| /* |
| * Copyright (C) 2008 Apple Inc. All rights reserved. |
| * Copyright (C) 2012 Nokia Corporation and/or its subsidiary(-ies) |
| * Copyright (C) 2013 Xidorn Quan (quanxunzhen@gmail.com) |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. Neither the name of Apple Inc. ("Apple") nor the names of |
| * its contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "FloatQuad.h" |
| |
| #include <algorithm> |
| #include <limits> |
| #include <wtf/MathExtras.h> |
| #include <wtf/text/TextStream.h> |
| |
| namespace WebCore { |
| |
| static inline float min4(float a, float b, float c, float d) |
| { |
| return std::min(std::min(a, b), std::min(c, d)); |
| } |
| |
| static inline float max4(float a, float b, float c, float d) |
| { |
| return std::max(std::max(a, b), std::max(c, d)); |
| } |
| |
| inline float dot(const FloatSize& a, const FloatSize& b) |
| { |
| return a.width() * b.width() + a.height() * b.height(); |
| } |
| |
| inline float determinant(const FloatSize& a, const FloatSize& b) |
| { |
| return a.width() * b.height() - a.height() * b.width(); |
| } |
| |
| inline bool isPointInTriangle(const FloatPoint& p, const FloatPoint& t1, const FloatPoint& t2, const FloatPoint& t3) |
| { |
| // Compute vectors |
| FloatSize v0 = t3 - t1; |
| FloatSize v1 = t2 - t1; |
| FloatSize v2 = p - t1; |
| |
| // Compute dot products |
| float dot00 = dot(v0, v0); |
| float dot01 = dot(v0, v1); |
| float dot02 = dot(v0, v2); |
| float dot11 = dot(v1, v1); |
| float dot12 = dot(v1, v2); |
| |
| // Compute barycentric coordinates |
| float invDenom = 1.0f / (dot00 * dot11 - dot01 * dot01); |
| float u = (dot11 * dot02 - dot01 * dot12) * invDenom; |
| float v = (dot00 * dot12 - dot01 * dot02) * invDenom; |
| |
| // Check if point is in triangle |
| return (u >= 0) && (v >= 0) && (u + v <= 1); |
| } |
| |
| FloatRect FloatQuad::boundingBox() const |
| { |
| float left = min4(m_p1.x(), m_p2.x(), m_p3.x(), m_p4.x()); |
| float top = min4(m_p1.y(), m_p2.y(), m_p3.y(), m_p4.y()); |
| |
| float right = max4(m_p1.x(), m_p2.x(), m_p3.x(), m_p4.x()); |
| float bottom = max4(m_p1.y(), m_p2.y(), m_p3.y(), m_p4.y()); |
| |
| return FloatRect(left, top, right - left, bottom - top); |
| } |
| |
| bool FloatQuad::isRectilinear() const |
| { |
| return (WTF::areEssentiallyEqual(m_p1.x(), m_p2.x()) && WTF::areEssentiallyEqual(m_p2.y(), m_p3.y()) && WTF::areEssentiallyEqual(m_p3.x(), m_p4.x()) && WTF::areEssentiallyEqual(m_p4.y(), m_p1.y())) |
| || (WTF::areEssentiallyEqual(m_p1.y(), m_p2.y()) && WTF::areEssentiallyEqual(m_p2.x(), m_p3.x()) && WTF::areEssentiallyEqual(m_p3.y(), m_p4.y()) && WTF::areEssentiallyEqual(m_p4.x(), m_p1.x())); |
| } |
| |
| bool FloatQuad::containsPoint(const FloatPoint& p) const |
| { |
| return isPointInTriangle(p, m_p1, m_p2, m_p3) || isPointInTriangle(p, m_p1, m_p3, m_p4); |
| } |
| |
| // Note that we only handle convex quads here. |
| bool FloatQuad::containsQuad(const FloatQuad& other) const |
| { |
| return containsPoint(other.p1()) && containsPoint(other.p2()) && containsPoint(other.p3()) && containsPoint(other.p4()); |
| } |
| |
| static inline FloatPoint rightMostCornerToVector(const FloatRect& rect, const FloatSize& vector) |
| { |
| // Return the corner of the rectangle that if it is to the left of the vector |
| // would mean all of the rectangle is to the left of the vector. |
| // The vector here represents the side between two points in a clockwise convex polygon. |
| // |
| // Q XXX |
| // QQQ XXX If the lower left corner of X is left of the vector that goes from the top corner of Q to |
| // QQQ the right corner of Q, then all of X is left of the vector, and intersection impossible. |
| // Q |
| // |
| FloatPoint point; |
| if (vector.width() >= 0) |
| point.setY(rect.maxY()); |
| else |
| point.setY(rect.y()); |
| if (vector.height() >= 0) |
| point.setX(rect.x()); |
| else |
| point.setX(rect.maxX()); |
| return point; |
| } |
| |
| bool FloatQuad::intersectsRect(const FloatRect& rect) const |
| { |
| // For each side of the quad clockwise we check if the rectangle is to the left of it |
| // since only content on the right can onlap with the quad. |
| // This only works if the quad is convex. |
| FloatSize v1, v2, v3, v4; |
| |
| // Ensure we use clockwise vectors. |
| if (!isCounterclockwise()) { |
| v1 = m_p2 - m_p1; |
| v2 = m_p3 - m_p2; |
| v3 = m_p4 - m_p3; |
| v4 = m_p1 - m_p4; |
| } else { |
| v1 = m_p4 - m_p1; |
| v2 = m_p1 - m_p2; |
| v3 = m_p2 - m_p3; |
| v4 = m_p3 - m_p4; |
| } |
| |
| FloatPoint p = rightMostCornerToVector(rect, v1); |
| if (determinant(v1, p - m_p1) < 0) |
| return false; |
| |
| p = rightMostCornerToVector(rect, v2); |
| if (determinant(v2, p - m_p2) < 0) |
| return false; |
| |
| p = rightMostCornerToVector(rect, v3); |
| if (determinant(v3, p - m_p3) < 0) |
| return false; |
| |
| p = rightMostCornerToVector(rect, v4); |
| if (determinant(v4, p - m_p4) < 0) |
| return false; |
| |
| // If not all of the rectangle is outside one of the quad's four sides, then that means at least |
| // a part of the rectangle is overlapping the quad. |
| return true; |
| } |
| |
| // Tests whether the line is contained by or intersected with the circle. |
| static inline bool lineIntersectsCircle(const FloatPoint& center, float radius, const FloatPoint& p0, const FloatPoint& p1) |
| { |
| float x0 = p0.x() - center.x(), y0 = p0.y() - center.y(); |
| float x1 = p1.x() - center.x(), y1 = p1.y() - center.y(); |
| float radius2 = radius * radius; |
| if ((x0 * x0 + y0 * y0) <= radius2 || (x1 * x1 + y1 * y1) <= radius2) |
| return true; |
| if (p0 == p1) |
| return false; |
| |
| float a = y0 - y1; |
| float b = x1 - x0; |
| float c = x0 * y1 - x1 * y0; |
| float distance2 = c * c / (a * a + b * b); |
| // If distance between the center point and the line > the radius, |
| // the line doesn't cross (or is contained by) the ellipse. |
| if (distance2 > radius2) |
| return false; |
| |
| // The nearest point on the line is between p0 and p1? |
| float x = - a * c / (a * a + b * b); |
| float y = - b * c / (a * a + b * b); |
| return (((x0 <= x && x <= x1) || (x0 >= x && x >= x1)) |
| && ((y0 <= y && y <= y1) || (y1 <= y && y <= y0))); |
| } |
| |
| bool FloatQuad::intersectsCircle(const FloatPoint& center, float radius) const |
| { |
| return containsPoint(center) // The circle may be totally contained by the quad. |
| || lineIntersectsCircle(center, radius, m_p1, m_p2) |
| || lineIntersectsCircle(center, radius, m_p2, m_p3) |
| || lineIntersectsCircle(center, radius, m_p3, m_p4) |
| || lineIntersectsCircle(center, radius, m_p4, m_p1); |
| } |
| |
| bool FloatQuad::intersectsEllipse(const FloatPoint& center, const FloatSize& radii) const |
| { |
| // Transform the ellipse to an origin-centered circle whose radius is the product of major radius and minor radius. |
| // Here we apply the same transformation to the quad. |
| FloatQuad transformedQuad(*this); |
| transformedQuad.move(-center.x(), -center.y()); |
| transformedQuad.scale(radii.height(), radii.width()); |
| |
| FloatPoint originPoint; |
| return transformedQuad.intersectsCircle(originPoint, radii.height() * radii.width()); |
| |
| } |
| |
| bool FloatQuad::isCounterclockwise() const |
| { |
| // Return if the two first vectors are turning clockwise. If the quad is convex then all following vectors will turn the same way. |
| return determinant(m_p2 - m_p1, m_p3 - m_p2) < 0; |
| } |
| |
| bool FloatQuad::isEmpty() const |
| { |
| if (areEssentiallyEqual(m_p1, m_p3) || areEssentiallyEqual(m_p2, m_p4)) { |
| // If either diagonal is zero length, then the "quad" either consists of 1 or 2 line segments, or it's just a point. |
| return true; |
| } |
| |
| if (areEssentiallyEqual(m_p1, m_p2) && areEssentiallyEqual(m_p3, m_p4)) { |
| // If both top points and both bottom points are equal, then the "quad" is just a single line segment. |
| return true; |
| } |
| |
| if (areEssentiallyEqual(m_p1, m_p4) && areEssentiallyEqual(m_p2, m_p3)) { |
| // If both left points and both right points are equal, then the "quad" is just a single line segment. |
| return true; |
| } |
| |
| // Fall back to checking whether the 4 points of the quad are colinear (in other words, check whether the three |
| // vectors from one point to each of the other points are capable of forming a 2D basis). |
| auto b1 = m_p1 - m_p2; |
| auto b2 = m_p1 - m_p3; |
| auto b3 = m_p1 - m_p4; |
| |
| if (!b1.isZero()) |
| b1 = b1 / b1.diagonalLength(); |
| |
| if (!b2.isZero()) |
| b2 = b2 / b2.diagonalLength(); |
| |
| if (!b3.isZero()) |
| b3 = b3 / b3.diagonalLength(); |
| |
| auto areNormalizedVectorsLinearlyIndependent = [](const FloatSize& u, const FloatSize& v) { |
| if (u.isZero() || v.isZero()) |
| return false; |
| |
| auto dotProduct = u.width() * v.width() + u.height() * v.height(); |
| return !WTF::areEssentiallyEqual<float>(dotProduct, 1) && !WTF::areEssentiallyEqual<float>(dotProduct, -1); |
| }; |
| |
| return !areNormalizedVectorsLinearlyIndependent(b1, b2) && !areNormalizedVectorsLinearlyIndependent(b2, b3) && !areNormalizedVectorsLinearlyIndependent(b1, b3); |
| } |
| |
| Vector<FloatRect> boundingBoxes(const Vector<FloatQuad>& quads) |
| { |
| return quads.map([](auto& quad) { |
| return quad.boundingBox(); |
| }); |
| } |
| |
| FloatRect unitedBoundingBoxes(const Vector<FloatQuad>& quads) |
| { |
| auto size = quads.size(); |
| if (!size) |
| return { }; |
| auto result = quads[0].boundingBox(); |
| for (size_t i = 1; i < size; ++i) |
| result.uniteEvenIfEmpty(quads[i].boundingBox()); |
| return result; |
| } |
| |
| TextStream& operator<<(TextStream& ts, const FloatQuad& quad) |
| { |
| ts << "p1 " << quad.p1() << " p2 " << quad.p2() << " p3 " << quad.p3() << " p4 " << quad.p4(); |
| return ts; |
| } |
| |
| } // namespace WebCore |