| /* |
| * Copyright (C) 2008 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #ifndef AbstractMacroAssembler_h |
| #define AbstractMacroAssembler_h |
| |
| #include <wtf/Platform.h> |
| |
| #include <MacroAssemblerCodeRef.h> |
| #include <CodeLocation.h> |
| #include <wtf/Noncopyable.h> |
| #include <wtf/UnusedParam.h> |
| |
| #if ENABLE(ASSEMBLER) |
| |
| // FIXME: keep transitioning this out into MacroAssemblerX86_64. |
| #if PLATFORM(X86_64) |
| #define REPTACH_OFFSET_CALL_R11 3 |
| #endif |
| |
| namespace JSC { |
| |
| template <class AssemblerType> |
| class AbstractMacroAssembler { |
| public: |
| typedef MacroAssemblerCodePtr CodePtr; |
| typedef MacroAssemblerCodeRef CodeRef; |
| |
| class Jump; |
| class LinkBuffer; |
| class RepatchBuffer; |
| |
| typedef typename AssemblerType::RegisterID RegisterID; |
| typedef typename AssemblerType::FPRegisterID FPRegisterID; |
| typedef typename AssemblerType::JmpSrc JmpSrc; |
| typedef typename AssemblerType::JmpDst JmpDst; |
| |
| |
| // Section 1: MacroAssembler operand types |
| // |
| // The following types are used as operands to MacroAssembler operations, |
| // describing immediate and memory operands to the instructions to be planted. |
| |
| |
| enum Scale { |
| TimesOne, |
| TimesTwo, |
| TimesFour, |
| TimesEight, |
| }; |
| |
| // Address: |
| // |
| // Describes a simple base-offset address. |
| struct Address { |
| explicit Address(RegisterID base, int32_t offset = 0) |
| : base(base) |
| , offset(offset) |
| { |
| } |
| |
| RegisterID base; |
| int32_t offset; |
| }; |
| |
| // ImplicitAddress: |
| // |
| // This class is used for explicit 'load' and 'store' operations |
| // (as opposed to situations in which a memory operand is provided |
| // to a generic operation, such as an integer arithmetic instruction). |
| // |
| // In the case of a load (or store) operation we want to permit |
| // addresses to be implicitly constructed, e.g. the two calls: |
| // |
| // load32(Address(addrReg), destReg); |
| // load32(addrReg, destReg); |
| // |
| // Are equivalent, and the explicit wrapping of the Address in the former |
| // is unnecessary. |
| struct ImplicitAddress { |
| ImplicitAddress(RegisterID base) |
| : base(base) |
| , offset(0) |
| { |
| } |
| |
| ImplicitAddress(Address address) |
| : base(address.base) |
| , offset(address.offset) |
| { |
| } |
| |
| RegisterID base; |
| int32_t offset; |
| }; |
| |
| // BaseIndex: |
| // |
| // Describes a complex addressing mode. |
| struct BaseIndex { |
| BaseIndex(RegisterID base, RegisterID index, Scale scale, int32_t offset = 0) |
| : base(base) |
| , index(index) |
| , scale(scale) |
| , offset(offset) |
| { |
| } |
| |
| RegisterID base; |
| RegisterID index; |
| Scale scale; |
| int32_t offset; |
| }; |
| |
| // AbsoluteAddress: |
| // |
| // Describes an memory operand given by a pointer. For regular load & store |
| // operations an unwrapped void* will be used, rather than using this. |
| struct AbsoluteAddress { |
| explicit AbsoluteAddress(void* ptr) |
| : m_ptr(ptr) |
| { |
| } |
| |
| void* m_ptr; |
| }; |
| |
| // ImmPtr: |
| // |
| // A pointer sized immediate operand to an instruction - this is wrapped |
| // in a class requiring explicit construction in order to differentiate |
| // from pointers used as absolute addresses to memory operations |
| struct ImmPtr { |
| explicit ImmPtr(void* value) |
| : m_value(value) |
| { |
| } |
| |
| intptr_t asIntptr() |
| { |
| return reinterpret_cast<intptr_t>(m_value); |
| } |
| |
| void* m_value; |
| }; |
| |
| // Imm32: |
| // |
| // A 32bit immediate operand to an instruction - this is wrapped in a |
| // class requiring explicit construction in order to prevent RegisterIDs |
| // (which are implemented as an enum) from accidentally being passed as |
| // immediate values. |
| struct Imm32 { |
| explicit Imm32(int32_t value) |
| : m_value(value) |
| #if PLATFORM_ARM_ARCH(7) |
| , m_isPointer(false) |
| #endif |
| { |
| } |
| |
| #if !PLATFORM(X86_64) |
| explicit Imm32(ImmPtr ptr) |
| : m_value(ptr.asIntptr()) |
| #if PLATFORM_ARM_ARCH(7) |
| , m_isPointer(true) |
| #endif |
| { |
| } |
| #endif |
| |
| int32_t m_value; |
| #if PLATFORM_ARM_ARCH(7) |
| // We rely on being able to regenerate code to recover exception handling |
| // information. Since ARMv7 supports 16-bit immediates there is a danger |
| // that if pointer values change the layout of the generated code will change. |
| // To avoid this problem, always generate pointers (and thus Imm32s constructed |
| // from ImmPtrs) with a code sequence that is able to represent any pointer |
| // value - don't use a more compact form in these cases. |
| bool m_isPointer; |
| #endif |
| }; |
| |
| |
| // Section 2: MacroAssembler code buffer handles |
| // |
| // The following types are used to reference items in the code buffer |
| // during JIT code generation. For example, the type Jump is used to |
| // track the location of a jump instruction so that it may later be |
| // linked to a label marking its destination. |
| |
| |
| // Label: |
| // |
| // A Label records a point in the generated instruction stream, typically such that |
| // it may be used as a destination for a jump. |
| class Label { |
| template<class TemplateAssemblerType> |
| friend class AbstractMacroAssembler; |
| friend class Jump; |
| friend class MacroAssemblerCodeRef; |
| friend class LinkBuffer; |
| |
| public: |
| Label() |
| { |
| } |
| |
| Label(AbstractMacroAssembler<AssemblerType>* masm) |
| : m_label(masm->m_assembler.label()) |
| { |
| } |
| |
| bool isUsed() const { return m_label.isUsed(); } |
| void used() { m_label.used(); } |
| private: |
| JmpDst m_label; |
| }; |
| |
| // DataLabelPtr: |
| // |
| // A DataLabelPtr is used to refer to a location in the code containing a pointer to be |
| // patched after the code has been generated. |
| class DataLabelPtr { |
| template<class TemplateAssemblerType> |
| friend class AbstractMacroAssembler; |
| friend class LinkBuffer; |
| public: |
| DataLabelPtr() |
| { |
| } |
| |
| DataLabelPtr(AbstractMacroAssembler<AssemblerType>* masm) |
| : m_label(masm->m_assembler.label()) |
| { |
| } |
| |
| private: |
| JmpDst m_label; |
| }; |
| |
| // DataLabel32: |
| // |
| // A DataLabelPtr is used to refer to a location in the code containing a pointer to be |
| // patched after the code has been generated. |
| class DataLabel32 { |
| template<class TemplateAssemblerType> |
| friend class AbstractMacroAssembler; |
| friend class LinkBuffer; |
| public: |
| DataLabel32() |
| { |
| } |
| |
| DataLabel32(AbstractMacroAssembler<AssemblerType>* masm) |
| : m_label(masm->m_assembler.label()) |
| { |
| } |
| |
| private: |
| JmpDst m_label; |
| }; |
| |
| // Call: |
| // |
| // A Call object is a reference to a call instruction that has been planted |
| // into the code buffer - it is typically used to link the call, setting the |
| // relative offset such that when executed it will call to the desired |
| // destination. |
| class Call { |
| template<class TemplateAssemblerType> |
| friend class AbstractMacroAssembler; |
| friend class LinkBuffer; |
| public: |
| enum Flags { |
| None = 0x0, |
| Linkable = 0x1, |
| Near = 0x2, |
| LinkableNear = 0x3, |
| }; |
| |
| Call() |
| : m_flags(None) |
| { |
| } |
| |
| Call(JmpSrc jmp, Flags flags) |
| : m_jmp(jmp) |
| , m_flags(flags) |
| { |
| } |
| |
| bool isFlagSet(Flags flag) |
| { |
| return m_flags & flag; |
| } |
| |
| static Call fromTailJump(Jump jump) |
| { |
| return Call(jump.m_jmp, Linkable); |
| } |
| |
| private: |
| JmpSrc m_jmp; |
| Flags m_flags; |
| }; |
| |
| // Jump: |
| // |
| // A jump object is a reference to a jump instruction that has been planted |
| // into the code buffer - it is typically used to link the jump, setting the |
| // relative offset such that when executed it will jump to the desired |
| // destination. |
| class Jump { |
| template<class TemplateAssemblerType> |
| friend class AbstractMacroAssembler; |
| friend class Call; |
| friend class LinkBuffer; |
| public: |
| Jump() |
| { |
| } |
| |
| Jump(JmpSrc jmp) |
| : m_jmp(jmp) |
| { |
| } |
| |
| void link(AbstractMacroAssembler<AssemblerType>* masm) |
| { |
| masm->m_assembler.linkJump(m_jmp, masm->m_assembler.label()); |
| } |
| |
| void linkTo(Label label, AbstractMacroAssembler<AssemblerType>* masm) |
| { |
| masm->m_assembler.linkJump(m_jmp, label.m_label); |
| } |
| |
| private: |
| JmpSrc m_jmp; |
| }; |
| |
| // JumpList: |
| // |
| // A JumpList is a set of Jump objects. |
| // All jumps in the set will be linked to the same destination. |
| class JumpList { |
| friend class LinkBuffer; |
| |
| public: |
| void link(AbstractMacroAssembler<AssemblerType>* masm) |
| { |
| size_t size = m_jumps.size(); |
| for (size_t i = 0; i < size; ++i) |
| m_jumps[i].link(masm); |
| m_jumps.clear(); |
| } |
| |
| void linkTo(Label label, AbstractMacroAssembler<AssemblerType>* masm) |
| { |
| size_t size = m_jumps.size(); |
| for (size_t i = 0; i < size; ++i) |
| m_jumps[i].linkTo(label, masm); |
| m_jumps.clear(); |
| } |
| |
| void append(Jump jump) |
| { |
| m_jumps.append(jump); |
| } |
| |
| void append(JumpList& other) |
| { |
| m_jumps.append(other.m_jumps.begin(), other.m_jumps.size()); |
| } |
| |
| bool empty() |
| { |
| return !m_jumps.size(); |
| } |
| |
| private: |
| Vector<Jump, 16> m_jumps; |
| }; |
| |
| |
| // Section 3: LinkBuffer - utility to finalize code generation. |
| |
| static CodePtr trampolineAt(CodeRef ref, Label label) |
| { |
| return CodePtr(AssemblerType::getRelocatedAddress(ref.m_code.dataLocation(), label.m_label)); |
| } |
| |
| // LinkBuffer: |
| // |
| // This class assists in linking code generated by the macro assembler, once code generation |
| // has been completed, and the code has been copied to is final location in memory. At this |
| // time pointers to labels within the code may be resolved, and relative offsets to external |
| // addresses may be fixed. |
| // |
| // Specifically: |
| // * Jump objects may be linked to external targets, |
| // * The address of Jump objects may taken, such that it can later be relinked. |
| // * The return address of a Jump object representing a call may be acquired. |
| // * The address of a Label pointing into the code may be resolved. |
| // * The value referenced by a DataLabel may be fixed. |
| // |
| // FIXME: distinguish between Calls & Jumps (make a specific call to obtain the return |
| // address of calls, as opposed to a point that can be used to later relink a Jump - |
| // possibly wrap the later up in an object that can do just that). |
| class LinkBuffer : public Noncopyable { |
| public: |
| // Note: Initialization sequence is significant, since executablePool is a PassRefPtr. |
| // First, executablePool is copied into m_executablePool, then the initialization of |
| // m_code uses m_executablePool, *not* executablePool, since this is no longer valid. |
| LinkBuffer(AbstractMacroAssembler<AssemblerType>* masm, PassRefPtr<ExecutablePool> executablePool) |
| : m_executablePool(executablePool) |
| , m_code(masm->m_assembler.executableCopy(m_executablePool.get())) |
| , m_size(masm->m_assembler.size()) |
| #ifndef NDEBUG |
| , m_completed(false) |
| #endif |
| { |
| } |
| |
| ~LinkBuffer() |
| { |
| ASSERT(m_completed); |
| } |
| |
| // These methods are used to link or set values at code generation time. |
| |
| void link(Call call, FunctionPtr function) |
| { |
| ASSERT(call.isFlagSet(Call::Linkable)); |
| #if PLATFORM(X86_64) |
| if (!call.isFlagSet(Call::Near)) { |
| char* callLocation = reinterpret_cast<char*>(AssemblerType::getRelocatedAddress(code(), call.m_jmp)) - REPTACH_OFFSET_CALL_R11; |
| AssemblerType::patchPointerForCall(callLocation, function.value()); |
| } else |
| #endif |
| AssemblerType::linkCall(code(), call.m_jmp, function.value()); |
| } |
| |
| void link(Jump jump, CodeLocationLabel label) |
| { |
| AssemblerType::linkJump(code(), jump.m_jmp, label.dataLocation()); |
| } |
| |
| void link(JumpList list, CodeLocationLabel label) |
| { |
| for (unsigned i = 0; i < list.m_jumps.size(); ++i) |
| AssemblerType::linkJump(code(), list.m_jumps[i].m_jmp, label.dataLocation()); |
| } |
| |
| void patch(DataLabelPtr label, void* value) |
| { |
| AssemblerType::patchPointer(code(), label.m_label, value); |
| } |
| |
| void patch(DataLabelPtr label, CodeLocationLabel value) |
| { |
| AssemblerType::patchPointer(code(), label.m_label, value.executableAddress()); |
| } |
| |
| // These methods are used to obtain handles to allow the code to be relinked / repatched later. |
| |
| CodeLocationCall locationOf(Call call) |
| { |
| ASSERT(call.isFlagSet(Call::Linkable)); |
| ASSERT(!call.isFlagSet(Call::Near)); |
| return CodeLocationCall(AssemblerType::getRelocatedAddress(code(), call.m_jmp)); |
| } |
| |
| CodeLocationNearCall locationOfNearCall(Call call) |
| { |
| ASSERT(call.isFlagSet(Call::Linkable)); |
| ASSERT(call.isFlagSet(Call::Near)); |
| return CodeLocationNearCall(AssemblerType::getRelocatedAddress(code(), call.m_jmp)); |
| } |
| |
| CodeLocationLabel locationOf(Label label) |
| { |
| return CodeLocationLabel(AssemblerType::getRelocatedAddress(code(), label.m_label)); |
| } |
| |
| CodeLocationDataLabelPtr locationOf(DataLabelPtr label) |
| { |
| return CodeLocationDataLabelPtr(AssemblerType::getRelocatedAddress(code(), label.m_label)); |
| } |
| |
| CodeLocationDataLabel32 locationOf(DataLabel32 label) |
| { |
| return CodeLocationDataLabel32(AssemblerType::getRelocatedAddress(code(), label.m_label)); |
| } |
| |
| // This method obtains the return address of the call, given as an offset from |
| // the start of the code. |
| unsigned returnAddressOffset(Call call) |
| { |
| return AssemblerType::getCallReturnOffset(call.m_jmp); |
| } |
| |
| // Upon completion of all patching either 'finalizeCode()' or 'finalizeCodeAddendum()' should be called |
| // once to complete generation of the code. 'finalizeCode()' is suited to situations |
| // where the executable pool must also be retained, the lighter-weight 'finalizeCodeAddendum()' is |
| // suited to adding to an existing allocation. |
| CodeRef finalizeCode() |
| { |
| performFinalization(); |
| |
| return CodeRef(m_code, m_executablePool, m_size); |
| } |
| CodeLocationLabel finalizeCodeAddendum() |
| { |
| performFinalization(); |
| |
| return CodeLocationLabel(code()); |
| } |
| |
| private: |
| // Keep this private! - the underlying code should only be obtained externally via |
| // finalizeCode() or finalizeCodeAddendum(). |
| void* code() |
| { |
| return m_code; |
| } |
| |
| void performFinalization() |
| { |
| #ifndef NDEBUG |
| ASSERT(!m_completed); |
| m_completed = true; |
| #endif |
| |
| ExecutableAllocator::makeExecutable(code(), m_size); |
| } |
| |
| RefPtr<ExecutablePool> m_executablePool; |
| void* m_code; |
| size_t m_size; |
| #ifndef NDEBUG |
| bool m_completed; |
| #endif |
| }; |
| |
| class RepatchBuffer { |
| public: |
| RepatchBuffer() |
| { |
| } |
| |
| void relink(CodeLocationJump jump, CodeLocationLabel destination) |
| { |
| AssemblerType::relinkJump(jump.dataLocation(), destination.dataLocation()); |
| } |
| |
| void relink(CodeLocationCall call, CodeLocationLabel destination) |
| { |
| #if PLATFORM(X86_64) |
| repatch(call.dataLabelPtrAtOffset(-REPTACH_OFFSET_CALL_R11), destination.executableAddress()); |
| #else |
| AssemblerType::relinkCall(call.dataLocation(), destination.executableAddress()); |
| #endif |
| } |
| |
| void relink(CodeLocationCall call, FunctionPtr destination) |
| { |
| #if PLATFORM(X86_64) |
| repatch(call.dataLabelPtrAtOffset(-REPTACH_OFFSET_CALL_R11), destination.executableAddress()); |
| #else |
| AssemblerType::relinkCall(call.dataLocation(), destination.executableAddress()); |
| #endif |
| } |
| |
| void relink(CodeLocationNearCall nearCall, CodePtr destination) |
| { |
| AssemblerType::relinkCall(nearCall.dataLocation(), destination.executableAddress()); |
| } |
| |
| void relink(CodeLocationNearCall nearCall, CodeLocationLabel destination) |
| { |
| AssemblerType::relinkCall(nearCall.dataLocation(), destination.executableAddress()); |
| } |
| |
| void relink(CodeLocationNearCall nearCall, FunctionPtr destination) |
| { |
| AssemblerType::relinkCall(nearCall.dataLocation(), destination.executableAddress()); |
| } |
| |
| void repatch(CodeLocationDataLabel32 dataLabel32, int32_t value) |
| { |
| AssemblerType::repatchInt32(dataLabel32.dataLocation(), value); |
| } |
| |
| void repatch(CodeLocationDataLabelPtr dataLabelPtr, void* value) |
| { |
| AssemblerType::repatchPointer(dataLabelPtr.dataLocation(), value); |
| } |
| |
| void relinkCallerToTrampoline(ReturnAddressPtr returnAddress, CodeLocationLabel label) |
| { |
| relink(CodeLocationCall(CodePtr(returnAddress)), label); |
| } |
| |
| void relinkCallerToTrampoline(ReturnAddressPtr returnAddress, CodePtr newCalleeFunction) |
| { |
| relinkCallerToTrampoline(returnAddress, CodeLocationLabel(newCalleeFunction)); |
| } |
| |
| void relinkCallerToFunction(ReturnAddressPtr returnAddress, FunctionPtr function) |
| { |
| relink(CodeLocationCall(CodePtr(returnAddress)), function); |
| } |
| |
| void relinkNearCallerToTrampoline(ReturnAddressPtr returnAddress, CodeLocationLabel label) |
| { |
| relink(CodeLocationNearCall(CodePtr(returnAddress)), label); |
| } |
| |
| void relinkNearCallerToTrampoline(ReturnAddressPtr returnAddress, CodePtr newCalleeFunction) |
| { |
| relinkNearCallerToTrampoline(returnAddress, CodeLocationLabel(newCalleeFunction)); |
| } |
| |
| void repatchLoadPtrToLEA(CodeLocationInstruction instruction) |
| { |
| AssemblerType::repatchLoadPtrToLEA(instruction.dataLocation()); |
| } |
| }; |
| |
| |
| // Section 4: Misc admin methods |
| |
| size_t size() |
| { |
| return m_assembler.size(); |
| } |
| |
| Label label() |
| { |
| return Label(this); |
| } |
| |
| Label align() |
| { |
| m_assembler.align(16); |
| return Label(this); |
| } |
| |
| ptrdiff_t differenceBetween(Label from, Jump to) |
| { |
| return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_jmp); |
| } |
| |
| ptrdiff_t differenceBetween(Label from, Call to) |
| { |
| return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_jmp); |
| } |
| |
| ptrdiff_t differenceBetween(Label from, Label to) |
| { |
| return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label); |
| } |
| |
| ptrdiff_t differenceBetween(Label from, DataLabelPtr to) |
| { |
| return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label); |
| } |
| |
| ptrdiff_t differenceBetween(Label from, DataLabel32 to) |
| { |
| return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label); |
| } |
| |
| ptrdiff_t differenceBetween(DataLabelPtr from, Jump to) |
| { |
| return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_jmp); |
| } |
| |
| ptrdiff_t differenceBetween(DataLabelPtr from, DataLabelPtr to) |
| { |
| return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label); |
| } |
| |
| ptrdiff_t differenceBetween(DataLabelPtr from, Call to) |
| { |
| return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_jmp); |
| } |
| |
| protected: |
| AssemblerType m_assembler; |
| }; |
| |
| } // namespace JSC |
| |
| #endif // ENABLE(ASSEMBLER) |
| |
| #endif // AbstractMacroAssembler_h |