1());
setUseKindAndUnboxIfProfitable<ObjectUse>(node->child2());
break;
}
break;
}
case CompareStrictEq:
case CompareStrictEqConstant: {
if (node->op() == CompareStrictEqConstant)
break;
if (Node::shouldSpeculateInteger(node->child1().node(), node->child2().node())) {
setUseKindAndUnboxIfProfitable<Int32Use>(node->child1());
setUseKindAndUnboxIfProfitable<Int32Use>(node->child2());
break;
}
if (Node::shouldSpeculateNumber(node->child1().node(), node->child2().node())) {
fixDoubleEdge<NumberUse>(node->child1());
fixDoubleEdge<NumberUse>(node->child2());
break;
}
if (node->child1()->shouldSpeculateString() && node->child2()->shouldSpeculateString())
break;
if (node->child1()->shouldSpeculateObject() && node->child2()->shouldSpeculateObject()) {
setUseKindAndUnboxIfProfitable<ObjectUse>(node->child1());
setUseKindAndUnboxIfProfitable<ObjectUse>(node->child2());
break;
}
break;
}
case StringCharAt:
case StringCharCodeAt: {
// Currently we have no good way of refining these.
ASSERT(node->arrayMode() == ArrayMode(Array::String));
blessArrayOperation(node->child1(), node->child2(), node->child3());
setUseKindAndUnboxIfProfitable<KnownCellUse>(node->child1());
setUseKindAndUnboxIfProfitable<Int32Use>(node->child2());
break;
}
case GetByVal: {
node->setArrayMode(
node->arrayMode().refine(
node->child1()->prediction(),
node->child2()->prediction(),
SpecNone, node->flags()));
blessArrayOperation(node->child1(), node->child2(), node->child3());
ArrayMode arrayMode = node->arrayMode();
if (arrayMode.type() == Array::Double
&& arrayMode.arrayClass() == Array::OriginalArray
&& arrayMode.speculation() == Array::InBounds
&& arrayMode.conversion() == Array::AsIs
&& m_graph.globalObjectFor(node->codeOrigin)->arrayPrototypeChainIsSane()
&& !(node->flags() & NodeUsedAsOther))
node->setArrayMode(arrayMode.withSpeculation(Array::SaneChain));
switch (node->arrayMode().type()) {
case Array::SelectUsingPredictions:
case Array::Unprofiled:
case Array::Undecided:
RELEASE_ASSERT_NOT_REACHED();
break;
case Array::Generic:
#if USE(JSVALUE32_64)
setUseKindAndUnboxIfProfitable<CellUse>(node->child1()); // Speculating cell due to register pressure on 32-bit.
#endif
break;
case Array::ForceExit:
break;
default:
setUseKindAndUnboxIfProfitable<KnownCellUse>(node->child1());
setUseKindAndUnboxIfProfitable<Int32Use>(node->child2());
break;
}
break;
}
case PutByVal:
case PutByValAlias: {
Edge& child1 = m_graph.varArgChild(node, 0);
Edge& child2 = m_graph.varArgChild(node, 1);
Edge& child3 = m_graph.varArgChild(node, 2);
node->setArrayMode(
node->arrayMode().refine(
child1->prediction(),
child2->prediction(),
child3->prediction()));
blessArrayOperation(child1, child2, m_graph.varArgChild(node, 3));
switch (node->arrayMode().modeForPut().type()) {
case Array::SelectUsingPredictions:
case Array::Unprofiled:
case Array::Undecided:
RELEASE_ASSERT_NOT_REACHED();
break;
case Array::ForceExit:
case Array::Generic:
#if USE(JSVALUE32_64)
// Due to register pressure on 32-bit, we speculate cell and
// ignore the base-is-not-cell case entirely by letting the
// baseline JIT handle it.
setUseKindAndUnboxIfProfitable<CellUse>(child1);
#endif
break;
case Array::Int32:
setUseKindAndUnboxIfProfitable<KnownCellUse>(child1);
setUseKindAndUnboxIfProfitable<Int32Use>(child2);
setUseKindAndUnboxIfProfitable<Int32Use>(child3);
break;
case Array::Double:
setUseKindAndUnboxIfProfitable<KnownCellUse>(child1);
setUseKindAndUnboxIfProfitable<Int32Use>(child2);
fixDoubleEdge<RealNumberUse>(child3);
break;
case Array::Int8Array:
case Array::Int16Array:
case Array::Int32Array:
case Array::Uint8Array:
case Array::Uint8ClampedArray:
case Array::Uint16Array:
case Array::Uint32Array:
setUseKindAndUnboxIfProfitable<KnownCellUse>(child1);
setUseKindAndUnboxIfProfitable<Int32Use>(child2);
if (child3->shouldSpeculateInteger())
setUseKindAndUnboxIfProfitable<Int32Use>(child3);
else
fixDoubleEdge<NumberUse>(child3);
break;
case Array::Float32Array:
case Array::Float64Array:
setUseKindAndUnboxIfProfitable<KnownCellUse>(child1);
setUseKindAndUnboxIfProfitable<Int32Use>(child2);
fixDoubleEdge<NumberUse>(child3);
break;
default:
setUseKindAndUnboxIfProfitable<KnownCellUse>(child1);
setUseKindAndUnboxIfProfitable<Int32Use>(child2);
break;
}
break;
}
case ArrayPush: {
// May need to refine the array mode in case the value prediction contravenes
// the array prediction. For example, we may have evidence showing that the
// array is in Int32 mode, but the value we're storing is likely to be a double.
// Then we should turn this into a conversion to Double array followed by the
// push. On the other hand, we absolutely don't want to refine based on the
// base prediction. If it has non-cell garbage in it, then we want that to be
// ignored. That's because ArrayPush can't handle any array modes that aren't
// array-related - so if refine() turned this into a "Generic" ArrayPush then
// that would break things.
node->setArrayMode(
node->arrayMode().refine(
node->child1()->prediction() & SpecCell,
SpecInt32,
node->child2()->prediction()));
blessArrayOperation(node->child1(), Edge(), node->child3());
setUseKindAndUnboxIfProfitable<KnownCellUse>(node->child1());
switch (node->arrayMode().type()) {
case Array::Int32:
setUseKindAndUnboxIfProfitable<Int32Use>(node->child2());
break;
case Array::Double:
fixDoubleEdge<RealNumberUse>(node->child2());
break;
default:
break;
}
break;
}
case ArrayPop: {
blessArrayOperation(node->child1(), Edge(), node->child2());
setUseKindAndUnboxIfProfitable<KnownCellUse>(node->child1());
break;
}
case RegExpExec:
case RegExpTest: {
setUseKindAndUnboxIfProfitable<CellUse>(node->child1());
setUseKindAndUnboxIfProfitable<CellUse>(node->child2());
break;
}
case Branch: {
if (node->child1()->shouldSpeculateBoolean())
setUseKindAndUnboxIfProfitable<BooleanUse>(node->child1());
else if (node->child1()->shouldSpeculateObjectOrOther())
setUseKindAndUnboxIfProfitable<ObjectOrOtherUse>(node->child1());
else if (node->child1()->shouldSpeculateInteger())
setUseKindAndUnboxIfProfitable<Int32Use>(node->child1());
else if (node->child1()->shouldSpeculateNumber())
fixDoubleEdge<NumberUse>(node->child1());
Node* logicalNot = node->child1().node();
if (logicalNot->op() == LogicalNot) {
// Make sure that OSR exit can't observe the LogicalNot. If it can,
// then we must compute it and cannot peephole around it.
bool found = false;
bool ok = true;
for (unsigned i = m_indexInBlock; i--;) {
Node* candidate = m_block->at(i);
if (candidate == logicalNot) {
found = true;
break;
}
if (candidate->canExit()) {
ok = false;
found = true;
break;
}
}
ASSERT_UNUSED(found, found);
if (ok) {
Edge newChildEdge = logicalNot->child1();
if (newChildEdge->hasBooleanResult()) {
node->children.setChild1(newChildEdge);
BlockIndex toBeTaken = node->notTakenBlockIndex();
BlockIndex toBeNotTaken = node->takenBlockIndex();
node->setTakenBlockIndex(toBeTaken);
node->setNotTakenBlockIndex(toBeNotTaken);
}
}
}
break;
}
case ToPrimitive: {
if (node->child1()->shouldSpeculateInteger()) {
setUseKindAndUnboxIfProfitable<Int32Use>(node->child1());
node->convertToIdentity();
break;
}
if (node->child1()->shouldSpeculateString()) {
setUseKindAndUnboxIfProfitable<StringUse>(node->child1());
node->convertToIdentity();
break;
}
if (node->child1()->shouldSpeculateStringObject()
&& canOptimizeStringObjectAccess(node->codeOrigin)) {
setUseKindAndUnboxIfProfitable<StringObjectUse>(node->child1());
node->convertToToString();
break;
}
if (node->child1()->shouldSpeculateStringOrStringObject()
&& canOptimizeStringObjectAccess(node->codeOrigin)) {
setUseKindAndUnboxIfProfitable<StringOrStringObjectUse>(node->child1());
node->convertToToString();
break;
}
// FIXME: Add string speculation here.
// https://bugs.webkit.org/show_bug.cgi?id=110175
break;
}
case ToString: {
if (node->child1()->shouldSpeculateString()) {
setUseKindAndUnboxIfProfitable<StringUse>(node->child1());
node->convertToIdentity();
break;
}
if (node->child1()->shouldSpeculateStringObject()
&& canOptimizeStringObjectAccess(node->codeOrigin)) {
setUseKindAndUnboxIfProfitable<StringObjectUse>(node->child1());
break;
}
if (node->child1()->shouldSpeculateStringOrStringObject()
&& canOptimizeStringObjectAccess(node->codeOrigin)) {
setUseKindAndUnboxIfProfitable<StringOrStringObjectUse>(node->child1());
break;
}
if (node->child1()->shouldSpeculateCell()) {
setUseKindAndUnboxIfProfitable<CellUse>(node->child1());
break;
}
break;
}
case NewStringObject: {
setUseKindAndUnboxIfProfitable<KnownStringUse>(node->child1());
break;
}
case NewArray: {
for (unsigned i = m_graph.varArgNumChildren(node); i--;) {
node->setIndexingType(
leastUpperBoundOfIndexingTypeAndType(
node->indexingType(), m_graph.varArgChild(node, i)->prediction()));
}
switch (node->indexingType()) {
case ALL_BLANK_INDEXING_TYPES:
CRASH();
break;
case ALL_UNDECIDED_INDEXING_TYPES:
if (node->numChildren()) {
// This will only happen if the children have no type predictions. We
// would have already exited by now, but insert a forced exit just to
// be safe.
m_insertionSet.insertNode(
m_indexInBlock, SpecNone, ForceOSRExit, node->codeOrigin);
}
break;
case ALL_INT32_INDEXING_TYPES:
for (unsigned operandIndex = 0; operandIndex < node->numChildren(); ++operandIndex)
setUseKindAndUnboxIfProfitable<Int32Use>(m_graph.m_varArgChildren[node->firstChild() + operandIndex]);
break;
case ALL_DOUBLE_INDEXING_TYPES:
for (unsigned operandIndex = 0; operandIndex < node->numChildren(); ++operandIndex)
setUseKindAndUnboxIfProfitable<RealNumberUse>(m_graph.m_varArgChildren[node->firstChild() + operandIndex]);
break;
case ALL_CONTIGUOUS_INDEXING_TYPES:
case ALL_ARRAY_STORAGE_INDEXING_TYPES:
break;
default:
CRASH();
break;
}
break;
}
case NewArrayWithSize: {
setUseKindAndUnboxIfProfitable<Int32Use>(node->child1());
break;
}
case ConvertThis: {
if (isOtherSpeculation(node->child1()->prediction())) {
m_insertionSet.insertNode(
m_indexInBlock, SpecNone, Phantom, node->codeOrigin,
Edge(node->child1().node(), OtherUse));
observeUseKindOnNode<OtherUse>(node->child1().node());
node->convertToWeakConstant(m_graph.globalThisObjectFor(node->codeOrigin));
break;
}
if (isObjectSpeculation(node->child1()->prediction())) {
setUseKindAndUnboxIfProfitable<ObjectUse>(node->child1());
node->convertToIdentity();
break;
}
break;
}
case CreateThis: {
setUseKindAndUnboxIfProfitable<CellUse>(node->child1());
break;
}
case GetMyArgumentByVal:
case GetMyArgumentByValSafe: {
setUseKindAndUnboxIfProfitable<Int32Use>(node->child1());
break;
}
case GetScopeRegisters:
case PutScopedVar:
case SkipTopScope:
case SkipScope:
case SetCallee:
case SetMyScope:
case PutStructure:
case AllocatePropertyStorage:
case ReallocatePropertyStorage:
case GetScope:
case GetButterfly: {
setUseKindAndUnboxIfProfitable<KnownCellUse>(node->child1());
break;
}
case GetById: {
if (!node->child1()->shouldSpeculateCell())
break;
setUseKindAndUnboxIfProfitable<CellUse>(node->child1());
if (!isInt32Speculation(node->prediction()))
break;
if (codeBlock()->identifier(node->identifierNumber()) != globalData().propertyNames->length)
break;
ArrayProfile* arrayProfile =
m_graph.baselineCodeBlockFor(node->codeOrigin)->getArrayProfile(
node->codeOrigin.bytecodeIndex);
ArrayMode arrayMode = ArrayMode(Array::SelectUsingPredictions);
if (arrayProfile) {
arrayProfile->computeUpdatedPrediction(m_graph.baselineCodeBlockFor(node->codeOrigin));
arrayMode = ArrayMode::fromObserved(arrayProfile, Array::Read, false);
arrayMode = arrayMode.refine(
node->child1()->prediction(), node->prediction());
if (arrayMode.supportsLength() && arrayProfile->hasDefiniteStructure()) {
m_insertionSet.insertNode(
m_indexInBlock, SpecNone, CheckStructure, node->codeOrigin,
OpInfo(m_graph.addStructureSet(arrayProfile->expectedStructure())),
node->child1());
}
} else
arrayMode = arrayMode.refine(node->child1()->prediction(), node->prediction());
if (!arrayMode.supportsLength())
break;
node->setOp(GetArrayLength);
ASSERT(node->flags() & NodeMustGenerate);
node->clearFlags(NodeMustGenerate | NodeClobbersWorld);
setUseKindAndUnboxIfProfitable<KnownCellUse>(node->child1());
node->setArrayMode(arrayMode);
Node* storage = checkArray(arrayMode, node->codeOrigin, node->child1().node(), 0, lengthNeedsStorage);
if (!storage)
break;
node->child2() = Edge(storage);
break;
}
case GetByIdFlush: {
if (node->child1()->shouldSpeculateCell())
setUseKindAndUnboxIfProfitable<CellUse>(node->child1());
break;
}
case CheckExecutable:
case CheckStructure:
case ForwardCheckStructure:
case StructureTransitionWatchpoint:
case ForwardStructureTransitionWatchpoint:
case CheckFunction:
case PutById:
case PutByIdDirect:
case CheckHasInstance: {
setUseKindAndUnboxIfProfitable<CellUse>(node->child1());
break;
}
case CheckArray: {
switch (node->arrayMode().type()) {
case Array::String:
setUseKindAndUnboxIfProfitable<StringUse>(node->child1());
break;
default:
setUseKindAndUnboxIfProfitable<CellUse>(node->child1());
break;
}
break;
}
case Arrayify:
case ArrayifyToStructure: {
setUseKindAndUnboxIfProfitable<CellUse>(node->child1());
if (node->child2())
setUseKindAndUnboxIfProfitable<Int32Use>(node->child2());
break;
}
case GetByOffset: {
if (!node->child1()->hasStorageResult())
setUseKindAndUnboxIfProfitable<KnownCellUse>(node->child1());
break;
}
case PutByOffset: {
if (!node->child1()->hasStorageResult())
setUseKindAndUnboxIfProfitable<KnownCellUse>(node->child1());
setUseKindAndUnboxIfProfitable<KnownCellUse>(node->child2());
break;
}
case InstanceOf: {
// FIXME: This appears broken: CheckHasInstance already does an unconditional cell
// check. https://bugs.webkit.org/show_bug.cgi?id=107479
if (!(node->child1()->prediction() & ~SpecCell))
setUseKindAndUnboxIfProfitable<CellUse>(node->child1());
setUseKindAndUnboxIfProfitable<CellUse>(node->child2());
break;
}
case GetArrayLength:
case Identity:
case Nop:
case Phi:
case ForwardInt32ToDouble:
case PhantomPutStructure:
case GetIndexedPropertyStorage:
case LastNodeType:
case MovHint:
case MovHintAndCheck:
case ZombieHint:
RELEASE_ASSERT_NOT_REACHED();
break;
#if !ASSERT_DISABLED
// Have these no-op cases here to ensure that nobody forgets to add handlers for new opcodes.
case SetArgument:
case Phantom:
case JSConstant:
case WeakJSConstant:
case GetLocal:
case GetCallee:
case Flush:
case PhantomLocal:
case GetLocalUnlinked:
case InlineStart:
case GetMyScope:
case GetScopedVar:
case GetGlobalVar:
case PutGlobalVar:
case GlobalVarWatchpoint:
case PutGlobalVarCheck:
case AllocationProfileWatchpoint:
case Call:
case Construct:
case NewObject:
case NewArrayBuffer:
case NewRegexp:
case Resolve:
case ResolveBase:
case ResolveBaseStrictPut:
case ResolveGlobal:
case Breakpoint:
case IsUndefined:
case IsBoolean:
case IsNumber:
case IsString:
case IsObject:
case IsFunction:
case StrCat:
case CreateActivation:
case TearOffActivation:
case CreateArguments:
case PhantomArguments:
case TearOffArguments:
case GetMyArgumentsLength:
case GetMyArgumentsLengthSafe:
case CheckArgumentsNotCreated:
case NewFunction:
case NewFunctionNoCheck:
case NewFunctionExpression:
case Jump:
case Return:
case Throw:
case ThrowReferenceError:
case GarbageValue:
case CountExecution:
case ForceOSRExit:
break;
#else
default:
break;
#endif
}
#if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE)
if (!(node->flags() & NodeHasVarArgs)) {
dataLogF("new children: ");
node->dumpChildren(WTF::dataFile());
}
dataLogF("\n");
#endif
}
template<UseKind useKind>
bool isStringObjectUse()
{
switch (useKind) {
case StringObjectUse:
case StringOrStringObjectUse:
return true;
default:
return false;
}
}
template<UseKind useKind>
void convertStringAddUse(Node* node, Edge& edge)
{
if (useKind == StringUse) {
// This preserves the binaryUseKind() invariant ot ValueAdd: ValueAdd's
// two edges will always have identical use kinds, which makes the
// decision process much easier.
observeUseKindOnNode<StringUse>(edge.node());
m_insertionSet.insertNode(
m_indexInBlock, SpecNone, Phantom, node->codeOrigin,
Edge(edge.node(), StringUse));
edge.setUseKind(KnownStringUse);
return;
}
// FIXME: We ought to be able to have a ToPrimitiveToString node.
observeUseKindOnNode<useKind>(edge.node());
edge = Edge(m_insertionSet.insertNode(
m_indexInBlock, SpecString, ToString, node->codeOrigin,
Edge(edge.node(), useKind)), KnownStringUse);
}
template<UseKind leftUseKind>
bool attemptToMakeFastStringAdd(Node* node, Edge& left, Edge& right)
{
ASSERT(leftUseKind == StringUse || leftUseKind == StringObjectUse || leftUseKind == StringOrStringObjectUse);
if (isStringObjectUse<leftUseKind>() && !canOptimizeStringObjectAccess(node->codeOrigin))
return false;
if (right->shouldSpeculateString()) {
convertStringAddUse<leftUseKind>(node, left);
convertStringAddUse<StringUse>(node, right);
return true;
}
if (right->shouldSpeculateStringObject()
&& canOptimizeStringObjectAccess(node->codeOrigin)) {
convertStringAddUse<leftUseKind>(node, left);
convertStringAddUse<StringObjectUse>(node, right);
return true;
}
if (right->shouldSpeculateStringOrStringObject()
&& canOptimizeStringObjectAccess(node->codeOrigin)) {
convertStringAddUse<leftUseKind>(node, left);
convertStringAddUse<StringOrStringObjectUse>(node, right);
return true;
}
// FIXME: We ought to be able to convert the right case to do
// ToPrimitiveToString.
return false; // Let the slow path worry about it.
}
bool isStringPrototypeMethodSane(Structure* stringPrototypeStructure, const Identifier& ident)
{
unsigned attributesUnused;
JSCell* specificValue;
PropertyOffset offset = stringPrototypeStructure->get(
globalData(), ident, attributesUnused, specificValue);
if (!isValidOffset(offset))
return false;
if (!specificValue)
return false;
if (!specificValue->inherits(&JSFunction::s_info))
return false;
JSFunction* function = jsCast<JSFunction*>(specificValue);
if (function->executable()->intrinsicFor(CodeForCall) != StringPrototypeValueOfIntrinsic)
return false;
return true;
}
bool canOptimizeStringObjectAccess(const CodeOrigin& codeOrigin)
{
if (m_graph.hasExitSite(codeOrigin, NotStringObject))
return false;
Structure* stringObjectStructure = m_graph.globalObjectFor(codeOrigin)->stringObjectStructure();
ASSERT(stringObjectStructure->storedPrototype().isObject());
ASSERT(stringObjectStructure->storedPrototype().asCell()->classInfo() == &StringPrototype::s_info);
JSObject* stringPrototypeObject = asObject(stringObjectStructure->storedPrototype());
Structure* stringPrototypeStructure = stringPrototypeObject->structure();
if (stringPrototypeStructure->transitionWatchpointSetHasBeenInvalidated())
return false;
if (stringPrototypeStructure->isDictionary())
return false;
// We're being conservative here. We want DFG's ToString on StringObject to be
// used in both numeric contexts (that would call valueOf()) and string contexts
// (that would call toString()). We don't want the DFG to have to distinguish
// between the two, just because that seems like it would get confusing. So we
// just require both methods to be sane.
if (!isStringPrototypeMethodSane(stringPrototypeStructure, globalData().propertyNames->valueOf))
return false;
if (!isStringPrototypeMethodSane(stringPrototypeStructure, globalData().propertyNames->toString))
return false;
return true;
}
void fixupSetLocalsInBlock(BasicBlock* block)
{
if (!block)
return;
ASSERT(block->isReachable);
m_block = block;
for (m_indexInBlock = 0; m_indexInBlock < block->size(); ++m_indexInBlock) {
Node* node = m_currentNode = block->at(m_indexInBlock);
if (node->op() != SetLocal)
continue;
VariableAccessData* variable = node->variableAccessData();
if (!variable->shouldUnboxIfPossible())
continue;
if (variable->shouldUseDoubleFormat()) {
fixDoubleEdge<NumberUse>(node->child1(), ForwardSpeculation);
continue;
}
SpeculatedType predictedType = variable->argumentAwarePrediction();
if (isInt32Speculation(predictedType))
setUseKindAndUnboxIfProfitable<Int32Use>(node->child1());
else if (isCellSpeculation(predictedType))
setUseKindAndUnboxIfProfitable<CellUse>(node->child1());
else if (isBooleanSpeculation(predictedType))
setUseKindAndUnboxIfProfitable<BooleanUse>(node->child1());
}
m_insertionSet.execute(block);
}
void findAndRemoveUnnecessaryStructureCheck(Node* array, const CodeOrigin& codeOrigin)
{
for (unsigned index = m_indexInBlock; index--;) {
Node* previousNode = m_block->at(index);
if (previousNode->codeOrigin != codeOrigin)
return;
if (previousNode->op() != CheckStructure)
continue;
if (previousNode->child1() != array)
continue;
previousNode->child1() = Edge();
previousNode->convertToPhantom();
return; // Assume we were smart enough to only insert one CheckStructure on the array.
}
}
Node* checkArray(ArrayMode arrayMode, const CodeOrigin& codeOrigin, Node* array, Node* index, bool (*storageCheck)(const ArrayMode&) = canCSEStorage)
{
ASSERT(arrayMode.isSpecific());
Structure* structure = arrayMode.originalArrayStructure(m_graph, codeOrigin);
Edge indexEdge = index ? Edge(index, Int32Use) : Edge();
if (arrayMode.doesConversion()) {
if (structure) {
if (m_indexInBlock > 0) {
// If the previous node was a CheckStructure inserted because of stuff
// that the array profile told us, then remove it, since we're going to be
// doing arrayification instead.
findAndRemoveUnnecessaryStructureCheck(array, codeOrigin);
}
m_insertionSet.insertNode(
m_indexInBlock, SpecNone, ArrayifyToStructure, codeOrigin,
OpInfo(structure), OpInfo(arrayMode.asWord()), Edge(array, CellUse), indexEdge);
} else {
m_insertionSet.insertNode(
m_indexInBlock, SpecNone, Arrayify, codeOrigin,
OpInfo(arrayMode.asWord()), Edge(array, CellUse), indexEdge);
}
} else {
if (structure) {
m_insertionSet.insertNode(
m_indexInBlock, SpecNone, CheckStructure, codeOrigin,
OpInfo(m_graph.addStructureSet(structure)), Edge(array, CellUse));
} else {
m_insertionSet.insertNode(
m_indexInBlock, SpecNone, CheckArray, codeOrigin,
OpInfo(arrayMode.asWord()), Edge(array, CellUse));
}
}
if (!storageCheck(arrayMode))
return 0;
if (arrayMode.usesButterfly()) {
return m_insertionSet.insertNode(
m_indexInBlock, SpecNone, GetButterfly, codeOrigin, Edge(array, KnownCellUse));
}
return m_insertionSet.insertNode(
m_indexInBlock, SpecNone, GetIndexedPropertyStorage, codeOrigin,
OpInfo(arrayMode.asWord()), Edge(array, KnownCellUse));
}
void blessArrayOperation(Edge base, Edge index, Edge& storageChild)
{
Node* node = m_currentNode;
switch (node->arrayMode().type()) {
case Array::ForceExit: {
m_insertionSet.insertNode(
m_indexInBlock, SpecNone, ForceOSRExit, node->codeOrigin);
return;
}
case Array::SelectUsingPredictions:
case Array::Unprofiled:
RELEASE_ASSERT_NOT_REACHED();
return;
case Array::Generic:
findAndRemoveUnnecessaryStructureCheck(base.node(), node->codeOrigin);
return;
default: {
Node* storage = checkArray(node->arrayMode(), node->codeOrigin, base.node(), index.node());
if (!storage)
return;
storageChild = Edge(storage);
return;
} }
}
bool alwaysUnboxSimplePrimitives()
{
#if USE(JSVALUE64)
return false;
#else
// Any boolean, int, or cell value is profitable to unbox on 32-bit because it
// reduces traffic.
return true;
#endif
}
template<UseKind useKind>
void observeUseKindOnNode(Node* node)
{
if (node->op() != GetLocal)
return;
VariableAccessData* variable = node->variableAccessData();
switch (useKind) {
case Int32Use:
if (alwaysUnboxSimplePrimitives()
|| isInt32Speculation(variable->prediction()))
m_profitabilityChanged |= variable->mergeIsProfitableToUnbox(true);
break;
case NumberUse:
case RealNumberUse:
if (variable->doubleFormatState() == UsingDoubleFormat)
m_profitabilityChanged |= variable->mergeIsProfitableToUnbox(true);
break;
case BooleanUse:
if (alwaysUnboxSimplePrimitives()
|| isBooleanSpeculation(variable->prediction()))
m_profitabilityChanged |= variable->mergeIsProfitableToUnbox(true);
break;
case CellUse:
case ObjectUse:
case StringUse:
case KnownStringUse:
case StringObjectUse:
case StringOrStringObjectUse:
if (alwaysUnboxSimplePrimitives()
|| isCellSpeculation(variable->prediction()))
m_profitabilityChanged |= variable->mergeIsProfitableToUnbox(true);
break;
default:
break;
}
}
// Set the use kind of the edge. In the future (https://bugs.webkit.org/show_bug.cgi?id=110433),
// this can be used to notify the GetLocal that the variable is profitable to unbox.
template<UseKind useKind>
void setUseKindAndUnboxIfProfitable(Edge& edge)
{
observeUseKindOnNode<useKind>(edge.node());
edge.setUseKind(useKind);
}
void fixIntEdge(Edge& edge)
{
Node* node = edge.node();
if (node->op() != ValueToInt32) {
setUseKindAndUnboxIfProfitable<KnownInt32Use>(edge);
return;
}
Edge newEdge = node->child1();
if (newEdge.useKind() != Int32Use) {
edge.setUseKind(KnownInt32Use);
return;
}
ASSERT(newEdge->shouldSpeculateInteger());
// Completely kill the ValueToInt32. We wouldn't have to do crazy things like this
// if it weren't for https://bugs.webkit.org/show_bug.cgi?id=111238.
node->setOpAndDefaultFlags(Nop);
node->child1() = Edge();
edge = newEdge;
}
template<UseKind useKind>
void fixDoubleEdge(Edge& edge, SpeculationDirection direction = BackwardSpeculation)
{
ASSERT(useKind == NumberUse || useKind == KnownNumberUse || useKind == RealNumberUse);
if (edge->prediction() & SpecDouble) {
setUseKindAndUnboxIfProfitable<useKind>(edge);
return;
}
injectInt32ToDoubleNode(edge, useKind, direction);
}
void injectInt32ToDoubleNode(Edge& edge, UseKind useKind = NumberUse, SpeculationDirection direction = BackwardSpeculation)
{
Node* result = m_insertionSet.insertNode(
m_indexInBlock, SpecDouble,
direction == BackwardSpeculation ? Int32ToDouble : ForwardInt32ToDouble,
m_currentNode->codeOrigin, Edge(edge.node(), NumberUse));
#if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE)
dataLogF(
"(replacing @%u->@%u with @%u->@%u) ",
m_currentNode->index(), edge->index(), m_currentNode->index(), result->index());
#endif
edge = Edge(result, useKind);
}
void truncateConstantToInt32(Edge& edge)
{
Node* oldNode = edge.node();
ASSERT(oldNode->hasConstant());
JSValue value = m_graph.valueOfJSConstant(oldNode);
if (value.isInt32())
return;
value = jsNumber(JSC::toInt32(value.asNumber()));
ASSERT(value.isInt32());
edge.setNode(m_insertionSet.insertNode(
m_indexInBlock, SpecInt32, JSConstant, m_currentNode->codeOrigin,
OpInfo(codeBlock()->addOrFindConstant(value))));
}
void truncateConstantsIfNecessary(Node* node, AddSpeculationMode mode)
{
if (mode != SpeculateIntegerAndTruncateConstants)
return;
ASSERT(node->child1()->hasConstant() || node->child2()->hasConstant());
if (node->child1()->hasConstant())
truncateConstantToInt32(node->child1());
else
truncateConstantToInt32(node->child2());
}
bool attemptToMakeIntegerAdd(Node* node)
{
AddSpeculationMode mode = m_graph.addSpeculationMode(node);
if (mode == DontSpeculateInteger)
return false;
truncateConstantsIfNecessary(node, mode);
setUseKindAndUnboxIfProfitable<Int32Use>(node->child1());
setUseKindAndUnboxIfProfitable<Int32Use>(node->child2());
return true;
}
BasicBlock* m_block;
unsigned m_indexInBlock;
Node* m_currentNode;
InsertionSet m_insertionSet;
bool m_profitabilityChanged;
};
bool performFixup(Graph& graph)
{
SamplingRegion samplingRegion("DFG Fixup Phase");
return runPhase<FixupPhase>(graph);
}
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)