| /* |
| * Copyright (C) 2003, 2006, 2007 Apple Inc. All rights reserved. |
| * Copyright (C) 2005 Nokia. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "FloatRect.h" |
| |
| #include "FloatConversion.h" |
| #include "IntRect.h" |
| #include <algorithm> |
| #include <math.h> |
| #include <wtf/MathExtras.h> |
| #include <wtf/text/TextStream.h> |
| |
| namespace WebCore { |
| |
| FloatRect::FloatRect(const IntRect& r) |
| : m_location(r.location()) |
| , m_size(r.size()) |
| { |
| } |
| |
| FloatRect FloatRect::narrowPrecision(double x, double y, double width, double height) |
| { |
| return FloatRect(narrowPrecisionToFloat(x), narrowPrecisionToFloat(y), narrowPrecisionToFloat(width), narrowPrecisionToFloat(height)); |
| } |
| |
| bool FloatRect::isExpressibleAsIntRect() const |
| { |
| return isWithinIntRange(x()) && isWithinIntRange(y()) |
| && isWithinIntRange(width()) && isWithinIntRange(height()) |
| && isWithinIntRange(maxX()) && isWithinIntRange(maxY()); |
| } |
| |
| bool FloatRect::inclusivelyIntersects(const FloatRect& other) const |
| { |
| return width() >= 0 && height() >= 0 && other.width() >= 0 && other.height() >= 0 |
| && x() <= other.maxX() && other.x() <= maxX() && y() <= other.maxY() && other.y() <= maxY(); |
| } |
| |
| bool FloatRect::intersects(const FloatRect& other) const |
| { |
| // Checking emptiness handles negative widths and heights as well as zero. |
| return !isEmpty() && !other.isEmpty() |
| && x() < other.maxX() && other.x() < maxX() |
| && y() < other.maxY() && other.y() < maxY(); |
| } |
| |
| bool FloatRect::contains(const FloatRect& other) const |
| { |
| return x() <= other.x() && maxX() >= other.maxX() |
| && y() <= other.y() && maxY() >= other.maxY(); |
| } |
| |
| bool FloatRect::contains(const FloatPoint& point, ContainsMode containsMode) const |
| { |
| if (containsMode == InsideOrOnStroke) |
| return contains(point.x(), point.y()); |
| return x() < point.x() && maxX() > point.x() && y() < point.y() && maxY() > point.y(); |
| } |
| |
| void FloatRect::intersect(const FloatRect& other) |
| { |
| float l = std::max(x(), other.x()); |
| float t = std::max(y(), other.y()); |
| float r = std::min(maxX(), other.maxX()); |
| float b = std::min(maxY(), other.maxY()); |
| |
| // Return a clean empty rectangle for non-intersecting cases. |
| if (l >= r || t >= b) { |
| l = 0; |
| t = 0; |
| r = 0; |
| b = 0; |
| } |
| |
| setLocationAndSizeFromEdges(l, t, r, b); |
| } |
| |
| bool FloatRect::edgeInclusiveIntersect(const FloatRect& other) |
| { |
| FloatPoint newLocation(std::max(x(), other.x()), std::max(y(), other.y())); |
| FloatPoint newMaxPoint(std::min(maxX(), other.maxX()), std::min(maxY(), other.maxY())); |
| |
| bool intersects = true; |
| |
| // Return a clean empty rectangle for non-intersecting cases. |
| if (newLocation.x() > newMaxPoint.x() || newLocation.y() > newMaxPoint.y()) { |
| newLocation = { }; |
| newMaxPoint = { }; |
| intersects = false; |
| } |
| |
| m_location = newLocation; |
| m_size = newMaxPoint - newLocation; |
| return intersects; |
| } |
| |
| void FloatRect::unite(const FloatRect& other) |
| { |
| // Handle empty special cases first. |
| if (other.isEmpty()) |
| return; |
| if (isEmpty()) { |
| *this = other; |
| return; |
| } |
| |
| uniteEvenIfEmpty(other); |
| } |
| |
| void FloatRect::uniteEvenIfEmpty(const FloatRect& other) |
| { |
| float minX = std::min(x(), other.x()); |
| float minY = std::min(y(), other.y()); |
| float maxX = std::max(this->maxX(), other.maxX()); |
| float maxY = std::max(this->maxY(), other.maxY()); |
| |
| setLocationAndSizeFromEdges(minX, minY, maxX, maxY); |
| } |
| |
| void FloatRect::uniteIfNonZero(const FloatRect& other) |
| { |
| // Handle empty special cases first. |
| if (other.isZero()) |
| return; |
| if (isZero()) { |
| *this = other; |
| return; |
| } |
| |
| uniteEvenIfEmpty(other); |
| } |
| |
| void FloatRect::extend(const FloatPoint& p) |
| { |
| float minX = std::min(x(), p.x()); |
| float minY = std::min(y(), p.y()); |
| float maxX = std::max(this->maxX(), p.x()); |
| float maxY = std::max(this->maxY(), p.y()); |
| |
| setLocationAndSizeFromEdges(minX, minY, maxX, maxY); |
| } |
| |
| void FloatRect::scale(float sx, float sy) |
| { |
| m_location.setX(x() * sx); |
| m_location.setY(y() * sy); |
| m_size.setWidth(width() * sx); |
| m_size.setHeight(height() * sy); |
| } |
| |
| void FloatRect::fitToPoints(const FloatPoint& p0, const FloatPoint& p1) |
| { |
| float left = std::min(p0.x(), p1.x()); |
| float top = std::min(p0.y(), p1.y()); |
| float right = std::max(p0.x(), p1.x()); |
| float bottom = std::max(p0.y(), p1.y()); |
| |
| setLocationAndSizeFromEdges(left, top, right, bottom); |
| } |
| |
| namespace { |
| // Helpers for 3- and 4-way max and min. |
| |
| template <typename T> |
| T min3(const T& v1, const T& v2, const T& v3) |
| { |
| return std::min(std::min(v1, v2), v3); |
| } |
| |
| template <typename T> |
| T max3(const T& v1, const T& v2, const T& v3) |
| { |
| return std::max(std::max(v1, v2), v3); |
| } |
| |
| template <typename T> |
| T min4(const T& v1, const T& v2, const T& v3, const T& v4) |
| { |
| return std::min(std::min(v1, v2), std::min(v3, v4)); |
| } |
| |
| template <typename T> |
| T max4(const T& v1, const T& v2, const T& v3, const T& v4) |
| { |
| return std::max(std::max(v1, v2), std::max(v3, v4)); |
| } |
| |
| } // anonymous namespace |
| |
| void FloatRect::fitToPoints(const FloatPoint& p0, const FloatPoint& p1, const FloatPoint& p2) |
| { |
| float left = min3(p0.x(), p1.x(), p2.x()); |
| float top = min3(p0.y(), p1.y(), p2.y()); |
| float right = max3(p0.x(), p1.x(), p2.x()); |
| float bottom = max3(p0.y(), p1.y(), p2.y()); |
| |
| setLocationAndSizeFromEdges(left, top, right, bottom); |
| } |
| |
| void FloatRect::fitToPoints(const FloatPoint& p0, const FloatPoint& p1, const FloatPoint& p2, const FloatPoint& p3) |
| { |
| float left = min4(p0.x(), p1.x(), p2.x(), p3.x()); |
| float top = min4(p0.y(), p1.y(), p2.y(), p3.y()); |
| float right = max4(p0.x(), p1.x(), p2.x(), p3.x()); |
| float bottom = max4(p0.y(), p1.y(), p2.y(), p3.y()); |
| |
| setLocationAndSizeFromEdges(left, top, right, bottom); |
| } |
| |
| FloatRect normalizeRect(const FloatRect& rect) |
| { |
| return FloatRect(std::min(rect.x(), rect.maxX()), |
| std::min(rect.y(), rect.maxY()), |
| std::max(rect.width(), -rect.width()), |
| std::max(rect.height(), -rect.height())); |
| } |
| |
| FloatRect encloseRectToDevicePixels(const FloatRect& rect, float deviceScaleFactor) |
| { |
| FloatPoint location = floorPointToDevicePixels(rect.minXMinYCorner(), deviceScaleFactor); |
| FloatPoint maxPoint = ceilPointToDevicePixels(rect.maxXMaxYCorner(), deviceScaleFactor); |
| return FloatRect(location, maxPoint - location); |
| } |
| |
| IntRect enclosingIntRect(const FloatRect& rect) |
| { |
| FloatPoint location = flooredIntPoint(rect.minXMinYCorner()); |
| FloatPoint maxPoint = ceiledIntPoint(rect.maxXMaxYCorner()); |
| return IntRect(IntPoint(location), IntSize(maxPoint - location)); |
| } |
| |
| IntRect enclosingIntRectPreservingEmptyRects(const FloatRect& rect) |
| { |
| // Empty rects with fractional x, y values turn into non-empty rects when converting to enclosing. |
| // We want to ensure that empty rects stay empty after the conversion, since some callers |
| // prefer this behavior. |
| FloatPoint location = flooredIntPoint(rect.minXMinYCorner()); |
| if (rect.isEmpty()) |
| return IntRect(IntPoint(location), { }); |
| FloatPoint maxPoint = ceiledIntPoint(rect.maxXMaxYCorner()); |
| return IntRect(IntPoint(location), IntSize(maxPoint - location)); |
| } |
| |
| IntRect roundedIntRect(const FloatRect& rect) |
| { |
| return IntRect(roundedIntPoint(rect.location()), roundedIntSize(rect.size())); |
| } |
| |
| TextStream& operator<<(TextStream& ts, const FloatRect &r) |
| { |
| if (ts.hasFormattingFlag(TextStream::Formatting::SVGStyleRect)) { |
| // FIXME: callers should use the NumberRespectingIntegers flag. |
| return ts << "at (" << TextStream::FormatNumberRespectingIntegers(r.x()) << "," << TextStream::FormatNumberRespectingIntegers(r.y()) |
| << ") size " << TextStream::FormatNumberRespectingIntegers(r.width()) << "x" << TextStream::FormatNumberRespectingIntegers(r.height()); |
| } |
| |
| return ts << r.location() << " " << r.size(); |
| } |
| |
| } |